
Inductive Testing
with applications to

compiler/interpreter testing

Koen Claessen
Chalmers University of Technology

and Epic Games

System Under
Test

test
cases

Oracle

ok?

Test Oracle: 3 Principles

● 1. Simple
○ Simpler than the implementation

● 2. Efficiently runnable
○ May need to run many tests

● 3. “Completeness”
○ For any faulty implementation, there should exist inputs

that trigger the oracle to say “no”

Example:
Shortest Path Algorithms

type Map
type Point
type Path

shortest : (Map, Point, Point) -> Maybe Path

(solve : Problem -> Maybe Solution)

● The oracle needs to know what the shortest
path is

● We can be simple, but it is too slow
○ Not practical when testing
○ (Non-termination!)

● We can be fast, but it is too complex
○ We may not trust our test results

Problem

Property-based Testing

(a la QuickCheck)

Sound - If an answer is produced, it should
be an actual solution

Complete - If no answer is produced, there
indeed was no actual solution

Optimal - If an answer is produced, there is
no actual solution that is better

easy to test
(simpler)

Sound - If an answer is produced, it should
be an actual solution

Complete - If no answer is produced, there
indeed was no actual solution

hard to test
(oracle copies implementation)

Complete - If no answer is produced, there
indeed was no actual solution

Complete’ - If there is a solution, some
answer will be produced

logically equivalent

testable

ForAll x . A(x) ==> B(x)

ForAll x in “A”. B(x)

ForAll mp,a,b .
 hasPath mp a b ==>
 isJust (shortest (mp, a, b))

ForAll mp,a,b in hasPathMap .
 isJust (shortest (mp, a, b))

produce a map, two
points, and a path

between those points

logically equivalent

testable!

Optimal - If an answer is produced, there is
no actual solution that is better

Optimal’ - If there is a solution, then no
worse answer will be produced

ForAll mp,a,b in hasPathMap .
 let Just path = shortest (mp, a, b) in
 length path <= length hasPathMap

make sure found path is
not longer than the one

we know about

Contrapositive testing

● Change your viewpoint
○ From: Stimuli / System Under Test / Oracle

○ To: Proofs / Logical implication

● And take the contrapositive view to get new
inspiration

Contrapositive Testing

?

“All sheep are
white” “All non-white

things are not
sheep”

Shortest Distance
Algorithms

type Map
type Point
data Distance = Inf | Fin Int

distance : (Map, Point, Point) -> Distance

Sound - If an answer is produced, it should
be an actual solution

Complete - If no answer is produced, there
indeed was no actual solution

Optimal - If an answer is produced, there is
no actual solution that is better

hard!

ForAll mp,a .
 distance(mp,a,a) == Fin 0

ForAll mp,a,b .
 distance(mp,a,b) ==
 minimum [distance(mp,a’,b) + d
 | (a’,d) <- neighbors(mp,a)
]

● Correctness: by induction
○ soundness: induction over actual distance
○ completeness: induction over function answer

● Induction principle
○ choose this for enabling testing
○ independent of implementation (unlike proving)

Inductive Testing What happens
to fault

distribution?

Testing Model Checkers
for Safety Properties

System

 ok

s s’

s0

check : (State, Circuit) -> Bool

False: The system is
not safe; often

produces a trace

True: The system is safe;
(produces nothing)

safe(s, S) =
 ForAll inp .
 let (ok, s’) = step(s, S, inp) in
 ok && safe(s’, S)

step : (State, System, Input) -> (Bool, State)

greatest fixpoint

ForAll s, S .
 check(s, S) ==>
 ForAll inp .
 let (ok, s’) = step(s, S, inp) in
 ok && check(s’, S)

step : (State, System, Input) -> (Bool, State)

● Correctness
○ Safety is defined as greatest fixpoint
○ Most natural is to use coinduction

● Efficiency
○ Model checker is called twice for each test

a ≤ F(a)

a ≤ gfp x . F(x)

● Break away from the oracle view
● Look at the logical meaning of the property
● Use proof techniques to “break up” into smaller

properties
○ Together, they imply the original property
○ They may be easier to test
○ The system may be run several times

● What happens to the distribution of faulty test cases?

Proof-based Testing: contrapositive testing,
inductive testing, coinductive testing

Inductive Testing of
Compilers/Interpreters

with QuickCheck

data Program
 = Var := Expr
 | Skip
 | Program :>>: Program
 | IfThenElse Expr Program Program
 | Decl Var Program
 …

compileAndRun :: Program -> State -> IO State

compileAndRun2 :: Program -> State -> IO State

“differential
testing”

prop_CompilersSame :: Program -> State -> IO Bool
prop_CompilersSame p s1 =
 do s2 <- compileAndRun p s1
 s2’ <- compileAndRun2 p s1
 return (s2 == s2’)

> quickCheck prop_CompilersSame
*** FAILED (after 17 tests and 13 shrinks):
if y then
 var x in y := 0
else
 skip

minimal
counter
example

Library
for writing

test data generators

Library
for writing 1-step

shrinking functions

recursive
generators

specify
frequencies

for the cases
keep track of

test data sizes keep track of
invariants

Library
for writing 1-step

shrinking functions

replace a part with
an immediate

sub-part

custom rules

a + b ⟶ a, b

if e then p else q ⟶ p, q

C[var x in p] ⟶
 var x in C[p]

while e do p ⟶
 if e then p else skip

for free

rules are applied
repeatedly until a local

minimum is found

property

random
test case

success failure

shrink
minimal

failing test
case

larger and
larger

small test
case

situation:

A new language.

You only have one
interpreter/compiler.

specification
language

programming
language

how to test?
simple,
efficient,
complete

data Program
 = Skip
 | Var := Expr
 | Program :>>: Program
 | If Expr Program Program
 | While Expr Program
 | ...

compileAndRun :: Program -> State -> IO State

structural inductive
testing of

compileAndRun

prop_SequentialComposition ::
 Program -> Program -> State -> IO Bool
prop_SequentialComposition p q s1 =
 do s3 <- compileAndRun (p :>>: q) s1
 s2 <- compileAndRun p s1
 s3’ <- compileAndRun q s2
 return (s3 == s3’)

“self-consistency”runs
compiler/interpreter

3 times

prop_While :: Expr -> Program -> State -> IO Bool
prop_While e p s1 =
 do s2 <- compileAndRun (While e p) s1
 s2’ <- compileAndRun (If e (p :>>: While e p) Skip) s1
 return (s2 == s2’)

runs
compiler/interpreter

2 times

prop_Skip :: State -> IO Bool
prop_Skip s1 =
 do s1’ <- compileAndRun Skip s1
 return (s1 == s1’)

● One property for each language construct

● Specification is now complete
○ but do not have to specify everything
○ incremental specification

● Compare to making new interpreter
○ these properties are as efficient as interpreter

under test
○ they can concentrate on logic, not efficiency

step-wise inductive
testing of

compileAndRun

prop_Step :: Program -> State -> IO Bool
prop_Step p s1 =
 do s2 <- compileAndRun p s1
 let (p’, s1’) = step p s1
 s2’ <- compileAndRun p’ s1’
 return (s2 == s2’)

step :: Program -> State -> (Program, State)

can also have one
property for each

step case

example application 1:
Scoria -

A language for IoT
devices

our own language +
compiler

C compiler+runtime
vs. interpreter

prop_Function :: Program -> Program -> State -> IO Bool
prop_Function f body p s1 =
 do s2 <- compileAndRun (Def f body :>>: p) s1
 s2’ <- compileAndRun (Def f body :>>: inline f body p) s1
 return (s2 == s2’)

step :: Program -> State -> (Program, State)

● We found bugs in the C-runtime

● We found bugs in our interpreter
○ invariants that did not hold
○ modelling optimizations we wanted to make

in the compiler

● A few properties found almost all bugs
(function inlining + sequential composition)

example application 2:
Compiler/interpreter for

LTL+extra features

does not really exist
implementation

infinite traces /
liveness

no induction
over traces /

step

prop_Box :: Form -> Trace -> Property
prop_Box p tr =
 do ok <- run (Box p) tr
 ok’ <- forAllSteps tr (\tr’ -> run p tr’)
 return (ok == ok’)

● Must fine-tune the trace generator to the
property

● Flexible set-up during language design

Only O(k)
more tests

Summary

● It’s useful to look at specifications as logical
specifications and reformulate them into
equivalent, but testable specifications

● simple, efficient, complete

● contrapositive testing, (co)inductive testing

Extra Slides

Testing SAT-solvers

● If model and proof are generated
○ Direct soundness
○ Direct completeness

● If only model is generated when found
○ Direct soundness
○ Contrapositive testing for completeness

● If only yes/no answer
○ Inductive testing
○ Base case: no variables
○ Step case: branch on a variable

Testing SAT-solvers

Testing Sorting

● Write down the simplest sorting function you
can think of
○ You trust this code

● Show that the function you want to test has
the same behavior
○ How?

Testing sorting functions

Testing FFT
implementations

● Using exact arithmetic
○ Implementation is still fast
○ Specification is extremely slow

● Base cases
○ vectors [0,..,0,1,0,..,0]

● Step cases
○ a * fft v = fft (a*v)
○ fft v + fft w = fft (v + w)

Testing FFT

