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Functional logic languages have a rich literature, but it is tricky to give them a satisfying semantics. In this

ip VC with a small-step rewrite semantics, so that we can reason about a

stem is confluent for well-behaved terms.
th appendices) of the paper in the Proceedings of the International Conference on

mputation — Equational logic and rewriting; Proof theory; Rewrite

onstraint and logic languages; Multiparadigm languages.

paper we descnbe the Verse calculus, VC, a new core calculus for deterministic functional logic programming.

one does with lambda calculus; that is, by applying successive rewrites to it.

t-free languages; « Software and its engineering — Syntax; Semantics;

ICFP 2023
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Application:

APP-ADD add(k,, k,) — k;

APP-GT gt(k k) — kK

APP-GT-FAIL gt(k,, k) — fail

App-LAM® (Ax.e)(v) — Tx.x=v; e

APP-TUP (v, v (v) — (v=Lv) 11 (v=n;v,)

APP-TUP-0 ) (v) — fail
Unification:

U-LIT k=k— ()

U-TUP-0 0=0—0

U-TUP Vs V) =V, V) = V=V V=V

U-FAIL hnf, = hnf, — fail

U-OCCURS x=V[x] — fail
Substitution:

SUBST-EXI S[x=v] — S{v/x}[x=v]
Normalization:

EXI-ELIM dx.e— e

DEF-ELIM 3x. E[x=v] — E[()]

EXI-FLOAT® C[3x.e] — 3x.C|e]

SEQ-ASSOC (eis€s);ie— ejs:(e53:65)

SEQ-FLOAT v=(e; e,) — e;v=e,

SEQ-ELIM vie— e

EQ-FLOAT v=(n=e) — vn=¢ v, =()

EQ-SWAP v=x— x=v

EQ-RESULT v=eg () — v=e
Choice:

CHOICE-ASSOC (e;le)leg— e l(e,le)
faille— e
elfail — e
Cle;le;] — Cle]1Cle]
C[fail] — fail

CHOICE-FAIL-L
CHOICE-FAIL-R
CHOICE
CHOICE-FAIL

One and All:
ONE-FAIL one{fail} — fail
ONE-VALUE one{v} — v
ONE-CHOICE one{vl]e} — v
ALL-FAIL all{fail} — ()
ALL-CHOICE all{v; I -1 v,} — (v, v,)

where k; = k; +k,
ifk; > ky

ifk; < k,

if x ¢ fvs(v)

nz1

nz1
if v-vrt, u-TUP, U-0LAM dO not match
ifv+0

v# V[x]

if x ¢ fvs(e)
if x ¢ fvs(E) U fvs(v)
if x ¢ fvs(C) U bvs(C)

May apply infinitely for x=y




SEQ-ASSOC (el; e2); e3 — el; (e2; e3)

SEQ-FLOAT v=(el; e2) — el; v=e2

EQ-SWAP V=X — X=V

APP-LAM (\x.e)(v) — dX. Xx=v; e (x fresh)

UNI-TUP <vl,..,vn>=<wl,..,wn>

v1li=wl;..;vn=wn

SUBST  S[x=V]

S{v/x}[x=V]

(x not in v)

ONE-FAIL one{ fail }
ONE-VAL one{ v }
ONE-CHOICE one{ v | e }

Ll

fail
Y
Y




data Expr

= Var Ident
Int Integer
Tuple [Expr]

Expr :=: EXpr
Expr :>: EXpr
Expr :|: Expr

Value and Expr
the same type

i ¢

[ run J
( test ]

rules ::

rules
do

<|>
do

<|>
do

<|>
do

21

Rule Expr

Int i :=: Int j <- lhs
guard (i==j)
pure (Int i)

Tuple vs :=: Tuple ws <- lhs
pure (foldr (uncurry (:>:))
(Tuple vs)
(zip vs ws))

Fail :>: e <- 1hs should look like |
. “theory” as much

pure Fail as possible

N

(el :>: e2) :>: e3 <- lhs
pure (el :>: (e2 :>: e3))




exi x. 0(0); (x = (8(8) | fail))
--CHOICE-->

exi x. 0(0); ((x = 0(8)) | (x = fail))
--EXI-CHOICE-->

0(0); ((exi x. (x = 0(0))) | (ex x. (x = fail)))
--FAIL-->

0(0); ((exi x. (x = 0(0))) | (ex x. fail))
--EXI-ELIM-->

0(0); ((exi x. (x = 0(0))) | fail)
--CHOICE-FAIL-R-->

0(0); (exi x. (x = 0(09)))
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type Term = Expr

[ confluent? ]

one rewrite
step

step :: Term -> [Term]

one computation assume
step termlnatlng




QuickCheck
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{ generate

prop_Confluence
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o Term

-

\/
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~
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-> Property

counterexamples

are reported

|




arbitrary :: Gen TermJ

r
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Testing
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Shrinking
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[shrlnk Term >[ erm]J

terministic




Library | replaceapartwith . |

for writing 1-step ‘L an Imt;nedrltate
shrinking functions Sub-pa

atb—oa,b

p

custom rules }

ifethenpelseq—p,q

AV

Clvar x in p] —
var x in C[p]

rules are applied
while e do p — repeatedly until a local
if e then p else skip minimum is found
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larger and )

larger .

(

random
test case

success [{

property

“small scope”
fallacy

NZ

failure

[ small test

minimal
 failing test

case

case

I

shrink



- ™\
compute all
normal forms

norms :: Term -> [Term] \‘L//’ 4

norms t = go empty [t]
where

go seen [ ]

go seen (t:ts)

[ ]

t ‘member’ seen = go seen ts

null ts’ = t . go seen ts

otherwise = go (insert t seen)(ts’'++ts)
where

ts’' = step t



prop_Confluencel :
prop_Confluencel t
case norms t of
_t1 o _t2

. Term -> Bool

-> False
-> True

DN

very
expensive!

|







arbNorm

where

ts

. Term -> Gen Term

arbNorm t
null ts
otherwise

step t

return t

/

S

compute arbitrary
normal form

™\

J

do t' <- elements ts

arbNorm t’



must run
heap! more tests to
{ very cheap _ find bu&_/
prop_Confluence2 :: Term -> Property

prop_Confluence2 t@ =
forAll (arbNorm t@) S \t1 ->
forAll (arbNorm t@) S \t2 ->

t1 == t2
bad (no good
shrinking feedback)




generate ]

shrink? benerate

t1 == t2

(&

shrinking
dependent
data

J




data Fork = Fork Term Term Term

arbFork :: Gen Fork
arbFork =
do tO <- arbTerm
t1 <- arbNorm t©
t2 <- arbNorm to
return (Fork t0 t1 t2)

prop_Confluence3 :: Fork -> Bool
prop_Confluence3 (Fork _t0 t1 t2) =
t1 == t2




Fork t0 t1 t2

Fork gives l use )
fast testing Fork te6' ?? (expensive)
norms

instance Arbitrary Fork where

but very very
shrink (Fork t0 _t1 _t2) slow shrinking

[ Fork to0' t1’ t2°
t0’ <- shrink t©
o t1':t2':_ <- [norms t0']




same
probability for

finding bug!
\

t1°

t0

t2



»norm ::. Term -> Term

norm t = case step t of

[] ->t
t':_ -> norm t’
T

always take

leftmost step
& Y




4 )

compute arbitrary
type Trace = [Term] F—

Y,
arbTrace :: Term -> Gen Trace k_l///

arbTrace t

| null ts = return [t]
| otherwise = do t' <- elements ts
(t:) “fmap  arbTrace t'
where

ts = step t



type Trace = [Term]

data Fork = Fork Trace

\{;;iaerork .. Gen Fork

arbFork =
do t0@ <- arbTerm
tr <- arbTrace to©
return (Fork tr)

prop_Confluence4 :: Fork -> Bool
prop_Confluence4 (Fork tr) =

norm (head tr) == last tr <<'Umnquﬁe )}
| .
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t1
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t1 #12

either
t1 #t3’

...OF
t3’ # 12




t1 #12 to0

t1

either
t1 #t3’

akin to textbook

proof about

/
“critical paiji)/




type Trace = [Term]

data Fork = Fork Trace

\{;;iaerork .. Gen Fork

arbFork =
do tO <- arbTerm
tr <- arbTrace to©
return (Fork tr)

prop_Confluence4 :: Fork -> Bool
prop_Confluence4 (Fork tr) =
norm (head tr) == norm (last tr)

quﬂem)}

L




t1 #t3 to

ﬁ one step ]

t1



instance Arbitrary Fork where

shrink (Fork [tO,_t2]) =

| Fork [tO',t2’]
| t8° <- shrink t@ shrinking t0
, t2' <- step tO’

]

shrink (Fork tr) =
[ Fork (take (k+1) tr)

, Fork (drop k tr) shrinking the
] trace

where
k = length tr "div’ 2




use specialized
property for bug
shrinking

prop_Confluence5 :: Term -> Bbol
prop_Confluence5 t =
all (\t' -> norm t == norm t’') (step t)

use general . only checks
property for »  has a different top-level step
bug finding (worse) distribution!




(VAR-SWAP) X = y — y = X

(EXI-SWAP) Ix.(Iy.e) —

W e) N

[ don’t terminate! “structural rules” ]
Q

but they are
looping



t0

t1

[ normal m
strongly

Tarjan’s lazy connected
SCC algorithm component




Tarjan’s lazy
[ depth-first ? SCC algorithm <

norm :: Term -> Term }
search

/
[produces SCCs normTrace :: Term -> Trace]

on the fly \
arbTrace :: Term -> Gen Trace]

randomize
the graph




use specialized
property for bug
shrinking

prop_Confluence5 :: Term -> Bbol
prop_Confluence5 t =
all (\t' -> norm t == norm t’') (step t)

use general . only checks
property for »  has a different top-level step
bug finding (worse) distribution!




Summary

e Checking confluence:
o Using random terms
o Computing all normal forms: very slow
o Left-most normal form (deterministic) == random normal form: very quick

e Finding small counterexamples:
o Avoid data-dependency in quantifiers
o Forallt.ift— t then norm(t)==norm(t’)
o Shrink traces to get to the above property



