QuickChecking Confluence

Koen Claessen
Chalmers University of Technology
and Epic Games

Ulsan, 2026

a

The Verse Calculus: A Core Calculus for Deterministic
Functional Logic Programming (Extended Version)

LENNART AUGUSTSSON, Epic Games, Sweden
JOACHIM BREITNER, Unaffiliated, Germany

KOEN CLAESSEN, Epic Games, Sweden

RANJIT JHALA, Epic Games, USA

SIMON PEYTON JONES, Epic Games, United Kingdom
OLIN SHIVERS, Epic Games, USA

GUY L. STEELE JR., Oracle Labs, USA

TIM SWEENEY, Epic Games, USA

Functional logic languages have a rich literature, but it is tricky to give them a satisfying semantics. In this

ip VC with a small-step rewrite semantics, so that we can reason about a

stem is confluent for well-behaved terms.
th appendices) of the paper in the Proceedings of the International Conference on

mputation — Equational logic and rewriting; Proof theory; Rewrite

onstraint and logic languages; Multiparadigm languages.

paper we descnbe the Verse calculus, VC, a new core calculus for deterministic functional logic programming.

one does with lambda calculus; that is, by applying successive rewrites to it.

t-free languages; « Software and its engineering — Syntax; Semantics;

ICFP 2023

ti=V V 1:= X
v=e k
vli(v2) <vl,..,vn>
el;e2 op
el|e2 \X. 2
fail (small step opferational}
one{e} semantics
all{e}

How to give big step operational
semantic

_ semantics
this language-

[translational semantics

Application:

APP-ADD add(k,, k,) — k;

APP-GT gt(k k) — kK

APP-GT-FAIL gt(k,, k) — fail

App-LAM® (Ax.e)(v) — Tx.x=v; e

APP-TUP (v, v (v) — (v=Lv) 11 (v=n;v,)

APP-TUP-0) (v) — fail
Unification:

U-LIT k=k— ()

U-TUP-0 0=0—0

U-TUP Vs V) =V, V) = V=V V=V

U-FAIL hnf, = hnf, — fail

U-OCCURS x=V[x] — fail
Substitution:

SUBST-EXI S[x=v] — S{v/x}[x=v]
Normalization:

EXI-ELIM dx.e— e

DEF-ELIM 3x. E[x=v] — E[()]

EXI-FLOAT® C[3x.e] — 3x.C|e]

SEQ-ASSOC (eis€s);ie— ejs:(e53:65)

SEQ-FLOAT v=(e; e,) — e;v=e,

SEQ-ELIM vie— e

EQ-FLOAT v=(n=e) — vn=¢ v, =()

EQ-SWAP v=x— x=v

EQ-RESULT v=eg () — v=e
Choice:

CHOICE-ASSOC (e;le)leg— e l(e,le)
faille— e
elfail — e
Cle;le;] — Cle]1Cle]
C[fail] — fail

CHOICE-FAIL-L
CHOICE-FAIL-R
CHOICE
CHOICE-FAIL

One and All:
ONE-FAIL one{fail} — fail
ONE-VALUE one{v} — v
ONE-CHOICE one{vl]e} — v
ALL-FAIL all{fail} — ()
ALL-CHOICE all{v; I -1 v,} — (v, v,)

where k; = k; +k,
ifk; > ky

ifk; < k,

if x ¢ fvs(v)

nz1

nz1
if v-vrt, u-TUP, U-0LAM dO not match
ifv+0

v# V[x]

if x ¢ fvs(e)
if x ¢ fvs(E) U fvs(v)
if x ¢ fvs(C) U bvs(C)

May apply infinitely for x=y

SEQ-ASSOC (el; e2); e3 — el; (e2; e3)

SEQ-FLOAT v=(el; e2) — el; v=e2

EQ-SWAP V=X — X=V

APP-LAM (\x.e)(v) — dX. Xx=v; e (x fresh)

UNI-TUP <vl,..,vn>=<wl,..,wn>

v1li=wl;..;vn=wn

SUBST S[x=V]

S{v/x}[x=V]

(x not in v)

ONE-FAIL one{ fail }
ONE-VAL one{ v }
ONE-CHOICE one{ v | e }

Ll

fail
Y
Y

data Expr

= Var Ident
Int Integer
Tuple [Expr]

Expr :=: EXpr
Expr :>: EXpr
Expr :|: Expr

Value and Expr
the same type

i ¢

[run J
(test]

rules ::

rules
do

<|>
do

<|>
do

<|>
do

21

Rule Expr

Int i :=: Int j <- lhs
guard (i==j)
pure (Int i)

Tuple vs :=: Tuple ws <- lhs
pure (foldr (uncurry (:>:))
(Tuple vs)
(zip vs ws))

Fail :>: e <- 1hs should look like |
. “theory” as much

pure Fail as possible

N

(el :>: e2) :>: e3 <- lhs
pure (el :>: (e2 :>: e3))

exi x. 0(0); (x = (8(8) | fail))
--CHOICE-->

exi x. 0(0); ((x = 0(8)) | (x = fail))
--EXI-CHOICE-->

0(0); ((exi x. (x = 0(0))) | (ex x. (x = fail)))
--FAIL-->

0(0); ((exi x. (x = 0(0))) | (ex x. fail))
--EXI-ELIM-->

0(0); ((exi x. (x = 0(0))) | fail)
--CHOICE-FAIL-R-->

0(0); (exi x. (x = 0(09)))

7\

t1

t2

confluence

t1

/N

t2

strong confluence

type Term = Expr

[confluent?]

one rewrite
step

step :: Term -> [Term]

one computation assume
step termlnatlng

QuickCheck

random terms

{ generate

prop_Confluence
prop_Confluence t

o Term

-

\/

property is
checked for
each term

~

J

-> Property

counterexamples

are reported

|

arbitrary :: Gen TermJ

r

|

/

Testing

7

\

/
search for a

J

/

|

generate
random data

(locally) smallest
counter example

™\

—

Shrinking

N\

J

[shrlnk Term >[erm]J

terministic

Library | replaceapartwith . |

for writing 1-step ‘L an Imt;nedrltate
shrinking functions Sub-pa

atb—oa,b

p

custom rules }

ifethenpelseq—p,q

AV

Clvar x in p] —
var x in C[p]

rules are applied
while e do p — repeatedly until a local
if e then p else skip minimum is found

|

larger and)

larger .

(

random
test case

success [{

property

“small scope”
fallacy

NZ

failure

[small test

minimal
 failing test

case

case

I

shrink

- ™\
compute all
normal forms

norms :: Term -> [Term] \‘L//’ 4

norms t = go empty [t]
where

go seen []

go seen (t:ts)

[]

t ‘member’ seen = go seen ts

null ts’ = t . go seen ts

otherwise = go (insert t seen)(ts’'++ts)
where

ts’' = step t

prop_Confluencel :
prop_Confluencel t
case norms t of
_t1 o _t2

. Term -> Bool

-> False
-> True

DN

very
expensive!

|

arbNorm

where

ts

. Term -> Gen Term

arbNorm t
null ts
otherwise

step t

return t

/

S

compute arbitrary
normal form

™\

J

do t' <- elements ts

arbNorm t’

must run
heap! more tests to
{ very cheap _ find bu&_/
prop_Confluence2 :: Term -> Property

prop_Confluence2 t@ =
forAll (arbNorm t@) S \t1 ->
forAll (arbNorm t@) S \t2 ->

t1 == t2
bad (no good
shrinking feedback)

generate]

shrink? benerate

t1 == t2

(&

shrinking
dependent
data

J

data Fork = Fork Term Term Term

arbFork :: Gen Fork
arbFork =
do tO <- arbTerm
t1 <- arbNorm t©
t2 <- arbNorm to
return (Fork t0 t1 t2)

prop_Confluence3 :: Fork -> Bool
prop_Confluence3 (Fork _t0 t1 t2) =
t1 == t2

Fork t0 t1 t2

Fork gives l use)
fast testing Fork te6' ?? (expensive)
norms

instance Arbitrary Fork where

but very very
shrink (Fork t0 _t1 _t2) slow shrinking

[Fork to0' t1’ t2°
t0’ <- shrink t©
o t1':t2':_ <- [norms t0']

same
probability for

finding bug!
\

t1°

t0

t2

»norm ::. Term -> Term

norm t = case step t of

[] ->t
t':_ -> norm t’
T

always take

leftmost step
& Y

4)

compute arbitrary
type Trace = [Term] F—

Y,
arbTrace :: Term -> Gen Trace k_l///

arbTrace t

| null ts = return [t]
| otherwise = do t' <- elements ts
(t:) “fmap arbTrace t'
where

ts = step t

type Trace = [Term]

data Fork = Fork Trace

\{;;iaerork .. Gen Fork

arbFork =
do t0@ <- arbTerm
tr <- arbTrace to©
return (Fork tr)

prop_Confluence4 :: Fork -> Bool
prop_Confluence4 (Fork tr) =

norm (head tr) == last tr <<'Umnquﬁe)}
| .

t1 #12

t1

either

t1 #13’

t0

...or
t3' # t2

t2

t1 #12

either
t1 #t3’

...OF
t3’ # 12

t1 #12 to0

t1

either
t1 #t3’

akin to textbook

proof about

/
“critical paiji)/

type Trace = [Term]

data Fork = Fork Trace

\{;;iaerork .. Gen Fork

arbFork =
do tO <- arbTerm
tr <- arbTrace to©
return (Fork tr)

prop_Confluence4 :: Fork -> Bool
prop_Confluence4 (Fork tr) =
norm (head tr) == norm (last tr)

quﬂem)}

L

t1 #t3 to

ﬁ one step]

t1

instance Arbitrary Fork where

shrink (Fork [tO,_t2]) =

| Fork [tO',t2’]
| t8° <- shrink t@ shrinking t0
, t2' <- step tO’

]

shrink (Fork tr) =
[Fork (take (k+1) tr)

, Fork (drop k tr) shrinking the
] trace

where
k = length tr "div’ 2

use specialized
property for bug
shrinking

prop_Confluence5 :: Term -> Bbol
prop_Confluence5 t =
all (\t' -> norm t == norm t’') (step t)

use general . only checks
property for » has a different top-level step
bug finding (worse) distribution!

(VAR-SWAP) X = y — y = X

(EXI-SWAP) Ix.(Iy.e) —

W e) N

[don’t terminate! “structural rules”]
Q

but they are
looping

t0

t1

[normal m
strongly

Tarjan’s lazy connected
SCC algorithm component

Tarjan’s lazy
[depth-first ? SCC algorithm <

norm :: Term -> Term }
search

/
[produces SCCs normTrace :: Term -> Trace]

on the fly \
arbTrace :: Term -> Gen Trace]

randomize
the graph

use specialized
property for bug
shrinking

prop_Confluence5 :: Term -> Bbol
prop_Confluence5 t =
all (\t' -> norm t == norm t’') (step t)

use general . only checks
property for » has a different top-level step
bug finding (worse) distribution!

Summary

e Checking confluence:
o Using random terms
o Computing all normal forms: very slow
o Left-most normal form (deterministic) == random normal form: very quick

e Finding small counterexamples:
o Avoid data-dependency in quantifiers
o Forallt.ift— t then norm(t)==norm(t’)
o Shrink traces to get to the above property

