
Practical Challenges of Python Core Team

Donghee Na
donghee.na@python.org

Speaker
Software Development From 2018
● Karrot Lead SWE From October 2024
● LINE SWE: 2021 - 2024
● Kakao SWE: 2018 - 2021

CPython Core Development From 2017
● 2025/2026 Python Steering Council Member
● 2020 - Present: CPython Core Developer
● 2019 - 2020: CPython Triage Member
● donghee.na@python.org

Speaker
Software Development From 2018
● Karrot Lead SWE From October 2024
● LINE SWE: 2021 - 2024
● Kakao SWE: 2018 - 2021

CPython Core Development From 2017
● 2025/2026 Python Steering Council Member
● 2020 - Present: CPython Core Developer
● 2019 - 2020: CPython Triage Member
● donghee.na@python.org

Today Topics
● Governance and Structure of the Python Core Team
● Performance Improvement Challenges
● Concurrency Improvement Challenges
● Behind the Scenes

Introduction to the Python Core Team
● The Python Core Team is responsible for developing and

maintaining CPython, the reference implementation of
the Python programming language.

● It operates under the Python Software Foundation (PSF)
and is a separate group from the Python Packaging
Authority (PyPA). Python Software Foundation

Staff Team

Infra
Team

Python
Core
Team

Python
Packaging
Authority

Team
(PyPA)

PSF
Work
Group. . .

Introduction to the Python Core Team
● Triage Member
● Core Developer
● Release Manager
● Steering Council Member

Steering Council

CPython Core Developer CPython Triage
Member

Contributors

Release
Team

Developer In
Residence

Team

Documentation
Team

Security
Team

2026 Steering Council Member
● Pablo Galindo Salgado: Hudson River Trading
● Savannah Ostrowski: FastAPI Labs
● Barry Warsaw: Nvidia
● Donghee Na: Karrot
● Thomas Wouters: Meta

https://peps.python.org/pep-8107/

Steering Council Responsibilities
● Accept/reject PEPs (Python Enhancement Proposals)
● Maintain quality & stability of language & CPython
● Work with the PSF to manage project assets
● Seek consensus
● Delegate decisions whenever possible
● Veto (or not!) newly elected core members
● Office Hours

Steering Council Cadence
● Weekly Meetings - 90 minutes

○ Regular syncs w/
■ Deb Nicholson - PSF Executive Director
■ Łukasz Langa - Developer in Residence

● Office Hours (Thursdays at 1:00 PM PST)

Steering Council Responsibilities
● 2025 Meeting log

○ https://discuss.python.org/t/2025-psc-meeting-summa
ries/105626

CPython Core Team Technical Challenges
● Performance Improvements

○ Interpreter
○ Tier 2 Interpreter
○ JIT

● Concurrency Improvements
○ GIL: Global Interpreter Lock
○ Free-threading
○ Sub Interpreter

Topic: Performance Improvements

Many Attempts to Make CPython Faster
● Unladen Swallow (2011)
● Pyston V1 (2014)
● Cinder (2021-Current)
● Pyston V2 (2021)
● Faster CPython Project (2021 - Current)

CPython Core Team Technical Challenges
● Performance Improvements

○ Interpreter
○ Tier 2 Interpreter
○ JIT

● Concurrency Improvements
○ GIL: Global Interpreter Lock
○ Free-threading
○ Sub Interpreter

PEP 659: Specializing Adaptive Interpreter
L1: FOR_ITER
 STORE_FAST
 LOAD_FAST_BORROW
 LOAD_ATTR
 CALL
 STORE_FAST
 LOAD_FAST_BORROW
 LOAD_ATTR
 TO_BOOL
 POP_JUMP_IF_FALSE
 LOAD_FAST_BORROW
 LOAD_FAST_BORROW
 BINARY_OP
 STORE_FAST
L2: LOAD_GLOBAL

 LOAD_FAST_BORROW

 CALL
 POP_TOP
 JUMP_BACKWARD

L1: FOR_ITER_LIST
 STORE_FAST
 LOAD_FAST_BORROW
 LOAD_ATTR_METHOD_WITH_VALUES
 CALL_BY_EXACT_ARGS
 STORE_FAST
 LOAD_FAST_BORROW
 LOAD_ATTR_NONDESCRIPTOR_WITH_VALUES
 TO_BOOL_BOOL
 POP_JUMP_IF_FALSE
 LOAD_FAST_BORROW
 LOAD_FAST_BORROW
 BINARY_OP_INPLACE_ADD_UNICODE
 STORE_FAST
L2: LOAD_GLOBAL_BUILTIN

 LOAD_FAST_BORROW

 CALL_BUILTIN_FAST_WITH_KEYWORDS
 POP_TOP
 JUMP_BACKWARD

def simulate_ducks(ducks):
 for duck in ducks:
 sound = duck.quack()
 if duck.echo:
 sount += sound
 print(sound)

PEP 659: Specializing Adaptive Interpreter
Benchmark 3.10.4 3.11.0b3

deltablue 7.32 ms 3.62 ms: 2.02x faster

scimark_sor 196 ms 115 ms: 1.70x faster

raytrace 463 ms 292 ms: 1.58x faster

dulwich_log 75.2 ms 63.1 ms: 1.19x faster

python_startup 9.21 ms 8.33 ms: 1.11x faster

telco 6.60 ms 6.49 ms: 1.02x faster

PEP 744 – JIT Compilation
● C-like domain-specific language
● Tier 2 Interpreter
● Copy And Patch JIT

C-like DSL: Before CPython 3.12
case TARGET(BINARY_POWER): {

 PyObject *exp = POP();

 PyObject *base = TOP();

 PyObject *res = PyNumber_Power(base, exp, Py_None);

 Py_DECREF(base);

 Py_DECREF(exp);

 SET_TOP(res);

 if (res == NULL)

 goto error;

 DISPATCH();

}

case TARGET(BINARY_MULTIPLY): {

 PyObject *right = POP();

 PyObject *left = TOP();

 PyObject *res = PyNumber_Multiply(left, right);

 Py_DECREF(left);

 Py_DECREF(right);

 SET_TOP(res);

 if (res == NULL)

 goto error;

 DISPATCH();

}

C-like DSL: After CPython 3.12
macro(BINARY_OP_MULTIPLY_FLOAT) =
 _GUARD_TOS_FLOAT + _GUARD_NOS_FLOAT + unused/5 + _BINARY_OP_MULTIPLY_FLOAT +
_POP_TOP_FLOAT + _POP_TOP_FLOAT;
macro(BINARY_OP_ADD_FLOAT) =
 _GUARD_TOS_FLOAT + _GUARD_NOS_FLOAT + unused/5 + _BINARY_OP_ADD_FLOAT + _POP_TOP_FLOAT +
_POP_TOP_FLOAT;
macro(BINARY_OP_SUBTRACT_FLOAT) =
 _GUARD_TOS_FLOAT + _GUARD_NOS_FLOAT + unused/5 + _BINARY_OP_SUBTRACT_FLOAT +
_POP_TOP_FLOAT + _POP_TOP_FLOAT;

pure op(_BINARY_OP_ADD_UNICODE, (left, right -- res, l, r)) {
 PyObject *left_o = PyStackRef_AsPyObjectBorrow(left);
 PyObject *right_o = PyStackRef_AsPyObjectBorrow(right);
 assert(PyUnicode_CheckExact(left_o));
 assert(PyUnicode_CheckExact(right_o));

 STAT_INC(BINARY_OP, hit);
 PyObject *res_o = PyUnicode_Concat(left_o, right_o);
 res = PyStackRef_FromPyObjectSteal(res_o);
 if (PyStackRef_IsNull(res)) {
 ERROR_NO_POP();
 }
 l = left;
 r = right;
 INPUTS_DEAD();
}

C-like DSL: After CPython 3.12
This design philosophy directly influenced
CPython's Tier 2 interpreter and JIT.

“The Glasgow Virtual Machine
Toolkit automatically generates a just-in-time
compiler, integrates precise garbage
collection into the virtual machine, and
automatically manages the complex
interdependencies between all the virtual
machine components.”

Source: Mark Shannon, The Construction of High-Performance Virtual Machines for Dynamic
Languages, PhD thesis, University of Glasgow, 2011.

PEP 659: Specializing Adaptive Interpreter
L1: FOR_ITER
 STORE_FAST
 LOAD_FAST_BORROW
 LOAD_ATTR
 CALL
 STORE_FAST
 LOAD_FAST_BORROW
 LOAD_ATTR
 TO_BOOL
 POP_JUMP_IF_FALSE
 LOAD_FAST_BORROW
 LOAD_FAST_BORROW
 BINARY_OP
 STORE_FAST
L2: LOAD_GLOBAL

 LOAD_FAST_BORROW

 CALL
 POP_TOP
 JUMP_BACKWARD

L1: FOR_ITER_LIST
 STORE_FAST
 LOAD_FAST_BORROW
 LOAD_ATTR_METHOD_WITH_VALUES
 CALL_BY_EXACT_ARGS
 STORE_FAST
 LOAD_FAST_BORROW
 LOAD_ATTR_NONDESCRIPTOR_WITH_VALUES
 TO_BOOL_BOOL
 POP_JUMP_IF_FALSE
 LOAD_FAST_BORROW
 LOAD_FAST_BORROW
 BINARY_OP_INPLACE_ADD_UNICODE
 STORE_FAST
L2: LOAD_GLOBAL_BUILTIN

 LOAD_FAST_BORROW

 CALL_BUILTIN_FAST_WITH_KEYWORDS
 POP_TOP
 JUMP_BACKWARD

def simulate_ducks(ducks):
 for duck in ducks:
 sound = duck.quack()
 if duck.echo:
 sount += sound
 print(sound)

Tier 2 Interpreter (Traced Micro-Ops)
_SAVE_RETURN_OFFSET
_PUSH_FRAME
_CHECK_VALIDITY
_SET_IP
_RESUME_CHECK
_CHECK_VALIDITY
_SET_IP
_LOAD_CONST_MORTAL
_CHECK_VALIDITY
_SET_IP
_RETURN_VALUE
_CHECK_VALIDITY
_SET_IP
_STORE_FAST
_CHECK_VALIDITY
_SET_IP
_LOAD_FAST_BORROW
_CHECK_VALIDITY
_SET_IP
_GUARD_TYPE_VERSION
_GUARD_DORV_VALUES_INST_ATTR_FROM_DICT
_GUARD_KEYS_VERSION
_LOAD_ATTR_NONDECRIPTOR_WITH_VALUES
_CHECK_VALIDITY
_SET_IP

_CHECK_VALIDITY
_SET_IP
_ITER_CHECK_LIST
_GUARD_NOT_EXHAUSTED_LIST
_ITER_NEXT_LIST_TIER_TWO
_CHECK_VALIDITY
_SET_IP
_STORE_FAST
_CHECK_VALIDITY
_SET_IP
_LOAD_FAST_BORROW
_CHECK_VALIDITY
_SET_IP
_GUARD_TYPE_VERSION
_GUARD_DORV_VALUES_INST_ATTR_FROM_DICT
_GUARD_KEYS_VERSION
_LOAD_ATTR_METHOD_WITH_VALUES
_CHECK_VALIDITY
_SET_IP
_CHECK_PEP_523
_CHECK_FUNCTIO_VERSION
_CHECK_FUNCTION_EXACT_ARGS
_CHECK_STACK_SPACE
_CHECK_RECURSION_REMAINING
_INIT_CALL_PY_EXACT_ARGS

_TO_BOOL_BOOL
_CHECK_VALIDITY
_SET_IP
_GUARD_IS_FALSE_POP
_CHECK_VALIDITY
_SET_IP
_GUARD_GLOBALS_VERSION
_LOAD_GLOBAL_BUILTINS
_PUSH_NULL_CONDITIONAL
_CHECK_VALIDITY
_SET_IP
_LOAD_FAST_BORROW
_CHECK_VALIDITY
_SET_IP
_CALL_BUILTIN_FAST_WITH_KEYWORDS
_CHECK_PERIODIC
_CHECK_VALIDITY
_SET_IP
_POP_TOP
_CHECK_VALIDITY
_SET_IP
_CHECK_PERIODIC
_JUMP_TO_TOP

Tier 2 Interpreter (Optimized Micro-Ops)
_SAVE_RETURN_OFFSET
_PUSH_FRAME
_CHECK_VALIDITY
_SET_IP
_RESUME_CHECK
_CHECK_VALIDITY
_SET_IP
_LOAD_CONST_INLINE
_CHECK_VALIDITY
_SET_IP
_RETURN_VALUE
_CHECK_VALIDITY
_SET_IP
_STORE_FAST_2
_CHECK_VALIDITY
_SET_IP
_LOAD_FAST_BORROW_1
_CHECK_VALIDITY
_SET_IP
_GUARD_TYPE_VERSION
_GUARD_DORV_VALUES_INST_ATTR_FROM_DICT
_GUARD_KEYS_VERSION
_LOAD_ATTR_NONDECRIPTOR_WITH_VALUES
_CHECK_VALIDITY
_SET_IP

_CHECK_VALIDITY
_SET_IP
_ITER_CHECK_LIST
_GUARD_NOT_EXHAUSTED_LIST
_ITER_NEXT_LIST_TIER_TWO
_CHECK_VALIDITY
_SET_IP
_STORE_FAST_1
_CHECK_VALIDITY
_SET_IP
_LOAD_FAST_BORROW_1
_CHECK_VALIDITY
_SET_IP
_GUARD_TYPE_VERSION
_GUARD_DORV_VALUES_INST_ATTR_FROM_DICT
_GUARD_KEYS_VERSION
_LOAD_ATTR_METHOD_WITH_VALUES
_CHECK_VALIDITY
_SET_IP
_CHECK_PEP_523
_CHECK_FUNCTIO_VERSION
_CHECK_FUNCTION_EXACT_ARGS
_CHECK_STACK_SPACE_OPERAND
_CHECK_RECURSION_REMAINING
_INIT_CALL_PY_EXACT_ARGS_0

_TO_BOOL_BOOL
_CHECK_VALIDITY
_SET_IP
_GUARD_IS_FALSE_POP
_CHECK_VALIDITY
_SET_IP
_CHECK_FUNCTION
_LOAD_CONST_INLINE
_PUSH_NULL
_CHECK_VALIDITY
_SET_IP
_LOAD_FAST_BORROW_1
_CHECK_VALIDITY
_SET_IP
_CALL_BUILTIN_FAST_WITH_KEYWORDS
_CHECK_PERIODIC
_CHECK_VALIDITY
_SET_IP
_POP_TOP
_CHECK_VALIDITY
_SET_IP
_CHECK_PERIODIC
_JUMP_TO_TOP

Tier 2 Interpreter (Optimized Micro-Ops)
_SAVE_RETURN_OFFSET
_PUSH_FRAME

_RESUME_CHECK

_LOAD_CONST_INLINE
_CHECK_VALIDITY
_SET_IP
_RETURN_VALUE
_CHECK_VALIDITY
_SET_IP
_STORE_FAST_2
_CHECK_VALIDITY

_LOAD_FAST_BORROW_1

_SET_IP

_GUARD_DORV_VALUES_INST_ATTR_FROM_DICT
_GUARD_KEYS_VERSION
_LOAD_ATTR_NONDECRIPTOR_WITH_VALUES
_CHECK_VALIDITY
_SET_IP

_CHECK_VALIDITY
_SET_IP
_ITER_CHECK_LIST
_GUARD_NOT_EXHAUSTED_LIST
_ITER_NEXT_LIST_TIER_TWO
_CHECK_VALIDITY
_SET_IP
_STORE_FAST_1
_CHECK_VALIDITY

_LOAD_FAST_BORROW_1

_GUARD_TYPE_VERSION
_GUARD_DORV_VALUES_INST_ATTR_FROM_DICT
_GUARD_KEYS_VERSION
_LOAD_ATTR_METHOD_WITH_VALUES

_SET_IP

_CHECK_FUNCTIO_VERSION
_CHECK_FUNCTION_EXACT_ARGS
_CHECK_STACK_SPACE_OPERAND
_CHECK_RECURSION_REMAINING
_INIT_CALL_PY_EXACT_ARGS_0

_TO_BOOL_BOOL

_GUARD_IS_FALSE_POP

_CHECK_FUNCTION
_LOAD_CONST_INLINE
_PUSH_NULL

_LOAD_FAST_BORROW_1

_SET_IP
_CALL_BUILTIN_FAST_WITH_KEYWORDS
_CHECK_PERIODIC
_CHECK_VALIDITY
_SET_IP
_POP_TOP

_SET_IP
_CHECK_PERIODIC
_JUMP_TO_TOP

Tier 2 Interpreter (Optimized Micro-Ops)

_LOAD_CONST_INLINE
_CHECK_VALIDITY

_SET_IP
_STORE_FAST_2
_CHECK_VALIDITY

_LOAD_FAST_BORROW_1

_GUARD_DORV_VALUES_INST_ATTR_FROM_DICT
_GUARD_KEYS_VERSION

_ITER_CHECK_LIST
_GUARD_NOT_EXHAUSTED_LIST
_ITER_NEXT_LIST_TIER_TWO
_CHECK_VALIDITY
_SET_IP
_STORE_FAST_1

_LOAD_FAST_BORROW_1

_GUARD_TYPE_VERSION
_GUARD_DORV_VALUES_INST_ATTR_FROM_DICT
_GUARD_KEYS_VERSION
_LOAD_ATTR_METHOD_WITH_VALUES

_SET_IP

_CHECK_FUNCTIO_VERSION
_CHECK_FUNCTION_EXACT_ARGS
_CHECK_STACK_SPACE_OPERAND
_CHECK_RECURSION_REMAINING

_CHECK_FUNCTION
_LOAD_CONST_INLINE
_PUSH_NULL

_LOAD_FAST_BORROW_1

_SET_IP
_CALL_BUILTIN_FAST_WITH_KEYWORDS
_CHECK_PERIODIC
_CHECK_VALIDITY
_SET_IP
_POP_TOP

_CHECK_PERIODIC
_JUMP_TO_TOP

Copy and Patch JIT

_ITER_CHECK_LIST
_GUARD_NOT_EXHAUSTED_LIST
_ITER_NEXT_LIST_TIER_TWO
_CHECK_VALIDITY
_SET_IP
_STORE_FAST_1
_LOAD_FAST_BORROW_1
_GUARD_TYPE_VERSION
_GUARD_DORV_VALUES_INST_ATTR_FROM_DICT
_GUARD_KEYS_VERSION
_LOAD_ATTR_METHOD_WITH_VALUES
_SET_IP
_CHECK_FUNCTION_VERSION
_CHECK_FUNCTION_EXACT_ARGS
_CHECK_STACK_SPACE_OPERAND
_CHECK_RECURSION_REMAINING
_LOAD_CONST_INLINE
_CHECK_VALIDITY
_SET_IP
_STORE_FAST_2
_CHECK_VALIDITY
_LOAD_FAST_BORROW_1
_GUARD_DORV_VALUES_INST_ATTR_FROM_DICT
_GUARD_KEYS_VERSION
_CHECK_FUNCTION
_LOAD_CONST_INLINE
_PUSH_NULL
_LOAD_FAST_BORROW_1
_SET_IP
_CALL_BUILTIN_FAST_WITH_KEYWORDS
_CHECK_PERIODIC
_CHECK_VALIDITY
_SET_IP
_POP_TOP
_CHECK_PERIODIC
_JUMP_TO_TOP

01010101010101010101
10101010101010101010
01010101010101010101
10101010010101010101
01010101010101010101
10101010101010101010
01010101010101010101
10101010010101010101
01010101010101010101
10101010101010101010
01010101010101010101
10101010010101010101
01010101010101010101
10101010101010101010
01010101010101010101
10101010010101010101
01010101010101010101
10101010101010101010
01010101010101010101
10101010010101010101
01010101010101010101
10101010101010101010
01010101010101010101
10101010010101010101

Copy and Patch JIT

_ITER_CHECK_LIST
_GUARD_NOT_EXHAUSTED_LIST
_ITER_NEXT_LIST_TIER_TWO
_CHECK_VALIDITY
_SET_IP
_STORE_FAST_1
_LOAD_FAST_BORROW_1
_GUARD_TYPE_VERSION
_GUARD_DORV_VALUES_INST_ATTR_FROM_DICT
_GUARD_KEYS_VERSION
_LOAD_ATTR_METHOD_WITH_VALUES
_SET_IP
_CHECK_FUNCTION_VERSION
_CHECK_FUNCTION_EXACT_ARGS
_CHECK_STACK_SPACE_OPERAND
_CHECK_RECURSION_REMAINING
_LOAD_CONST_INLINE
_CHECK_VALIDITY
_SET_IP
_STORE_FAST_2
_CHECK_VALIDITY
_LOAD_FAST_BORROW_1
_GUARD_DORV_VALUES_INST_ATTR_FROM_DICT
_GUARD_KEYS_VERSION
_CHECK_FUNCTION
_LOAD_CONST_INLINE
_PUSH_NULL
_LOAD_FAST_BORROW_1
_SET_IP
_CALL_BUILTIN_FAST_WITH_KEYWORDS
_CHECK_PERIODIC
_CHECK_VALIDITY
_SET_IP
_POP_TOP
_CHECK_PERIODIC
_JUMP_TO_TOP

Machine Code

01010101010101010101
10101010101010101010
01010101010101010101
10101010010101010101
01010101010101010101
10101010101010101010
01010101010101010101
10101010010101010101
01010101010101010101
10101010101010101010
01010101010101010101
10101010010101010101
01010101010101010101
10101010101010101010
01010101010101010101
10101010010101010101
01010101010101010101
10101010101010101010
01010101010101010101
10101010010101010101
01010101010101010101
10101010101010101010
01010101010101010101
10101010010101010101

Copy and Patch Runtime

Clang / LLVM

Generated

Result

Topic: Concurrency Improvements

GIL
● GIL was first introduced at August 4th, 1992 by GvR.

○ https://github.com/python/cpython/commit/1984f1e1c6306d4e8073c28d2395638f80ea509b

GIL
● Easy to implement
● No interpreter-level deadlock
● Low overhead at single thread

Many Attempts to Remove GIL
● Free-threading patch (1996)
● PyPy-STM (2012)
● Gilectomy Project (2016)
● Sub Interpreter (2017 - Current)
● NoGIL Free-threading (2021 - Current)

PEP 703: Making the Global Interpreter Lock Optional in CPython

● Proposed by Sam Gross at Meta FAIR.
● Based on Choi, Shull & Torrellas, Biased reference counting:

minimizing atomic operations in garbage collection, PACT
2018

PEP 703: Object Header Changes
● Biased Reference Counting (Choi, 2018): Most objects are

effectively single-thread owned; the owner updates a fast
local refcount, while other threads update a shared
refcount atomically.

● Layout choice: Instead of a single 64-bit packed field as in
the paper, local and shared refcounts are split in the
object header to avoid overflow and reduce complexity.

PEP 703: Biased Reference Count
● Biased Reference Counting (Choi, 2018): Most objects are

effectively single-thread owned; the owner updates a fast
local refcount, while other threads update a shared
refcount atomically.

● Layout choice: Instead of a single 64-bit packed field as in
the paper, local and shared refcounts are split in the
object header to avoid overflow and reduce complexity.

PEP 703: Deferred Reference Count
● Limit of BRC: Some objects are frequently accessed by

multiple threads, which introduces overhead, but their
lifetimes are too short to treat them as immortal.

● Interpreter level DRC: These objects use Deferred
Reference Counting in the interpreter, skipping refcount
updates on stack push and pop and reconstructing the
skipped counts during GC.

PEP 703: Garbage Collections
● Explicit stop the world: Without the GIL, other threads can no

longer be excluded during GC, so an explicit stop the world
phase is required.

● ThreadState management: ThreadState must be explicitly
tracked with three states: ATTACHED, DETACHED, and GC.

● Single generation GC: The plan is to replace generational GC
with a single generation GC. Since most objects are reclaimed
by refcounting, generational GC shows limited benefit, and
frequent young collections are likely to hurt multithreaded
performance.

PEP 703: Per-thread Specializer
● Each thread keeps its own specialized copy of bytecode
● Enables lock-free fast execution even without the GIL
● Main thread uses original bytecode (no extra copy → zero

overhead)
● This design takes a different approach from the one Sam

Gross introduced in his nogil implementation.

Result

Topic: Behind the Scenes

Technical Challenges Behind the Scene
● C API Compatibility
● Various Hardware Supports
● Behavior Changes

C API Compatibility
● Unstable API

○ may change in minor versions without a deprecation
period. It is marked by the PyUnstable prefix in names

● Limited API
○ Extensions that only use the Limited API can be compiled

once and be loaded on multiple versions of Python.
● Stable ABI

○ Set of symbols that will remain ABI-compatible across
Python 3.x versions.

C API Compatibility
● Free-thrading

○ abi3 VS abi3t VS abi4
● Faster CPython

○ Compact Object Header

Various Hardware Supports

Behavior Changes

Behavior Changes

Topic: Core Team Annual Events

Python Language Summits

2025 (Pittsburgh, US) 2024 (Pittsburgh, US) 2023 (Salt Lake City, US)

Python Language Summits
● Python Language Summit 2025

○ Fearless Concurrency by Tobias Wrigstad, Matthew Parkinson, and Fridtjof Stoldt
○ An Uncontentious Talk about Contention: talk by Mark Shannon
○ What do Python core developers want from Rust?: talk by David Hewitt

● Python Language Summit 2024
○ Free-threading ecosystems by Daniele Parmeggiani
○ Native Interface and Limited C API by Petr Viktorin and Victor Stinner

● Python Language Summit 2023
○ Towards Native Profiling for Python by Joannah Nanjekye
○ Making the Global Interpreter Lock Optional by Sam Gross

Python Core Sprints

2025 (ARM.ltd) 2024 (Meta)

Python Core Sprints

2025 (ARM Ltd) 2024 (Meta)

This Year
● Python Language Summit at Euro Python (Porland)
● Python Core Sprint (TBA)

Future?
● Python Language Summit at Seoul?
● Python Core Sprint at Seoul?

Q&A

