Numerical Optimization
for Generating Test Data

Koen Claessen
Chalmers University of Technology
Sweden

Example: Adaptive cruise control

a 2

control
logic

floating
point
numbers

distance

floating use numerical

ﬁa'r::oers minimization!

“falsification”

Numerical Optimization MethF

Gradient descent e SNOBFIT
Nelder-Mead e Bayesian optimization
Swarm optimization o

Which aspects are important for falsification

e No gradient

e Not getting stuck in local minima
o Do not gravitate to local minima

e Having a defined “area” to search in
o Extreme values often lead to bugs

“make negative”
rather than
“minimize”

___.(_}___

complexity =
sum of slope
changes

the least complex graph
e that fits the existing points
| L AND goes negative

keep going }

“Line falsification”
Simple, fast
Exercises “extreme values” in the box
Is not sensitive to local minima
Is not very sensitive to #dimensions

o Can ignore dimensions that don’'t seem to matter
o 100s of inputs

Log of the number of simulations

10°

—— NM Max
~—— =+ NM Additive
~——#— SNOBFIT Max
~—%— SNOBFIT Additive
“r Line Optimization Max
—#— Line Optimization Additive

50

Number of successful falsifications

100

150

Example: Adaptive cruise control

a g
logic

floating
point
numbers

distance

very important
L done right!

type DBool = Double {- >=0 -}

false, true :: DBool

false = inf

true =0

(&&), (|]) :: DBool -> DBool
X && y = x +y

X || Yy =X min" vy

-> DBool

type DBool = Double {- >=0 -}

(>=?) :: Double -> Double ->
X >=?y

| X >= vy = true

| otherwise =y - x

DBool

N\

|\

a specification logic
of “valued booleans”

|

Example: Adaptive cruise control

a g
logic

floating
point
numbers

distance

very important
L done right!

problematic behavior
caused by discrete
choices

(discontinuities are
not the problem!)

(functions not

indicating where
they’re going are)

X

a table of alternative
values, and distance

to them

type for representing
simulation values

|

data Val a = Val a [(a,DBool)]

the actual
value

instance Applicative Val

pure :: a -> Val a

pure x = Val x []

instance Applicative Val

1lift2 :: (a -=> b ->¢) ->
Val a -> Val b -> Val ¢

lift2 f (Val x xds) (Val y yds) = Val (f x y) zds
where
zds = table (
| (f xy’, d) | (y',d) <- yds] ++
L (Fx"y, d) | (x',d) <- xds | ++

/—///<7 (f x' y’, d1+d2) | (x',d) <- xds
) , (y',d) <-yds])

table chooses the
minimum distance J

-

ifThenElse ::

Val Bool ->
Val a -> Val a -> Val a

plot the distance to
a negative result

f :: Val Double -> Val Doubfé
f x = ifThenElse (x <=? 10.0)

?ifThenElse (x >=? 10.1)
(20-x)
(-1))

want to automate
instrumentation

4 s . h discrete
specmc_atlon 1 event
of continuous
functions
_ J
discrete
event 4 N

specification 3
of continuous

4)
specification 2

of continuous

functions
\ /

functions
\ /

discrete
event

data State

Spec1 | Spec2 | Spec3

current state +
continuous inputs o
alternative states P \ &)perty ok \
\

system :: Val State -> [Double] _> Val Bool
system st xs = ... system st’ xs'’

Summary

Very effective method for finding bugs in hybrid systems
o flexible (e.g. math / black-bo

compares well in
typical bencpmarkg

used in physics! }

“Additive” valued booleans

4\ (lasers)
Our own numerical optimization method

o good at finding negative values (vs. minimization)

How about fully discrete systems?

(show should really
be non-deterministic)

parse :: String -> Maybe T
show :: T -> String
prop_parse _show (x :: T) = prop_show parse (s :: String) =
parse (show x) == Just X let pres = parse s in

isJust pres ==
== show (fromJust pres)

let pres
isJust
S ==

prop_show parse’ (x :: T) =
let s = show x in

= parse s in
pres ==
show (fromJust pres)

parse q d (c:s) =
case ¢ of
‘(" 1 q==86 ->
parse 0 (d+1) s

'+ | g==11]] q==2->
parse 0 d s

") 1 g=11]|q==2 ->
parse 2 (d-1) s

_] '8 <= c & c <= '9' & (q ==0 || g ==1) ->
parse 1 d s

[]1 =
&& (q == 1 || q == 2)

parse q0 q1 q2 d (c:s) =
case c of
‘(" | q8 ->
parse True False False (d+1) s

+' | a1l || 92 ->
parse True False False d s

Dt lat || 92 ->
parse False False True (d-1) s

_ | '6' <= c & c <= '9' && (q0 || q1) ->
parse False True False d s

_ =>
False

parse g6 q1 q2 d [] =
d ==0 & (q1 || q2)

parse q0 q1 q2 d (c:s) =
parse q0' ql1' q2' d' s

where
qe' = (c == "(' && q8) || (c == "+' && (q1
ql' = '0' <= c && c <= '9' && (q0 || q1)
q2' = (c == ")" && (q1 || q2))
d" =d + one (¢ == '(' && @) - one (c ==
one False = 0
one True =1

parse g6 q1 q2 d [] =

d ==0 & (q1 || q2)

1l 92))

') && (q1

|l 92))

parse :: Val Bool -> Val Bool -> Val Bool -> Val Int -> [Val Char]

-> Val Bool
parse q0 q1 q2 d (c:s) =
parse gq9' q1' qgq2' d' s
where
g8’ = ((c ==. "(') &&. q08) ||. ((c ==. "+") &&. (q1 |]|. q2))
ql' = foldr1 (|].) [c==. w | w<-['06".."9"]1] &&. (g0 |]. q1)
92" = ((c ==. ")") &&. (q1 ||. q2))
d" =d + one ((c ==. '(') &&. q0) - one ((c ==. ")') &&. (q1 |]. q2))
oneq| q>0.1T=20
one = 1
parse q0 q1 q2 d [] =
zero d &&. (q1 ||) (»
done manually but

L systematically

16246.
14159.
14000.
13889.
13262.
13242.
11484.
11463.

0 "\128\128\128\128\128\128\128\128\128\128\128\128\128\128\128\128\128\128\128\1:
613405876566 "\133\&8w\128\147\134|\166/\\\128\145v\130\135Q{h\133\130"
797581007737 "\132*v\131\142\136y\166&\\t\145a\152\136B~0\138\129"

697684456827 "\145+n\130\DEL\134\129\178\DC3]\134\138:\135\156?\133>\130}"
59733297698 "C+t\133dz\223\133\RS\183\159\138\&37\182=\144=\129E"

948921948733 ";(v\1341z\221\133#\182\164\137\&47\185@\140<\130H"

400249769613 " ((f\133\EM{\178\155#y\165\158\&87\181:\140\CAN~T"

775253154907 " (%_\142\ESCy\180\152\GS{\166\160\&36\170;\133) \DELN"

: 11420.19252220173 " (S_\143\CANy\178\150\RS|\166\154;6\158G\134)~P"
. 8735.
. 8703.
. 8218.
. 7956.
. 7374.
. 6774.
. 5801.
. 5653.
: 4721.
. 4593.
. 4228.
. 3867.
. 3811.

83252235814 "#\USb\133\SUBwW\155; ! x\GS\156\&4+\182:\135!\DEL6"
19067710843 "#\CANL\138\vr\135E!v\FS\146)*\190K\134\SI|7"
419410501145 "\ESC\SUBE\142\CANc\137D&k$\145\&9\DC3\182J\139\NULe\CAN"
26821813288 "\NUL3G\134\SYNa\152E k'!'e@\DC4\179JR\GSe\NUL"
530957174507 "\EOTAF]\NULN\148*\RSk0g\RS\b\179Mz\SUBd\b"
30408363287 "\aEBX)C\147*0k\EMS\CAN\v\174\132F\ETB\156\NUL"
790239481378 "OF\nZ4FT(0a\RSP\NUL\RS\229\142B\SUBIR"
209328854889 "7=\ETXX9<U(8c\NULT\SOH\RS\227\142:\SYNwV"
329118696091 "6\US+Z43P?@*\b?\a\ETB\231\151<!wC"

049769795101 "7\US8W2\USI?0*\SUB9\aS\229\152<"w;"
367829788856 ": +X)SI-PV\DC43\SOH:\229s@\SUBx1"

5196853961315 "2#\SUB8 $0.@Q\DC4-\ENQ@\231h@\SUB\132\US"
675920883331 "2&\GS3\RS#T. :L\EM\FS\STX>\230hA\SUBz\US"

208:
209:
225:
226:
237:
244
245:
246:
247 :
250:
253:
254:
257:
258:
259:
273:
275:
278:
280:
303:
309:
310:

618.
615.
613.
611.
5960.
563.
555.
538.
536.
531.
509.
497.
497.
495.
487 .
471.
463.
457 .
418.
416.
410.
408.

606774397607 "(7,79%5)+(9) "' *|<08P/"
6372863875167 "(7+8:%5)+)9))*|<09P/"
5816522393113 "(119:12,2*5) (0vFe8J-"
7831431512103 "(119:12+3*5))OvEA8J-"
0426580236012 "(106834+2,6' 'Ov@4 ;H*"
5745831260235 "(903930,3+4)+-x:<>D+"
7315838498512 "(903930,3+5)+.x:<>D*"
8363549593371 "(901730-2+5)+-u:=>D+"
3424754714836 "(40+862-1+3)(-s:<>C+"
1760065113687 "(50,643+304+),s9=7A,"
40062523136993 " (82+2750311-*,s;90A+"
4706664838121 "(52+2750100.*+s:8@B+"
23938144030933 "(33,1715330)++s:8?@*"
7613994906361 "(33,1715331)++t:8>B*"
44509852135127 "(33,2704421))+t :7?2A*"
5657432105902 " (57+792784/(+.p9:@;)"
08959029546634 " (58+6927840(+-p8:@;)"
02702628397947 " (58+692686.)+.p9:?;)"
8725115002297 "(98+5726961)+,n8>73("
5640775970895 " (99+6418960* (+08<43-"
9369027686399 "(98+8565850+()n9>50."
6283272354027 "(97+7564861+()n9>50."

1176:
1180:
1183:
1184:
1185:
1188:
1189:
1190:
1191:
1193:
1194 :
1195:
1196:
1203:
1205:
1208
1209:
1215:
1216:

O = e mE e e 2 2 =SS DNDDNDNDDMNDNDNNNDNMNNDMNDDND

.7057640843563036 "7+6773+420+(93497+9,"
.645749153303157 "7+6773+420+(93497+9,"
.5125838864933314 "7+6773+420+(93497+9, "
.4164023100685768 "7+6773+420+(93497+9,"
.3587784555340363 "7+6773+420+(93497+9, "
.239741301366365 "7+6773+420+(93497+9,"
.226287007742286 "7+6773+420+(93497+9,"
.1885096509571014 "7+6773+420+(93497+9, "
.924813066798606 "7+6773+420+(93497+9,"
.8706175204849131 "7+6773+420+(93497+9,"
.867332592042274 "7+6773+420+(93497+9,"
.8038501729502485 "7+6773+420+(93497+9,"
.5728463911464843 "7+6773+420+(93497+9, "
.5092923931476605 "7+6773+420+(93497+9,"
.132590624093993 "7+6773+420+(93497+9,"
.1229937642522572 "7+6773+420+(93497+9, "
.119287494716147 "7+6773+420+(93497+9,"
.0790638124029215 "7+6773+420+(93497+9,"
.0 "74+6773+420+(93497+9+"

How about symbolic evaluation (using SAT/SMT)?
e \We can handle more complicated arithmetic

e \We can abstract away completely over unknown functions
o black-box

e Everyrunis an actual run
e State space exploration can explode

e Clearly a complement to random testing

finding bugs
In type systems

(demo)

https://ifc-challenge.appspot.com/

https://ifc-challenge.appspot.com/

The Information Flow Control Challenge consists of 10 challenges to
leak the secret in the face of increasingly hardened information flow
control mechanisms.

Start the IFC Challenge

constraints &
variables over

scalable finite domains

SAT

other theories
via SMT

IFC Challenge in SAT (take 1)

Var, Expr Assign | Skip | Throw |
Seq | If | Catch
(exactly one)

IFC Chal add constraints about W(take 1)

s2,err2,s3,....err4,s4’

/\say that s37] = s3[h] J

1 run

err3, s3’

err4, s4’
all variables

add for all
runs

s1

[a few milliseconds }> solve

IFC Challenge in SAT (take 1)

solver knows solver knows
about types about semantics

trees are
wasteful what about
loops /

recursion?

what about
non-finite
types?

Size-based tree encoding

Var, Expr Assign | Skip | Throw |
Seq | If | Catch
(exactly one)

Size-based tree encoding

extra variable constraints

“pointer” based on arities
(> of constructors

~N | works well for
other constraints are arities <= 2

a bit more
kcomplicated

J

N NN

SAT problem
MUCH smaller,
more scalable

Size-based tree encoding

constraints have to
pick the right si’

sn errn, sn’

Non-termination / loops

have a maximum
number of loop takes
for a semantic run

maximum
number of
function calls

size of the number of
: dependent on the
program variables T
enumerate thesc
sjize of in some way

expressions

Summary

e Works OK to find bugs in type systems
e hand-coded

e Problems with:
o unbounded program execution
o more complicated data types (e.g. lists)
o scalability

type checkers
(implementation)

Experiment - use Val + numerical optimiza! want to find bugs in J

e Similar coding of type systems
o But, don’t care about many details

e Still hand-coded

e Could find the same bugs as SAT, in similar running times
o No problems with coding types, bounded running times.
etc.

speculative part

|dea: instrument a type checker with Val

e Still, hand-coded
o but systematic

e Have it compute the “distance” to when things go wrong

e Use numerical optimization

|dea: instrument a type checker with Val

e Still, hand-coded
o but systematic

e Have it compute the “distance” to when things go wrong

e Use numerical optimization

(

new project starting

2026
NULL-pointer

Numerical optimization methods

ORI or automated bug finding in software

rpose and aims

non-interference oject is about investigating how numerical optimization methods can be used to
utomatic generation of test cases in order to search for difficult to find bugs
ware.

Earlier work. The inspiration for this project comes from our earlier work on specification
and testing of hybrid systems [1]. In a hybrid system, discrete software interacts with
. inuous physics. An example is the adaptive cruise controller in a vehicle; the discrete
real-tlme are reads inputs from the sensors (radar and speed) and provides control signals to the
COnStraintS ; the engine and the cars on the road are described by continuous physics. A possible
operty is: the distance between our car and the car in front of ours should always be

more than, say, 10 meters. How can we generate test data to test a property like that?

Here is what we did: (1) Rather than expressing the d

safety property as a boolean statement that is merely L J
true or false for any run of the system, we instead Q*O /)*O’
express the property as a real* number p that indicates o

how close to being false the property is. For example, for the cruise controller, we would
eimblv tice n=d-10 where A ic the dictance bhetween the care in metere If >0 the cafety

1 PhD student

-

(&

/\
/N
working on bug

finding using
numerical
optimization y

1 post-doc
/\
N
-
working on
programming
language semantics
- J

