Understanding Wasm Malware
Detection and Evasion

1 INIZIAZL INTIAAAZA N
- '\".;.., 1 | 'S‘-:,‘\;r‘ :(74 vi | \1,}“ _-./'/ \/\/ \)" '\"._‘) °
'L JINS I\ T | 1IN NV ”
UINIVEROIIT T\ON i \NJ/

Sungkyunkwan University (SKKU) Security Lab

Hyoungshick Kim (2 <& 4])

Professor, Department of Computer Science at Sungkyunkwan University

Fellow at Sungkyunkwan University

PC members at CCS, USENIX Security, ACSAC, ASIACSS, ESORICS, WWW, CHI, AAAI, WiSec
Associate Editor in Chief, IEEE Transactions on Service Computings

Court Expert Commissioner, Advisor for Samsung Electronics, LG Electronics, Dunamu
Presented 31 papers at top-tier conferences (IEEE S&P, ACM CCS, USENIX Security, NDSS, etc.)

Web page: https://seclab.skku.edu/people/hyoungshick-kim/

2013 ~ AXY Sungkyunkwan University, Republic of Korea

2019 ~ 2020 CSIRO Data61, Australia

2012 ~ 2013 University of British Columbia, Canada
2008 ~ 2011 Computer Laboratory, University of Cambridge, UK

2004 ~ 2008 Samsung Electronics

Full Professor
Distinguished Visiting Scientist
Postdoctoral Fellow
Ph.D Degree

Senior Engineer

Sungkyunkwan University (SKKU) Security Lab

SIGPL Winter School 2026

https://seclab.skku.edu/people/hyoungshick-kim/
https://seclab.skku.edu/people/hyoungshick-kim/
https://seclab.skku.edu/people/hyoungshick-kim/
https://seclab.skku.edu/people/hyoungshick-kim/

JavaScript
/ Engine

JavaScript

In every browser, code is interpreted
and executed by a JavaScript engine.

Sungkyunkwan University (SKKU) Security Lab SIGPL Winter School 2026

Web Script Language War

Silverlight (Microsoft, 2007), ActionScript (Macromedia, 2006), or
JavaScript (Sun, 1995) ..

Siiverlight

e Most were insecure

* Challenging to secure/control at runtime by browser

* Proprietary solutions - Never standardized

Sungkyunkwan University (SKKU) Security Lab SIGPL Winter School 2026

JavaScript

* Object oriented

* Interpreted

e Using for Web

* Dynamically typed language

* Low performance

v’ Itis hard to run applications (e.g.,
video games) requiring a high degree

of performance

Sungkyunkwan University (SKKU) Security Lab SIGPL Winter School 2026

NaCl

Google Native Client (2011)

* Designed to execute native code
(x86/x64, ARM) in a sandbox

* Close to native performance

* 3D acceleration

* Debuggable using GDB-Remote

* Not a standard

* Google Chrome (Browser, OS)

specific

T2 3T, AlYSHZ2= 2eteltt

QHE | Q121:2012/03/10 08:48 £=2:2012/03/10 09:05

ES

Q £ < Jin JEBIERIE)

YUH 712 | B E7Re CETIA 7|

[O|#lE] Al ol =ZaLAHE S-S E TEFE 3 #HOj! Red Hat Summit: Connect 2025 CHA| 27|

722 350 2 HIOIE[EZ20[AE(Nadl) /IEE Ol st E2tR4
E Y Ao = HAICt 2lAP}Olg 2 Ol= HIShA| AR B AZHIEO
M S AYNLRAATHHA(GDC)'E Soff NaClol| A /Y 7 SSHE
9| tsdE B =22 &

Sungkyunkwan University (SKKU) Security Lab

SIGPL Winter School 2026

asm.js

Proposed by Mozilla in 2013 as a strict subset of JavaScript

* Restricts JavaScript to a predictable, compiler-friendly form

* Uses explicit type coercions (e.g., int32/double) to reduce speculation and
deoptimizations

* Represents memory as a linear buffer via TypedArrays for efficient loads/stores

* Avoids many dynamic JS features, enabling faster validation and more

aggressive JIT/AOT-like optimization

* Can deliver up to ~2x speedups over conventional JavaScript

Sungkyunkwan University (SKKU) Security Lab SIGPL Winter School 2026

WebAssembly (Wasm)

* A new type of code that can be run in modern browsers

* The 4th language to run natively in browsers (following HTML, CSS, and
JavaScript)

e Supported in Nods.js, standalone VMs

* Developed by a W3C working group in 2017

* Low-level binary format for a stack-based virtual machine

* The code size is significantly smaller than the JavaScript code

* The execution time of WASM binaries is just 20% slower than the execution of

same native code (near-native performance)

Sungkyunkwan University (SKKU) Security Lab SIGPL Winter School 2026

.‘il Wasmer
C, C++, Rust, Go, ... n‘@de = Nihcose

Server-side /

/ Standalone VMs

void vuln(char* src) { 6100 6d73 0001 0000
char buf[8]; 0a01 6002 701 6000
strcpy(buf, src); ’ 7f02 007f 0d02
} 668 7473 ... TR G
Source program WebAssembly binary
Client-side

Complied from C, C++, Rust, Go, ...

Sungkyunkwan University (SKKU) Security Lab. SIGPL Winter School 2026

Instruction Set

Vnemonic ____ Ocode___| pescipion___
unreachable 0x00 Trap execution i32.1cad / 0x28 / 0x29 Load integer from memory
nop Ox01 MOP instruction 164.load
if <block> / Ox04 / 0x05 /0x06 Conditional branch £32.1locad / Ox2a [0x2b Load float from memory
else / end fad.load
br / br_if / Ox0c / Ox0d / Ox0e BREAK from a block i32.store /[0x36 f 0x37 Store integer from memory
br table igd.store
call / Ox10 / 0x11 Function call i32,atore [Ox36 f 0x37 Store float from memaory
call indirect 164, store
return Ox0f RETURN from function current memory Ox3f Get the current memaory size

grow memory Ox40 Increase the memaory size

Arithmetic and logic instructions

i — 5 S— 5 e T—

i32.add / i32.sub / Ox6a / Ox6b / Ox6c Add / subtract / divide
i32.mul
i32.div_s / 132.div_u Oxéd /Ox6e (Un)signed Division
i32.rem s / i32.rem u Ox6f/0x70 (Un)signed Modulo
132 .andll A32.%0% 0x71 / 0x73 / 0x72 / Logic operators

| i32.0r / i32.shl Ox74

Sungkyunkwan University (SKKU) Security Lab SIGPL Winter School 2026

{é__‘:(@ JAVASCRIPT ENGINE

- "') parse, compile and optimize

-->

executable
_ __-1 decode and compile code

* We can load a WebAssembly module into a web application and call it from JavaScript

* |t's not a replacement for JavaScript, it works alongside JavaScript

Sungkyunkwan University (SKKU) Security Lab

SIGPL Winter School 2026

Raytracing; WebAssembly vs JavaScript

Select renderer: WebAssembly | JavaScript

https://mtharrison.github.io/wasm-raytracer/

Sungkyunkwan University (SKKU) Security Lab SIGPL Winter School 2026

https://mtharrison.github.io/wasm-raytracer/
https://mtharrison.github.io/wasm-raytracer/
https://mtharrison.github.io/wasm-raytracer/

Cryptomining using WASM

* Cryptolacking

v Unauthorized use of computing resources to mine cryptocurrencies
* CoinHive

v’ Created in 2017

v “Our miner uses WebAssembly and runs with about 65% of the performance of a native

Miner.”

» Attackers just need to insert the following snippet of code on victim websites

<script src="https://coinhive.com/1lib/coinhive.min. js"></script>
<script>
var miner = new CoinHive.User('SITE
miner.start();
</script>

Sungkyunkwan University (SKKU) Security Lab SIGPL Winter School 2026

@ Monero Cryptominer

* Cryptonight PoW hash algorithm
* ASIC-resistant

* |t uses computing resources to mine Monero Cryptocurrency

T p——

CRYPTQooT =

A Crypto Miner for your Website Visitors

Sungkyunkwan University (SKKU) Security Lab SIGPL Winter School 2026

Stealthy in-browse
inind continues

u close window

a neatidea. make Users’

y don't have 10 pombard

In-browset crypmsurrency mining is, in theory,
webhsite OWners 50 the'

sideal world of ours, mining scripts —
d by unscrupulous

tfits — are mostly use
pmrﬂ'\s'\ng websites.

ar-from

Unfmtunate\y, inthis f

web admins and hackers cilently com

Sungkyunk
wan Universit
y (SKKU) Securi
urity Lab.

Py,
& Windows / T
am Windows10

\

Hidden br e |
owser window
taskbar's clock ow under | ’ With Trans
§ parency &
_ window s some-.-fha?fic".btlxowser]

s10le

[

Resizin
t' o -
g the taskbar reveals the hidden window!
U Ovr! ‘

Moderate CP1
U usage fo =
CPU Usage r additional stealth J
| N | ! CPU
57%

SIGPL Winter School 2026

Cryptojacking Malware

* Fileless malware
* Implemented in browsers
* Mine cryptocurrency without

user’s knowledge/consent

End Users

Website with
minin g embedded

mining script

Threat Actor

- -
i
0

T 7S
11..'
\av

Mining Process

Sungkyunkwan University (SKKU) Security Lab

SIGPL Winter School 2026

How can we detect cryptojacking malware?

Why Wasm Malware?

\ Hemeory View
74 &5 BE .env._emscripten
Webpage WASM 03 65 6 _memcpy_big...en
Bi 76 OF SF *.--_1;1:ime-. .. BOW., _
04 0L 00 et Ime. ... eusa
nary B0 01 0F ... cisacsnasa
WebAssembly.instantiateStreaming |10011 01 0B 7F #, ..
__________________ _) ooilil ___)?d 6F GE .#...Y.._crypton
14 S5F &% ight_create..._c
11010 73 74 7?2 rypronight_destr
&3 &7 68 oy..._cryptonigh
/ 62 &F 63 t_hash.#._malloc
00 24 09 .. StackAlTloc.s.

 Wasm allows code to be run on browers in near native speed
* Malware authors write code that performs mining functions in C/C++ and
then compile it to Wasm using Emscripten

* Majority of cryptojacking malware is implemented in Wasm

Sungkyunkwan University (SKKU) Security Lab SIGPL Winter School 2026

Motivation & Research Goal

Crypojacker

Sungkyunkwan University (SKKU) Security Lab SIGPL Winter School 2026

Motivation & Research Goal

« Several detectors (Minos, MineSweeper, MinerRay, WasmGuard, etc.) exist.

' Are they robust against (automatically generated) Wasm-specific binary perturbations?

Sungkyunkwan University (SKKU) Security Lab SIGPL Winter School 2026

Motivation & Research Goal

« Several detectors (Minos, MineSweeper, MinerRay, WasmGuard, etc.) exist.

' Are they robust against (automatically generated) Wasm-specific binary perturbations?

« Real-world adversarial capabilities for malware diversification.

Sungkyunkwan University (SKKU) Security Lab SIGPL Winter School 2026

Motivation & Research Goal

« Several detectors (Minos, MineSweeper, MinerRay, WasmGuard, etc.) exist.

' Are they robust against (automatically generated) Wasm-specific binary perturbations?

« Real-world adversarial capabilities for malware diversification.

! Existing diversification methods’ impact on real-world detectors remains unexplored.

1. C source-level or LLVM-level diversification only (e.g, CROW, Tigress, emcc-obf)
2. Coarse-grained diversification methods (e.g, wasm-mutate)
3. Not designed for targeting malware detectors (e.g, WASMixer)

4. Limited diversification methods tested on selected detectors (eg, Madvex)

Sungkyunkwan University (SKKU) Security Lab SIGPL Winter School 2026

Motivation & Research Goal

« Several detectors (Minos, MineSweeper, MinerRay, WasmGuard, etc.) exist.

' Are they robust against (automatically generated) Wasm-specific binary perturbations?

« Real-world adversarial capabilities for malware diversification.

! Existing diversification methods’ impact on real-world detectors remains unexplored.

When Does Wasm Malware Detection Fail?

« Systematically evaluate which types and magnitudes of fine-grained, semantics-preserving
binary-level perturbations cause Wasm malware detectors to fail.

Sungkyunkwan University (SKKU) Security Lab SIGPL Winter School 2026

Our Framework: SWAMPED

Wasm
Binary

Wasm
Text

1. Parse the Wasm binary into text format.

Disassemble the binary for structural and instruction-level visibility.

Sungkyunkwan University (SKKU) Security Lab

SIGPL Winter School 2026

Our Framework: SWAMPED

Identified Perturbation

Sections Methods
Type @ ‘
Import @
Function @@ °
Table @ @
Global @ @ °
Export e
‘ Element @ @ Q
Wasm Data (Missing) @ @

,,

Section Parsing
for Perturbation

2. Identify sections and select applicable perturbation methods.

Determine which perturbations can be applied based on the binary’s composition
(e.g., skip data encryption if no data entries exist).

Sungkyunkwan University (SKKU) Security Lab SIGPL Winter School 2026

Our Framework: SWAMPED

Identified Perturbation @ 3
Sections Methods | ! Placement
oo Distribution !

Type
B

Import @
fcin QOO
Table @@
Global @@0

o | @)
Element @@Q

N

N

!

i

4,':_[___',",_”_I]_"__"__l,l_l,.”."mI
|

Wasm Data (Missing) @ @
Text 1
Section Parsing Perturbation Placement
for Perturbation and Deployment

3. Distribute perturbations using the Beta-distribution model to control where changes occur.
Adjust a and B parameters to bias the spatial distribution of perturbations within applicable regions.

Sungkyunkwan University (SKKU) Security Lab SIGPL Winter School 2026

Our Framework: SWAMPED

Identified Perturbation @ 3
Sections Methods @ | Placement

Distribution !
Type ‘
Import @ g
rncion | Q@ S
Table @@ g
Global @@0 §

Export Q \E) ? Perturbed
Element @@Q %lé_llgﬁle

N
N

[Ii””w

Wasm | bmisig | D | Binarles
Text | - |
Section Parsing Perturbation Placement
for Perturbation and Deployment

4. Generate perturbed binaries by varying perturbation ratios to control
how many changes are applied.

Tune the perturbation ratio (0—100%) to control density and quantify detector tolerance.

Sungkyunkwan University (SKKU) Security Lab SIGPL Winter School 2026

Our Framework: SWAMPED

Identified Perturbation

77

Sections Methods | Placement Iterate fQI‘ the perturbation
P Distribution | | ratio fulfillment ‘
Type @ | |
N 3 i .
Import P, B == N : ; l Signal
@ : ‘ (Feedback)

Function - @@ °
Table Q2
Global o020 .

Export @ \E} Perturbed Analysis/ Result

———

|-

.....

! Q00 L | Wasm | Detection Interpretation
Wasm | Dmaoising | (@D ~ Binaries | Tools
TEXt s ! : i '
Section Parsing Perturbation Placement Execution and
for Perturbation and Deployment Interpretation

5. Evaluate the perturbed binaries with detection tools and normalize
the results into Detected, Suspected, and Benign.

Standardize heterogeneous outputs across detectors to consistently determine evasion outcomes.

Sungkyunkwan University (SKKU) Security Lab SIGPL Winter School 2026

Our Framework: SWAMPED

Identified Perturbation @ 3 : . i
Sections Methods | | Placement | | Iterate for the perturbation

Distribution | | ratio fulfillment

we @ a

77

Import @ :
Function @@Q
Table @@
ol QRO

Export e w E} Perturbed Analysis/ Result Result

Signal
(Feedback) ‘

—&3—Gg gk

.....

Element Q00 | § Wasm | Detection Interpretation § Report
Wasm | paagising | QD ~ Binaries | Tools ‘
Text 1 . ‘ |
Section Parsing Perturbation Placement Execution and
for Perturbation and Deployment Interpretation

6. Analyze robustness degradation by checking binaries whose results
shift from Detected/Suspected to Benign.

Measure how much and which perturbations erode detection confidence.

Sungkyunkwan University (SKKU) Security Lab SIGPL Winter School 2026

Semantics-Preserving Perturbation Methods

! our perturbations comprehensively cover
all major Wasm sections and instruction categories

Section

Type
Import

Function
Table
Global
Export

Element
Data

Custom

ID

P
@
200
Q2
20
@
%@@O
Py

Code Perturbation (Insertion)

P11

NOP Insertion

P12

Stack OP Insertion

ID

Perturbation Method

P13

Opaque Predicate Insertion

P1

Function Signature Insertion

P14

Proxy Function Insertion

P2

Import Insertion

Code Perturbation (Transformation)

P3

Function Insertion

P15

Direct to Indirect Call Transformation

P4

Function Body Cloning

P16

Add/Sub Operation Transformation

P5

Global Insertion

P17

Shift Operation Transformation

P6

Element Insertion

P18

Egz Operation Transformation

P7

Export Insertion

P19

Offset Expansion

P8

Data Insertion

P20

Transforming XOR/OR to MBA

P9

Data Encryption

P21

Constant Value Splitting

P10

Custom Section Insertion

P22

Constant Value Transformation

Sungkyunkwan University (SKKU) Security Lab

SIGPL Winter School 2026

Semantics-Preserving Perturbation Methods

! our perturbations comprehensively cover
all major Wasm sections and instruction categories

Section

Type
Import

Function
Table
Global
Export

Element
Data

Custom

ID

P
@
200
Q2
20
@
%@@O
@

ID

Perturbation Method

P1

Function Signature Insertion

P2

Import Insertion

P3

Function Insertion

P4

Code Perturbation (Insertion)
P11 [NOP Insertion

P12 | Stack OP Insertion

P13 | Opaque Predicate Insertion

P14 | Proxy Function Insertion

Code Perturbation (Transformation)

P15 | Direct to Indirect Call Transformation

Function Body Cloning

P5

Global Insertion

P6

Element Insertion

P7

Export Insertion

P8

Data Insertion

P9

P10

Data Encryption *

Custom Section Insertion

Before Data XOR Encryption:
(data $do (i32.const 1024) "Thisisdata...")

After Data XOR Encryption:

(start $decryptData)
(data $d@ (i32.const 1024)"+\@2R\06\07fAm...")

Sungkyunkwan University (SKKU) Security Lab

SIGPL Winter School 2026

Semantics-Preserving Perturbation Methods

' our pert{
all major

Section

Type
Import

Function
Table
Global
Export

Element

Data
Custom

Code Perturbation (Insertion)

P11 | NOP Insertion

P12 | Stack OP Insertion

P13 | Opaque Predicate Insertion

Before Stack OP Insertion:
i32.const 1
i32.and N
i32.or
DN

P14 | Proxy Function Insertion

After Stack OP Insertion:

i32.const 1
i32.and
i64.const -7
i64.const -1
i64.add

drop

i32.or

P10 | Custom Section Insertion

Code Perturbation (Transformation)

Direct to Indirect Call Transformation

Add/Sub Operation Transformation

Shift Operation Transformation

Eqz Operation Transformation

Offset Expansion

Transforming XOR/OR to MBA

Constant Value Splitting

Constant Value Transformation

SIGPL Winter School 2026

Sungkyunkwan University (SKKU) Security Lab

Before Transforming XOR to MBA:
i32.add
i32.xor
local.get $121

After Transforming XOR to MBA:

i32.add

global.set $global 1
global.set $global 2
global.get $global_1
global.get $global 2
i32.add

i32.const 2

Direct to Indirect Call Transformation
Add/Sub Operation Transformation
Shift Operation Transformation

Eqz Operation Transformation

Offset Expansion

Transforming XOR/OR to MBA
Constant Value Splitting

i32.sub
local.get $121

Constant Value Transformation

Sungkyunkwan University (SKKU) Security Lab RY SIGPL Winter School 2026

Experimental Setup

« 74 Wasm malware samples (unique samples from all public sources)

« 48K perturbed variants

« 6 target detectors

« Evaluation metric: Evasion rate (%), Average Perturbation Ratio for successful evasions (%)

Detector Base Technique Target Granularity
Minos CNN-based image recognition Cryptojacker Program
MineSweeper Profiling-based instruction frequency Cryptojacker Function
MinerRay Semantic-aware IR & CFG analysis Cryptojacker Function
WasmGuard Adversarially trained DNN Malware Program
MalConv* Byte-pattern DNN Malware Program
AvastNet* Hierarchical byte-feature DNN Malware Program

* We trained MalConv and AvastNet on the WasmGuard dataset

Sungkyunkwan University (SKKU) Security Lab SIGPL Winter School 2026

4% Key Findings (1/4)

- Feature-based detectors: Over-fitted to targets

« Dynamic behavior or program structure-based detectors (/.e,, MineSweeper, MinerRay)
fail when minor perturbations alter instruction frequencies or control/data-flow links.

Detector Perturbation Evasion rate Perturbation ratio
. Shift Operation

MineSweeper Transformation 43/43 15.6%
MinerRay Direct to Indirect Call 33/43 45 29

Transformation

Sungkyunkwan University (SKKU) Security Lab SIGPL Winter School 2026

" Key Findings (2/4)

- Raw byte-based models: Fragile to layout & distribution shifts

- Minos, WasmGuard, MalConv and AvastNet easily break when instruction
or data distributions change.

Detector Perturbation Evasion rate Perturbation ratio
AvastNet Data Encryption 31/31 54.8%
Minos Stack Opgratlon 43/43 10.9%
Insertion

(Numeric Arithmetic)

Sungkyunkwan University (SKKU) Security Lab SIGPL Winter School 2026

¥ Key Findings (3/4)

- Adversarial training: More effective than other techniques

- WasmGuard’s hardens the detector on seen perturbations, yet unseen
perturbations (e.g.,, XOR—MBA) still achieve full evasion.

Detector Perturbation Evasion rate Perturbation ratio

Global Insertion 0/31 -

WasmGuard

Transforming XOR

to MBA 31/31 42.3%

Sungkyunkwan University (SKKU) Security Lab SIGPL Winter School 2026

1.} Key Findings (4/4)

- Practical implication: Reported accuracy # Robustness

« Even detectors scoring >99 % on clean samples collapse under semantics-preserving changes.

For every detector, at least one perturbation method effectively bypassed the majority of samples.

! Robustness and accuracy vary significantly across systems, depending on the perturbation type.

' we highlight the need for systematic evaluation and defense against perturbations in future designs.

Sungkyunkwan University (SKKU) Security Lab SIGPL Winter School 2026

Summary and Question

- Accuracy under the systematic adversarial perturbation is largely unknown.

- Essential to test Wasm analysis/detection techniques with SWAMPED

“F GitHub i :
3 E SKKUSecL ab/SWAMPED Taeyoung Kim — Ph.D. Student, Security Lab

Framework code, Sungkyunkwan University (SKKU), South Korea
perturbed samples, Email: tykim0402@skku.edu

“When Does Wasm Malware Detection Fail? A Systematic
Analysis of Their Robustness to Evasion,” ASE 2025

Sungkyunkwan University (SKKU) Security Lab SIGPL Winter School 2026

	슬라이드 1
	슬라이드 2: Hyoungshick Kim (김형식)
	슬라이드 3
	슬라이드 4: Web Script Language War
	슬라이드 5: JavaScript
	슬라이드 6: NaCl
	슬라이드 7: asm.js
	슬라이드 8: WebAssembly (Wasm)
	슬라이드 9
	슬라이드 10: Instruction Set
	슬라이드 11
	슬라이드 12
	슬라이드 13
	슬라이드 14: Cryptomining using WASM
	슬라이드 15: Monero Cryptominer
	슬라이드 16
	슬라이드 17: Cryptojacking Malware
	슬라이드 18
	슬라이드 19: Why Wasm Malware?
	슬라이드 20: Motivation & Research Goal
	슬라이드 21: Motivation & Research Goal
	슬라이드 22: Motivation & Research Goal
	슬라이드 23: Motivation & Research Goal
	슬라이드 24: Motivation & Research Goal
	슬라이드 25: Our Framework: SWAMPED
	슬라이드 26: Our Framework: SWAMPED
	슬라이드 27: Our Framework: SWAMPED
	슬라이드 28: Our Framework: SWAMPED
	슬라이드 29: Our Framework: SWAMPED
	슬라이드 30: Our Framework: SWAMPED
	슬라이드 31: Semantics-Preserving Perturbation Methods
	슬라이드 32: Semantics-Preserving Perturbation Methods
	슬라이드 33: Semantics-Preserving Perturbation Methods
	슬라이드 34: Semantics-Preserving Perturbation Methods
	슬라이드 35: Experimental Setup
	슬라이드 36: Key Findings (1/4)
	슬라이드 37: Key Findings (2/4)
	슬라이드 38: Key Findings (3/4)
	슬라이드 39: Key Findings (4/4)
	슬라이드 40: Summary and Question

