ot
Hl
0
HL
=
1%
for
|H
Hll
|
=
02
2
E
lﬂ

20261 A=t

C= dAERE H%ol)]

=40
OF, LLMOE, OHI™ 3HH2

= IH2I(KAIST
— 'O:IIOI skl
[Hetu) 1 jaemin.hong(@kaist.
ac.kr

Heartbleed: Hundreds of thousands of
servers at risk from catastrophic bug

Code error means that websites can leak user details
including passwords through 'heartbeat’' function used to
secure connections

HY2 4 B

JI0O|d=EATE AEH|0|A HO FOFKO| 20 OpenSSLHI A Eeot Heartbleed H 1

Gavin Thomas, A Proactive Approach to More Secure Code.
Alex Hern, Heartbleed: Hundreds of Thousands of Servers at Risk from Catastrophic Bug. 2 /64

fn main() {

let x = Box::new(@);
foo(x);

! ("{}

fn foo(b: Box<i32>) {
orintln! ("{3}", b);

o AE9| Bt B4t HAEJF 20 B2 cURLS H1E B2 = USTI?

Tim Hutt, Would Rust Secure cURL? 3/64

HAES Sot J|E A|AH9] &l T4

InfoQ Homepage > News > Linux 6.1 Officially Adds Support For Rust In The Kerne

EEmED)
Linux 6.1 Officially Adds Support for Rust in the Kernel

oy LIKE L) biscuss = N

“sw= The First Rust-Written Network PHY Driver Set To Land In Linux

@ sooooesmne | O-8
After over two years in Written by Michael Larabel in Linux Networking U bu ntU 25.1 0 Replaces G N U

which became availabl _ Coreutils with Rust Uutils

Since Linux 6.1 when the very
@ by Grant Gross in % X @
‘ Senior Writer

Previous to its official t
developers and mainta

1
there's been a lot of other plun .-\, 50-c 5.45 21 cvT20000
kernel drivers to be written in t

6.8 kernel CYC'G, the first Rust John Sieger Uon Seager)’ Vice
possibly means that Rt

jevel are to be expectd | | Zanonical and the technical |
should become availab Merged this week to net-next.c presented the initiative to re

This features Rust abstractions necessary for n : :
o cas an er i nescato naie i 2207 or ralesves wrive \Vhite House urges developers
tools by default instead of re tO d unm p C qnd C++

If the experiment is recogniz

also be involved by default it News
Feb 27,2024 + 5 mins

accepted for Linux kerl

Initial Rust support is jt

Application Security C Language Programmming Languages

Sergio De Simone, Linux 6.1 Officially Adds Support for Rust in the Kernel.

Michael Larabel, The First Rust-Written Network PHY Driver Set to Land in Linux 6.8.
Altus Intel, Ubuntu 25.10 Replaces GNU Coreutils with Rust Uutils.

Grant Gross, White House Urges Developers to Dump C and C++. 4/ 64

ol
il

ol
<k

O ||, 8
m_m_

S (T wo
A

8l
il

HO

5/ 64

xv6: a simple, Unix-like teaching operating system

Russ Cox Frans Kaashoek Robert Morris

August 31, 2020

= 20214...

Hong et al, Taming Shared Mutable States of Operating Systems 1n Rust, SCICO 2024.

Science of Computer Programming 238 (2024) 103152

=
ience of Computer
rogramming

Contents lists available at ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

Taming shared mutable states of operating systems in Rust il
Jaemin Hong **, Sunghwan Shim ?, Sanguk Park ", Tae Woo Kim ?, Jungwoo Kim ?,
Junsoo Lee?, Sukyoung Ryu?, Jeehoon Kang*

a KAIST, 291 Daehak-ro, Yuseong-gu, 34141, Daejeon, Republic of Korea
b FuriosaAl, 145 Dosan-daero, Gangnam-gu, 06036, Seoul, Republic of Korea

ARTICLE INFO ABSTRACT
Keywords: Operating systems (OSs) suffer from pervasive memory bugs. Their primary source is shared
Shared mutable state mutable states, crucial to low-level control and efficiency. The safety of shared mutable states is

Operating system

R not guaranteed by C/C++, in which legacy OSs are typically written. Recently, researchers have
ust

adopted Rust into OS development to implement clean-slate OSs with fewer memory bugs. Rust
ensures the safety of shared mutable states that follow the “aliasing XOR mutability” discipline via
its type system. With the success of Rust in clean-slate OSs, the industry has become interested in
rewriting legacy OSs in Rust. However, one of the most significant obstacles to this goal is shared
mutable states that are aliased AND mutable (A&M). While they are essential to the performance
of legacy OSs, Rust does not guarantee their safety. Instead, programmers have identified A&M
states with the same reasoning principle dubbed an A&M pattern and implemented its modular
abstraction to facilitate safety reasoning. This paper investigates modular abstractions for A&M
patterns in legacy OSs. We present modular abstractions for six A&M patterns in the xv6 OS. Our
investigation of Linux and clean-slate Rust OSs shows that the patterns are practical, as all of
them are utilized in Linux, and the abstractions are original, as none of them are found in the
Rust OSs. Using the abstractions, we implemented xv6,,, a complete rewrite of xv6 in Rust. The
abstractions incur no run-time overhead compared to xv6 while reducing the reasoning cost of
xv6p,,; to the level of the clean-slate Rust OSs.

1. Introduction

Operating systems (OSs) suffer from pervasive memory bugs such as use-after-free and buffer overflow. For example, memory
bugs are the source of two-thirds of the vulnerabilities in Linux [39] and about 70% of the CVE-assigned vulnerabilities in Microsoft’s
codebase [86].

To reduce the number of memory bugs in OSs, various approaches have been proposed. Fuzzing, which generates random
inputs to a program, has succeeded in finding bugs in OSs [58,63,83,89]. Static analysis approximates the behavior of a program
without execution. Several static analysis tools target OSs [30,71]. Formal verification techniques allow verifying the correctness of
a program with the help of proof assistants [32,77]. Recent improvement in the techniques realizes the verification of even an entire
OS [26,50,65,76].

* Corresponding author.
E-mail addresses: jaemin.hong@kaist.ac.kr (J. Hong), sunghwan.shim@kaist.ac.kr (S. Shim), efenniht@furiosa.ai (S. Park), taewoo.kim99@kaist.ac.kr (T. Kim),
jungwoo.kim@kaist.ac.kr (J. Kim), junsoo.lee97 @kaist.ac.kr (J. Lee), sryu.cs@kaist.ac.kr (S. Ryu), jeehoon.kang@kaist.ac.kr (J. Kang).

https://doi.org/10.1016/j.scico.2024.103152
Received 10 January 2024; Received in revised form 15 April 2024; Accepted 24 May 2024

Available online 27 May 2024
0167-6423/© 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, Al training, and similar technologies.

6 /64

OFX ot E.'l ﬁESafe Rust

HAE9 &= R

ﬂ'xd 'c')'}II ?‘:‘?E E.'IﬁEUnsafe Rust
Col Jls= HY JUi=E H&S

C S C2Rust » OO 22 HAE

A
IE
IE:
[E
i
1o
1>
02

7/ 64

~E

C]

*—

(o) Jau
Lo

> 2tZoHX

C2Rust

8/ 64

rH

K0

*

Rl

80
0l

- .
ol

~E

C|

~E

C]

*—

(o) Jau
Lo

> 2tZoHX

C2Rust

—
o

JEHS Z0HLHOF H2t Jt

9/ 64

rH

K0

*

Rl

80
0l

- .
ol

~E

C|

~E

C]

*—

(o) Jau
Lo

> 2tZoHX

=]
Kl

<I
]

<I
]
Kl
K0

C2Rust

—
o

JEHS Z0HLHOF H2t Jt

10/ 64

COl XPIH

int * -rr_"lownershipO'" é:I-E'I'SIOI 7E|-8 EI'%I
[H &2 2 % == Ol Kl deanocate2F TSt

|_|'I|_-|6|'II IC_) 8 'IﬁEUnsafe Rust

*mut 132 Ha8H| 2= EOl E'lrawpointer B2

11/ 64

COl XPIH

tn foo(q: *mut 132) {
*q += 1;

¥

let p: *mut 132 = malloc(4);
*p = 0;
foo(p);
*p += 1;
free(p);

+ -.c?r 'T'.; ownership 0'"

tn bar(qg: *mut 132) {
*q += 1;
free(q);

Iy

*p = 0;
bar(p);

ool 22 B

let p: *mut 132 = malloc(4);

12 / 64

COl XPIH

tn foo(q: *mut 132) {
*q += 1;

¥

let p: *mut 132 =
*p = 03
foo(p);

A=k

tree{p)s // memory leak

malloc(4);

| T _.I_-I ownership 0'"

tn bar(qg: *mut 132) {
*q += 1;
free(q);

ks

let p: *mut 132 =
*p = 03
bar(p);
*p += 1;

free(p); _

// use-after—free
// doublejfree

AF111O4 ()

2+ ElOl
O L. HA = =

malloc(4);

13/ 64

HAEQ XOIH

Box<132> HE2S i?r-ﬂ' EﬂE‘lowmngpointer EIEl
&mut 132 [HIEE.I% él'kl %E Eﬂ E'lborrowingpointer EI'%I

+-|c?r'?.;'|ownership0'" U:I'EI' klg EI'% EI'0|=I

14 / 64

HAEQ XOIH

fn foo(qg: &mut 132) { tn foo(q: Box<i32>) {

*q += 1; *q += 1;

drop(q) ;

5 ks
let p: Box<i32> = Box::new(0O); let p: Box<1i32> = Box::new(0O);
foo(&mut p); foo(p);
*p += 13
drop(p) ;

+-|c?r'?.1|ownership0'" U:I'EI' klg EI'% E.I'o|=l

15/ 64

new(O) ;

o AEO| EOIH
tfn foo(qg: &mut 132) 4 tn foo(qg: Box<i32>) {

*q += 1; *q += 1;

drop(q) ;

Iy Iy
let p: Box<1i32> = Box::new(0O); let p: Box<132> = Box::
foo(&mut p); tfoo(p);
p = *p += 1; // Complle error
drop{p)s // drop inserted drop(p),i// Complle error

ownershipO'" |I}E} kIE D% E—I'°|=I

16 / 64

Y *mut T Box<T>, &mut T
C2Rust - OHMGHI] B2 BHAE »| DZE_12H Bt » QtMSH HAE
A
v
27d &4 » A28dS JH E021H

Zhang et al, Ownership Guided C to Rust Translation, CAV 2023. 17/ 64

j I gunsafe feature

=
—

OF
Lo

ot X

.I

X
—

|.

O
—

<+
F)

B
=

ol
OF

cé.l'—J.k—unsafe function

=
L—

ohXl B8

or

E§ I:|I=I'I| f_)-a,l-'E E ﬂ E‘l raw pointer

18 /64

rQ
X
12
i
1>

E§F:I'II f_)a!'E EﬂE‘lraw pointer P_*I._'c')'fII ?3*8 EI'—J.\—unsafe function -.er_.l

——

HHE void 2H0|1E2i2] LHHI] HEZ &= stx C20lBdd &% transmute

Emre et al,, Translating C to Safer Rust, OOPSLA 2021, 19 / 64

Hodb]| Q= IIOIH, .. pointer OrMQHX| &2 ehunsafe function S o L I:Il—:I

HHE void 2H0|EHZ] LHH X HR2 et ets Ccal0lH3E] &2 transmute

N\

HEd-=XE 2" 3Ad - HEd-2XE g6E8 SAd

20/ 64

rQ
X
12
i
1>

E§F:I'II f_)a!'E EﬂE‘lraw pointer P_*I._'c')'fII ?3*8 EI'—J.\—unsafe function -.er_.l

HHE void 2H0|EHZ] LHH X HE2 st ets Ccal0lHE] &2 transmute

HEd-=XE 2" 3Ad - HEd-2XE g6E8 SAd

Zhang et al., Ownership Guided C to Rust Translation, CAV 2023, 21/ 64

0idl 2HIS AXl= A

' } } }
C2Rust A T A 2

- L AE - 0AE = = - 01AE
OHRIBHE| 22 JI5 1 OFIBH |5 1 OFEISH |5 1 OHEISH |5 1
OFRIBHE 242 TS 2 OHRIBHI 22 IS 2 OHEISH J]5 2 OHEISH J|5 2
OHRIBHE| %2 JIS n OHRIBHE| 242 JIS n OHRIBHE| %42 JIS n OFEIBH |5 n

22 / 64

rQ
X
12
i
1>

E§F:I'II f_)a!'E EﬂE‘lraw pointer P_*I._'c')'fII ?3*8 EI'—J.\—unsafe function -.er_.l

N

HHE void 2H0|EHZ] LHH X HR2 et ets Ccal0lH3E] &2 transmute

I\

HEd-=XE 2" 3Ad - HE2-ZXHE §E" SAd

Wu and Demsky, GenC2Rust: Towards Generating Generic Rust Code from C, ICSE 2025. 23 / 64

2023 [EEEJACM 45th International Conference on Software Engineering (ICSE)

Concrat: An Automatic C-to-Rust Lock API
Translator for Concurrent Programs

0k0

[

OF

o —
LS 11— j I o unsafe feature

Jaemin Hong Sukyoung Ryu
School of Computing School of Computing
KAIST KAIST

Daejeon, South Korea Dacjeon, South Korea
E Jaemin. hong @ kaistac kr styw.cs @kaistac ke
&
m
o
Q
o
g Abstract—Concurrent programs suffer from data races. To tion of correct Jock use. The most popular lock API of C,
W prevent data ":;'“- P”Kl'ﬂl“l.ﬂ:tw k::s. "nwi:wl'.nztﬂll:m pthreads [16], does not automatically check whether programs
] can climinate data races enly when they acquire and release . |ocky correctly. Developers often fail to recognize incor-
Z camect lacks s correct fiusing. The lock '\,Pl of C, in which people rectly used locks in their programs, and C programs thus have
= have devedoped a large portion of legacy system programs, does J
g not validate the correct use of locks. On the other hand, Rust, Suffered from data races. -
= a recently developed system programming language, provides Rust [17], [42], a recently developed system programming
a a Jock API that guarantees the correct use of Jocks via type Janguage, provides a lock APl guaranteeing thread safety, - . ol
w checking. This makes rewriting legacy system programs in Rust ie., the absence of data races, in std::sync of ils standard A A
oy a promi way to retrofit safety into them. Unfortunately, ik [8]. The combinat of the o Bib type system of o o
m manual C-to-Rust translation is ¢ ly laborious due to the ibrary [£]. The combination o ownership Lype system ¢ ., —
g discrepancies between their Jock APLs. Even the state.of-the-art Rust and the carelully designed API allows the type checker to I I Lo I = T w I I ﬁ I T
o automatic C-te-Rust translator retains the C Jock APL expecting validate the correct use of Jocks at compale ime [35]. The API
8 d“;:”l’"" to replace them "“h“;h‘ Rg l“d‘k'\::lix ':';; is different from the C lock API not only syntactically, e.g.,
b work, we propose an automatic teol to replace t 4 es of functions, but also s tically. Fi stance, the
2 with the Rust Jock APL It facilitates C-to-Rust translation of o “F2 O D0 W0 B 150 SR T A L
o concurrent programs with less human effort than the current st fos requires mcvb,rqxx ° c:xp seilly describe wilic
2 practice. Our tool consists of a Rust code transformer that takes lock protects which data, while the C lock API does not.
e a lock v s an input and a static analyzer that efficiently Thanks to the thread-sale lock API of Rust, rewriting legacy
3 ies. We show that the transformer

JACM 45th Internaticnal Conderence on Software Ergineering {ICSE) | 978-1.6654.

2023 |EE

generates precise lock
is scalable and widely applicable while preserving the semantics:
it transforms 66 KLOC in 26 seconds and successfully handles
74% of real-world programs. We also show that the analyzer is
scalable and precise; it analyzes 66 KLOC in 4.3 seconds.

1. INTRODUCTION

In system programming, concurrency is important yet noto
riously difficult to get right. System software reduces execulion
tume by spawning multiple threads and splitting tasks. As a
drawback, it suffers from various bugs not existing in the
sequential setting: data races, deadlock, starvation, etc [18]

Data races are the most common category of concurrency
bugs [18]. It happens when multiple threads read and write the
same memory address ssmultaneously. Data races lead system
programs to exhibit not only unpleasant malfunctions but also
critical security vulnerabilities [22

Among synchromzation mechanisms to avosd dala races,
locks are the most widely-used one. Each thread acquires
and releases a Jock before and after accessing shared data.
This samplicaty has facilstated the adoption of locks in diverse
system software. Unfortunately, Jocks prevent data races oaly
when they are used comrectly. Programmers may acquire wrong
locks, acquire locks too late, or release locks too early, thereby
failing to eliminate data races.

C, in which people have developed a significant portion
of system programs, burdens programmers with the valida

concurrent C programs in Rust 1 a promising approach to
secure safety. It can reveal unknown data races and allow de-
velopers to make lixes. In addition, rewniting in Rust prevents
mtroducing new data races whale adding new features.
Noticing this potential, programmers have begun to rewrite
concurrent programs in Rust. Mozilla developed Servo, a web
browser written in Rust, and has replaced modules of Firefox
with those of Servo. Its developers said that Rust’s thread
salety significantly helped implement concurrent renderers
carrectly [32]. People also adopt Rust into operating systems,
in which concurrency is extremely impoctant. The next release
of the Linux kemnel will support Rust code [23]. Android and
Fuchsia implementations also use Rust [1], [53].
Remmplementing concurrent programs in Rust is, however,
labor-antensive 1if done manually. The discrepancies between
the lock APls of C and Rust hinder programmers from
mechanical rewriting. They have to understand the use of the
C lock API in original programs and restructure the programs
to express the intended logic with the Rust lock APL It poses
the necessity for a tool for awtomatic C-to-Rust translation.
The state-of-the-art Coto-Rust translator, C2ZRust [58], 1s
still far from alleviating the burden on programmers. The
translation of CZRust is completely syntactic and generales
Rust code using the C lock APL Programmers are expected to
replace the C lock API in C2ZRust-generated code with the Rust
lock API for thread safety. While being better than nothing,

[HX]

21-
I

C ciOlEddl

transmute

1558122525831 00 ©2023 [EEE 76
DOI 1.1 109ACSESS619.2023 0069
Authorized Bcensed use Imited to: Korea Advanced Inst of Scence & Tech - KAST. Downloaded on February 01,2026 at 13:54 36 UTC from IEEE Xplore. Reswricsorns apply

HEYdl-=XHE =

|

Ol
=

Ol

Ol =

-

= sAg - HEY22l-=XHE = sAS -

Hong and Ryu, Concrat: An Automatic C-to-Rust Lock API Translator for Concurrent Programs, ICSE 2023. 24 | 64

2024 39th IEEE/ACM International Conference on Automated Software Engineering (ASE)

To Tag, or Not to Tag:
Translating C’s Unions to Rust’s Tagged Unions

Jaemin Hong
KAIST
Daejeon, South Korea
jaemin hong@kaist.ac ke

ABSTRACT

Automatic C-to-Rust translation is a promasing way to enhance
the reliability of legacy system software. However, C2Rust, an m-
dustrially developed translator, generates Rust code with unsafe
features, undermining the translation’s objective. While researchers
have proposed techniques to remove unsafe features in C2Rust-
generated code, these efforts have targeted only a limated subset
of unsafe features. One important unsafe feature remaming unad-
dressed is a union, a type consisting of multiple fields sharing the
same memory storage. Programmers often place a union with a
tag in a struct to record the Last-written field, but they can still
access wrong fields. In contrast, Rust's tagged unions combine tags
and unzons at the language level, ensuring correct value access In
this work, we propose techniques to replace unions with tagged
unions during C-to-Rust translation. We develop a static analysis
that facilitates such replacement by identifying tag fields and the
corresponding tag values. The analysis involves a must-points-to
analysis computing struct field values and a heunstic interpret-
mg these results. To enhance efficiency, we adopt intraprocedural
function-wise analysis, allowing selective analysis of functions. Our
evaluation on 36 real-world C programs shows that the proposed
approach is (1) precise, identifying 74 tag fields with no false posi-
tives and only five false negatives, (2) mostly correct, with 17 out
of 23 programs passing tests post-transformation, and (3) efficent,
capable of analyzing and transforming 141k LOC in 4,910 seconds.

CCS CONCEPTS

« Software and its engineering — Source code generation; Au-
tomated static analysis, Maintaining software; Software evolution.

KEYWORDS

Rust, C, Automatic Translation, Unson, Tagged Union

ACM Relerence Format
Jaemin Hong and Sulcyoung Ryu. 2024, To Tag, o« Not o Tag: Translating C's
Unlons to Rust’s Tagged Unlons. In $ath EEEACM Internstional Conference
an Awtomuared Software Engineering (ASE 24), October 27-November 1, 2024,
Secramento, CA, USA ACM New York, NY, USA, 13 pages. batps://dod

10.1145/369 162

This wark ts boerued under 3 Creative Commoas Attnbaticn Intersasoral 4.0 Licene
ASE "3, October 27-Navember 2, 2024, Secrammia CA, LSA

3 rright keld by the owner'wathoois)

&5-7/24/10

HEY22l-=XH=

Hong and Ryu, To Tag, or Not to Tag: Translating Cs Unions to Rust’s Tagged Unions, ASE 2024.

h
—

o unsafe feature
Sukyoung Ryu
KAIST
Daejeon, South Korea
sryuwces@kaistacks

1 INTRODUCTION

Translating C code to Rust is a promasing approach to enhancing
the reliabdity of legacy system software C Programs often suffer
from memory bugs leading to critical security vulnerabelities due to
the absence of language-level mechanisms to prevent them [4, 43)
Rust, a recently developed system programming language, ensures
memory safety at compile time through type checking [18, 23). By
translating legacy C code to Rust, developers can detect previously
unknown bugs and prevent mtroducing new bugs [16]

Since manual translation s laborsous and error-prone, an auto-

matic C-to-Rust translator named C2Rust [46] has been developed
in the industry. It converts C code to Rust by leveraging Unsafe
Rust [17], which allows the use of unsafe language features. These
features, such as dereferencing raw pointers and calling functions
in external code, are equivalent to C's features and enable straight-
forward syntactic translation. However, as the compiler does not

unsafe function

2

15
.

o
TT

[
1>

.

ensure their safety, their use contradicts the goal of translation.
To address this, researchers have proposed technigues to reduce
the use of unsafe features in CZRust-generated code by replacing
them with safe counterparts in Rust. Lazares [7, 8] and Cnows [44]
replace raw pointers with references, whose validity is guaranteed
by the compiler. Concrat [14] replaces certain external function calls
by substituting the C lock API with the Rust lock APL Unfortunately.
raw pointers and external functions are not the only sources of
unsafety, and previous studies have neglected other unsafe features
limsting applicability to the translation of real-world C code.
Undons are an important source of unsafety in C-to-Rust transla-
tion that has not been studied yet. A unton is a compound data type
consisting of multiple fields sharing the same memary storage, fa-
alitating efficient memory use by allowing values of different types
to be stored at the same location [32]. Since memory efficiency is
crucsal in system software, unions are widely used in C. Notably.
Emre et al. [£] show that 18% of unsafe functions (functions using

unsafe features) in CZRust-generated code involve unions.
Reading a union field is an unsafe feature in Rust because unions
do not record which field has been written to. If a program reads a
field other than the last-written one, the value is reinterpreted as
another type. While reinterpretation is useful for some uses, hke
packet parsing, it is dangerous in general For example, reinterpret-

= transmute

ing an mteger as a pointer can Jead to invalid memory access. Thus

many C programs avoid reinterpretation when using unions

To use unions without reinterpretation, it is essential to decide
which feld to read. Some programs rely on global context to deter-
mine the field but many use tags, Le., integer values signifying the
last-written fields. When using tags, 2 union and a tag are placed
in a single struct, and the program checks the tag before accessing
the union’s field. However, tags cannot guarantee the absence of

40

gEg 3l |2d-=XE ¥y 3SAd -

25/ 64

DOL 10 110ASEAI991.2025 00130

2025 40th IEEE/ACM International Conference on Automated Software Engineering (ASE)

Forcrat: Automatic I/O API Translation from C to
Rust via Origin and Capability Analysis

Jaemin Hong*' and Sukyoung Ryu?
* Institute of Information and Electronies, KAIST, Dagjeon, South Korea

I Department of Computer Science, Yale University, New Haven, Connecticut, USA

¥ School of Computing, KAIST, Daejeon, South Korea

Jaemin hong @ kaist.ac kr, sryu.cs @kaist.ac.kr

Abstract—Translating C to Rust is a promising way to enhance
the reliability of legacy system programs. Although the industry
has developed an automatic C-to-Rust translator, C2Rust, its
translation remains unsatisfuctory. One major reason is that
C2Rust retains C standard lbrary (libc) function calls instead of
replacing them with functions from the Rust standard library
(Rust std). However, little work has been done on replacing
library functions in C2Rust-generated code. In this work, we
focus on replacing the VO APL an important subset of library
functions. This poses challenges due to the semantically different
designs of VO APIs in libc and Rust std. First, the two APIs offer
different sets of types that represent the origing (e.g., standard
input, files) and capabilities (e.g., read, write) of streams used

translation, instead of replacing it with an equivalent function
from the Rust standard library (Rust sud). However, foreign
functions are not checked by the Rust compiler, potentially
compromising the memory safety of the entire program.
Therefore, replacing libe functions in C2Rust-generated
code with proper Rust std functions is an important problem
for ensuring the safety of system programs through translation.
Nevertheless, little work has been done on library replace-
ments. Most studies aimed at improving C2Rust-generated
code have focused on language features other than library
functions, such as pointers [11], [12], [13), [14). unions [15),

| >~
1L

[

oro

j I —
LS — o unsafe feature

O

T

for 1/O. Second, they use different errorchecking mechanisms:
libc uses internal indicators, while Rust std uses return values.
To address these challenges, we propese two static analysis tech-
niques, origin and capability analysis and error source analysis,

and output parameters [16). One exception is the work by
Hong and Ryu on the Lock API [17), but it addresses oaly a
small subset of library functions used in concurrent programs.

O
—

[
O}

© oSFA
e -1

=)
— TT

[
1>

unsafe function

o
-
-

|raw pointer

ring (ASE) | 979-8-3503.5733.-2/25/531.00 ©2025 |EEE

roational Coaference oo Awmomated Software Enguse

025 40th [EEE'ACM e

-

and use their results to replace the VO APL Our evaluation shows
that the proposed approach is (1) correct, with all 32 programs
that have test suites passing the tests after transformation, (2)
efficient, analyzing and transforming 422k LOC in 14 seconds,
and (3) widely applicable, replacing 82% of L'O API calls.

L. INTRODUCTION

Translating C 1o Rust is a promising approach to enhancing
the reliability of legacy system programs. Since C lacks
language-level mechanisms to ensure memory safety, legacy
software written in C has suffered from critical security
vulnerabilities caused by memory bugs [1], [2). Rust is a
modern systems programming language that addresses this
issue by providing a type system thal guarantees memory
safety at compile ume [3], [4]. Thus, wranslating legacy code
to Rust enables developers to detect previously unknown bugs
and reduce the risk of introducing new bugs [5], (6]

Since code translation is laborious and eroe-prone when
done manually, the industry has developed an automatic C-to-
Rust translator named C2Rust (7). It can process various real-
world C codebases, producing Rust code that is syntactically
valid and semantically equivalent to the oniginal program. Soft-
ware companies and open-source projects have used C2Rust
to translate their code (8], [9], [10).

Unfortunately, the translation produced by C2Rust is un-
satisfactory because the memory safety of the generated Rust
code cannot be ensured by the Rust compiler, which contra-
dicts the goal of the translation. The main reason is the use of
C standard library (libe) functions through Rust's foreign func-
tion interface. C2Rust retains each libe function call during

In this work, we aim to replace the VO APl in C2Rust-
generated code. The 1O API is one of the most important
subsets of library functions, as almost all C programs use
it to interact with users (through terminals), files, or even
subprocesses, especially given C's primary role as a systems
programming language. Specifically, we focus on replacing the
11O API provided by the stdio.h header file in C with the one
provided by Rust std

The task of replacing the /O APl poses challenges due
to the different designs of the two APLs. The libraries of the
two languages differ not only syntactically, such as in function
names and argument order, where the conversion mapping can
be constructed manually or using existing mapping rmaning
techniques [18], [19], [20]
primarily in two aspects: (1) types and (2) error checking.

First, the two APIs provide different sets of types to perform
11O operations. In libe, the type of a stream—a target of each

They also differ semantically,

1/O operation that the program reads from or writes to—is
always FILEs. In contrast, Rust s1d distinguishes the origins,
from which streams originate, by defining muluple types such
as Stdin and File, and the capabilities, which regulate the
operations that can be performed on streams, through types
such as Read and Write. Therefore, replacing the VO API
requires determining the origin and capability of each stream
to assign the correct type to it

Second, the two APIs offer different error checking mech-
anisms. Since 1O operations may fail for varous reasons,
the APIs provide ways to check whether each operation suc-
ceeded. In libe, each operation silently sets an error indicator

LIH X C 2i0|=Ed

transmute

2643157225831 00 ©2025 [EEE 1541
DOI 101 109/ASEG3SY 1. 202500120
Authorized Scensed use Imited to: Korea Advanced Inst of Scence & Tech - KAST. Downloaded on February 01,2026 at 14:0234 UTC from IEEE Xplore. Restriciors apply.

HEYdl-=XHE =

F

Ol
=

0=

SNy -

= HZ 22Xt =g

Hong and Ryu, Forcrat: Autormatic I/O API Translation from C to Rust via Origin and Capability Analysis, ASE 2025. 26 / 64

o-l—=PC
H = L 1
(A2 Xl =)
Hodb]| Q= IIOIH, .. pointer OrMQHX| &2 ehunsafe function S o L I:Il—:I

HHE void 2}0|E2{d} |_HH X HERZ st etx C2i0jlHd el &4 transmute

N\

HEL-=XE 2" sAd - HEZ-=XE g8 SAd

27/ 64

Hodb]| Q= IIOIH, .. pointer OrMQHX| &2 ehunsafe function S| O % I:Il—:I

HHE void 2H0|EHZ] LHH X HEd st etax Cc2l0lHE] &2 transmute

N

HEd-=XE 2" 3Ad - HEZ-2XE gE8 SAd

28 / 64

Don’t Write, but Return: Replacing Output Parameters with
Algebraic Data Types in C-to-Rust Translation

JAEMIN HONG, KAIST, South Korea
SUKYOUNG RYU, KAIST, South Korea

E ° ° ° ° °
Translating legacy system programs from C to Rust is a promising way to enhance their relability. To alleviate n I V n ® I 2 o o 7 (m — >
the burden of manual translation, automatic C-to-Rust translation is desirable. However, existing translators) , Y I 2 ’ I Y I : I ;

fail to generate Rust code fully utilizing Rust’s language features, including algebraic data types. In this work,
we focus on tuples and Option/Result types an important subset of algebraic data types. They are used
as functions’ return types to represent thase retuming multiple values and those that may fail. Due to the (o)

absence of these types, C programs use output parameters, i.c., pointer-type parameters for producing outputs, * —— o [J
to implement such functions. As output parameters make code less readable and more error-prone, their use is I — n /o d I e t u I n n / d
discouraged in Rust. To address this problem, this paper presents a technique for removing output parameters ’ ’
during C-to-Rust translation. This involves three steps: (1) syntactically translating C code to Rust using an
existing translator, {2) analyzing the Rust code to extract information related to output parameters; and (3)
transforming the Rust code using the analys:s result. The second step poses several challenges, mcluding
the identification and classification of output parameters. To overcome these challenges, we propose a static
analysis based on abstract interpretation, complemented by the notion of abstract read‘wnte sets, which
approximate the sets of read/written pointers, and two sensitivities: write set semsitivity and nullity sensitivity
Qur evaluation shows that the proposed technique is (1) scalable, wath the analys:s and transformation of
150k LOC within 213 seconds, (2) useful, with the detection of 1,670 cutput parameters acrass 55 real-world C
programs, and (3) mostly correct, with 25 out of 26 programs passing their test suites after the transformation

CCS Concepts: « Software and its engineering — Source code generation, Automated static analysis,
Maintaining software; Software evolution.

Additional Key Words and Phrases: Rust, C, Automatic Translation, Output Parameter, Algebraic Data Type

ACM Reference Format:

Jaemin Hong and Sukyoung Ryu 2024. Don't Write, but Return: Replacing Output Parameters with Algebraxc
Data Types in C-to-Rust Translation. Proc. ACM Program. Larg. 8, PLDI, Article 176 (June 2024), 25 pages

fn div(n: 132, d: 132) -> (132, 132

Rust is a modern programming language that aims to replace C/C++ in system programming [Mat-
sakis and Klock 2014]. It guarantees memory safety without sacrificing performance and the

fine-grained memory control ability required by system programs [Jung et al. 2017). Since its inven- o) PY
tion, Rust has gained widespread adoption among system programmers. Complex system programs, I e t u I n n n o)

incliding operating systems [Boos et al. 2020; Lankes et al. 2019, 2020; Levy et al. 2017; Narayanan ’ ,
el al. 2020] and garbage collectors [Lin et al. 2016], have been developed in Rust from scratch. Even

important legacy software, such as Firefox [Anderson el al. 2016] and Linux [De Simone 2022], has
incorporated Rust into its codebase to gradually replace C/C++ code with Rust.

Authors” addresses: Jacsn Hong, KAIST, Dacjecn, South Keeen, jactnin hong@kaast ac ke, Sukyeung Ryu, KAIST, Dacjece,
South Xoren, seyw csGpkadstac ke,

v .
() |

This work & Beensed under a Creative Conunons Attribution 4.0 Intersational License.
© 2024 Copyright held by the owner fautho(s)

ACM 2475 1421/ 2024/6- ART176

Eatpec//dolorg/ 10 114573656406

Proc. ACM Programs Lang, Vel 8 Nao PLDI, Article 176. Publication date: Jane 2024

Hong and Ryu, Don’t Write, but Return: Replacing Output Parameters with Algebraic Data Types in C-to-Rust Translation, PLDI 2024. 29/ 64

COMMUNICATIONS

CACM.ACM.ORG

" Translating i
C to Rust

$FA -f}Informa’tlon Power!

The Sllent SC|ent|st

Cyberpsychology s Influence

" .on.Modern Computing

Association for
Computing Machinery

Hong and Ryu, Automatically Translating C to Rust, CACM 2025.

res!

i

DOI:10.1145/3737696

Automatic C-to-Rust translation tools

are helpful, but they produce unsafe and
unidiomatic code. What can be done to address
these issues?

‘ BY JAEMIN HONG AND SUKYOUNG RYU

Automatically
Translating
C to Rust

IN THE SOFTWARE industry, legacy systems

developed in older languages often evolve by being
reimplemented in newer languages that offer modern
language features. For example, Twitter migrated from
Ruby to Scala to enhance performance and reliability;*
Dropbox rewrote its Python backends in Go to leverage
better concurrency support and faster execution;'®

and banking systems originally written in Cobol have
evolved to Java or C# for easier maintenance and
integration with modern infrastructures.’

One of the most critical language migrations needed
today is the shift from C to newer languages, which can
improve the reliability of important system programs.
Despite its popularity in systems programming,

C is infamous for its limited language-level safety
mechanisms. C programs are prone to memory bugs,
such as buffer overflow and use-after-free, which can

56 COMMUNICATIONS OF THE ACM | NOVEMBER 2025 | VOL. 68 | NO.11

2arch and advances

lead to severe security vulnerabilities—
exemplified by the Heartbleed bug® in
OpenSSL. A large portion of vulner-
abilities in legacy systems arise from
memory bugs; for example, approxi-
mately 70% of the vulnerabilities in
Microsoft’s codebase are due to mem-
ory bugs.” Acknowledging these risks,
even the White House recently recom-
mended discouraging the use of C.*

The most promising migration
target for C is Rust,* which provides
strong safety guarantees while still al-
lowing low-level memory control and
high performance. Its safety guaran-
tees are enabled by its ownership type
system, which ensures the absence of
memory bugs in programs that pass
type checking.’* Due to this advantage,
Rust has been widely adopted in sys-
tems programming, as demonstrated
by the development of clean-slate sys-
tem programs such as garbage collec-
tors,” Web browsers,! and operating
SyStemS.2'16'19’22

Recognizing Rust’s potential, the
industry has shown significant inter-
est in migrating legacy systems from
C to Rust. Such migration allows de-
velopers to detect previously unknown

a https://heartbleed.com/

key insights

m Migrating legacy systems developed in
C to Rust is a promising way to enhance
reliability, thanks to Rust’s strong safety
guarantees.

B Automatic translators can facilitate
migration from C to Rust, but existing
translators generate unsatisfactory code
by relying on language features whose
safety is not validated by the compiler
and code patterns considered unidiomatic
by Rust developers.

m Carefully designed static analyses and
code transformations can improve
automatic translation by replacing unsafe
features and unidiomatic patterns with
safe and idiomatic alternatives.

m Although LLMs are another promising
approach to C-to-Rust translation, they
often produce code with type errors or
behavior different from the original code.
Combining LLMs with static analyses is a
potential future research direction.

ILLUSTRATION BY VIKTOR KOEN

30/ 64

20| OFF HEHGH| L0t M

1. 100008 BHaarm S 10t &Mt BE true atlarm vs 100JH2] EOIEH = 10 F HEt

2. EF ZAD|2HSEE deol = S 20t

31/ 64

Cer i

E 9] &

*mut FILE I_E':IcapablhtyO'II Sa0i0] 22 EE

C, ‘.’_*I._'l'(')'fII ?‘6"-8 E.'IﬁEUnsafe Rust
o

ﬂ-xl_l_ E.'IﬁESafe Rust
Read
Write I_E':Icapa]mhtyO'" It M= CHE B

Seek

32 /64

‘.’_*I._'|'6}I| ?‘6"-8 E.'IﬁEUnsafe Rust ﬂ'xu_-l-ﬂ' E.'IﬁESafe Rust

tn foo(fp: *mut FILE) { tn foo<T: Read + Seek>(fp: T) {
feetc(fp); fp.read(..);
fseek(fp, .., ..); fp.seek(..);

)élaH §§§ J_'_E.:l-(l)-l'xl LS ._ ._£|Iﬂow insensitive analymsOEE %'E?)-H:I'

Hong and Ryu, Forcrat: Autormatic I/O API Translation from C to Rust via Origin and Capability Analysis, ASE 2025. 33/ 64

7.5 1

— 5.0-
- 82%9| L== APl 2= HE
2.5- ° o
- 32/32 HHAE E1}
(62J19O] AITj| C =2 1= [} Al AlSd)
0.0-
0 100000 200000 300000 400000
Rust LOC

Hong and Ryu, Forcrat: Autoratic I/O API Translation from C to Rust via Origin and Capability Analysis, ASE 2025. 34 /64

static n: 132 = 0;

static m: pthread mutex T = .; 1. 2-CIOIE ZHHIJ BAIROIX| &S

Lo &
pthread_mutex_lock(&mut m);

n += 1;
pthread_mutex_unlock(&mut m);

2. -8 ZdHILEAFHOIX 53

35/ 64

=t

OFX{ ol

H2E9)

-1

static n: Mutex<i32> = Mutex::new(0O);

1. =-HI0IH A BAIE
let guard;
guard = m.lock();
*oguard += 1;
drop(guard) ;

2. -SZ BH I HAIX

36/ 64

Al

= A8 &5

static n: 132 = 0;

static m: pthread mutex_t = ..;
th d t lock(&mut m) ; t
D fea “mutex loc mut m); fm?
n += 1;

im}

pthread_mutex_unlock(&mut m);

Jél ol § E.:l ol 2 A flow-sensitive analysis 0l & =220 FCk

Hong and Ryu, Concrat: An Autormatic C-to-Rust Lock API Translator for Concurrent Programs, ICSE 2023. 37/ 64

Al

= A8 &5

static n: 132 = 0;
static m: pthread mutex_t = ..;

i/
1t ¢ { pthread mutex_lock(&mut m); } 3

if c{n+=1; }

1t ¢ { pthread mutex _unlock(&mut m); } s
i/
Jé' 2§ z;:l E:I 0|‘I| |_ —,._— -Ipath insensitive analymsg —I?I- g QBHZ}

Hong and Ryu, Concrat: An Automatic C-to-Rust Lock API Translator for Concurrent Programs, ICSE 2023. 38 /64

Al

= A8 &5

static n: Mutex<i32> = Mutex::new(0O);

let guard;
1t ¢ { guard = m.lock(); }
if ¢ { *guard += 1; } // compile error

1t ¢ { drop(guard), Y // compile error

’é!%t' 2;' EFIO"II -c',I-'E -E- -Ipath Insensitive analy31sO§E %—E—BH:}

Hong and Ryu, Concrat: An Automatic C-to-Rust Lock API Translator for Concurrent Programs, ICSE 2023. 39/ 64

4 -
5 O
w
9«3)2 o O
i— O
0o O
O
— O
1_
O
O_
0 20000 40000 60000
Rust LOC

Hong and Ryu, Concrat: An Automatic C-to-Rust Lock API Translator for Concurrent Programs, ICSE 2023.

OI=2E& O(n2-12)

0>

34/46 B Jts
17/18 HIAE E1}
(46740 AH C T2 [HAt M)

40 / 64

y: Box<132> y: &mut 132
X: Box<132> X = V; SYE=
X: &mut 132 X = &mut y; X = V;

41/ 64

X
|l

Y

*mut 132 &mut 132 Option<&mut 132> &Gmut [132] Option<&mut [132]>

Box<132> Option<Box<132>> Box<[132]> Option<Box<[132]>>

9 x9 =281

42 / 64

rewind

foetc ftell
fputc Uts
ff1ush viprintt
fputs DEXTOoY
fprintt feoek
fgets fscanf
fread . remove
getline
fopen fwrite rename

getdelim

43 / 64

=

1

[E2BIG]

Argument list too long.
[EACCES]

Permission denied.
[EADDRINUSE]

Address in use.
[EADDRNOTAVAIL]

Address not available.
[EAFNOSUPPORT]

Address family not supported.
[EAGAIN]

Resource unavailable, try again (may be the same

[EALREADY]

Connection already in progress.
[EBADF]

Bad file descriptor.
[EBADMSG]

Bad message.
[EBUSY]

Device or resource busy.
[ECANCELED]

Operation canceled.
[ECHILD]

No child processes.
[ECONNABORTED]

Connection aborted.
[ECONNREFUSED]

Connection refused.
[ECONNRESET]

Connection reset.
[EDEADLK]

Resource deadlock would occur.
[EDESTADDRREQ]

Destination address required.
[EDOM]

Mathematics argument out of domain of function.

[EDQUOT]

Reserved.
[EEXIST]

File exists.
[EFAULT]

Bad address.
[EFBIG]

File too large.
[EHOSTUNREACH]

Host is unreachable.

—
e

O

[EIDRM]

Identifier removed.
[EILSEQ]

Illegal byte sequence.
[EINPROGRESS]

Operation in progress.
[EINTR]

Interrupted function.
[EINVAL]

Invalid argument.
[EIO]

I/O error.
[EISCONN]

Socket is connected.
[EISDIR]

Is a directory.
[ELOOP]

Too many levels of symbolic links.
[EMFILE]

File descriptor value too large.
[EMLINK]

Too many hard links.
[EMSGSIZE]

Message too large.
[EMULTIHOP]

Reserved.
[ENAMETOOLONG]

Filename too long.
[ENETDOWN]

Network is down.
[ENETRESET]

Connection aborted by network.
[ENETUNREACH]

Network unreachable.
[ENFILE]

Too many files open in system.
[ENOBUFS]

No buffer space available.
[ENODEV]

No such device.
[ENOENT]

No such file or directory.
[ENOEXEC]

Executable file format error.
[ENOLCK]

No locks available.

[ENOLINK]

Reserved.
[ENOMEM]

Not enough space.
[ENOMSG]

No message of the desired type.
[ENOPROTOOPT]

Protocol not available.
[ENOSPC]

No space left on device.
[ENOSYS]

Functionality not supported.
[ENOTCONN]

The socket is not connected.
[ENOTDIR]

Not a directory or a symbolic link to a direc
[ENOTEMPTY]

Directory not empty.
[ENOTRECOVERABLE]

State not recoverable.
[ENOTSOCK]

Not a socket.
[ENOTSUP]

Not supported (may be the same value as
[ENOTTY]

Inappropriate I/O control operation.
[ENXIO]

No such device or address.
[EOPNOTSUPP]

Operation not supported on socket (may b
[EOVERFLOW]

Value too large to be stored in data type.
[EOWNERDEAD]

Previous owner died.
[EPERM]

Operation not permitted.
[EPIPE]

Broken pipe.
[EPROTO]

Protocol error.
[EPROTONOSUPPORT]

Protocol not supported.

[EPROTOTYPE]

Protocol wrong type for socket.
[ERANGE]

Result too large.
[EROFS]

Read-only file system.
[ESOCKTNOSUPPORT]

Socket type not supported.
[ESPIPE]

Invalid seek.
[ESRCH]

No such process.
[ESTALE]

Reserved.
[ETIMEDOUT]

Connection timed out.
[ETXTBSY]

Text file busy.
[EWOULDBLOCK]

Operation would block (may be tr
[EXDEV]

Improper hard link.

44 / 64

HIS

EH 04 0| 247

LI a Yol

A pointer to an object or incomplete type may be converted to a pointer to a different
object or incomplete type. If the resulting pointer is not correctly alig 57) for the
pointed-to type, the behavior is undefined. Otherwise, when converted back again, the

(C99 §6.3.2.3)

* BROTLI_BUILD_NO_UNALIGNED_READ FAST forces off the fast—-unaligned-read
optimizations (mainly for testing purposes)

#if defined (BROTLI_BUILD_NO_UNALIGNED_READ_FAST)

#define BROTLI_UNALIGNED_READ_FAST (!!0)

#elif defined(BROTLI_TARGET_X86) || defined(BROTLI_TARGET_X64) || \
defined (BROTLI_TARGET_ARMV7) || defined (BROTLI_TARGET_ARMV8_ANY) || \
defined (BROTLI_TARGET_RISCV64) || defined(BROTLI_TARGET_LOONGARCH64)

/* These targets are known to generate efficient code for unaligned reads

* (e.g. a single instruction, not multiple 1-byte loads, shifted and or'd
* together). *
#define BROTLI_UNALIGNED_READ_FAST (!!1)

(32= Brotli}

45 / 64

SHIE HF0I=?

Translate the following C code @ fn main() {

into equivalent Safe Rust code: let mut input = String::new();
io::stdin().read_to _string(&mut input).unwrap();

let mut iter = input.split whitespace();

Int main() { :
| | let x: 132 =
int X; iter.next().unwrap().parse().unwrap();
char c; let c: char =
scanf("%d %c" &x, &c): iter.next().unwrap().chars().next().unwrap();
printf("%d %c\n", X, c); println!("{} {}", x, c);
1 Iy

46 / 64

SHIE HF0I=?

Translate the following C code @ fn main() {

into equivalent Safe Rust code: let mut input = String::new();
io::stdin().read to _string(&mut input).unwrap();
let mut iter = input.split whitespace();

Int main() { .
O let x: 132 =
' iter.next().unwrap().parse() .unwrap();
char c; let c: char =
scant("%d %c", &x, &c); iter.next().unwrap().chars().next().unwrap();
printf("%d %c\n", x, c); println! ("{} {3", x, c);
} Iy
1 X thread 'main' panicked at a.rs:12:47:

called ‘'Result::unwrap()® on an ‘Err’' value: ParseIntError { kind: InvalidDigit }

Oled: 1x

47 / 64

LL

https://hjaem.info/c-to-rust-papers

5 tH

[

&
= = o

Type-migrating C-to-Rust Translation Using a Large Language Model

Towards Translating Real-World Code with LLMs: A Study of Translating to Rust
Context-aware Code Segmentation for C-to-Rust Translation Using Large Language Models
Syzygy: Dual Code-Test C to (Safe) Rust Translation Using LLMs and Dynamic Analysis
Optimizing Type Migration for LLM-Based C-to-Rust Translation: A Data Flow Graph Approach
C2RustTV: An LLM-based Framework for C to Rust Translation and Validation
VERT: Polyglot Verified Equivalent Rust Transpilation with Large Language Models
RustAssure: Differential Symbolic Testing for LLM-Transpiled C-to-Rust Code
RustMap: Towards Project-Scale C-to-Rust Migration via Program Analysis and LLM
A Systematic Exploration of C-to-Rust Code Translation Based on Large Language Models: Prompt Strategies and Automated Repair
C2SaferRust: Transforming C Projects into Safer Rust with NeuroSymbolic Techniques
PR2: Peephole Raw Pointer Rewriting with LLMs for Translating C to Safer Rust
LLM-Driven Multi-Step Translation from C to Rust Using Static Analysis
Enhancing LLM-based Code Translation in Repository Context via Triple Knowledge-Augmented
LLMigrate: Transforming "Lazy" Large Language Models into Efficient Source Code Migrators
SafeTrans: LLM-assisted Transpilation from C to Rust
Large Language Model-Powered Agent for C to Rust Code Translation
EVOC2RUST: A Skeleton-Guided Framework for Project-Level C-to-Rust Translation
Integrating Rules and Semantics for LLM-Based C-to-Rust Translation
MatchFixAgent: Language-Agnostic Autonomous Repository-Level Code Translation Validation and Repair
Adversarial Agent Collaboration for C to Rust Translation
Project-Level C-to-Rust Translation via Synergistic Integration of Knowledge Graphs and Large Language Models
Rustify: Towards Repository-Level C to Safer Rust via Workflow-Guided Multi-Agent Transpiler
Translating Large-Scale C Repositories to Idiomatic Rust

SmartC2Rust: Iterative, Feedback-Driven C-to-Rust Translation via Large Language Models for Safety and Equivalence

48 / 64

X[

X INJI

49 / 64

%
~
s
2

=240 - | X[

H 28?7 =t 857 HEA? HEA?

50 / 64

N - | HS -
M =7 >t 887
JESE SEL|E 40| O

Hong and Ryu, Type-Migrating C-to-Rust Translation Using a Large Language Model, EMSE 2025.

240

HEA?

EFR &AL

X[

HEA?

25 HAIXI

51/ 64

4390 4427

4 000 1220 4l>/ 4061 HHEE Tymcrat
' B Tymcrat-f
3224 o _
3.000- - T Tymcrat-a
2676 2642 Tymcrat-fa

N
o
o
-

Avg # of type errors
=
o
-
2

1 2 3
of candidate signatures

(GPT-40 mini)

Hong and Ryu, Type-Migrating C-to-Rust Translation Using a Large Language Model, EMSE 2025. 52 / 64

X[

X INJI

HEA?

HEA?

=)t 8H?

oF
al

8l
il

25 HAIXI

A
ol

ar
sl

<t
joll

[N

KL
101

oF
L

<
joll

— O

HIAS
S3-Hlud

Zr
TH
zr
H0
T
z0

RAG

<
joll

Il
&0
ol

b3/ 64

DARPA TRACTOR 1HA|

A0 G177l

LT 3

MIT(HX]0F3 HIEH

Ol CHet LW

Aarno Labs
TRACTOR: Translating All C to Rust AAZ U [H3t
&8 et

JIZF: 20254 62 ~ 20294 6E Intel Labs

54 / 64

DARPA TRACTOR 1HA|

Aarno Labs (mx =)

h Programs = TRACTOR: Translating All C To Rust

Galols (c2Rust + LLM)

TRACTOR: Translating All C to Rust QAR TS (Lim
a8 et wm

J|1ZF: 20254 6E ~ 20294 6E Intel Labs iwm)

55/ 64

DARPA TRACTOR 1HA|

F-‘ mariusarvinte opened on Dec 11, 2025

It seems that the third argument of blake256_update is expressed in bits:

But when this function is called in many places in the driver app , it is invoked using bytes:

s

As a side comment, we found Claude Sonnet 4.5 very "capable" of implementing this bug, but
- which causes tests to fail.

b6 / 64

2l AtEol)|

=14 LLM

{0F
ol
5

8l
il

K

ol
]

Bl
E

=]
Kl

<I
]

<l
]
Kl
K0

LLM 24 LLM2 = HHGIE]

57 / 64

= LLM &0}l

LLM

{0F
ol
5

ar
il

)

<

ol
]

Bl
x

=
Kil

<I
]

<I
|
Kl
K0

b8 / 64

o S LLM &2E0l|

Consider the following Rust code:
X = y.oftset(1);

where the tes are given as follows:
X: *mut 132

y: *mut 132

| have changed the types as follows:
y: Option<Box<[i32]>>

Rewrite h'egiven code in Safe Rust according to these changes
while maintaining the semantics and without consuming the
ownership. Provide only the code. Do not explain anything.

rust (P IE EA

X = y.as_deref_mut().and_then(|s| s.get_mut(1));

b9 / 64

LLM &0}

Consider the following Rustcode:
§ memcpy (

X as *mut core::ffi::c_void,
y as *const core::ffi::c_void,

size_t),
where the types are given as follows:
X: *mut 132
y: *mut 132
| have changed the types as follows:
x: Option<&mut [i32]>
in Safe Rust according to these changes
while maintaining the semantics and without consuming the
ownership. Provide only the code. Do not explain anything.

rust @

dl
1N
I
2

if let (Some(x), Some(y)) = (x, y.as_deref()) {
X[..10].copy_from_slice(&yl[..10]);

60 / 64

Ol St M LM HOY- 5 S
X S = 2}

61/ 64

LLMO| RO =5 H

7% 84
v
_1X]|
TT /1
o1 s
O 3t T LM HOy 3t S
A

04
13
1z

Bl
1z
[lX
=

Bli

62 / 64

LLMO| RO =5 H

&l 8D
v
—1XI
TT /1 l
Ol St M LM OB S
A

04
13
1z

Bl
1z
[lX
=

Bli

63 /64

} } } }
C2Rust AT A 2
| ayae L. yAe L. yae | yaE
OrMoHK B2 JIS 1 s) = OtMsSH J|S 1 OtMst J|S 1
OrMBHK| 242 JIS 2 OrMOHKl 242 JIS 2 OtMsH J|S 2 OtNst)|S 2
OrMoHAl ¥= VIS n OrMGHAl B2 JlS n OLMoHXl 42 VIS n OtMsSt JIS n
= XK XSk~ O} TH X+
=20] OF= 3=totkl B0t SIS0
X =Y,
*mut 132 &mut 132 Option<&mut 132> &Gmut [132] Option<&mut [132]>
Box<132> Option<Box<132>> Box<[132]> Option<Box<[132]>>

2 S4: A0l Ardet 20l el B0tk £E8 F=20 LLMS ALE

64 / 64

