
QuickChecking Confluence
Koen Claessen

Chalmers University of Technology
and Epic Games

Ulsan, 2026

ICFP 2023

Verse -
new programming

language for programming
the metaverse

e ::= v
 | v=e
 | v1(v2)
 | e1;e2
 | e1|e2
 | fail
 | one{e}
 | all{e}
 | ∃ x . e

v ::= x
 | k
 | <v1,..,vn>
 | op
 | \x. e

How to give
semantics to

this language?

small step operational
semantics

big step operational
semantics

denotational
semanticstranslational semantics

rewrite semantics

APP-LAM (\x.e)(v) ⟶ ∃x. x=v; e (x fresh)

UNI-TUP <v1,..,vn>=<w1,..,wn> ⟶ v1=w1;..;vn=wn

SUBST S[x=v] ⟶ S{v/x}[x=v] (x not in v)

SEQ-ASSOC (e1; e2); e3 ⟶ e1; (e2; e3)
SEQ-FLOAT v=(e1; e2) ⟶ e1; v=e2
EQ-SWAP v=x ⟶ x=v

ONE-FAIL one{ fail } ⟶ fail
ONE-VAL one{ v } ⟶ v
ONE-CHOICE one{ v | e } ⟶ v

data Expr
 = Var Ident
 | Int Integer
 | Tuple [Expr]
 | Expr :=: Expr
 | Expr :>: Expr
 | Expr :|: Expr
 | …

rules :: Rule Expr
rules =
 do Int i :=: Int j <- lhs
 guard (i==j)
 pure (Int i)
 <|>
 do Tuple vs :=: Tuple ws <- lhs
 pure (foldr (uncurry (:>:))
 (Tuple vs)
 (zip vs ws))
 <|>
 do Fail :>: e <- lhs
 pure Fail
 <|>
 do (e1 :>: e2) :>: e3 <- lhs
 pure (e1 :>: (e2 :>: e3))
 <|>
 do Val v :=: (e1 :>: e2) <- lhs
 pure (e1 :>: (Val v :=: e2))

Value and Expr
the same type should look like

“theory” as much
as possiblerun

test

exi x. 0(0); (x = (0(0) | fail))
 --CHOICE-->
exi x. 0(0); ((x = 0(0)) | (x = fail))
 --EXI-CHOICE-->
0(0); ((exi x. (x = 0(0))) | (ex x. (x = fail)))
 --FAIL-->
0(0); ((exi x. (x = 0(0))) | (ex x. fail))
 --EXI-ELIM-->
0(0); ((exi x. (x = 0(0))) | fail)
 --CHOICE-FAIL-R-->
0(0); (exi x. (x = 0(0)))

t

confluence

t1 t2

?

t

strong confluence

t1 t2

?
non-termination

step :: Term -> [Term]

one rewrite
step

one computation
step

assume
terminating

confluent?

type Term = Expr

prop_Confluence :: Term -> Property
prop_Confluence t = ...

generate
random terms

property is
checked for
each term

counterexamples
are reported

QuickCheck

Testing Shrinking

generate
random data

search for a
(locally) smallest
counter example

deterministic

arbitrary :: Gen Term

shrink :: Term -> [Term]

Library
for writing 1-step

shrinking functions

replace a part with
an immediate

sub-part

custom rules

a + b ⟶ a, b

if e then p else q ⟶ p, q

C[var x in p] ⟶
 var x in C[p]

while e do p ⟶
 if e then p else skip

for free

rules are applied
repeatedly until a local

minimum is found

property

random
test case

success failure

shrink
minimal

failing test
case

larger and
larger

small test
case

“small scope”
fallacy

norms :: Term -> [Term]
norms t = go empty [t]
 where
 go seen [] = []
 go seen (t:ts)
 | t `member` seen = go seen ts
 | null ts’ = t : go seen ts
 | otherwise = go (insert t seen)(ts’++ts)
 where
 ts’ = step t

compute all
normal forms

prop_Confluence1 :: Term -> Bool
prop_Confluence1 t =
 case norms t of
 _t1 : _t2 : _ -> False
 _ -> True

very
expensive!

t

O(2n)

arbNorm :: Term -> Gen Term
arbNorm t
 | null ts = return t
 | otherwise = do t’ <- elements ts
 arbNorm t’
 where
 ts = step t

compute arbitrary
normal form

prop_Confluence2 :: Term -> Property
prop_Confluence2 t0 =
 forAll (arbNorm t0) $ \t1 ->
 forAll (arbNorm t0) $ \t2 ->
 t1 == t2

(no good
feedback)

very cheap!

must run
more tests to

find bugs

bad
shrinking

prop_Confluence2 :: Term -> Property
prop_Confluence2 t0 =
 forAll (arbNorm t0) $ \t1 ->
 forAll (arbNorm t0) $ \t2 ->
 t1 == t2

generate
generate

generate
shrink

shrink?
shrink?

shrinking
dependent

data

data Fork = Fork Term Term Term

arbFork :: Gen Fork
arbFork =
 do t0 <- arbTerm
 t1 <- arbNorm t0
 t2 <- arbNorm t0
 return (Fork t0 t1 t2)

prop_Confluence3 :: Fork -> Bool
prop_Confluence3 (Fork _t0 t1 t2) =
 t1 == t2

Fork t0 t1 t2

Fork t0’ ? ?
use

(expensive)
norms

instance Arbitrary Fork where
 ...

 shrink (Fork t0 _t1 _t2) =
 [Fork t0’ t1’ t2’
 | t0’ <- shrink t0
 , t1’:t2’:_ <- [norms t0’]
]

Fork gives
fast testing

but very very
slow shrinking

t0

t1

t2

t1’

same
probability for
finding bug!

norm :: Term -> Term
norm t = case step t of
 [] -> t
 t’:_ -> norm t’

always take
leftmost step

arbTrace :: Term -> Gen Trace
arbTrace t
 | null ts = return [t]
 | otherwise = do t’ <- elements ts
 (t:) `fmap` arbTrace t’
 where
 ts = step t

compute arbitrary
tracetype Trace = [Term]

data Fork = Fork Trace

arbFork :: Gen Fork
arbFork =
 do t0 <- arbTerm
 tr <- arbTrace t0
 return (Fork tr)

type Trace = [Term]

prop_Confluence4 :: Fork -> Bool
prop_Confluence4 (Fork tr) =
 norm (head tr) == last tr (not quite...)

t0

t2

t1 . t3

t3’

t1 ≠ t2

either
t1 ≠ t3’

...or
t3’ ≠ t2

t0

t2

t1 . t3

t3’

t1 ≠ t2

either
t1 ≠ t3’

...or
t3’ ≠ t2

t0

t2

t1 . t3

t3’

t1 ≠ t2

either
t1 ≠ t3’

...or
t3’ ≠ t2

akin to textbook
proof about

“critical pairs”

data Fork = Fork Trace

arbFork :: Gen Fork
arbFork =
 do t0 <- arbTerm
 tr <- arbTrace t0
 return (Fork tr)

type Trace = [Term]

prop_Confluence4 :: Fork -> Bool
prop_Confluence4 (Fork tr) =
 norm (head tr) == last tr (not quite...)

prop_Confluence4 :: Fork -> Bool
prop_Confluence4 (Fork tr) =
 norm (head tr) == norm (last tr)

t0

t1

t2

t3

t1 ≠ t3
t0’

one step

instance Arbitrary Fork where
 ...
 shrink (Fork [t0,_t2]) =
 [Fork [t0’,t2’]
 | t0’ <- shrink t0
 , t2’ <- step t0’
]

 shrink (Fork tr) =
 [Fork (take (k+1) tr)
 , Fork (drop k tr)
]
 where
 k = length tr `div` 2

shrinking t0

shrinking the
trace

prop_Confluence5 :: Term -> Bool
prop_Confluence5 t =
 all (\t’ -> norm t == norm t’) (step t)

only checks
top-level stephas a different

(worse) distribution!

use general
property for
bug finding

use specialized
property for bug

shrinking

(VAR-SWAP) x = y ⟶ y = x

(EXI-SWAP) ∃x.(∃y.e) ⟶
∃y.(∃x.e)

 don’t terminate!

but they are
looping

“structural rules”

t0

strongly
connected
component

t1

normal form

Tarjan’s lazy
SCC algorithm

Tarjan’s lazy
SCC algorithmdepth-first

search

produces SCCs
on the fly

norm :: Term -> Term

normTrace :: Term -> Trace

arbTrace :: Term -> Gen Trace

randomize
the graph

prop_Confluence5 :: Term -> Bool
prop_Confluence5 t =
 all (\t’ -> norm t == norm t’) (step t)

only checks
top-level stephas a different

(worse) distribution!

use general
property for
bug finding

use specialized
property for bug

shrinking

Summary

● Checking confluence:
○ Using random terms
○ Computing all normal forms: very slow
○ Left-most normal form (deterministic) == random normal form: very quick

● Finding small counterexamples:
○ Avoid data-dependency in quantifiers
○ Forall t . if t ⟶ t’ then norm(t)==norm(t’)
○ Shrink traces to get to the above property

