

QuickChecking Confluence

Koen Claessen
Chalmers University of Technology
and Epic Games

Ulsan, 2026

The Verse Calculus: A Core Calculus for Deterministic Functional Logic Programming (Extended Version)

LENNART AUGUSTSSON, Epic Games, Sweden

JOACHIM BREITNER, Unaffiliated, Germany

KOEN CLAESSEN, Epic Games, Sweden

RANJIT IHALA, Epic Games, USA

SIMON PEYTON JONES, Epic Games, United Kingdom

OLIN SHIVERS, Epic Games, USA

GUY L STEELE JR Oracle Labs USA

TIM SWEENEY Epic Games USA

Functional logic languages have a rich literature, but it is tricky to give them a satisfying semantics. In this paper we describe the Verse calculus, \mathcal{VC} , a new core calculus for deterministic functional logic programming. Our main contribution is to equip \mathcal{VC} with a small-step rewrite semantics, so that we can reason about a

one does with lambda calculus; that is, by applying successive rewrites to it. The system is confluent for well-behaved terms.

th appendices) of the paper in the Proceedings of the International Conference on

computation → **Equational logic and rewriting; Proof theory; Rewrite**
ct-free languages; • **Software and its engineering** → **Syntax; Semantics;**

Verse -
new programming
language for programming
the metaverse

```
e ::= v
    | v=e
    | v1(v2)
    | e1;e2
    | e1|e2
    | fail
    | one{e}
    | all{e}
    |  $\exists$  x . e
```

rewrite semantics

```
v ::= x
    | k
    | <v1, ..., vn>
    | op
    | \x. e
```

small step operational semantics

How to give
semantics to
this language?

big step operational
semantics

translational semantics

denotational
semantics

Application:

APP-ADD	$\text{add}\langle k_1, k_2 \rangle \longrightarrow k_3$	where $k_3 = k_1 + k_2$
APP-GT	$\text{gt}\langle k_1, k_2 \rangle \longrightarrow k_1$	if $k_1 > k_2$
APP-GT-FAIL	$\text{gt}\langle k_1, k_2 \rangle \longrightarrow \text{fail}$	if $k_1 \leq k_2$
APP-LAM $^\alpha$	$(\lambda x. e)(v) \longrightarrow \exists x. x = v; e$	if $x \notin \text{fvs}(v)$
APP-TUP	$\langle v_1, \dots, v_n \rangle(v) \longrightarrow (v=1; v_1) \parallel \dots \parallel (v=n; v_n)$	$n \geq 1$
APP-TUP-0	$\langle \rangle(v) \longrightarrow \text{fail}$	

Unification:

U-LIT	$k = k \longrightarrow \langle \rangle$	
U-TUP-0	$\langle \rangle = \langle \rangle \longrightarrow \langle \rangle$	
U-TUP	$\langle v_1, \dots, v_n \rangle = \langle v'_1, \dots, v'_n \rangle \longrightarrow v_1 = v'_1; \dots; v_n = v'_n$	$n \geq 1$
U-FAIL	$\text{hnf}_1 = \text{hnf}_2 \longrightarrow \text{fail}$	if U-LIT, U-TUP, U-OLAM do not match
U-OCCURS	$x = V[x] \longrightarrow \text{fail}$	if $V \neq \square$

Substitution:

SUBST-EXI	$S[x = v] \longrightarrow S[v/x][x = v]$	$v \neq V[x]$
-----------	--	---------------

Normalization:

EXI-ELIM	$\exists x. e \longrightarrow e$	if $x \notin \text{fvs}(e)$
DEF-ELIM	$\exists x. E[x = v] \longrightarrow E[\langle \rangle]$	if $x \notin \text{fvs}(E) \cup \text{fvs}(v)$
EXI-FLOAT $^\alpha$	$C[\exists x. e] \longrightarrow \exists x. C[e]$	if $x \notin \text{fvs}(C) \cup \text{bvs}(C)$
SEQ-ASSOC	$(e_1; e_2); e_3 \longrightarrow e_1; (e_2; e_3)$	
SEQ-FLOAT	$v = (e_1; e_2) \longrightarrow e_1; v = e_2$	
SEQ-ELIM	$v; e \longrightarrow e$	
EQ-FLOAT	$v_1 = (v_2 = e) \longrightarrow v_2 = e; v_1 = \langle \rangle$	
EQ-SWAP	$v = x \longrightarrow x = v$	May apply infinitely for $x = y$
EQ-RESULT	$v = e; \langle \rangle \longrightarrow v = e$	

Choice:

CHOICE-ASSOC	$(e_1 \parallel e_2) \parallel e_3 \longrightarrow e_1 \parallel (e_2 \parallel e_3)$	
CHOICE-FAIL-L	$\text{fail} \parallel e \longrightarrow e$	
CHOICE-FAIL-R	$e \parallel \text{fail} \longrightarrow e$	
CHOICE	$C[e_1 \parallel e_2] \longrightarrow C[e_1] \parallel C[e_2]$	
CHOICE-FAIL	$C[\text{fail}] \longrightarrow \text{fail}$	

One and All:

ONE-FAIL	$\text{one}\{\text{fail}\} \longrightarrow \text{fail}$	
ONE-VALUE	$\text{one}\{v\} \longrightarrow v$	
ONE-CHOICE	$\text{one}\{v \mid e\} \longrightarrow v$	
ALL-FAIL	$\text{all}\{\text{fail}\} \longrightarrow \langle \rangle$	
ALL-CHOICE	$\text{all}\{v_1 \mid \dots \mid v_n\} \longrightarrow \langle v_1, \dots, v_n \rangle$	$n \geq 0$

SEQ-ASSOC	$(e_1; e_2); e_3$	$\rightarrow e_1; (e_2; e_3)$
SEQ-FLOAT	$v=(e_1; e_2)$	$\rightarrow e_1; v=e_2$
EQ-SWAP	$v=x$	$\rightarrow x=v$

APP-LAM	$(\lambda x. e)(v)$	$\rightarrow \exists x. x=v; e$	$(x \text{ fresh})$
---------	---------------------	---------------------------------	---------------------

UNI-TUP	$\langle v_1, \dots, v_n \rangle = \langle w_1, \dots, w_n \rangle$	$\rightarrow v_1=w_1; \dots; v_n=w_n$
---------	---	---------------------------------------

SUBST	$S[x=v]$	$\rightarrow S\{v/x\}[x=v]$	$(x \text{ not in } v)$
-------	----------	-----------------------------	-------------------------

ONE-FAIL	$\text{one}\{ \text{ fail } \}$	$\rightarrow \text{ fail}$
ONE-VAL	$\text{one}\{ v \}$	$\rightarrow v$
ONE-CHOICE	$\text{one}\{ v \mid e \}$	$\rightarrow v$

```
data Expr
  = Var Ident
  | Int Integer
  | Tuple [Expr]
  | Expr ::= Expr
  | Expr :> Expr
  | Expr :||: Expr
  ...
  ...
```

Value and Expr
the same type

run

test

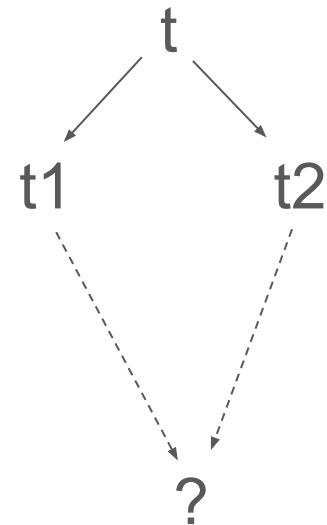
```
rules :: Rule Expr
rules =
  do Int i ::= Int j <- lhs
    guard (i==j)
    pure (Int i)
  <|>
  do Tuple vs ::= Tuple ws <- lhs
    pure (foldr (uncurry (:>:))
      (Tuple vs)
      (zip vs ws))
```

```
<|>
  do Fail :>: e <- lhs
    pure Fail
```

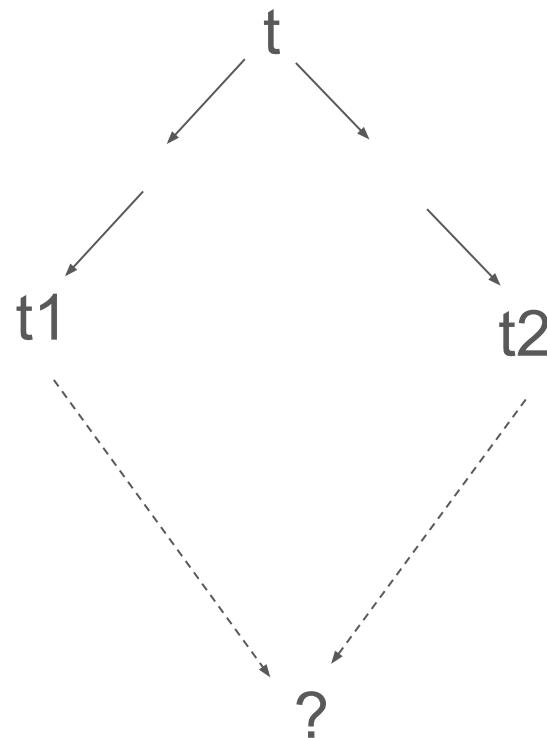
```
<|>
  do (e1 :>: e2) :>: e3 <- lhs
    pure (e1 :>: (e2 :>: e3))
```

should look like
“theory” as much
as possible

```
exi x. 0(0); (x = (0(0) | fail))
--CHOICE-->
exi x. 0(0); ((x = 0(0)) | (x = fail))
--EXI-CHOICE-->
0(0); ((exi x. (x = 0(0))) | (ex x. (x = fail)))
--FAIL-->
0(0); ((exi x. (x = 0(0))) | (ex x. fail))
--EXI-ELIM-->
0(0); ((exi x. (x = 0(0))) | fail)
--CHOICE-FAIL-R-->
0(0); (exi x. (x = 0(0)))
```



strong confluence



non-termination

```
type Term = Expr
```

confluent?

one rewrite
step

```
step :: Term -> [Term]
```

one computation
step

assume
terminating

QuickCheck

generate
random terms

property is
checked for
each term

```
prop_Confluence :: Term -> Property  
prop_Confluence t = ...
```

counterexamples
are reported

arbitrary :: Gen Term

Testing

generate
random data

shrink :: Term -> [Term]

search for a
(locally) smallest
counter example

Shrinking

deterministic

Library
for writing 1-step
shrinking functions

replace a part with
an immediate
sub-part

for free

custom rules

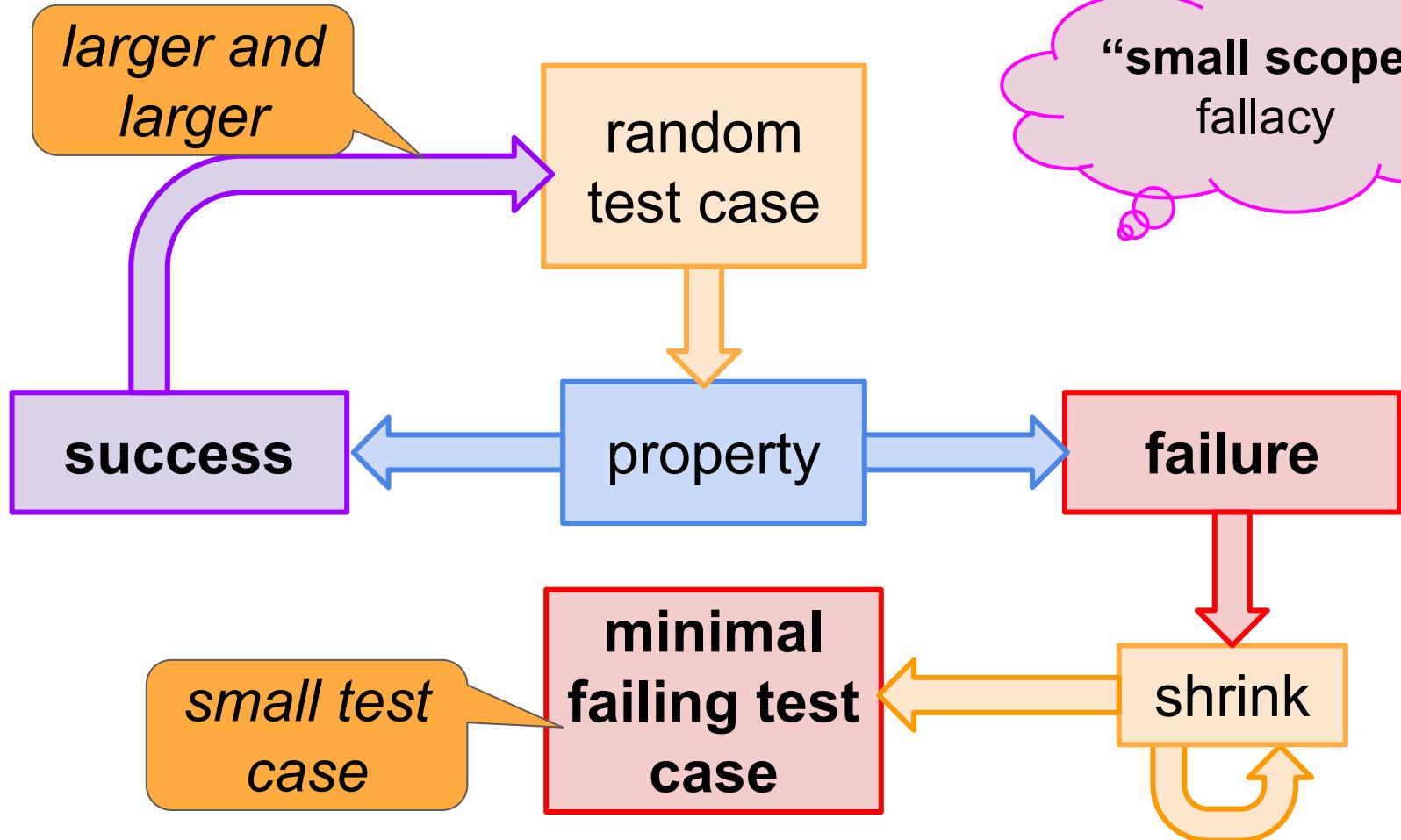
$C[\text{var } x \text{ in } p] \rightarrow$
 $\text{var } x \text{ in } C[p]$

$\text{while } e \text{ do } p \rightarrow$
 $\text{if } e \text{ then } p \text{ else skip}$

$a + b \rightarrow a, b$

$\text{if } e \text{ then } p \text{ else } q \rightarrow p, q$

*rules are applied
repeatedly until a local
minimum is found*



compute all
normal forms

```
norms :: Term -> [Term]  
norms t = go empty [t]
```

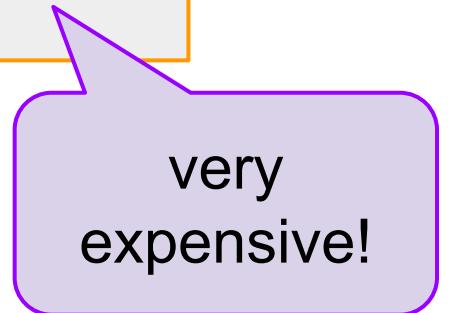
where

```
go seen [] = []  
go seen (t:ts)  
| t `member` seen = go seen ts  
| null ts' = t : go seen ts  
| otherwise = go (insert t seen)(ts'++ts)
```

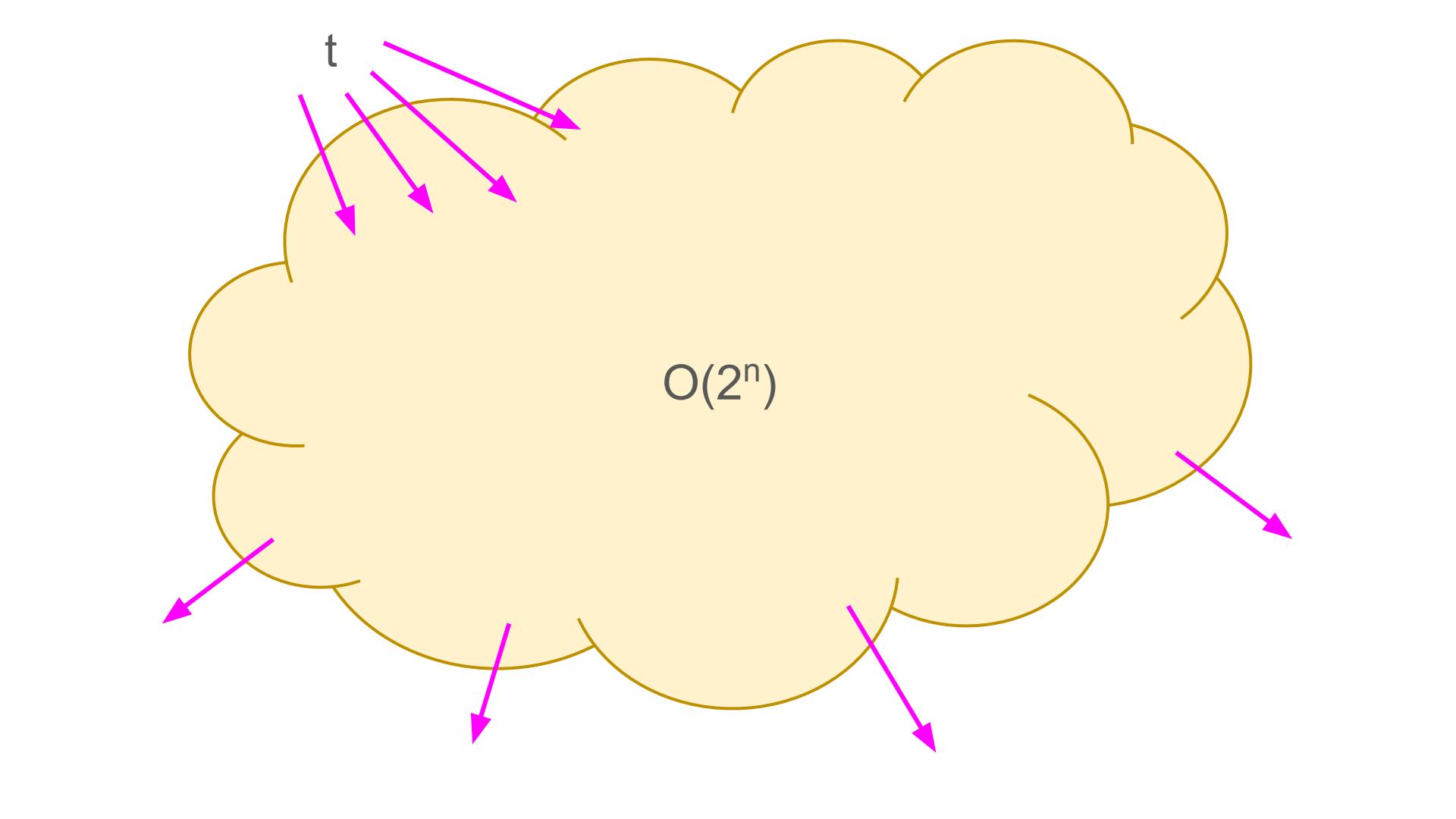
where

```
ts' = step t
```

```
prop_Confluence1 :: Term -> Bool
prop_Confluence1 t =
  case norms t of
    _t1 : _t2 : _ -> False
    _                           -> True
```



very
expensive!

 $O(2^n)$

t

compute arbitrary
normal form

```
arbNorm :: Term -> Gen Term
arbNorm t
| null ts    = return t
| otherwise = do t' <- elements ts
                arbNorm t'
where
  ts = step t
```

very cheap!

must run
more tests to
find bugs

```
prop_Confluence2 :: Term -> Property
prop_Confluence2 t0 =
  forAll (arbNorm t0) $ \t1 ->
  forAll (arbNorm t0) $ \t2 ->
    t1 == t2
```

bad
shrinking

(no good
feedback)

```
prop_Confluence2
prop_Confluence2 t0 =
  forAll (arbNorm t0) $ \t1 -
  forAll (arbNorm t0) $ \t2 ->
    t1 == t2
```

generate

shrink

generate

shrink?

generate

shrink?

shrinking
dependent
data

```
data Fork = Fork Term Term Term
```

```
arbFork :: Gen Fork
arbFork =
  do t0 <- arbTerm
     t1 <- arbNorm t0
     t2 <- arbNorm t0
     return (Fork t0 t1 t2)
```

```
prop_Confluence3 :: Fork -> Bool
prop_Confluence3 (Fork _t0 t1 t2) =
  t1 == t2
```

Fork t0 t1 t2

Fork gives
fast testing

Fork t0' ? ?

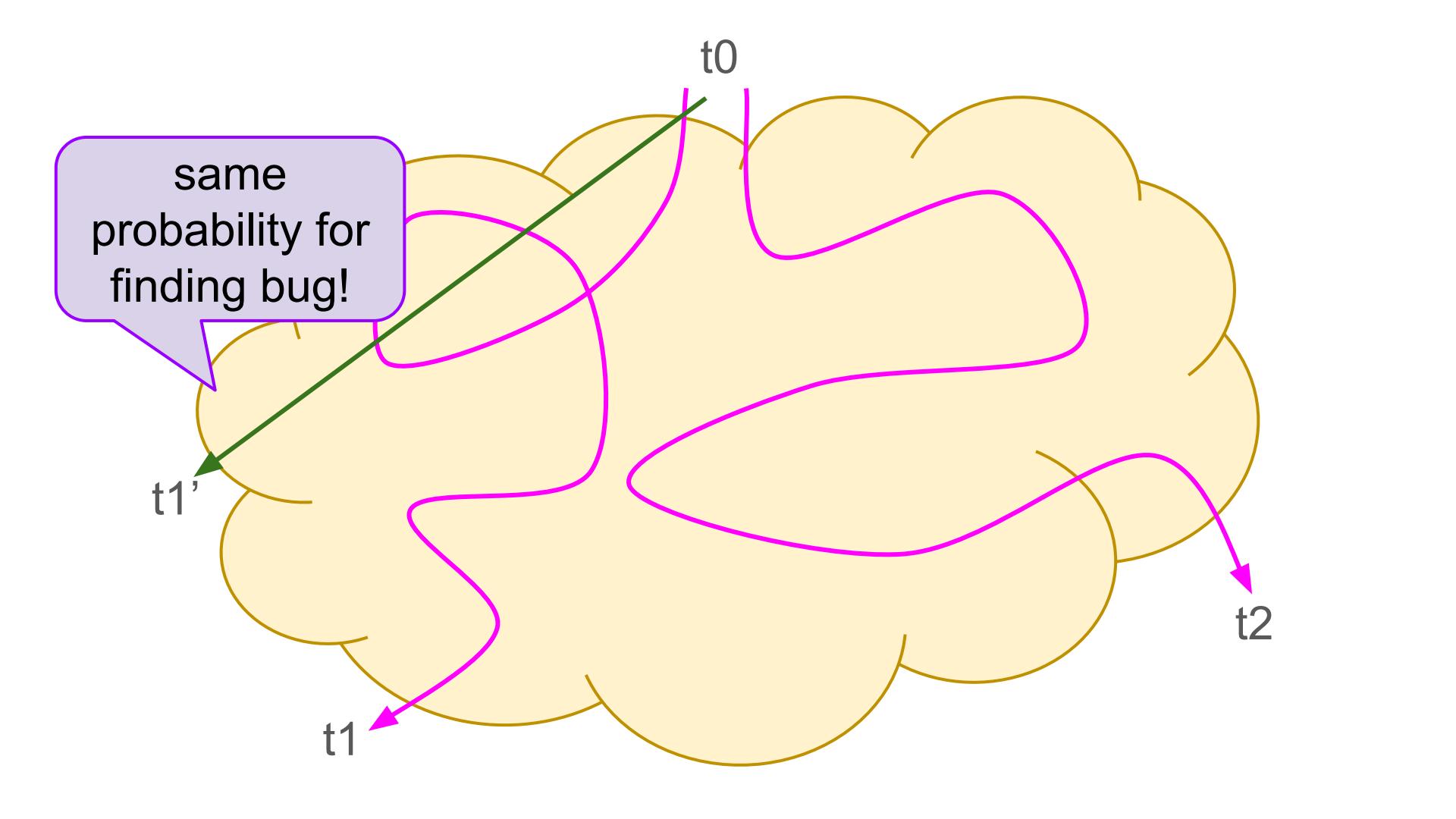
use
(expensive)
norms

instance Arbitrary Fork **where**

...

```
shrink (Fork t0 _t1 _t2)
[ Fork t0' t1' t2'
| t0' <- shrink t0
, t1':t2':_ <- [norms t0']
]
```

but very very
slow shrinking



same
probability for
finding bug!

The diagram illustrates the movement of a bug over time. A green line represents the path of the bug, starting at time t_1' and ending at time t_2 . The path is composed of several segments, some of which are highlighted in pink. The bug's path is surrounded by a series of overlapping, irregular yellow shapes, representing the search space or the area where the bug might be found. A pink arrow points from a text box to the green line at time t_1' , and another pink arrow points from the text box to the green line at time t_2 . The text box contains the message "same probability for finding bug!", indicating that the probability of finding the bug is constant over the entire time interval shown.

t_0

t_1'

t_1

t_2

```
norm :: Term -> Term
norm t = case step t of
    []    -> t
    t':_ -> norm t'
```

always take
leftmost step

```
type Trace = [Term]
```

compute arbitrary
trace

```
arbTrace :: Term -> Gen Trace
arbTrace t
| null ts    = return [t]
| otherwise = do t' <- elements ts
                (t:) `fmap` arbTrace t'
```

where

```
ts = step t
```

```
type Trace = [Term]
```

```
data Fork = Fork Trace
```

```
arbFork :: Gen Fork
arbFork =
  do t0 <- arbTerm
     tr <- arbTrace t0
     return (Fork tr)
```

```
prop_Confluence4 :: Fork -> Bool
prop_Confluence4 (Fork tr) =
  norm (head tr) == last tr
```

(not quite...)

$t1 \neq t2$

$t0$

$t1$

$t3$

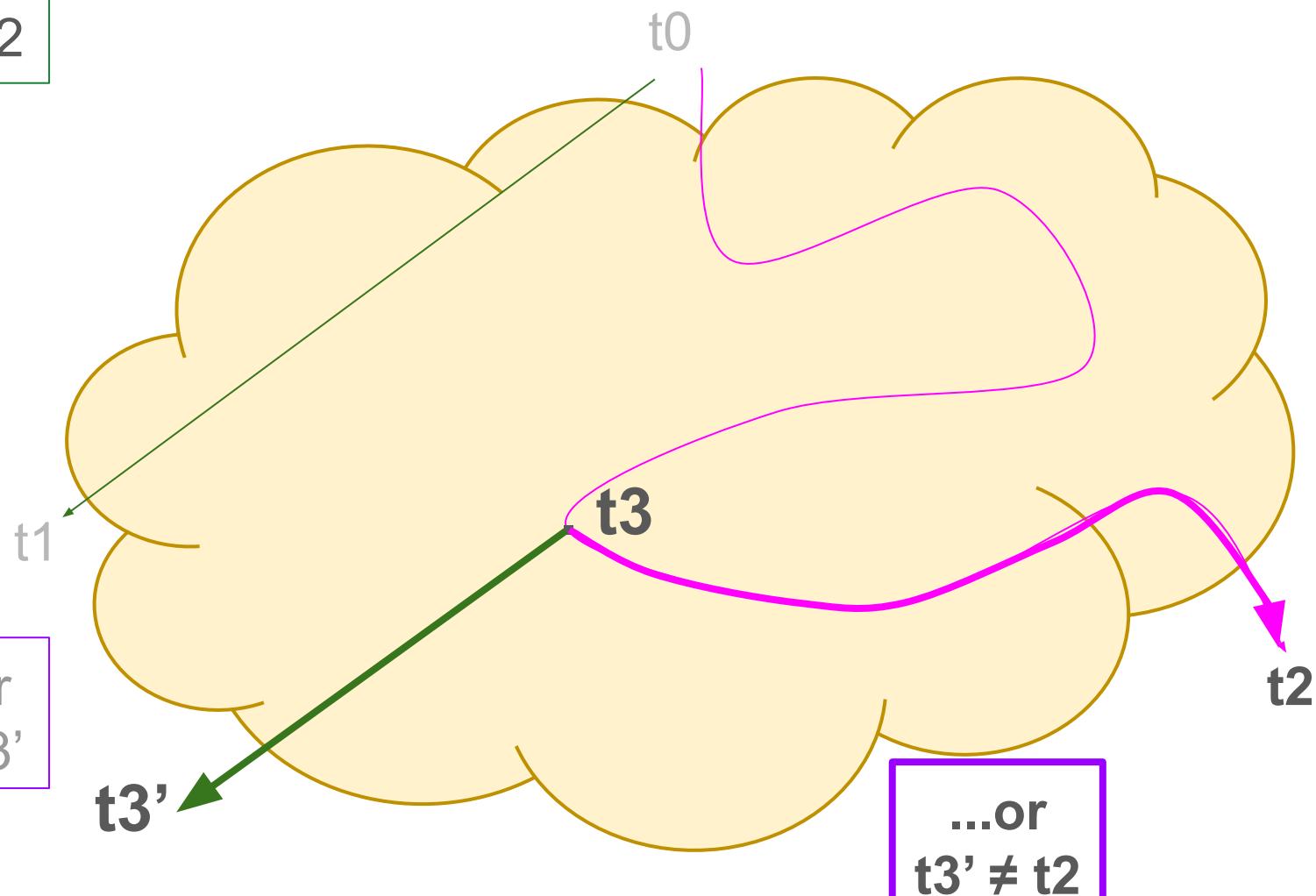
$t2$

$t3'$

...or
 $t3' \neq t2$

either
 $t1 \neq t3'$

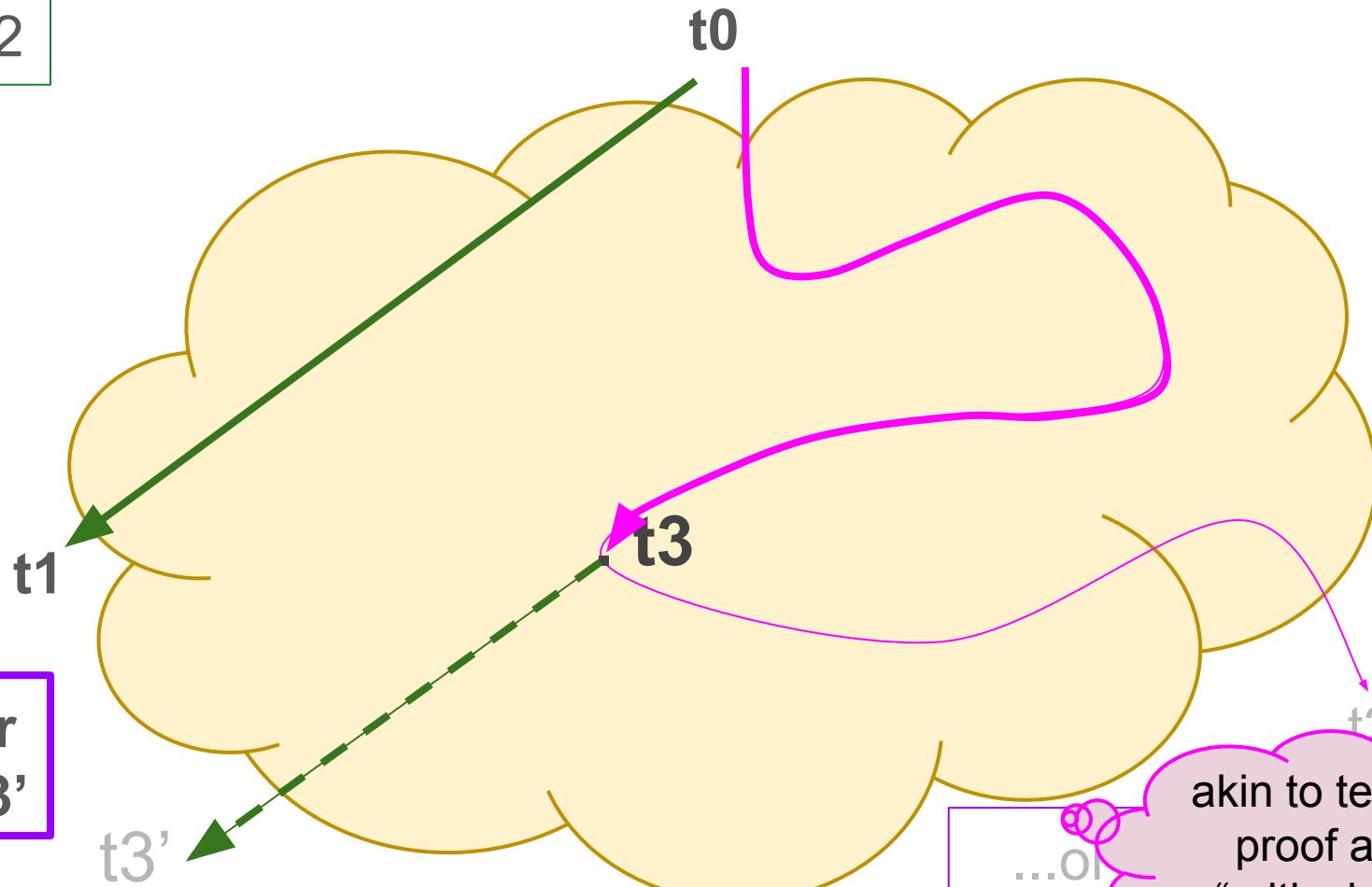
$t1 \neq t2$



either
 $t1 \neq t3'$

...or
 $t3' \neq t2$

$t1 \neq t2$



either
 $t1 \neq t3'$

$t2$
... or
 $t3' \neq t2$

akin to textbook
proof about
“critical pairs”

```
type Trace = [Term]
```

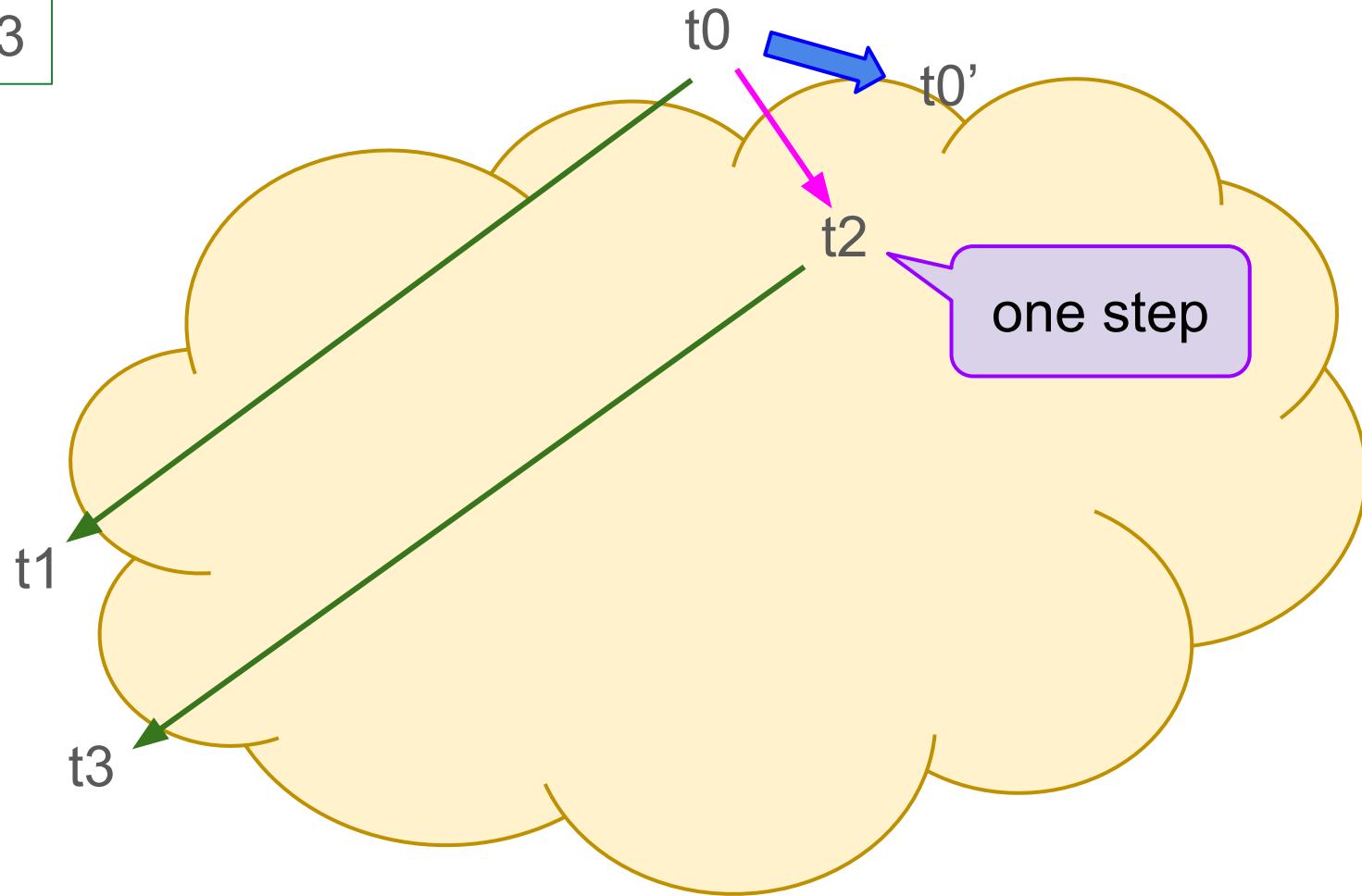
```
data Fork = Fork Trace
```

```
arbFork :: Gen Fork
arbFork =
  do t0 <- arbTerm
     tr <- arbTrace t0
     return (Fork tr)
```

```
prop_Confluence4 :: Fork -> Bool
prop_Confluence4 (Fork tr) =
  norm (head tr) == norm (last tr)
```

quite...)

$t_1 \neq t_3$



instance Arbitrary Fork **where**

...

```
shrink (Fork [t0,_t2]) =  
  [ Fork [t0',t2']  
  | t0' <- shrink t0  
  , t2' <- step t0'  
  ]
```

shrinking t0

```
shrink (Fork tr) =  
  [ Fork (take (k+1) tr)  
  , Fork (drop k tr)  
  ]
```

shrinking the
trace

where

```
k = length tr `div` 2
```

use **specialized**
property for bug
shrinking

```
prop_Confluence5 :: Term -> Bool  
prop_Confluence5 t =  
  all (λt' -> norm t == norm t') (step t)
```

use **general**
property for
bug finding

has a different
(worse) distribution!

only checks
top-level step

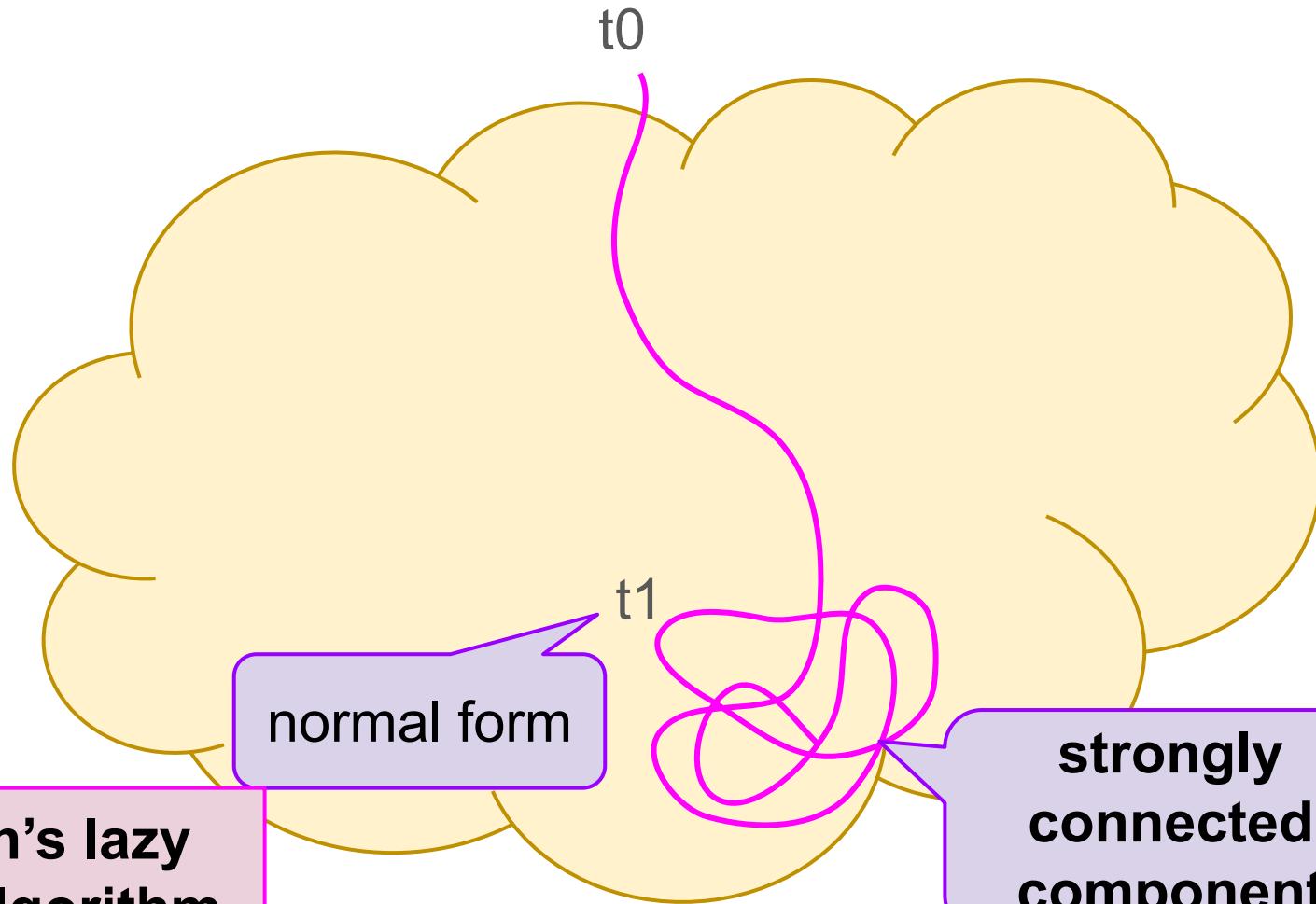
(VAR-SWAP) $x = y \rightarrow y = x$

(EXI-SWAP) $\exists x. (\exists y. e) \rightarrow$
 $\exists y. (\exists x. e)$

don't terminate!

“structural rules”

but they are
looping



Tarjan's lazy SCC algorithm

depth-first
search

produces SCCs
on the fly

$\text{norm} : \text{Term} \rightarrow \text{Term}$

$\text{normTrace} : \text{Term} \rightarrow \text{Trace}$

$\text{arbTrace} : \text{Term} \rightarrow \text{Gen Trace}$

randomize
the graph

use **specialized**
property for bug
shrinking

```
prop_Confluence5 :: Term -> Bool  
prop_Confluence5 t =  
  all (λt' -> norm t == norm t') (step t)
```

use **general**
property for
bug finding

has a different
(worse) distribution!

only checks
top-level step

Summary

- Checking confluence:
 - Using random terms
 - Computing all normal forms: very slow
 - Left-most normal form (deterministic) == random normal form: very quick
- Finding small counterexamples:
 - Avoid data-dependency in quantifiers
 - $\forall t . \text{if } t \rightarrow t' \text{ then } \text{norm}(t) == \text{norm}(t')$
 - Shrink traces to get to the above property