
홍재민(KAIST·예일대학교) | jaemin.hong@kaist.ac.kr

C를 러스트로 번역하기

분석으로, LLM으로, 아니면 함께?

|

한국정보과학회 프로그래밍언어연구회 2026년 겨울학교

/ 64

메모리 안전성을 보장하지 않는 C

2

기타
30%

메모리 버그
70%

마이크로소프트 코드베이스 보안 취약점의 원인 OpenSSL에서 발생한 Heartbleed 버그

Gavin Thomas, A Proactive Approach to More Secure Code.

Alex Hern, Heartbleed: Hundreds of Thousands of Servers at Risk from Catastrophic Bug.

/ 64

메모리 안전성을 보장하는 러스트

3

러스트가 얼마나 많은 cURL의 버그를 막을 수 있을까?

불가능
42% 가능

58%

러스트의 타입 검사

Tim Hutt, Would Rust Secure cURL?

/ 64

러스트를 통한 기존 시스템의 신뢰성 개선

4

Sergio De Simone, Linux 6.1 Officially Adds Support for Rust in the Kernel.

Michael Larabel, The First Rust-Written Network PHY Driver Set to Land in Linux 6.8.

Altus Intel, Ubuntu 25.10 Replaces GNU Coreutils with Rust Uutils.

Grant Gross, White House Urges Developers to Dump C and C++.

/ 64

자동 번역기의 필요성

5

수작업 번역

자동 번역

자동 번역기

/ 64

자동 번역기의 필요성

6Hong et al., Taming Shared Mutable States of Operating Systems in Rust, SCICO 2024.

때는 2021년...

/ 64

기존 번역기의 한계

7

러스트의 두 모드
안전하지 않은 러스트Unsafe Rust

안전한 러스트Safe Rust

C 안전하지 않은 러스트C2Rust
문법적 번역을 수행

C의 기능을 거의 그대로 제공

/ 64

정적 분석을 통한 번역 개선

8

C

안전하지 않은 러스트C2Rust 프로그램 변환 안전한 러스트

/ 64

정적 분석을 통한 번역 개선

9

C

안전하지 않은 러스트C2Rust 프로그램 변환 안전한 러스트

더 많은 명시적 정보 요구명시적인 정보가 필요하지 않음

프로그램의 성질을 파악해 명시적인 정보를 알아내야 변환 가능

/ 64

정적 분석을 통한 번역 개선

10

C

안전하지 않은 러스트C2Rust

정적 분석 분석 결과

프로그램 변환 안전한 러스트

프로그램의 성질을 파악해 명시적인 정보를 알아내야 변환 가능

더 많은 명시적 정보 요구명시적인 정보가 필요하지 않음

/ 64

C의 포인터

11

int *

*mut i32

소유권ownership에 상관없이 같은 타입

보호받지 않는 포인터raw pointer 타입

메모리 할당을 해제deallocate할 권한

안전하지 않은 러스트Unsafe Rust

C

/ 64

C의 포인터

12

fn foo(q: *mut i32) {

 *q += 1;

}

let p: *mut i32 = malloc(4);

*p = 0;

foo(p);

*p += 1;

free(p);

fn bar(q: *mut i32) {

 *q += 1;

 free(q);

}

let p: *mut i32 = malloc(4);

*p = 0;

bar(p);

소유권ownership에 상관없이 같은 타입

/ 64

C의 포인터

13

fn foo(q: *mut i32) {

 *q += 1;

}

let p: *mut i32 = malloc(4);

*p = 0;

foo(p);

*p += 1;

free(p); // memory leak

fn bar(q: *mut i32) {

 *q += 1;

 free(q);

}

let p: *mut i32 = malloc(4);

*p = 0;

bar(p);

*p += 1; // use-after-free

free(p); // double-free

소유권ownership에 상관없이 같은 타입

/ 64

러스트의 포인터

14

Box<i32>

&mut i32

메모리를 소유한 포인터owning pointer 타입

메모리를 잠시 빌린 포인터borrowing pointer 타입

소유권ownership에 따라 서로 다른 타입

/ 64

러스트의 포인터

15

fn foo(q: &mut i32) {

 *q += 1;

}

let p: Box<i32> = Box:new(0);

foo(&mut p);

*p += 1;

drop(p);

fn foo(q: Box<i32>) {

 *q += 1;

 drop(q);

}

let p: Box<i32> = Box:new(0);

foo(p);

소유권ownership에 따라 서로 다른 타입

/ 64

러스트의 포인터

16

fn foo(q: &mut i32) {

 *q += 1;

}

let p: Box<i32> = Box:new(0);

foo(&mut p);

*p += 1;

drop(p); // drop inserted

fn foo(q: Box<i32>) {

 *q += 1;

 drop(q);

}

let p: Box<i32> = Box:new(0);

foo(p);

*p += 1; // compile error

drop(p); // compile error

소유권ownership에 따라 서로 다른 타입

/ 64

포인터 변환을 위한 소유권 분석

17Zhang et al., Ownership Guided C to Rust Translation, CAV 2023.

C

안전하지 않은 러스트C2Rust

소유권 분석 소유권을 가진 포인터

프로그램 변환 안전한 러스트

*mut T Box<T>, &mut T

/ 64

안전하지 않은 기능들

18

보호받지 않는 포인터raw pointer 안전하지 않은 함수unsafe function 유니언 전역 변수

안전하지 않은 기능unsafe feature

/ 64

안전하지 않은 기능들

19

보호받지 않는 포인터raw pointer 안전하지 않은 함수unsafe function 유니언 전역 변수

Emre et al., Translating C to Safer Rust, OOPSLA 2021.

transmuteC 라이브러리 함수메모리 할당 함수배열 void 라이브러리 나머지

안전하지 않은 기능unsafe feature

/ 64

안전하지 않은 기능들

20

보호받지 않는 포인터raw pointer 안전하지 않은 함수unsafe function 유니언 전역 변수

transmuteC 라이브러리 함수메모리 할당 함수배열 void 라이브러리 나머지

안전하지 않은 기능unsafe feature

입출력 동시성메모리·문자열 …입출력 동시성메모리·문자열 …

/ 64

안전하지 않은 기능들

21

보호받지 않는 포인터raw pointer 안전하지 않은 함수unsafe function 유니언 전역 변수

transmuteC 라이브러리 함수메모리 할당 함수배열 void 라이브러리 나머지

안전하지 않은 기능unsafe feature

입출력 동시성메모리·문자열 …입출력 동시성메모리·문자열 …

Zhang et al., Ownership Guided C to Rust Translation, CAV 2023.

소유권 분석

/ 64

여러 단계를 거치는 점진적 개선

22

C

러스트

C2Rust

안전하지 않은 기능 1

안전하지 않은 기능 2

…

안전하지 않은 기능 n

단계 1 단계 2 ...

러스트
안전한 기능 1

안전하지 않은 기능 2

…

안전하지 않은 기능 n

러스트
안전한 기능 1

안전한 기능 2

…

안전하지 않은 기능 n

러스트
안전한 기능 1

안전한 기능 2

…

안전한 기능 n

/ 64

안전하지 않은 기능들

23

보호받지 않는 포인터raw pointer 안전하지 않은 함수unsafe function 유니언 전역 변수

Wu and Demsky, GenC2Rust: Towards Generating Generic Rust Code from C, ICSE 2025.

transmuteC 라이브러리 함수메모리 할당 함수배열 void 라이브러리 나머지

안전하지 않은 기능unsafe feature

입출력 동시성메모리·문자열 …입출력 동시성메모리·문자열 …

다형성 분석

/ 64

안전하지 않은 기능들

24

보호받지 않는 포인터raw pointer 안전하지 않은 함수unsafe function 유니언 전역 변수

Hong and Ryu, Concrat: An Automatic C-to-Rust Lock API Translator for Concurrent Programs, ICSE 2023.

transmuteC 라이브러리 함수메모리 할당 함수배열 void 라이브러리 나머지

안전하지 않은 기능unsafe feature

입출력 동시성메모리·문자열 …입출력 동시성메모리·문자열 …

락 사용 분석

/ 64

안전하지 않은 기능들

25

보호받지 않는 포인터raw pointer 안전하지 않은 함수unsafe function 유니언 전역 변수

Hong and Ryu, To Tag, or Not to Tag: Translating C’s Unions to Rust’s Tagged Unions, ASE 2024.

transmuteC 라이브러리 함수메모리 할당 함수배열 void 라이브러리 나머지

안전하지 않은 기능unsafe feature

입출력 동시성메모리·문자열 …입출력 동시성메모리·문자열 …

태그 분석

/ 64

안전하지 않은 기능들

26

보호받지 않는 포인터raw pointer 안전하지 않은 함수unsafe function 유니언 전역 변수

Hong and Ryu, Forcrat: Automatic I/O API Translation from C to Rust via Origin and Capability Analysis, ASE 2025.

transmuteC 라이브러리 함수메모리 할당 함수배열 void 라이브러리 나머지

안전하지 않은 기능unsafe feature

입출력 동시성메모리·문자열 …입출력 동시성메모리·문자열 …

스트림 분석

/ 64

안전하지 않은 기능들

27

보호받지 않는 포인터raw pointer 안전하지 않은 함수unsafe function 유니언 전역 변수

transmuteC 라이브러리 함수메모리 할당 함수배열 void 라이브러리 나머지

안전하지 않은 기능unsafe feature

입출력 동시성메모리·문자열 …입출력 동시성메모리·문자열 …

배열 분석
(연구 진행 중)

/ 64

안전하지 않은 기능들

28

보호받지 않는 포인터raw pointer 안전하지 않은 함수unsafe function 유니언 전역 변수

transmuteC 라이브러리 함수메모리 할당 함수배열 void 라이브러리 나머지

안전하지 않은 기능unsafe feature

입출력 동시성메모리·문자열 …입출력 동시성메모리·문자열 …

/ 64

자연스럽지 않은 패턴들

29Hong and Ryu, Don’t Write, but Return: Replacing Output Parameters with Algebraic Data Types in C-to-Rust Translation, PLDI 2024.

fn div(n: i32, d: i32, r: *mut i32) -> i32 {

 *r = n % d; return n / d;

}

fn div(n: i32, d: i32) -> (i32, i32) {

 return (n / d, n % d);

}

/ 6430Hong and Ryu, Automatically Translating C to Rust, CACM 2025.

/ 64

분석 정확도

31

분석이 아주 정확하지 않아도 괜찮다

1. 100개의 경보alarm 중 10개가 진짜 경보true alarm vs 100개의 포인터 중 10개를 변환

2. 타입 검사기만큼만 정확해도 충분하다

/ 64

C와 러스트의 입출력 스트림

32

안전한 러스트Safe Rust

C, 안전하지 않은 러스트Unsafe Rust

*mut FILE

Read

능력capability에 상관없이 같은 타입

능력capability에 따라 서로 다른 타입Write
Seek

/ 64

스트림 능력 분석

33

fn foo(fp: *mut FILE) {

 fgetc(fp);

 fseek(fp, …, …);

}

fn foo<T: Read + Seek>(fp: T) {

 fp.read(…);

 fp.seek(…);

}

실행 흐름을 고려하지 않는 분석flow-insensitive analysis으로도 충분하다

안전하지 않은 러스트Unsafe Rust 안전한 러스트Safe Rust

Hong and Ryu, Forcrat: Automatic I/O API Translation from C to Rust via Origin and Capability Analysis, ASE 2025.

/ 64

스트림 능력 분석

34

이론상 O(n3)

� ������ 	�����
����� ������

��������

���

	��

���

��

�
��

�
��
�
�

(62개의 실제 C 프로그램 대상 실험)

82%의 입출력 API 호출 변환

32/32 테스트 통과

Hong and Ryu, Forcrat: Automatic I/O API Translation from C to Rust via Origin and Capability Analysis, ASE 2025.

/ 64

C와 안전하지 않은 러스트의 락

35

static n: i32 = 0;

static m: pthread_mutex_t = …;

pthread_mutex_lock(&mut m); 
n += 1;

pthread_mutex_unlock(&mut m);

1. 락-데이터 관계가 명시적이지 않음

2. 락-흐름 관계가 명시적이지 않음

/ 64

안전한 러스트의 락

36

static n: Mutex<i32> = Mutex:new(0);

let guard;

guard = m.lock(); 
*guard += 1;

drop(guard);

1. 락-데이터 관계가 명시적

2. 락-흐름 관계가 명시적

/ 64

락 사용 분석

37

static n: i32 = 0;

static m: pthread_mutex_t = …;

pthread_mutex_lock(&mut m); 
n += 1;

pthread_mutex_unlock(&mut m);

{}
{m}

{}
{m}

실행 흐름을 고려하는 분석flow-sensitive analysis이 필요하다
Hong and Ryu, Concrat: An Automatic C-to-Rust Lock API Translator for Concurrent Programs, ICSE 2023.

/ 64

락 사용 분석

38

static n: i32 = 0;

static m: pthread_mutex_t = …;

if c { pthread_mutex_lock(&mut m); } 
if c { n += 1; }

if c { pthread_mutex_unlock(&mut m); }

실행 경로를 고려하지 않는 분석path-insensitive analysis은 부정확하다

{}
{}

{}
{}

Hong and Ryu, Concrat: An Automatic C-to-Rust Lock API Translator for Concurrent Programs, ICSE 2023.

/ 64

락 사용 분석

39

실행 경로를 고려하지 않는 분석path-insensitive analysis으로도 충분하다

static n: Mutex<i32> = Mutex:new(0);

let guard;

if c { guard = m.lock(); } 
if c { *guard += 1; } // compile error

if c { drop(guard); } // compile error

Hong and Ryu, Concrat: An Automatic C-to-Rust Lock API Translator for Concurrent Programs, ICSE 2023.

/ 64

락 사용 분석

40

이론상 O(n2·l2)

(46개의 실제 C 프로그램 대상 실험)

34/46 컴파일 가능

17/18 테스트 통과

Hong and Ryu, Concrat: An Automatic C-to-Rust Lock API Translator for Concurrent Programs, ICSE 2023.

� �����
���� �����

�����
��

�

�

�

	

�
��

�
��
�
�

/ 64

프로그램 변환의 어려움

41

x = y;

y: Box<i32>

x: Box<i32>

x: &mut i32

y: &mut i32

x = y;

x = &mut y; x = y;

불가능

/ 64

프로그램 변환의 어려움

42

*mut i32 &mut i32 Option<&mut i32> &mut [i32] Option<&mut [i32]>

Box<i32> Option<Box<i32>> Box<[i32]> Option<Box<[i32]>>

9 × 9 = 81

x = y;

/ 64

프로그램 변환의 어려움

43

fgetc

fflush

fgets

fopen

fprintf

fputc

fputs

fread

fseek

ftell

fwrite
getdelim

getline

perror

puts

remove

rename

rewind

vfprintf

fscanf

/ 64

프로그램 변환의 어려움

44

/ 64

올바른 번역이란?

45

(C99 §6.3.2.3)

(구글 Brotli)

/ 64

올바른 번역이란?

46

fn main() {

 let mut input = String:new();

 io:stdin().read_to_string(&mut input).unwrap();

 let mut iter = input.split_whitespace();

 let x: i32 =

 iter.next().unwrap().parse().unwrap();

 let c: char =

 iter.next().unwrap().chars().next().unwrap();

 println!("{} {}", x, c);

}

/ 64

올바른 번역이란?

47

fn main() {

 let mut input = String:new();

 io:stdin().read_to_string(&mut input).unwrap();

 let mut iter = input.split_whitespace();

 let x: i32 =

 iter.next().unwrap().parse().unwrap();

 let c: char =

 iter.next().unwrap().chars().next().unwrap();

 println!("{} {}", x, c);

}

1 x

입력: 1x

/ 64

LLM을 통한 번역

48

Type-migrating C-to-Rust Translation Using a Large Language Model

LLM-Driven Multi-Step Translation from C to Rust Using Static Analysis

Towards Translating Real-World Code with LLMs: A Study of Translating to Rust

Context-aware Code Segmentation for C-to-Rust Translation Using Large Language Models

C2SaferRust: Transforming C Projects into Safer Rust with NeuroSymbolic Techniques

PR2: Peephole Raw Pointer Rewriting with LLMs for Translating C to Safer Rust

SafeTrans: LLM-assisted Transpilation from C to Rust

LLMigrate: Transforming "Lazy" Large Language Models into Efficient Source Code Migrators

Enhancing LLM-based Code Translation in Repository Context via Triple Knowledge-Augmented

A Systematic Exploration of C-to-Rust Code Translation Based on Large Language Models: Prompt Strategies and Automated Repair

RustMap: Towards Project-Scale C-to-Rust Migration via Program Analysis and LLM

VERT: Polyglot Verified Equivalent Rust Transpilation with Large Language Models

C2RustTV: An LLM-based Framework for C to Rust Translation and Validation

Optimizing Type Migration for LLM-Based C-to-Rust Translation: A Data Flow Graph Approach

Syzygy: Dual Code-Test C to (Safe) Rust Translation Using LLMs and Dynamic Analysis

RustAssure: Differential Symbolic Testing for LLM-Transpiled C-to-Rust Code

Large Language Model-Powered Agent for C to Rust Code Translation

EVOC2RUST: A Skeleton-Guided Framework for Project-Level C-to-Rust Translation

MatchFixAgent: Language-Agnostic Autonomous Repository-Level Code Translation Validation and Repair

Integrating Rules and Semantics for LLM-Based C-to-Rust Translation

Adversarial Agent Collaboration for C to Rust Translation

Project-Level C-to-Rust Translation via Synergistic Integration of Knowledge Graphs and Large Language Models

Rustify: Towards Repository-Level C to Safer Rust via Workflow-Guided Multi-Agent Transpiler

Translating Large-Scale C Repositories to Idiomatic Rust

SmartC2Rust: Iterative, Feedback-Driven C-to-Rust Translation via Large Language Models for Safety and Equivalence

https://hjaem.info/c-to-rust-papers

/ 64

LLM을 통한 번역

49

쪼개기 번역 확인 고치기

/ 64

LLM을 통한 번역

50

쪼개기 번역 확인 고치기

번역 단위? 추가 정보? 어떻게? 어떻게?

/ 64

LLM을 통한 번역

51

쪼개기 번역 확인 고치기

Hong and Ryu, Type-Migrating C-to-Rust Translation Using a Large Language Model, EMSE 2025.

번역 단위? 추가 정보? 어떻게? 어떻게?

함수 단위 호출되는 함수의 번역 타입 검사 오류 메시지

/ 64

LLM을 통한 번역

52Hong and Ryu, Type-Migrating C-to-Rust Translation Using a Large Language Model, EMSE 2025.

(GPT-4o mini)

/ 64

LLM을 통한 번역

53

쪼개기 번역 확인 고치기

번역 단위? 추가 정보? 어떻게? 어떻게?

함수 단위 호출되는 함수의 번역 타입 검사 오류 메시지

상호 재귀 함수

엄청 큰 함수

정적·동적 분석

RAG

테스팅

생성·비교

?

/ 64

DARPA TRACTOR 과제

54

기간: 2025년 6월 ~ 2029년 6월

참여 연구팀

MIT(벤치마크 제작)

예일 대학교

Aarno Labs

Galois

위스콘신 대학교

워싱턴 대학교

Intel Labs

/ 64

DARPA TRACTOR 과제

55

기간: 2025년 6월 ~ 2029년 6월

참여 연구팀

MIT(벤치마크 제작)

예일 대학교

Aarno Labs

Galois

위스콘신 대학교

워싱턴 대학교

Intel Labs

(정적 분석)

(정적 분석)

(C2Rust + LLM)

(LLM)

(LLM)

(LLM)

/ 6456

DARPA TRACTOR 과제

/ 64

분석과 LLM을 함께 사용하기

57

번역·변환 전

정적 분석 분석 결과

규칙 또는 LLM 번역·변환 후

규칙 우선: 사람이 작성한 규칙에 따라 번역하되, 특정 부분에 LLM을 사용

LLM 우선: LLM으로 번역하되, 특정 부분에 사람이 작성한 규칙을 사용

/ 64

규칙 우선 번역 중 LLM 활용하기

58

번역·변환 전

정적 분석 분석 결과

규칙

LLM

번역·변환 후

/ 64

규칙 우선 번역 중 LLM 활용하기

59

/ 64

규칙 우선 번역 중 LLM 활용하기

60

/ 64

LLM의 번역으로부터 규칙 합성하기

61

번역·변환 전

정적 분석 분석 결과

LLM 번역·변환 후

/ 64

LLM의 번역으로부터 규칙 합성하기

62

번역·변환 전

정적 분석 분석 결과

LLM

규칙 합성기

번역·변환 후

규칙

/ 64

LLM의 번역으로부터 규칙 합성하기

63

번역·변환 전

정적 분석 분석 결과

LLM

규칙 합성기

번역·변환 후

규칙

/ 6464

C

러스트

C2Rust

안전하지 않은 기능 1

안전하지 않은 기능 2

…

안전하지 않은 기능 n

단계 1 단계 2 ...

러스트
안전한 기능 1

안전하지 않은 기능 2

…

안전하지 않은 기능 n

러스트
안전한 기능 1

안전한 기능 2

…

안전하지 않은 기능 n

러스트
안전한 기능 1

안전한 기능 2

…

안전한 기능 n

분석이 아주 정확하지 않아도 괜찮다

*mut i32 &mut i32 Option<&mut i32> &mut [i32] Option<&mut [i32]>

Box<i32> Option<Box<i32>> Box<[i32]> Option<Box<[i32]>>

x = y;

규칙 우선: 사람이 작성한 규칙에 따라 번역하되, 특정 부분에 LLM을 사용

