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Today Topics
● Governance and Structure of the Python Core Team
● Performance Improvement Challenges
● Concurrency Improvement Challenges
● Behind the Scenes



Introduction to the Python Core Team
● The Python Core Team is responsible for developing and 

maintaining CPython, the reference implementation of 
the Python programming language.

● It operates under the Python Software Foundation (PSF) 
and is a separate group from the Python Packaging 
Authority (PyPA). Python Software Foundation
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Introduction to the Python Core Team
● Triage Member
● Core Developer
● Release Manager
● Steering Council Member
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2026 Steering Council Member
● Pablo Galindo Salgado: Hudson River Trading
● Savannah Ostrowski: FastAPI Labs
● Barry Warsaw: Nvidia
● Donghee Na: Karrot
● Thomas Wouters: Meta

https://peps.python.org/pep-8107/



Steering Council Responsibilities
● Accept/reject PEPs (Python Enhancement Proposals)
● Maintain quality & stability of language & CPython
● Work with the PSF to manage project assets
● Seek consensus
● Delegate decisions whenever possible
● Veto (or not!) newly elected core members
● Office Hours



Steering Council Cadence
● Weekly Meetings - 90 minutes

○ Regular syncs w/
■ Deb Nicholson - PSF Executive Director
■ Łukasz Langa - Developer in Residence

● Office Hours (Thursdays at 1:00 PM PST)



Steering Council Responsibilities
● 2025 Meeting log

○ https://discuss.python.org/t/2025-psc-meeting-summa
ries/105626



CPython Core Team Technical Challenges
● Performance Improvements

○ Interpreter
○ Tier 2 Interpreter
○ JIT

● Concurrency Improvements
○ GIL: Global Interpreter Lock
○ Free-threading
○ Sub Interpreter



Topic: Performance Improvements



Many Attempts to Make CPython Faster
● Unladen Swallow (2011)
● Pyston V1 (2014)
● Cinder (2021-Current)
● Pyston V2 (2021)
● Faster CPython Project (2021 - Current)



CPython Core Team Technical Challenges
● Performance Improvements
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PEP 659: Specializing Adaptive Interpreter 
L1: FOR_ITER
      STORE_FAST
      LOAD_FAST_BORROW
      LOAD_ATTR
      CALL
      STORE_FAST
      LOAD_FAST_BORROW 
      LOAD_ATTR                   
      TO_BOOL                        
      POP_JUMP_IF_FALSE    
      LOAD_FAST_BORROW 
      LOAD_FAST_BORROW 
      BINARY_OP                    
      STORE_FAST                  
L2: LOAD_GLOBAL              

      LOAD_FAST_BORROW  

      CALL                                 
      POP_TOP                          
      JUMP_BACKWARD          

L1: FOR_ITER_LIST
      STORE_FAST
      LOAD_FAST_BORROW
      LOAD_ATTR_METHOD_WITH_VALUES
      CALL_BY_EXACT_ARGS
      STORE_FAST
      LOAD_FAST_BORROW 
      LOAD_ATTR_NONDESCRIPTOR_WITH_VALUES                   
      TO_BOOL_BOOL                        
      POP_JUMP_IF_FALSE    
      LOAD_FAST_BORROW 
      LOAD_FAST_BORROW 
      BINARY_OP_INPLACE_ADD_UNICODE                    
      STORE_FAST                  
L2: LOAD_GLOBAL_BUILTIN              

      LOAD_FAST_BORROW  

      CALL_BUILTIN_FAST_WITH_KEYWORDS                                 
      POP_TOP                          
      JUMP_BACKWARD          

def simulate_ducks(ducks):
    for duck in ducks:
        sound = duck.quack()
        if duck.echo:
            sount += sound
        print(sound)



PEP 659: Specializing Adaptive Interpreter 
Benchmark 3.10.4 3.11.0b3

deltablue 7.32 ms 3.62 ms: 2.02x faster

scimark_sor 196 ms 115 ms: 1.70x faster

raytrace 463 ms 292 ms: 1.58x faster

dulwich_log 75.2 ms 63.1 ms: 1.19x faster

python_startup 9.21 ms 8.33 ms: 1.11x faster

telco 6.60 ms 6.49 ms: 1.02x faster



PEP 744 – JIT Compilation
● C-like domain-specific language
● Tier 2 Interpreter
● Copy And Patch JIT



C-like DSL: Before CPython 3.12
case TARGET(BINARY_POWER): {

    PyObject *exp = POP();

    PyObject *base = TOP();

    PyObject *res = PyNumber_Power(base, exp, Py_None);

    Py_DECREF(base);

    Py_DECREF(exp);

    SET_TOP(res);

    if (res == NULL)

        goto error;

    DISPATCH();

}

case TARGET(BINARY_MULTIPLY): {

    PyObject *right = POP();

    PyObject *left = TOP();

    PyObject *res = PyNumber_Multiply(left, right);

    Py_DECREF(left);

    Py_DECREF(right);

    SET_TOP(res);

    if (res == NULL)

        goto error;

    DISPATCH();

}



C-like DSL: After CPython 3.12
macro(BINARY_OP_MULTIPLY_FLOAT) =
    _GUARD_TOS_FLOAT + _GUARD_NOS_FLOAT + unused/5 + _BINARY_OP_MULTIPLY_FLOAT + 
_POP_TOP_FLOAT + _POP_TOP_FLOAT;
macro(BINARY_OP_ADD_FLOAT) =
    _GUARD_TOS_FLOAT + _GUARD_NOS_FLOAT + unused/5 + _BINARY_OP_ADD_FLOAT + _POP_TOP_FLOAT + 
_POP_TOP_FLOAT;
macro(BINARY_OP_SUBTRACT_FLOAT) =
    _GUARD_TOS_FLOAT + _GUARD_NOS_FLOAT + unused/5 + _BINARY_OP_SUBTRACT_FLOAT + 
_POP_TOP_FLOAT + _POP_TOP_FLOAT;

pure op(_BINARY_OP_ADD_UNICODE, (left, right -- res, l, r)) {
    PyObject *left_o = PyStackRef_AsPyObjectBorrow(left);
    PyObject *right_o = PyStackRef_AsPyObjectBorrow(right);
    assert(PyUnicode_CheckExact(left_o));
    assert(PyUnicode_CheckExact(right_o));

    STAT_INC(BINARY_OP, hit);
    PyObject *res_o = PyUnicode_Concat(left_o, right_o);
    res = PyStackRef_FromPyObjectSteal(res_o);
    if (PyStackRef_IsNull(res)) {
        ERROR_NO_POP();
    }
    l = left;
    r = right;
    INPUTS_DEAD();
}



C-like DSL: After CPython 3.12
This design philosophy directly influenced 
CPython's Tier 2 interpreter and JIT.

“The Glasgow Virtual Machine
Toolkit automatically generates a just-in-time 
compiler, integrates precise garbage
collection into the virtual machine, and 
automatically manages the complex 
interdependencies between all the virtual 
machine components.”

Source: Mark Shannon, The Construction of High-Performance Virtual Machines for Dynamic 
Languages, PhD thesis, University of Glasgow, 2011.
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Tier 2 Interpreter (Traced Micro-Ops)
_SAVE_RETURN_OFFSET
_PUSH_FRAME
_CHECK_VALIDITY
_SET_IP
_RESUME_CHECK
_CHECK_VALIDITY
_SET_IP
_LOAD_CONST_MORTAL
_CHECK_VALIDITY
_SET_IP
_RETURN_VALUE
_CHECK_VALIDITY
_SET_IP
_STORE_FAST
_CHECK_VALIDITY
_SET_IP
_LOAD_FAST_BORROW
_CHECK_VALIDITY
_SET_IP
_GUARD_TYPE_VERSION
_GUARD_DORV_VALUES_INST_ATTR_FROM_DICT
_GUARD_KEYS_VERSION
_LOAD_ATTR_NONDECRIPTOR_WITH_VALUES
_CHECK_VALIDITY
_SET_IP

_CHECK_VALIDITY
_SET_IP
_ITER_CHECK_LIST
_GUARD_NOT_EXHAUSTED_LIST
_ITER_NEXT_LIST_TIER_TWO
_CHECK_VALIDITY
_SET_IP
_STORE_FAST
_CHECK_VALIDITY
_SET_IP
_LOAD_FAST_BORROW
_CHECK_VALIDITY
_SET_IP
_GUARD_TYPE_VERSION
_GUARD_DORV_VALUES_INST_ATTR_FROM_DICT
_GUARD_KEYS_VERSION
_LOAD_ATTR_METHOD_WITH_VALUES
_CHECK_VALIDITY
_SET_IP
_CHECK_PEP_523
_CHECK_FUNCTIO_VERSION
_CHECK_FUNCTION_EXACT_ARGS
_CHECK_STACK_SPACE
_CHECK_RECURSION_REMAINING
_INIT_CALL_PY_EXACT_ARGS

_TO_BOOL_BOOL
_CHECK_VALIDITY
_SET_IP
_GUARD_IS_FALSE_POP
_CHECK_VALIDITY
_SET_IP
_GUARD_GLOBALS_VERSION
_LOAD_GLOBAL_BUILTINS
_PUSH_NULL_CONDITIONAL
_CHECK_VALIDITY
_SET_IP
_LOAD_FAST_BORROW
_CHECK_VALIDITY
_SET_IP
_CALL_BUILTIN_FAST_WITH_KEYWORDS
_CHECK_PERIODIC
_CHECK_VALIDITY
_SET_IP
_POP_TOP
_CHECK_VALIDITY
_SET_IP
_CHECK_PERIODIC
_JUMP_TO_TOP



Tier 2 Interpreter (Optimized Micro-Ops)
_SAVE_RETURN_OFFSET
_PUSH_FRAME
_CHECK_VALIDITY
_SET_IP
_RESUME_CHECK
_CHECK_VALIDITY
_SET_IP
_LOAD_CONST_INLINE
_CHECK_VALIDITY
_SET_IP
_RETURN_VALUE
_CHECK_VALIDITY
_SET_IP
_STORE_FAST_2
_CHECK_VALIDITY
_SET_IP
_LOAD_FAST_BORROW_1
_CHECK_VALIDITY
_SET_IP
_GUARD_TYPE_VERSION
_GUARD_DORV_VALUES_INST_ATTR_FROM_DICT
_GUARD_KEYS_VERSION
_LOAD_ATTR_NONDECRIPTOR_WITH_VALUES
_CHECK_VALIDITY
_SET_IP

_CHECK_VALIDITY
_SET_IP
_ITER_CHECK_LIST
_GUARD_NOT_EXHAUSTED_LIST
_ITER_NEXT_LIST_TIER_TWO
_CHECK_VALIDITY
_SET_IP
_STORE_FAST_1
_CHECK_VALIDITY
_SET_IP
_LOAD_FAST_BORROW_1
_CHECK_VALIDITY
_SET_IP
_GUARD_TYPE_VERSION
_GUARD_DORV_VALUES_INST_ATTR_FROM_DICT
_GUARD_KEYS_VERSION
_LOAD_ATTR_METHOD_WITH_VALUES
_CHECK_VALIDITY
_SET_IP
_CHECK_PEP_523
_CHECK_FUNCTIO_VERSION
_CHECK_FUNCTION_EXACT_ARGS
_CHECK_STACK_SPACE_OPERAND
_CHECK_RECURSION_REMAINING
_INIT_CALL_PY_EXACT_ARGS_0

_TO_BOOL_BOOL
_CHECK_VALIDITY
_SET_IP
_GUARD_IS_FALSE_POP
_CHECK_VALIDITY
_SET_IP
_CHECK_FUNCTION
_LOAD_CONST_INLINE
_PUSH_NULL
_CHECK_VALIDITY
_SET_IP
_LOAD_FAST_BORROW_1
_CHECK_VALIDITY
_SET_IP
_CALL_BUILTIN_FAST_WITH_KEYWORDS
_CHECK_PERIODIC
_CHECK_VALIDITY
_SET_IP
_POP_TOP
_CHECK_VALIDITY
_SET_IP
_CHECK_PERIODIC
_JUMP_TO_TOP



Tier 2 Interpreter (Optimized Micro-Ops)
_SAVE_RETURN_OFFSET
_PUSH_FRAME

_RESUME_CHECK

_LOAD_CONST_INLINE
_CHECK_VALIDITY
_SET_IP
_RETURN_VALUE
_CHECK_VALIDITY
_SET_IP
_STORE_FAST_2
_CHECK_VALIDITY

_LOAD_FAST_BORROW_1

_SET_IP

_GUARD_DORV_VALUES_INST_ATTR_FROM_DICT
_GUARD_KEYS_VERSION
_LOAD_ATTR_NONDECRIPTOR_WITH_VALUES
_CHECK_VALIDITY
_SET_IP

_CHECK_VALIDITY
_SET_IP
_ITER_CHECK_LIST
_GUARD_NOT_EXHAUSTED_LIST
_ITER_NEXT_LIST_TIER_TWO
_CHECK_VALIDITY
_SET_IP
_STORE_FAST_1
_CHECK_VALIDITY

_LOAD_FAST_BORROW_1

_GUARD_TYPE_VERSION
_GUARD_DORV_VALUES_INST_ATTR_FROM_DICT
_GUARD_KEYS_VERSION
_LOAD_ATTR_METHOD_WITH_VALUES

_SET_IP

_CHECK_FUNCTIO_VERSION
_CHECK_FUNCTION_EXACT_ARGS
_CHECK_STACK_SPACE_OPERAND
_CHECK_RECURSION_REMAINING
_INIT_CALL_PY_EXACT_ARGS_0

_TO_BOOL_BOOL

_GUARD_IS_FALSE_POP

_CHECK_FUNCTION
_LOAD_CONST_INLINE
_PUSH_NULL

_LOAD_FAST_BORROW_1

_SET_IP
_CALL_BUILTIN_FAST_WITH_KEYWORDS
_CHECK_PERIODIC
_CHECK_VALIDITY
_SET_IP
_POP_TOP

_SET_IP
_CHECK_PERIODIC
_JUMP_TO_TOP



Tier 2 Interpreter (Optimized Micro-Ops)

_LOAD_CONST_INLINE
_CHECK_VALIDITY

_SET_IP
_STORE_FAST_2
_CHECK_VALIDITY

_LOAD_FAST_BORROW_1

_GUARD_DORV_VALUES_INST_ATTR_FROM_DICT
_GUARD_KEYS_VERSION

_ITER_CHECK_LIST
_GUARD_NOT_EXHAUSTED_LIST
_ITER_NEXT_LIST_TIER_TWO
_CHECK_VALIDITY
_SET_IP
_STORE_FAST_1

_LOAD_FAST_BORROW_1

_GUARD_TYPE_VERSION
_GUARD_DORV_VALUES_INST_ATTR_FROM_DICT
_GUARD_KEYS_VERSION
_LOAD_ATTR_METHOD_WITH_VALUES

_SET_IP

_CHECK_FUNCTIO_VERSION
_CHECK_FUNCTION_EXACT_ARGS
_CHECK_STACK_SPACE_OPERAND
_CHECK_RECURSION_REMAINING

_CHECK_FUNCTION
_LOAD_CONST_INLINE
_PUSH_NULL

_LOAD_FAST_BORROW_1

_SET_IP
_CALL_BUILTIN_FAST_WITH_KEYWORDS
_CHECK_PERIODIC
_CHECK_VALIDITY
_SET_IP
_POP_TOP

_CHECK_PERIODIC
_JUMP_TO_TOP



Copy and Patch JIT

_ITER_CHECK_LIST
_GUARD_NOT_EXHAUSTED_LIST
_ITER_NEXT_LIST_TIER_TWO
_CHECK_VALIDITY
_SET_IP
_STORE_FAST_1
_LOAD_FAST_BORROW_1
_GUARD_TYPE_VERSION
_GUARD_DORV_VALUES_INST_ATTR_FROM_DICT
_GUARD_KEYS_VERSION
_LOAD_ATTR_METHOD_WITH_VALUES
_SET_IP
_CHECK_FUNCTION_VERSION
_CHECK_FUNCTION_EXACT_ARGS
_CHECK_STACK_SPACE_OPERAND
_CHECK_RECURSION_REMAINING
_LOAD_CONST_INLINE
_CHECK_VALIDITY
_SET_IP
_STORE_FAST_2
_CHECK_VALIDITY
_LOAD_FAST_BORROW_1
_GUARD_DORV_VALUES_INST_ATTR_FROM_DICT
_GUARD_KEYS_VERSION
_CHECK_FUNCTION
_LOAD_CONST_INLINE
_PUSH_NULL
_LOAD_FAST_BORROW_1
_SET_IP
_CALL_BUILTIN_FAST_WITH_KEYWORDS
_CHECK_PERIODIC
_CHECK_VALIDITY
_SET_IP
_POP_TOP
_CHECK_PERIODIC
_JUMP_TO_TOP
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Copy and Patch JIT

_ITER_CHECK_LIST
_GUARD_NOT_EXHAUSTED_LIST
_ITER_NEXT_LIST_TIER_TWO
_CHECK_VALIDITY
_SET_IP
_STORE_FAST_1
_LOAD_FAST_BORROW_1
_GUARD_TYPE_VERSION
_GUARD_DORV_VALUES_INST_ATTR_FROM_DICT
_GUARD_KEYS_VERSION
_LOAD_ATTR_METHOD_WITH_VALUES
_SET_IP
_CHECK_FUNCTION_VERSION
_CHECK_FUNCTION_EXACT_ARGS
_CHECK_STACK_SPACE_OPERAND
_CHECK_RECURSION_REMAINING
_LOAD_CONST_INLINE
_CHECK_VALIDITY
_SET_IP
_STORE_FAST_2
_CHECK_VALIDITY
_LOAD_FAST_BORROW_1
_GUARD_DORV_VALUES_INST_ATTR_FROM_DICT
_GUARD_KEYS_VERSION
_CHECK_FUNCTION
_LOAD_CONST_INLINE
_PUSH_NULL
_LOAD_FAST_BORROW_1
_SET_IP
_CALL_BUILTIN_FAST_WITH_KEYWORDS
_CHECK_PERIODIC
_CHECK_VALIDITY
_SET_IP
_POP_TOP
_CHECK_PERIODIC
_JUMP_TO_TOP

Machine Code

01010101010101010101
10101010101010101010
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10101010010101010101
01010101010101010101
10101010101010101010
01010101010101010101
10101010010101010101
01010101010101010101
10101010101010101010
01010101010101010101
10101010010101010101
01010101010101010101
10101010101010101010
01010101010101010101
10101010010101010101

Copy and Patch Runtime

Clang / LLVM

Generated



Result



Topic: Concurrency Improvements



GIL
● GIL was first introduced at August 4th, 1992 by GvR.

○ https://github.com/python/cpython/commit/1984f1e1c6306d4e8073c28d2395638f80ea509b



GIL
● Easy to implement
● No interpreter-level deadlock
● Low overhead at single thread



Many Attempts to Remove GIL
● Free-threading patch (1996)
● PyPy-STM (2012)
● Gilectomy Project (2016)
● Sub Interpreter (2017 - Current)
● NoGIL Free-threading (2021 - Current)



PEP 703: Making the Global Interpreter Lock Optional in CPython

● Proposed by Sam Gross at Meta FAIR.
● Based on Choi, Shull & Torrellas, Biased reference counting: 

minimizing atomic operations in garbage collection, PACT 
2018



PEP 703: Object Header Changes
● Biased Reference Counting (Choi, 2018): Most objects are 

effectively single-thread owned; the owner updates a fast 
local refcount, while other threads update a shared 
refcount atomically.

● Layout choice: Instead of a single 64-bit packed field as in 
the paper, local and shared refcounts are split in the 
object header to avoid overflow and reduce complexity.



PEP 703: Biased Reference Count
● Biased Reference Counting (Choi, 2018): Most objects are 

effectively single-thread owned; the owner updates a fast 
local refcount, while other threads update a shared 
refcount atomically.

● Layout choice: Instead of a single 64-bit packed field as in 
the paper, local and shared refcounts are split in the 
object header to avoid overflow and reduce complexity.



PEP 703: Deferred Reference Count
● Limit of BRC: Some objects are frequently accessed by 

multiple threads, which introduces overhead, but their 
lifetimes are too short to treat them as immortal.

● Interpreter level DRC: These objects use Deferred 
Reference Counting in the interpreter, skipping refcount 
updates on stack push and pop and reconstructing the 
skipped counts during GC.



PEP 703: Garbage Collections
● Explicit stop the world: Without the GIL, other threads can no 

longer be excluded during GC, so an explicit stop the world 
phase is required.

● ThreadState management: ThreadState must be explicitly 
tracked with three states: ATTACHED, DETACHED, and GC.

● Single generation GC: The plan is to replace generational GC 
with a single generation GC. Since most objects are reclaimed 
by refcounting, generational GC shows limited benefit, and 
frequent young collections are likely to hurt multithreaded 
performance.



PEP 703: Per-thread Specializer
● Each thread keeps its own specialized copy of bytecode
● Enables lock-free fast execution even without the GIL
● Main thread uses original bytecode (no extra copy → zero 

overhead)
● This design takes a different approach from the one Sam 

Gross introduced in his nogil implementation.



Result



Topic: Behind the Scenes



Technical Challenges Behind the Scene
● C API Compatibility
● Various Hardware Supports
● Behavior Changes



C API Compatibility
● Unstable API

○ may change in minor versions without a deprecation 
period. It is marked by the PyUnstable prefix in names

● Limited API
○ Extensions that only use the Limited API can be compiled 

once and be loaded on multiple versions of Python.
● Stable ABI

○ Set of symbols that will remain ABI-compatible across 
Python 3.x versions.



C API Compatibility
● Free-thrading

○ abi3 VS abi3t VS abi4
● Faster CPython

○ Compact Object Header



Various Hardware Supports



Behavior Changes



Behavior Changes



Topic: Core Team Annual Events



Python Language Summits

2025 (Pittsburgh, US) 2024 (Pittsburgh, US) 2023 (Salt Lake City, US)



Python Language Summits
● Python Language Summit 2025

○ Fearless Concurrency by Tobias Wrigstad, Matthew Parkinson, and Fridtjof Stoldt
○ An Uncontentious Talk about Contention: talk by Mark Shannon
○ What do Python core developers want from Rust?: talk by David Hewitt

● Python Language Summit 2024
○ Free-threading ecosystems by Daniele Parmeggiani
○ Native Interface and Limited C API by Petr Viktorin and Victor Stinner

● Python Language Summit 2023
○ Towards Native Profiling for Python by Joannah Nanjekye
○ Making the Global Interpreter Lock Optional by Sam Gross



Python Core Sprints

2025 (ARM.ltd) 2024 (Meta)



Python Core Sprints

2025 (ARM Ltd) 2024 (Meta)



This Year
● Python Language Summit at Euro Python (Porland)
● Python Core Sprint (TBA)



Future?
● Python Language Summit at Seoul?
● Python Core Sprint at Seoul?



Q&A


