Inductive Testing

with applications to
compiler/interpreter testing

Koen Claessen
Chalmers University of Technology
and Epic Games

System Under
test ———) y Test
cases

Test Oracle: 3 Principles

e 1. Simple

o Simpler than the implementation

e 2. Efficiently runnable
o May need to run many tests

e 3. "Completeness”
o For any faulty implementation, there should exist inputs
that trigger the oracle to say “no”

Example:
Shortest Path Algorithms

type Map
type Point
type Path

shortest : (Map, Point, Point) -> Maybe Path

(solve : Problem -> Maybe Solution)

Problem

e [he oracle needs to know what the shortest
path is

e \We can be simple, but it is too slow

o Not practical when testing
o (Non-termination!)

e \We can be fast, but it is too complex
o We may not trust our test results

Property-based Testing

(a la QuickCheck)

Sound - If an answer is produced, it should
be an actual solution

Complete - If no answer is produced, there
Indeed was no actual solution

Optimal - If an answer is produced, there is
no actual solution that is better

Sound - If an answer is produced, it should

be an actual solution

easy to test
(simpler)

Complete - If no answer is produced, there

Indeed was no actual solution

hard to test
(oracle copies implementation)

Complete - If no answer is produced, there

Indeed was no actual solution

logically equivalent

Complete’ - If there is a solution, some

answer will be produced

testable

ForAll x . A(x) ==> B(x)

ForAll x in “A”. B(x)

ForAll mp,a,b .
hasPath mp a b ==> points, and a path
isJust (shortest (mp, a, b) RECUIECURUEEEI TS

produce a map, two

ForAll mp,a,b in hasPathMap".
iIsdust (shortest (mp, a, b))

Optimal - If an answer is produced, there is

no actual solution that is better

logically equivalent

Optimal’ - If there is a solution, then no

worse answer will be produced

testable!

ForAll mp,a,b in hasPathMap .
let Just path = shortest (mp, a, b) in
length path <= length hasPathMap

make sure found path is

not longer than the one
we know about

Contrapositive testing

e Change your viewpoint
o From: Stimuli / System Under Test / Oracle

o To: Proofs / Logical implication

e And take the contrapositive view to get new
Inspiration

ontrapositive Testing

"All sheep are - : :
white” g 21 p- . “All non-white
| | + " things are not

Shortest Distance
Algorithms

type Map
type Point
data Distance = Inf | Fin Int

distance : (Map, Point, Point) -> Distance

Sound - If an answer is produced, it should
be an actual solution

Complete - If no answer is produced, there
Indeed was no actual solution

Optimal - If an answer is produced, there is
no actual solution that is better

ForAll mp,a .
distance(mp,a,a) == Fin ©

ForAll mp,a,b .
distance(mp,a,b) ==
minimum [distance(mp,a’,b) + d
(a’,d) <- neighbors(mp,a)

Inductive Testing Whet\(t) ESEGHS

distribution?

e Correctness: by induction

o soundness: induction over actual distance
o completeness: induction over function answer

e Induction principle
o choose this for enabling testing
o independent of implementation (unlike proving)

Testing Model Checkers
for Safety Properties

sO

False: The system is
not safe; often

produces a trace

check : (State, Circuit) -> Bqol

True: The system is safe;
(produces nothing)

step : (State, System, Input) -> (Bool, State)

safe(s, S) =
ForAll inp .
let (ok, s’) = step(s, S, inp) In
ok && safe(s’, S)

greatest fixpoint

step : (State, System, Input) -> (Bool, State)

ForAll s, S .
check(s, S) ==>
ForAll inp .
let (0k, s’) = step(s, S, inp) In
ok && check(s’, S)

e (Correctness

o Safety is defined as greatest fixpoint
o Most natural is to use coinduction

a<F(a)

a <gfp x.F(x)

e Efficiency
o Model checker is called twice for each test

Proof-based Testing: contrapositive testing,
inductive testing, coinductive testing

e Break away from the oracle view
e Look at the logical meaning of the property
e Use proof techniques to “break up” into smaller

properties

o Together, they imply the original property
o They may be easier to test

o The system may be run several times

e \What happens to the distribution of faulty test cases?

Inductive Testing of
Compilers/interpreters

with QuickCheck

data Program
= Var = Expr
Skip
Program :>>: Program
fThenElse Expr Program Program
Decl Var Program

compileAndRun :: Program -> State -> |0 State “differential
testing”
compileAndRun2 :: Program -> State -> |10 State

prop_CompilersSame :: Program -> State -> 10 Bool

prop_CompilersSame p s1 =
do s2 <- compileAndRun p s1
s2’ <- compileAndRun2 p s1
return (s2 == s2’)

> quickCheck prop CompilersSame
*** FAILED (after 17 tests and 13 shrinks):
iIf y then
varxiny:=0
else
Skip

minimal
counter
example

Library
for writing
est data generators

recursive specify

generators frequencies
for the cases

keep track of

test data sizes keep track of

Invariants

Library
for writing 1-step
shrinking functions

replace a part with
an immediate
sub-part

ifethenpelseq—p,q

Library
for writing 1-step
shrinking functions

Clvar x in p] —
var x in C[p]

while e do p —
If e then p else skip

rules are applied
repeatedly until a local
minimum is found

larger random

h test case

property failure

minimal

small test failing test shrink
case case

situation:
language
A new language. programming
language

You only have one
interpreter/compiler.

simple,

how to test? efficient,
complete

data Program
= SKkip
| Var := Expr
| Program :>>: Program
| If Expr Program Program
| While Expr Program

compileAndRun :: Program -> State -> |O State

structural inductive
testing of
compileAndRun

prop_SequentialComposition ::
Program -> Program -> State -> |0 Bool
prop_SequentialComposition p q s1 =
do s3 <- compileAndRun (p :>>: q) s1
s2 <- compileAndRun p s1
s3’ <- compileAndRun q s2

return (s3 == s3’)

runs
compiler/interpreter
3 times

“self-consistency”

prop_While :: Expr -> Program -> State -> 10 Bool
prop_While e p s1 =
do s2 <- compileAndRun (While e p) s1
s2’ <- compileAndRun (If e (p :>>: While e p) Skip) s1
return (s2 == s2’)

runs
compiler/interpreter
2 times

prop Skip :: State -> |O Bool
prop_ Skip s1 =

do s1’ <- compileAndRun Skip s1
return (s1 ==s1’)

One property for each language construct

Specification is now complete
o but do not have to specify everything
o incremental specification

Compare to making new interpreter

o these properties are as efficient as interpreter
under test

o they can concentrate on logic, not efficiency

step-wise inductive
testing of
compileAndRun

step :: Program -> State -> (Program, State)

prop_Step :: Program -> State -> |0 Bool
prop Step p s1 =

do s2 <- compileAndRun p s1
let (p’, s1’) = step p s1
s2’ <- compileAndRun p’ s1’
return (s2 == s2’)

can also have one
property for each
step case

example application 1:
Scoria -
A language for loT
devices

C compiler+runtime our own language +

vS. interpreter compiler

step :: Program -> State -> (Program, State)

prop_Function :: Program -> Program -> State -> |O Bool

prop_Function f body p s1 =
do s2 <- compileAndRun (Def f body :>>: p) s1
s2’ <- compileAndRun (Def f body :>>: inline f body p) s1
return (s2 == s2’)

e \We found bugs in the C-runtime

e \We found bugs in our interpreter
o Invariants that did not hold

o modelling optimizations we wanted to make
In the compiler

e A few properties found almost all bugs
(function inlining + sequential composition)

no induction .. _
over traces / ample application 2:

step gompiler/interpreter for
LTL+extra features

Nfinite toacac | does not really exist

liveness

Implementation

prop_Box :: Form -> Trace -> Property
prop_ Box p tr=

do ok <-run (Box p) tr
ok’ <- forAllSteps tr (\tr’ -> run p tr’)
return (ok == ok’)

e Must fine-tune the trace generator to the
property

e Flexible set-up during language design

Only O(k)
more tests

Summary

e [t's useful to look at specifications as logical
specifications and reformulate them into
equivalent, but testable specifications

e simple, efficient, complete

e contrapositive testing, (co)inductive testing

Extra Slides

Testing SAT-solvers

Testing SAT-solvers

e If model and proof are generated
o Direct soundness
o Direct completeness

e [f only model is generated when found
o Direct soundness
o Contrapositive testing for completeness

e |f only yes/no answer

A Indiictivie toactina

Testing Sorting

Testing sorting functions

e \Write down the simplest sorting function you

can think of
o You trust this code

e Show that the function you want to test has

the same behavior
o How?

Testing FFT
implementations

Testing FFT

e Using exact arithmetic

o Implementation is still fast
o Specification is extremely slow

e Base cases
o vectors [0,..,0,1,0,..,0]

e Step cases

o a*fftv=fit (a*v)
A Ft s + Ft \A7 = 1 (7 + /)

