
Numerical Optimization
for Generating Test Data

Koen Claessen
Chalmers University of Technology

Sweden

System Under
Test

control
logic

physics

other car
speed

slope

distance

other
car

if speed/slope
sensible then
no collision yes/no

floating
point
numbers

how close to
failing are we?

make
negative

Example: Adaptive cruise control

number

System Under
Test

control
logic

physics

other car
speed

slope

distance

other
car

if speed/slope
sensible then
no collision yes/no

floating
point
numbers

how close to
failing are we? number

make
negative

use numerical
minimization!

“falsification”

Numerical Optimization Methods

● Gradient descent
● Nelder-Mead
● Swarm optimization
● ...

● SNOBFIT
● Bayesian optimization
● ...

needs
gradient

gravitate
towards local

minima

expensive

complicated

Which aspects are important for falsification

● No gradient

● Not getting stuck in local minima
○ Do not gravitate to local minima

● Having a defined “area” to search in
○ Extreme values often lead to bugs

find negative
results

x

y

“make negative”
rather than
“minimize”

x

y

complexity =
sum of slope

changes

the least complex graph
that fits the existing points

AND goes negative

x

y

keep going

“Line falsification”

● Simple, fast

● Exercises “extreme values” in the box

● Is not sensitive to local minima

● Is not very sensitive to #dimensions
○ Can ignore dimensions that don’t seem to matter
○ 100s of inputs

System Under
Test

control
logic

physics

other car
speed

slope

distance

other
car

if speed/slope
sensible then
no collision yes/no

floating
point
numbers

how close to
failing are we?

make
negative

Example: Adaptive cruise control

number

very important
done right!

type DBool = Double {- >=0 -}

false, true :: DBool
false = inf
true = 0

(&&), (||) :: DBool -> DBool -> DBool
x && y = x + y
x || y = x `min` y

type DBool = Double {- >=0 -}

(>=?) :: Double -> Double -> DBool
x >=? y
 | x >= y = true
 | otherwise = y - x

a specification logic
of “valued booleans”

System Under
Test

control
logic

physics

other car
speed

slope

distance

other
car

if speed/slope
sensible then
no collision yes/no

floating
point
numbers

how close to
failing are we?

make
negative

Example: Adaptive cruise control

number

very important
done right!

x

y

problematic behavior
caused by discrete

choices

(discontinuities are
not the problem!)

(functions not
indicating where

they’re going are)

data Val a = Val a [(a,DBool)]

type for representing
simulation values

the actual
value

a table of alternative
values, and distance

to them

instance Applicative Val

pure :: a -> Val a

pure x = Val x []

instance Applicative Val

lift2 :: (a -> b -> c) ->
 Val a -> Val b -> Val c

lift2 f (Val x xds) (Val y yds) = Val (f x y) zds
 where
 zds = table (
 [(f x y’, d) | (y’,d) <- yds] ++
 [(f x’ y, d) | (x’,d) <- xds] ++
 [(f x’ y’, d1+d2) | (x’,d) <- xds
 , (y’,d) <- yds])

table chooses the
minimum distance

ifThenElse :: Val Bool ->
 Val a -> Val a -> Val a

f :: Val Double -> Val Double
f x = ifThenElse (x <=? 10.0)
 x
 (ifThenElse (x >=? 10.1)
 (20-x)
 (-1))

plot the distance to
a negative result

want to automate
instrumentation

x

y

specification 1
of continuous

functions

specification 2
of continuous

functions

discrete
event

specification 3
of continuous

functions

discrete
event

discrete
event

data State = Spec1 | Spec2 | Spec3

system :: Val State -> [Double] -> Val Bool
system st xs = ... system st’ xs’ ...

current state +
alternative states

continuous inputs property ok?

Summary

● Very effective method for finding bugs in hybrid systems
○ flexible (e.g. math / black-box operations)

● “Additive” valued booleans

● Our own numerical optimization method
○ good at finding negative values (vs. minimization)

● How about fully discrete systems?

compares well in
typical benchmarks

used in physics!
(lasers)

prop_parse_show (x :: T) =
 parse (show x) == Just x

prop_show_parse (s :: String) =
 let pres = parse s in
 isJust pres ==>
 s == show (fromJust pres)

prop_show_parse’ (x :: T) =
 let s = show x in
 let pres = parse s in
 isJust pres ==>
 s == show (fromJust pres)

implies

parse :: String -> Maybe T
show :: T -> String

(show should really
be non-deterministic)

need to check that
we do not parse too

much!

parse q d (c:s) =
 case c of
 '(' | q == 0 ->
 parse 0 (d+1) s

 '+' | q == 1 || q == 2 ->
 parse 0 d s

 ')' | q == 1 || q == 2 ->
 parse 2 (d-1) s

 _ | '0' <= c && c <= '9' && (q == 0 || q == 1) ->
 parse 1 d s

 _ ->
 False

parse q d [] =
 d == 0 && (q == 1 || q == 2)

parse q0 q1 q2 d (c:s) =
 case c of
 '(' | q0 ->
 parse True False False (d+1) s

 '+' | q1 || q2 ->
 parse True False False d s

 ')' | q1 || q2 ->
 parse False False True (d-1) s

 _ | '0' <= c && c <= '9' && (q0 || q1) ->
 parse False True False d s

 _ ->
 False

parse q0 q1 q2 d [] =
 d == 0 && (q1 || q2)

parse q0 q1 q2 d (c:s) =
 parse q0' q1' q2' d' s
 where
 q0' = (c == '(' && q0) || (c == '+' && (q1 || q2))
 q1' = '0' <= c && c <= '9' && (q0 || q1)
 q2' = (c == ')' && (q1 || q2))
 d' = d + one (c == '(' && q0) - one (c == ')' && (q1 || q2))

 one False = 0
 one True = 1

parse q0 q1 q2 d [] =
 d == 0 && (q1 || q2)

parse q0 q1 q2 d (c:s) =
 parse q0' q1' q2' d' s
 where
 q0' = ((c ==. '(') &&. q0) ||. ((c ==. '+') &&. (q1 ||. q2))
 q1' = foldr1 (||.) [c ==. w | w <- ['0'..'9']] &&. (q0 ||. q1)
 q2' = ((c ==. ')') &&. (q1 ||. q2))
 d' = d + one ((c ==. '(') &&. q0) - one ((c ==. ')') &&. (q1 ||. q2))

 one q | q > 0.1 = 0
 one _ = 1

parse q0 q1 q2 d [] =
 zero d &&. (q1 ||. q2)

done manually but
systematically

parse :: Val Bool -> Val Bool -> Val Bool -> Val Int -> [Val Char]
 -> Val Bool

1: 16246.0 "\128"
2: 14159.613405876566 "\133\&8w\128\147\134|\166/\\\128\145v\130\135Q{h\133\130"
3: 14000.797581007737 "\132*v\131\142\136y\166&\\t\145a\152\136B~o\138\129"
4: 13889.697684456827 "\145+n\130\DEL\134\129\178\DC3]\134\138:\135\156?\133>\130}"
5: 13262.59733297698 "C+t\133dz\223\133\RS\183\159\138\&37\182=\144=\129E"
6: 13242.948921948733 ";(v\134iz\221\133#\182\164\137\&47\185@\140<\130H"
7: 11484.400249769613 "((f\133\EM{\178\155#y\165\158\&87\181:\140\CAN~T"
9: 11463.775253154907 "(%_\142\ESCy\180\152\GS{\166\160\&36\170;\133)\DELN"
10: 11420.19252220173 "($_\143\CANy\178\150\RS|\166\154;6\158G\134)~P"
13: 8735.83252235814 "#\USb\133\SUBw\155;!x\GS\156\&4+\182:\135!\DEL6"
14: 8703.19067710843 "#\CANL\138\vr\135E!v\FS\146)*\190K\134\SI|7"
15: 8218.419410501145 "\ESC\SUBE\142\CANc\137D&k$\145\&9\DC3\182J\139\NULe\CAN"
27: 7956.26821813288 "\NUL3G\134\SYNa\152E k!e@\DC4\179JR\GSe\NUL"
29: 7374.530957174507 "\EOTAF]\NULN\148*\RSk0g\RS\b\179Mz\SUBd\b"
33: 6774.30408363287 "\aEBX)C\147*Ok\EMS\CAN\v\174\132F\ETB\156\NUL"
34: 5801.790239481378 "0F\nZ4FT(Oa\RSP\NUL\RS\229\142B\SUBlR"
35: 5653.209328854889 "7=\ETXX9<U(8c\NULT\SOH\RS\227\142:\SYNwV"
36: 4721.329118696091 "6\US+Z43P?@^\b?\a\ETB\231\151<!wC"
37: 4593.049769795101 "7\US8W2\USI?O^\SUB9\a$\229\152<'w;"
38: 4228.367829788856 ": +X)$I-PV\DC43\SOH:\229s@\SUBx1"
39: 3867.5196853961315 "2#\SUB8 $O.@Q\DC4-\ENQ@\231h@\SUB\132\US"
40: 3811.675920883331 "2&\GS3\RS#T.:L\EM\FS\STX>\230hA\SUBz\US"
...

208: 618.606774397607 "(7,79*5)+(9)'*|<08P/"
209: 615.6372863875167 "(7+8:*5)+)9))*|<09P/"
225: 613.5816522393113 "(119:12,2*5)(0vF08J-"
226: 611.7831431512103 "(119:12+3*5))0vE08J-"
237: 590.0426580236012 "(106834+2,6''0v@4;H*"
244: 563.5745831260235 "(903930,3+4)+-x:<>D+"
245: 555.7315838498512 "(903930,3+5)+.x:<>D*"
246: 538.8363549593371 "(901730-2+5)+-u:=>D+"
247: 536.3424754714836 "(40+862-1+3)(-s:<>C+"
250: 531.1760065113687 "(50,643+304+),s9=?A,"
253: 509.40062523136993 "(82+2750311-*,s;9@A+"
254: 497.4706664838121 "(52+2750100.*+s:8@B+"
257: 497.23938144030933 "(33,1715330)++s:8?@*"
258: 495.7613994906361 "(33,1715331)++t:8>B*"
259: 487.44509852135127 "(33,2704421))+t:7?A*"
273: 471.5657432105902 "(57+792784/(+.p9:@;)"
275: 463.08959029546634 "(58+6927840(+-p8:@;)"
278: 457.02702628397947 "(58+692686.)+.p9:?;)"
280: 418.8725115002297 "(98+5726961)+,n8>73("
303: 416.5640775970895 "(99+6418960*(+o8<43-"
309: 410.9369027686399 "(98+8565850+()n9>50."
310: 408.6283272354027 "(97+7564861+()n9>50."
...

...
1176: 2.7057640843563036 "7+6773+420+(93497+9,"
1180: 2.645749153303157 "7+6773+420+(93497+9,"
1183: 2.5125838864933314 "7+6773+420+(93497+9,"
1184: 2.4164023100685768 "7+6773+420+(93497+9,"
1185: 2.3587784555340363 "7+6773+420+(93497+9,"
1188: 2.239741301366365 "7+6773+420+(93497+9,"
1189: 2.226287007742286 "7+6773+420+(93497+9,"
1190: 2.1885096509571014 "7+6773+420+(93497+9,"
1191: 1.924813066798606 "7+6773+420+(93497+9,"
1193: 1.8706175204849131 "7+6773+420+(93497+9,"
1194: 1.867332592042274 "7+6773+420+(93497+9,"
1195: 1.8038501729502485 "7+6773+420+(93497+9,"
1196: 1.5728463911464843 "7+6773+420+(93497+9,"
1203: 1.5092923931476605 "7+6773+420+(93497+9,"
1205: 1.132590624093993 "7+6773+420+(93497+9,"
1208: 1.1229937642522572 "7+6773+420+(93497+9,"
1209: 1.119287494716147 "7+6773+420+(93497+9,"
1215: 1.0790638124029215 "7+6773+420+(93497+9,"
1216: 0.0 "7+6773+420+(93497+9+"

How about symbolic evaluation (using SAT/SMT)?

● We can handle more complicated arithmetic

● We can abstract away completely over unknown functions
○ black-box

● Every run is an actual run

● State space exploration can explode

● Clearly a complement to random testing

finding bugs
in type systems

(demo)

https://ifc-challenge.appspot.com/

https://ifc-challenge.appspot.com/

SAT

scalable

constraints &
variables over
finite domains

other theories
via SMT

IFC Challenge in SAT (take 1)

...

Assign | Skip | Throw |
Seq | If | Catch
(exactly one)

d

Var, Expr

IFC Challenge in SAT (take 1)

...s1 err1, s1’

s2 err2, s2’

s3 err3, s3’

s4 err4, s4’
all variables

add constraints about
s2,err2,s3,...,err4,s4’

add for all
runs

1 run say that s3’[l] = s3[h]

solvea few milliseconds

IFC Challenge in SAT (take 1)

solver knows
about semantics

solver knows
about types

trees are
wasteful

what about
non-finite
types?

what about
loops /
recursion?

Size-based tree encoding

Assign | Skip | Throw |
Seq | If | Catch
(exactly one)

Var, Expr

Size-based tree encoding
extra variable

“pointer”
constraints
based on arities
of constructors

n other constraints are
a bit more
complicated

works well for
arities <= 2

SAT problem
MUCH smaller,
more scalable

Size-based tree encoding

s1 err1, s1’

s2 err2, s2’

sn errn, sn’

constraints have to
pick the right si’

Non-termination / loops

have a maximum
number of loop takes

for a semantic run

size of the
program

number of
variables

size of
expressions

enumerate these
in some way

maximum
number of

function calls

dependent on the
input

Summary

● Works OK to find bugs in type systems

● hand-coded

● Problems with:
○ unbounded program execution
○ more complicated data types (e.g. lists)
○ scalability

Experiment - use Val + numerical optimization

● Similar coding of type systems
○ But, don’t care about many details

● Still hand-coded

● Could find the same bugs as SAT, in similar running times
○ No problems with coding types, bounded running times.

etc.

want to find bugs in
type checkers

(implementation)

speculative part

Idea: instrument a type checker with Val

● Still, hand-coded
○ but systematic

● Have it compute the “distance” to when things go wrong

● Use numerical optimization

Idea: instrument a type checker with Val

● Still, hand-coded
○ but systematic

● Have it compute the “distance” to when things go wrong

● Use numerical optimization

new project starting
2026

NULL-pointer
dereferencing

non-interference

real-time
constraints

1 PhD student 1 post-doc

working on bug
finding using

numerical
optimization

working on
programming

language semantics

