
The journey from AIxCC to
Samsung Internal
AI-powered Security
Solution

장 준 언

Samsung Electronic (DX) / AI Platform Center / Security & Privacy Team

보안 점검 자동화 기술 연구 개발: Fuzzing / Static Analysis / AI Agent

linkedin.com/joonun-jang

AIxCC: DARPA AI Cyber Challenge

DARPA’s AI Cyber Challenge
Announced on 08/2023

2004-2007
(Autonomous Vehicle)

2012-2015
(Robotics Challenge)

2014-2016
(Cyber Grand Challenge)

[Ref. https://en.wikipedia.org/wiki/DARPA_Grand_Challenge]

20+ years

➔ A competition that rewards autonomous systems that
find and patch vulnerabilities in source code.

➔ The challenges are well-known open-source projects.

➔ The vulnerabilities are realistic or real.

➔ Patching is worth more than finding.

➔ Code and data will be released open source.

WHAT IS AIxCC?

Security Tasks in AIxCC

Proof-Of-Vulnerability (POV)
➔ Input data to reproduce vulnerability

crash in harness

PATCH
➔ Unified diff source code fix for

vulnerabilities

SARIF Assessment
➔ Structured reporting format for

vulnerability details

BUNDLE
➔ Grouping of related PoV,

patch, and SARIF
submissions

DELTA SCAN
➔ Challenge analyzing base code

plus applied diff changes

FULL SCAN
➔ Challenge analyzing entire code

base

➔ $4,000,000

Scoreboard breakdown

Team

Team
Total
Score

%
Correct

Submission (r)

Vulnerability
Discovery

Score
(VDS)

Program
Repair
Score
(PRS)

SARIF
Assessment

Score
(SAS)

Bundle
Score
(BDL)

Team Atlanta (9caa56) 392.76 91.27% 79.71 171.10 5.99 136.38
Trail of Bits (309958) 219.35 89.33% 52.49 101.21 1.00 65.29
Theori (3fad2e) 210.68 44.44% 58.12 110.34 4.97 53.57
All You Need IS A Fuzzing Brain (1b9bb5) 153.70 53.77% 54.81 77.60 6.52 28.28
Shellphish (463287) 135.89 94.83% 47.94 54.31 8.47 25.29
42-b3yond-6ug (ee79d5) 105.03 89.23% 70.37 14.22 9.80 10.97
Lacrosse (e87a4d) 9.59 42.86% 1.68 5.43 0.00 3.62

All projects we adapted into challenges

COMPETITION AGGREGATE RESULTS - SYNTHETIC VULNERABILITIES

Vulnerabilities discovered

37% (22/59)

Vulnerabilities patched

25% (15/59)

Avg. Time to patch

2 hours

Known Vulnerabilities discovered

77% (54/70)

Known Vulnerabilities patched

61% (43/70)

Avg. Time to patch

45 minutes

Final
(28 Repositories / 53 Challenges)

Semifinal
(5 Repositories / 59 Challenges)

COMPETITION AGGREGATE RESULTS - REAL WORLD, NON-SYNTHETIC
VULNERABILITIES

Found in C

1
Found in Java

0

FinalSemifinal

Found in C

6 (1 replay - SystemD)

Found in Java

12
* More information pending disclosure completion

Patched in Java

11 (3 w/o PoV)

Patched in C

0

Atlantis Overview

[Ref. ATLANTIS: AI-driven Threat Localization, Analysis, and Triage Intelligence System]

https://arxiv.org/abs/2509.14589

Patching: Ensemble of Six Agents

[Ref. ATLANTIS: AI-driven Threat Localization, Analysis, and Triage Intelligence System]

• Motivation
• PoV as oracle, yet SLOW → generating high quality patches
• Six independent agents with orthogonal spectrum of decision decisions

(e.g., sophisticated tool calls, no tool calls, #shots, reasoning models, etc)

Six independent agents to
generate patches

https://arxiv.org/abs/2509.14589

Our Journey

AIxCC
announced

8/2023 8/2024 8/20251/20251/2024

Evaluate all LLMs;
but clearly not ready.

Lots of prompting techs:
CoT, ToT, SC, etc

1. Our JourneyStarting as AI Skeptics (2024-)

AIxCC
announced

8/2023 8/2024 8/20251/20251/2024

Evaluate all LLMs;
but clearly not ready.

Lots of prompting techs:
CoT, ToT, SC, etc

Primitive discussions:
e.g., udiff gen? search-

replace? full function gen?

Discovering magic tricks in
prompts:

gaslighting, tipping,
affirmative, etc

[Ref. Principled Instructions Are All You Need for Questioning LLaMA-1/2, GPT-3.5/4, 2024/01]

Starting as AI Skeptics (2024-) 1. Our Journey

Context Window is Fundamental Prob? 1. Our Journey

AIxCC
announced

8/2023 8/2024 8/20251/20251/2024

 Fine-tuning API
(0-shot, few-shot, many-

shot)

 GPT-4
32K

 GPT-4 Turbo
 128K

Context Window is Fundamental Prob? 1. Our Journey

AIxCC
announced

8/2023 8/2024 8/20251/20251/2024

 Fine-tuning API
(0-shot, few-shot, many-

shot)

[Ref. https://x.com/GregKamradt/status/1722386725635580292]

 GPT-4
32K

 GPT-4 Turbo
 128K

AI-skeptics Started Seeing Potentials 1. Our Journey

AIxCC
announced

8/2023 8/2024 8/20251/20251/2024

 Code interpretation
(`23.9)

 LLM orchestration:
Semantic Kernel,
LangChain (`24.1)

LlammaIndex

 Function call
(callback/API/tool call)

(`23.6)

 RAG, LoRA

[Ref. https://github.com/openinterpreter/open-interpreter]

AI-skeptics Started Seeing Potentials 1. Our Journey

AIxCC
announced

8/2023 8/2024 8/20251/20251/2024


Aider(`23.5)

 SWE-agent
(`24.4)

 ReAct,
AutoGPT,
BabyAGI

AutoGen

OpenDevin
(`24.3)

[Ref. https://github.com/Aider-AI/aider]

Limited Adoption of LLM in Semi-Final 1. Our Journey

AIxCC
announced

8/2023 8/2024 8/20251/20251/2024

Semi-final
1) Patch generation
2) Seed generation
3) Input format reverser
(also, limited to $100 per CP)

 Extending Aider,
SWE-agent

In each C / Java:
 1) Custom fuzzers: libafl, libFuzzer, afl++
 2) Concolic/symbolic executor
 3) Custom directed fuzzers

Context Window Can Be Overcome 1. Our Journey

AIxCC
announced

8/2023 8/2024 8/20251/20251/2024  Gemini 1.5
1 M

 Fine-tuning API
(0-shot, few-shot, many-shot)

 GPT-4
32K

 GPT-4 Turbo
 128K

 Gemini 2.5
2 M

Context window
is not a critical bottleneck

 PROMPT/history
compression techniques

+
Sub-agent, Multi-agent

Agentic Revolution Started (code agents) 1. Our Journey

AIxCC
announced

8/2023 8/2024 8/20251/20251/2024

 ReAct,
AutoGPT,
BabyAGI

 LangChain AutoGen

OpenDevin

Claude Code

Codex

Gemini CLI

My Journey

Java Bug Finding 2. My Journey

Semi-Final
§ Building Benchmark Data Set
§ Concolic Execution for Java Programs
§ Hybrid Fuzzing (Jazzer + Concolic Execution)
§ Directed Fuzzing
§ LLM-based Seed Generation

Java Bugs?
§ Command Injection, Deserialization, SSRF

Semi-Final 2. My Journey

Semi-Final 2. My Journey

Constructing a CoT for PoV
§ Identify the conditional statements that influence reaching the suspicious part from the Entry

§ Identify the variables that change based on inputs related to these conditional statements

§ Estimate the values that these variables should have to reach the suspicious part

§ Guess values need to be passed to the Entry

Collect only suspicious code area
§ Perform Static Analysis (Especially, Static Taint Analysis)

§ Collecting a list of functions from the identified paths
§ Construct a prompt using only those functions

Semi-Final 2. My Journey

Guiding Output
§ Separate the process of generating values to reach suspicious regions from the
process
of creating crash-triggering inputs

§ Request the generation of Python code that creates the data blob, rather than
generating the data blob itself

§ Let LLM says its thought process instead of receiving responses in a fixed format

Handling Hallucination
§ Generated blob may still hold potential value to explore code even if it is incorrect

§ Leverage such outputs as seeds for fuzzing

For Final 2. My Journey

Transitioning From STA to CGA
§ STA failed to scale effectively when applied to large-scale code bases
§ LLMs could sufficiently filter out false positives by switching to CGA

Handling Hallucination
§ Iterative process incorporating verification and feedback is essential

Let LLM find the code
§ Gathered code may be insufficient for inferring PoV

§ Need to resolve indirect calls like reflection

Final 2. My Journey

Limitation & Future Works 2. My Journey

Dependency on conventional static analysis
§ Too many false positives → Waste too many LLM tokens → LLM can filter this efficiently
§ Still manual efforts → Writing rules for sink scanner → LLM can write this

§ Code Agent (claude-code, codex etc.) have shown remarkable performance recently
§ Every task in this tool could potentially be replaced by a comprehensive set of agentic prompts

Non Code Agent Based Implementation

Beyond Fuzzing
§ Reasoning is advancing: Generating PoV may be possible only with LLM, prompts.

§ Fixed workflow will limit LLM’s full potential
§ Allow LLM to handle the entire process, just give it plenty of the right tools.

Unlock the full potential of LLM

Bringing Atlantis to Samsung

Introduction 3. Bringing Atlantis to Samsung

October
- Internal
Release

June
- System Submission

August
- Winner Announcement
- Atlantis Code Open

Start!

§ CRS is easy to deploy

Atlantis Service
§ Service that use Atlantis for Samsung Internal Code

§ Development started upon system submission

Fully Automated
Applicable to real world programs
Packaged for easy deployment to the cloud

Challenges

Challenges 1: Scheduling
§ Many projects with different sizes and complexities

§ Difficulties running all projects simultaneously

Challenges 2: No External LLM Services
§ Unavailable external LLM services: gpt, gemini, claude, …

3. Bringing Atlantis to Samsung

LLM

Combination

No External LLM Services
§ Alternative: available model combination (company models + open weight models)

3. Bringing Atlantis to Samsung

Minimized System Changes
§ LLM Proxy Architecture

§ Redirection all LLM requests to various LLMs at LiteLLM Layer

AI Agent

AI Agent

AI Agent

…

claude

gemini

gpt

LiteLLM

Model #1

Model #2

Model #3

LLM 3. Bringing Atlantis to Samsung

Scheduler

Round Details

Final Resource Usage

Scheduler: Why?
§ Atlantis is massive, resource intensive system

§ Atlantis is designed to maximize resource usage

3. Bringing Atlantis to Samsung

Scheduler

ATLANTIS-PROJECT-POOL

PROJ#1 PROJ#2 PROJ#3
… PROJ#NSCHEDULER Atlantis

Scheduler: Why?
§ There are too many projects

§ Only some of them can be tested simultaneously

§ Scheduler should determine:
Which project should be prioritized for testing? How long should the project be tested?

3. Bringing Atlantis to Samsung

Scheduler

Scheduler: Target Selection
§ Scheduler should select targets that maximize impact given limited resources

§ Currently, scheduler pick the least-tested one (Heuristic)

§ Need for Improvement

Scheduler: Desired Test Time
§ Project should be tested continuously

§ Using time-bound, recurrent scheduling policy to ensure balanced resource utilization

§ Challenge: How to main state between tests?

3. Bringing Atlantis to Samsung

Scheduler

PROJ#1 Atlantis

Inputs Seed DB
1st Test

PROJ#1 Atlantis

SeedSeed DB

Next Test
Inputs

Seed Sharing
§ Using inputs from previous run as seeds

§ Seed sharing ensures subsequent tests resume from prior code coverage

3. Bringing Atlantis to Samsung

Scheduler

Atlantis Project
RepoPull Request

User Build Test

Manual Review

Projects
Project 1
Project 2
Project 3
 Project 4

Project N

…

Project Pool
§ GitHub Repository like oss-fuzz

§ The user opens a pull request (PR) to register the project in the repo

§ Reviewer checks pull request with build test, manual review

3. Bringing Atlantis to Samsung

Web Service

Harness Name

Atlantis output Service Web Page

Developer-Friendly Report
§ Atlantis result might be difficult to understand

§ Service provides web pages for visualization

3. Bringing Atlantis to Samsung

Web Service

LLM-Generated
Crash Summary

Stack Trace,
Code Location

Crashing Input

Crash Details

3. Bringing Atlantis to Samsung

Web Service

Previous Patch
Context

By ATLANTIS-PATCH

User Hint

LLM

Regenerated Patch

Patches
§ Visualized Diff Format

§ Patch Regeneration: Providing Hints via User Prompts

3. Bringing Atlantis to Samsung

Web Service

414 Crashes from 31 repos
§ Some crashes are found from same harnesses in oss-fuzz

92.6% Patch Generation
§ Planned Developer Review for measuring patch quality

3. Bringing Atlantis to Samsung

Thank you
Any Questions?

