A

Practical Challenges of Python Core Team

Donghee Na
donghee.na@python.org

Speaker

Software Development From 2018

e Karrot Lead SWE From October 2024
e LINE SWE: 2021 - 2024
e Kakao SWE: 2018 - 2021

CPython Core Development From 2017

2025/2026 Python Steering Council Member
2020 - Present: CPython Core Developer
2019 - 2020: CPython Triage Member
donghee.na@python.org

Speaker

ambv
468 commits

#53

1000
500

1990 2000 2010 2020
larryhastings
447 commits

1990 2000 2010 2020

#55

1000
500

suonnqgLIu0)

suonnNQLIU0Y

coronal0 #54 oo
464 commits

<)

o

2

1000 S

s

500 o

=1

7z

—mmmm-_ ()
1990 2000 2010 2020

Yhgls #56 e
433 commits

(<)

o

=

1000 2

=

500 o

a

- a_ — 0
1990 2000 2010 2020

Today Topics

Governance and Structure of the Python Core Team
Performance Improvement Challenges
Concurrency Improvement Challenges

Behind the Scenes

Introduction to the Python Core Team

e The Python Core Team is responsible for developing and
maintaining CPython, the reference implementation of
the Python programming language.

e [t operates under the Python Software Foundation (PSF)
and is a separate group from the Python Packaging

Authority (PyPA).

Python Software Foundation

Staff Team

PSF
PPPPP
Infra Python P:ckag_ing Work

Team

Introduction to the Python Core Team

e Triage Member

e Core Developer

e Release Manager

e Steering Council Member

Steering Council

Residence

CPython Triage

CPython Core Developer Member

A\ NVIDIA.
0 Meta
 Google
arm

2026 Steering Council Member

Pablo Galindo Salgado: Hudson River Trading
Savannah Ostrowski: FastAPI Labs

Barry Warsaw: Nvidia
Donghee Na: Karrot
Thomas Wouters: Meta

https://peps.python.org/pep-8107/

Steering Council Responsibilities

Accept/reject PEPs (Python Enhancement Proposals)
Maintain quality & stability of language & CPython
Work with the PSF to manage project assets

Seek consensus

Delegate decisions whenever possible

Veto (or not!) newly elected core members

Office Hours

Steering Council Cadence

e Weekly Meetings - 90 minutes
o Regular syncs w/
m Deb Nicholson - PSF Executive Director
m tukasz Langa - Developer in Residence
e Office Hours (Thursdays at 1:00 PM PST)

Steering Council Responsibilities

e 2025 Meeting log

o https://discuss.python.org/t/2025-psc-meeting-summa
ries/105626

CPython Core Team Technical Challenges

e Performance Improvements
o Interpreter
o Tier 2 Interpreter
o JIT
e (oncurrency Improvements
o GIL: Global Interpreter Lock
o Free-threading
o Sub Interpreter

Topic: Performance Improvements

Many Attempts to Make CPython Faster

Unladen Swallow (2011)

Pyston V1 (2014)

Cinder (2021-Current)

Pyston V2 (2021)

Faster CPython Project (2021 - Current)

CPython Core Team Technical Challenges

e Performance Improvements
o Interpreter
o Tier 2 Interpreter
o JIT
e (oncurrency Improvements
o GIL: Global Interpreter Lock
o Free-threading
o Sub Interpreter

PEP 659: Specializing Adaptive Interpreter

L1:

def simulate_ducks(ducks):
for duck in ducks:
sound = duck.quack()
if duck.echo:
sount += sound
print(sound)

L2:

FOR_ITER
STORE_FAST
LOAD_FAST_BORROW
LOAD_ATTR

CALL

STORE_FAST
LOAD_FAST_BORROW
LOAD_ATTR
TO_BOOL
POP_JUMP_IF_FALSE
LOAD_FAST_BORROW
LOAD_FAST_BORROW
BINARY_OP
STORE_FAST
LOAD_GLOBAL

LOAD_FAST_BORROW

CALL
POP_TOP
JUMP_BACKWARD

L1:

L2:

FOR_ITER_LIST
STORE_FAST
LOAD_FAST_BORROW

LOAD_ATTR_METHOD_WITH_VALUES

CALL_BY_EXACT_ARGS
STORE_FAST
LOAD_FAST_BORROW

LOAD_ATTR_NONDESCRIPTOR_WITH_VALUES

TO_BOOL_BOOL
POP_JUMP_IF_FALSE
LOAD_FAST_BORROW
LOAD_FAST_BORROW

BINARY_OP_INPLACE_ADD_UNICODE

STORE_FAST
LOAD_GLOBAL_BUILTIN

LOAD_FAST_BORROW

CALL_BUILTIN_FAST_WITH_KEYWORDS

POP_TOP
JUMP_BACKWARD

PEP 659: Specializing Adaptive Interpreter

Benchmark 3.104 3.11.0b3
deltablue 7.32ms 3.62 ms: 2.02x faster
scimark_sor 196 ms 115 ms: 1.70x faster
raytrace 463 ms 292 ms: 1.58x faster
dulwich_log 75.2 ms 63.1 ms: 1.19x faster
python_startup 9.21 ms 8.33 ms: 1.11x faster

telco 6.60 ms 6.49 ms: 1.02x faster

PEP 744 - JIT Compilation

e (C-like domain-specific language
e Tier 2 Interpreter
e Copy And Patch JIT

C-like DSL: Before CPython 3.12

case TARGET(BINARY_POWER): {
PyObject *exp = POP();
PyObject *base = TOP();
PyObject *res = PyNumber_Power(base, exp, Py_None);
Py_DECREF (base) ;
Py_DECREF (exp) ;
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCH();

case TARGET(BINARY_MULTIPLY): {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *res = PyNumber_Multiply(left, right);
Py_DECREF(left);
Py_DECREF(right);
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCH();

C-like DSL: After CPython 3.12

macro(BINARY_OP_MULTIPLY_FLOAT) =

_GUARD_TOS_FLOAT + _GUARD_NOS_FLOAT + unused/5 + _BINARY_OP_MULTIPLY_FLOAT +
_POP_TOP_FLOAT + _POP_TOP_FLOAT;
macro(BINARY_OP_ADD_FLOAT) =

_GUARD_TOS_FLOAT + _GUARD_NOS_FLOAT + unused/5 + _BINARY_OP_ADD_FLOAT + _POP_TOP_FLOAT +
_POP_TOP_FLOAT;
macro(BINARY_OP_SUBTRACT_FLOAT) =

_GUARD_TOS_FLOAT + _GUARD_NOS_FLOAT + unused/5 + _BINARY_OP_SUBTRACT_FLOAT +
_POP_TOP_FLOAT + _POP_TOP_FLOAT;

pure op(_BINARY_OP_ADD_UNICODE, (left, right -- res, 1, r)) {
PyObject *left_o = PyStackRef_AsPyObjectBorrow(left);
PyObject *right_o = PyStackRef_AsPyObjectBorrow(right);
assert(PyUnicode_CheckExact(left_o));
assert(PyUnicode_CheckExact(right_o));

STAT_INC(BINARY_OP, hit);
PyObject *res_o = PyUnicode_Concat(left_o, right_o);
res = PyStackRef_FromPyObjectSteal(res_o);
if (PyStackRef_IsNull(res)) {
ERROR_NO_POP () ;

r = right;
INPUTS_DEAD() ;

C-like DSL: After CPython 3.12

This design philosophy directly influenced

R CPython's Tier 2 interpreter and JIT.

GVMTI terprele GVMT Secon dary .
Generat Interpreter Gener ‘ GVMT C Compiler ‘

GVMT Abstract Machine Code

“The Glasgow Virtual Machine

Toolkit automatically generates a just-in-time
compiler, integrates precise garbage
collection into the virtual machine, and
automatically manages the complex
interdependencies between all the virtual
machine components.”

(GVMT Object Files) I GYML. Coripilér
Generator

Source: Mark Shannon, The Construction of High-Performance Virtual Machines for Dynamic
Languages, PhD thesis, University of Glasgow, 2011.

PEP 659: Specializing Adaptive Interpreter

def simulate_ducks(ducks):
for duck in ducks:
sound = duck.quack()
if duck.echo:
sount += sound
print(sound)

L1:

L2:

FOR_ITER
STORE_FAST
LOAD_FAST_BORROW
LOAD_ATTR

CALL

STORE_FAST
LOAD_FAST_BORROW
LOAD_ATTR
TO_BOOL
POP_JUMP_IF_FALSE
LOAD_FAST_BORROW
LOAD_FAST_BORROW
BINARY_OP
STORE_FAST
LOAD_GLOBAL

LOAD_FAST_BORROW

CALL
POP_TOP
JUMP_BACKWARD

L1:

L2:

FOR_ITER_LIST
STORE_FAST
LOAD_FAST_BORROW

LOAD_ATTR_METHOD_WITH_VALUES

CALL_BY_EXACT_ARGS
STORE_FAST
LOAD_FAST_BORROW

LOAD_ATTR_NONDESCRIPTOR_WITH_VALUES

TO_BOOL_BOOL
POP_JUMP_IF_FALSE
LOAD_FAST_BORROW
LOAD_FAST_BORROW

BINARY_OP_INPLACE_ADD_UNICODE

STORE_FAST
LOAD_GLOBAL_BUILTIN

LOAD_FAST_BORROW

CALL_BUILTIN_FAST_WITH_KEYWORDS

POP_TOP
JUMP_BACKWARD

Tier 2 Interpreter (Traced Micro-Ops)

_CHECK_VALIDITY

_SET_IP

_ITER_CHECK_LIST
_GUARD_NOT_EXHAUSTED_LIST
_ITER_NEXT_LIST_TIER_TWO
_CHECK_VALIDITY

_SET_IP

_STORE_FAST

_CHECK_VALIDITY

_SET_IP

_LOAD_FAST_BORROW
_CHECK_VALIDITY

_SET_IP

_GUARD_TYPE_VERSION
_GUARD_DORV_VALUES_INST_ATTR_FROM_DICT
_GUARD_KEYS_VERSION
_LOAD_ATTR_METHOD_WITH_VALUES
_CHECK_VALIDITY

_SET_IP

_CHECK_PEP_523
_CHECK_FUNCTIO_VERSION
_CHECK_FUNCTION_EXACT_ARGS
_CHECK_STACK_SPACE
_CHECK_RECURSION_REMAINING
_INIT_CALL_PY_EXACT_ARGS

_TO_BOOL_BOOL

_SAVE_RETURN_OFFSET _CHECK_VALIDITY

“PUSH. FRAME ChECK
—g'E"TElcg—VA“D'TY “GUARD _IS_FALSE_POP

_CHECK_VALIDITY

_SET_IP
_GUARD_GLOBALS_VERSION
_LOAD_GLOBAL_BUILTINS
_PUSH_NULL_CONDITIONAL
_CHECK_VALIDITY

_SET_IP
_LOAD_FAST_BORROW
_CHECK_VALIDITY

_RESUME_CHECK
_CHECK_VALIDITY
_SET_IP
_LOAD_CONST_MORTAL
_CHECK_VALIDITY
_SET_IP
_RETURN_VALUE
_CHECK_VALIDITY

SET_IP

STORE_FAST _SET_IP
"CHECK VALIDITY _CALL_BUILTIN_FAST_WITH_KEYWORDS
SETIP _CHECK_PERIODIC

_CHECK_VALIDITY

_LOAD_FAST_BORROW TSET 1P

_gEH TElcFr)<_VAL|D|TY o 0P
_GUARD_TYPE_VERSION _CHECK_VALIDITY
“GUARD_DORV_VALUES_INST_ATTR_FROM_DICT —>ET_IP
_GUARD_KEYS_VERSION _CHECK_PERIODIC
“LOAD_ATTR_NONDECRIPTOR_WITH_VALUES ~ JUMP_TO_TOP
_CHECK_VALIDITY

_SET_IP

Tier 2 Interpreter (Optimized Micro-Ops)

TO_BOOL_BOOL
SAVE_RETURN_OFFSET -T0_ _
CHECK_VALIDITY _SAVE_ -
SET P _PUSH_FRAME -g'E*TEfg_VAUDlTY
_ITER_CHECK_LIST _CHECK_VALIDITY =t
_GUARD_NOT_EXHAUSTED_LIST _SET_IP _GUARD_IS_FALSE_POP
_ITER_NEXT_LIST_TIER_TWO _RESUME_CHECK _gEHTEﬂf_VAUDlTY
_CHECK_VALIDITY CHECK_VALIDITY —F =
_SET_IP _SET |P_ _CHECK_FUNCTION
“STORE_FAST_1 —AOAT _LOAD_CONST_INLINE
CHECKVALIDITY “CHECR VALIDY PUSHNULL
“LOAD_FAST_BORROW._1 :EE% F};; ALUE ~CECKVALIDITY
CHECK_VALIDITY _ _ -t
SETIP _CHECK_VALIDITY _LOAD_FAST_BORROW_1
_GUARD_TYPE_VERSION SET IP _CHECK_VALIDITY
“GUARD_DORV_VALUES_INST_ATTR_FROM_DICT ~ _STORE_FAST 2 _SET_IP
“GUARD_KEYS_VERSION CHECK VALIDITY _CALL_BUILTIN_FAST_WITH_KEYWORDS
_LOAD_ATTR_METHOD_WITH_VALUES SET 1P _CHECK_PERIODIC
_CHECK_VALIDITY “LOAD_FAST BORROW. 1 _CHECK_VALIDITY
CHECK PEP 523 _CHECK_VALIDITY “POP TOP
_CHECK_FUNCTIO_VERSION SET_IP ~CHECK VALIDITY
_CHECK_FUNCTION_EXACT_ARGS _GUARD_TYPE_VERSION ~CHECK
“CHECK_STACK_SPACE_OPERAND _GUARD_DORV_VALUES_INST_ATTR_FROM_DICT —>El_
_CHECK_RECURSION_REMAINING _GUARD_KEYS_VERSION _CHECK_PERIODIC
_INIT_CALL_PY_EXACT_ARGS_0 _LOAD_ATTR_NONDECRIPTOR_WITH_VALUES ~ JUMP_TO_TOP

_CHECK_VALIDITY
_SET_IP

Tier 2 Interpreter (Optimized Micro-Ops)

CHECK VALIDITY _SAVE_RETURN_OFFSET _TO_BOOL BOOL
SET IP _PUSH_FRAME
“ITER_CHECK_LIST
"GUARD_NOT _EXHAUSTED_LIST ~GUARD_IS_FALSE_POP
TITER_NEXT_LIiST TIER_TWO _RESUME_CHECK
“CHECK_VALIDITY
TSET_IP _CHECK_FUNCTION
STORE_FAST 1 LOAD_CONST_INLINE
- AT _LOAD_CONST _INLINE - - -
“CHECK_VALIDITY “CHECK VALIDITY “PUSH_NULL
_LOAD_FAST_BORROW._1 'EE% FI;N VALUE
“CHECK VALIDITY _LOAD_FAST_BORROW._1
_GUARD_TYPE_VERSION SET_IP
“GUARD_DORV_VALUES_INST_ATTR_FROM_DICT ~ _STORE_FAST 2 _SET.IP
_GUARD_KEYS_VERSION CHECK VALIDITY _CALL_BUILTIN_FAST_WITH_KEYWORDS
“LOAD_ATTR_METHOD_WITH_VALUES - - _CHECK_PERIODIC
“CHECK_VALIDITY
SET P _LOAD_FAST_BORROW 1 ~<ET P
POP_TOP
_CHECK_FUNCTIO_VERSION _SET_IP - -
“CHECK_FUNCTION_EXACT_ARGS SET IP
“CHECK_STACK_SPACE_OPERAND _GUARD_DORV_VALUES_INST_ATTR_FROM_DICT —>FT-
_CHECK_RECURSION_REMAINING _GUARD_KEYS_VERSION _CHECK_PERIODIC
_INIT_CALL_PY_EXACT_ARGS_0 “LOAD_ATTR_NONDECRIPTOR_WITH_VALUES ~ JUMP_TO_TOP

_CHECK_VALIDITY
_SET_IP

Tier 2 Interpreter (Optimized Micro-Ops)

_ITER_CHECK_LIST
_GUARD_NOT_EXHAUSTED_LIST

“ITER_NEXT_LIST_TIER_TWO _CHECK_FUNCTION

CHECK_VALIDITY _LOAD_CONST_INLINE
“SETIP _PUSH_NULL
_STORE_FAST_1 _LOAD_CONST INLINE

~CHECK_VALIDITY _LOAD_FAST_BORROW_1
_LOAD_FAST_BORROW._1

SETIP
GUARD TYPE VERSION SET IP _CALL_BUILTIN_FAST_WITH_KEYWORDS
_GUARD_DORV_VALUES_INST_ATTR_FROM_DICT ~ _STORE_FAST 2 ~CHECK_PERIODIC
_GUARD_KEYS_VERSION CHECK VALIDITY _CHECK_VALIDITY
“LOAD_ATTR_METHOD_WITH_VALUES - - SETIP

POP_TOP

SETIP _LOAD_FAST_BORROW._1 -POF_
_CHECK_FUNCTIO_VERSION
“CHECK_FUNCTION_EXACT ARGS —CUHI\EEKT—SETRB%D'C
"CHECK_STACK_SPACE_OPERAND _GUARD_DORV_VALUES_INST_ATTR_FROM_DICT JUMP_TO_

_CHECK_RECURSION_REMAINING _GUARD_KEYS_VERSION

Copy and Patch JIT

ITER_CHECK_LIST

_GUARD_NOT EXHAUSTED_LIST
“ITER_NEXT LIST TIER_TWO

(SZIIE-|ECK VALIDITY

_STORE_FAST 1

_LOAD_FAST BORROW 1
_GUARD_TYPE_VERSION
_GUARD_DORV VALUES _INST_ATTR_FROM_DICT
_GUARD_KEYS_VERSION™
I§%AIIDPATTR METHOD_WITH_VALUES
_CHECK_FUNCTION_VERSION
_CHECK“FUNCTION_EXACT_ARGS
_CHECK“STACK_SPACE_OPERAND
_CHECK_RECURSION_REMAINING
_LOAD_CONST _INLINE
_CHECK_VALIDITY

“SET_IP

_STORE_FAST 2

_CHECK_VALIDITY

_LOAD_FAST BORROW _1
_GUARD_DORV _VALUES_INST_ATTR_FROM_DICT
_GUARD_KEYS_VERSION
_CHECK_FUNCTION

_LOAD CONST INLINE

“PUSH_NULL

_LOAD_FAST_BORROW._1

SET_IP

T
_CALL BUILTIN_FAST_WITH_KEYWORDS
CHECK_PERIODIC
_CHECK_VALIDITY

“POP_TOP
: HECk K PERIODIC
JUMP_TO_TOP

01010101010101010101
10101010101010101010
01010101010101010101
10101010010101010101
01010101010101010101
10101010101010101010
01010101010101010101
10101010010101010101
01010101010101010101
10101010101010101010
01010101010101010101
10101010010101010101
01010101010101010101
10101010101010101010
01010101010101010101
10101010010101010101
01010101010101010101
10101010101010101010
01010101010101010101
10101010010101010101
01010101010101010101
10101010101010101010
01010101010101010101
10101010010101010101

Copy and Patch JIT

ITER_CHECK_LIST
_GUARD_NOT EXHAUSTED_LIST
“ITER_NEXT LIST TIER_TWO
(S:E'ECK VALIDITY
_STORE_FAST 1

_LOAD_FAST BORROW 1
_GUARD_TYPE_VERSION

_GUARD_DORV VALUES _INST_ATTR_FROM_DICT
_GUARD_KEYS_VERSION™

I§%AIIDPATTR METHOD_WITH_VALUES
_CHECK_FUNCTION_VERSION

_CHECK“FUNCTION_EXACT_ARGS

Clang / LLVM

_CHECK“STACK_SPACE_OPERAND
_CHECK_RECURSION_REMAINING
_LOAD_CONST _INLINE

_CHECK_VALIDITY

“SET_IP

_STORE_FAST 2

_CHECK_VALIDITY

_LOAD_FAST BORROW _1

_GUARD_DORV _VALUES_INST_ATTR_FROM_DICT

Generated

v

_GUARD_KEYS_VERSION
_CHECK_FUNCTION

_LOAD CONST INLINE S
_PUSH'N

Copy and Patch Runtime

LOAD FAST BORROW_1
SET_IP

T
_CALL BUILTIN_FAST_WITH_KEYWORDS
CHECK_PERIODIC
_CHECK_VALIDITY

“POP TOP
: HECK K PERIODIC
JUMP_TO_TOP

Machine Code

01010101010101010101
10101010101010101010
01010101010101010101
10101010010101010101
01010101010101010101
10101010101010101010
01010101010101010101
10101010010101010101
01010101010101010101
10101010101010101010
01010101010101010101
10101010010101010101
01010101010101010101
10101010101010101010
01010101010101010101
10101010010101010101
01010101010101010101
10101010101010101010
01010101010101010101
10101010010101010101
01010101010101010101
10101010101010101010
01010101010101010101
10101010010101010101

Resu

250,000 -
Twice Python 2.7
00000~ eeiiecevimesserstieess s R s s
150,000 -
Python 2.7
100,000 -
1
50,000 -
]
© ~ o - o~) - " © ~ o o o - ~ - - m o
~N ~ " " o m ” " ” ” ~ " ~ ~ - m mE = sE
Ll L] L] e 4 - : +
L L o m

Topic: Concurrency Improvements

GIL

e GIL was first introduced at August 4th, 1992 by GvR.

o https://github.com/python/cpython/commit/1984f1e1c6306d4e8073c28d2395638f80ea509b

35 YEARS OF MICROPROCESSOR TREND DATA

10’

10°

Transistors
i (thousands)

: Single-thread
Performance
© (SpecINT)

- Typical Power
¢ (Watts)

© Number of
Cores

1975 1980 1985 1990 1995 2000 2005 2010 2015

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore

+ #ifdef USE_THREAD
+ #include <errno.h>
+ #include "thread.h"

+ static type_lock interpreter_lock;

+ void

+ init_save_thread()
P ol

+ #ifdef USE_THREAD

+ if (interpreter_lock)

+ fatal("2nd call to init_save_thread");
+ interpreter_lock = allocate_lock();

+ acquire_lock(interpreter_lock, 1);

+ #endif

B

GIL

e Easytoimplement
e No interpreter-level deadlock
e Low overhead at single thread

I/O /1O 11O /10 1/O
Thread | BT e T R
Thitead 2 === —n % SRS T ———! S———
Thiead 3 «ossmpreassammnu Mill ‘<1 SO, "L W) S

releasfev ‘;cquire releaé' ‘;cquire
GIL GIL GIL GIL

Many Attempts to Remove GIL

Free-threading patch (1996)

PyPy-STM (2012)

Gilectomy Project (2016)

Sub Interpreter (2017 - Current)
NoGIL Free-threading (2021 - Current)

PEP 703: Making the Global Interpreter Lock Optional in CPython

e Proposed by Sam Gross at Meta FAIR.
e Based on Choi, Shull & Torrellas, Biased reference counting:

minimizing atomic operations in garbage collection, PACT
2018

PEP 703: Object Header Changes

struct _object {
_PyObject_HEAD_EXTRA

uintptr_t ob_tid; // owning thread id (4-8 bytes)
uintl6_t _ padding; // reserved for future use (2 bytes)
PyMutex ob_mutex; // per—object mutex (1 byte)

uint8_t ob_gc_bits; // GC fields (1 byte)

uint32_t ob_ref_local; // local reference count (4 bytes)

Py_ssize_t ob_ref_shared; // shared reference count and state bits (4-8 bytes)
PyTypeObject *ob_type;
};

L I | PUP_I, IVVUUIl dI1IU Ol11Idl U 1 CICUUTLTILO dI O .JrJIIL 11 Ll

object header to avoid overflow and reduce complexity.

PEP 703: Biased Reference Count

e Biased Reference Counting (Choi, 2018): Most objects are
effectively single-thread owned; the owner updates a fast
local refcount, while other threads update a shared
refcount atomically.

e Layout choice: Instead of a single 64-bit packed field as in
the paper, local and shared refcounts are splitin the
object header to avoid overflow and reduce complexity.

PEP 703: Deferred Reference Count

e Limit of BRC: Some objects are frequently accessed by
multiple threads, which introduces overhead, but their
lifetimes are too short to treat them as immortal.

e |nterpreter level DRC: These objects use Deferred
Reference Counting in the interpreter, skipping refcount
updates on stack push and pop and reconstructing the
skipped counts during GC.

PEP 703: Garbage Collections

Explicit stop the world: Without the GIL, other threads can no
longer be excluded during GC, so an explicit stop the world
phase is required.

e ThreadState management: ThreadState must be explicitly

tracked with three states: ATTACHED, DETACHED, and GC.
Single generation GC: The plan is to replace generational GC
with a single generation GC. Since most objects are reclaimed
by refcounting, generational GC shows limited benefit, and
frequent young collections are likely to hurt multithreaded

performance.

PEP 703: Per-thread Specializer

e Each thread keeps its own specialized copy of bytecode

e Enables |lock-free fast execution even without the GIL

e Main thread uses original bytecode (no extra copy — zero
overhead)

e This design takes a different approach from the one Sam
Gross introduced in his nogil implementation.

Result

Execution Overhead on pyperformance 1.0.6

Intel Skylake AMD Zen 3
One thread 6% 5%
Multiple threads 8% 7%

Topic: Behind the Scenes

Technical Challenges Behind the Scene

e C API Compatibility
e Various Hardware Supports
e Behavior Changes

C APl Compatibility

e Unstable API
o may change in minor versions without a deprecation
period. It is marked by the PyUnstable prefix in names
e Limited API
o Extensions that only use the Limited API can be compiled
once and be loaded on multiple versions of Python.
e Stable ABI
o Set of symbols that will remain ABI-compatible across
Python 3.x versions.

C APl Compatibility

e Free-thrading
o abi3 VS abi3t VS abi4
e Faster CPython
o Compact Object Header

Various Hardware Supports

Python Anonymous ¥

Welcome to buildbot

0 builds running currently

20 recent builds

aarchB4 Fedora Rawhide NoGIL refleaks 3.13 aarch64 Fedora Rawhide Refleaks 3.12 aarch64 Fedora Rawhide Refleaks 3.13

aarch64 Fedora Rawhide Refleaks 3.12/236 aarch64 Fedora Rawhide Refleaks 3.13/214
build successful 56:00 warnings test (warnings)

aarch64 Fedora Rawhide NoGIL refleaks 3.13/213
build successful 18:47

AMD64 CentOS9 Refleaks 3.12 AMDG4 Fedora Rawhide NoGIL refleaks 3.13 AMDS4 Fedora Rawhide Refleaks 3.12
AMDB4 CentOSS Refleaks 3.12/762 [success| AMDS4 Fedora Rawhide NoGIL refleaks 3,13/323 €] AMD64 Fedora Rawhide Refleaks 3.12/688 (success|
build successful 20:29 ‘warnings test (warnings) a7:38 build successful 21:26

AMDS4 Fedora R 13 AMDB4 FreeBSD Refleaks 3.12 D64 Windows11 R

Refle:

whi

AMD64 Windows11 Refleaks 3.12/702
build successful

AMD64 FreeBSD Refleaks 3.12/267
build successful 32:04

AMDG4 Fedora Rawhide Refleaks 3.13/335
build successful

ARMB4 MacOS M1 Refleaks NoGIL 3.13 PPCBA4LE CentOS9 Refleaks 3.12 PPCBALE Fedora Rawhide LTO 3.13

PPCBA4LE Fedora Rawhide LTO 3.13/352 | success
build successful 19:29

PPCBALE CentOS9 Refleaks 3.12/703
build successful

ARM64 MacOS M1 Refleaks NoGIL 3.13/759 RNNGS
warnings test (warnings) 51:06

PPCBALE Fedora Rawhide NoGIL 3.13 PPCBALE Fedora Rawhide NoGIL refleaks 3.13 PPCBALE Fedora Rawhide NoGIL refleaks 3.x

PPC64LE Fedora Rawhide NoGIL refleaks 3./310
‘warnings test (warnings)

PPC6ALE Fedora Rawhide NoGIL refleaks 3.13/228
build successful 4:18:10

PPC6ALE Fedora Rawhide NoGIL 3.13/313
build successful 56:51

PPCBALE Fedora Rawhide Refleaks 3.1 E Fedora Rawhide Refleaks 3.13 PPCBALE Fedora Rawhide Refleal

PPCB4LE Fedora Rawhide Refleaks 3.x/1401
build successful 3:20:28

PPCBALE Fedora Rawhide Refleaks 3.13/235
build successful

PPCB4LE Fedora Rawhide Refleaks 3.12/621 | success.
build successful 5:31:00

PPCBALE Fedora Stable Refleaks 3.12 PPCBALE Fedora Stable Refleaks 3.13

PPCBALE Fedora Stable Refleaks 3.13/318
build successful 43:35

PPCB4LE Fedora Stable Refleaks 3.12/693
build successful 1:31:04

Behavior Changes

[3.12 Regression] backport of gh-120233 to 3.12 (gh-121350) breaks o ([©
mercurial, working with 3.12.4 #122438

doko42 opened on Jul 30, 2024 - edited by github-actions
Bug report

Bug description:

mercurial 6.8 fails to start with the 3.12 branch 2024-07-15, but works with 3.12.4:

~$ hg

Traceback (most recent call last):

File "/usr/bin/hg", line 57, in

from mercurial import dispatch

File "", line 1360, in _find_and_load

File "", line 1331, in _find_and_load_unlocked
File "", line 935, in _load_unlocked

File "/usr/lib/python3/dist-packages/hgdemandimport/demandimportpy3.py", line 52, in exec_module
super().exec_module(module)

File "", line 257, in exec_module

File "", line 1360, in _find_and_load

Fila "" lina 1221 in find and lnad 1inlarkad

Edits ~

Member

Assignees £§3

No one - Assign yourself

& Assign to Copilot

Labels e
type-bug

Type o)

No type

Projects e

No projects

Milestone £§3

No milestone

Relationships e

Behavior Changes

r/Python - 53 &
¢« 'lv

Dooflegna

PEP 563 getting rolled back from Python 3.10

PEP 563 is getting rolled back/delayed until a future version of Python (likely 3.11). This decision was made after
third-party library maintainers (primarily Pydantic) raised an issue on how PEP 563 was going to break their code
(Pydantic and any consumers thereof, like FastAPI).

Really great decision by the steering council. Rolling back right before feature lock sucks, but this is the best
decision for the Python community.

https://mail.python.org/archives/list/python-
dev@python.org/thread/CLVXXPQ2T2LQ5MP2Y53VVQFCXYWQJHKZ/

5428 - ()55

Topic: Core Team Annual Events

Python Language Summits

i ‘|| i

i T

T4
||I||llll
..lil!_lllll!llli'

2025 (Pittsburgh, US) 2024 (Pittsburgh, US) 2023 (Salt Lake City, US)

Python Language Summits

e Python Language Summit 2025
o Fearless Concurrency by Tobias Wrigstad, Matthew Parkinson, and Fridtjof Stoldt
o An Uncontentious Talk about Contention: talk by Mark Shannon
o What do Python core developers want from Rust?: talk by David Hewitt
e Python Language Summit 2024
o Free-threading ecosystems by Daniele Parmeggiani
o Native Interface and Limited C API by Petr Viktorin and Victor Stinner
e Python Language Summit 2023

o Towards Native Profiling for Python by Joannah Nanjekye
o Making the Global Interpreter Lock Optional by Sam Gross

Python Core Sprints

2025 (ARM.Itd) 2024 (Meta)

Python Core Sprints

2025 (ARM Ltd) 2024 (Meta)

This Year

e Python Language Summit at Euro Python (Porland)
e Python Core Sprint (TBA)

Future?

e Python Language Summit at Seoul?]:[
e Python Core Sprint at Seoul? Seoul 2025

Q&A

