
Sungkyunkwan University (SKKU) Security Lab 1 SIGPL Winter School 2026

Understanding Wasm Malware
Detection and Evasion

Hyoungshick Kim

Sungkyunkwan University (SKKU) Security Lab 2 SIGPL Winter School 2026Sungkyunkwan University (SKKU) Security Lab 2 SIGPL Winter School 2026

Hyoungshick Kim (김형식)

Short Bio

Postdoctoral Fellow

Full Professor2013 ~ 현재

Distinguished Visiting Scientist

Ph.D Degree2008 ~ 2011

2012 ~ 2013

2019 ~ 2020

Senior Engineer 2004 ~ 2008

https://seclab.skku.edu/people/hyoungshick-kim/

https://seclab.skku.edu/people/hyoungshick-kim/
https://seclab.skku.edu/people/hyoungshick-kim/
https://seclab.skku.edu/people/hyoungshick-kim/
https://seclab.skku.edu/people/hyoungshick-kim/

Sungkyunkwan University (SKKU) Security Lab 3 SIGPL Winter School 2026

In every browser, code is interpreted
and executed by a JavaScript engine. 

JavaScript
Engine

Sungkyunkwan University (SKKU) Security Lab 4 SIGPL Winter School 2026Sungkyunkwan University (SKKU) Security Lab 4 SIGPL Winter School 2026

Web Script Language War

• Silverlight (Microsoft, 2007), ActionScript (Macromedia, 2006), or

JavaScript (Sun, 1995) ...

• Most were insecure

• Challenging to secure/control at runtime by browser

• Proprietary solutions - Never standardized

Sungkyunkwan University (SKKU) Security Lab 5 SIGPL Winter School 2026Sungkyunkwan University (SKKU) Security Lab 5 SIGPL Winter School 2026

JavaScript

• Object oriented

• Interpreted

• Using for Web

• Dynamically typed language

• Low performance

✓ It is hard to run applications (e.g.,

video games) requiring a high degree

of performance

Sungkyunkwan University (SKKU) Security Lab 6 SIGPL Winter School 2026Sungkyunkwan University (SKKU) Security Lab 6 SIGPL Winter School 2026

NaCl

• Google Native Client (2011)

• Designed to execute native code

(x86/x64, ARM) in a sandbox

• Close to native performance

• 3D acceleration

• Debuggable using GDB-Remote

• Not a standard

• Google Chrome (Browser, OS)

specific

Sungkyunkwan University (SKKU) Security Lab 7 SIGPL Winter School 2026Sungkyunkwan University (SKKU) Security Lab 7 SIGPL Winter School 2026

asm.js

• Proposed by Mozilla in 2013 as a strict subset of JavaScript

• Restricts JavaScript to a predictable, compiler-friendly form

• Uses explicit type coercions (e.g., int32/double) to reduce speculation and

deoptimizations

• Represents memory as a linear buffer via TypedArrays for efficient loads/stores

• Avoids many dynamic JS features, enabling faster validation and more

aggressive JIT/AOT-like optimization

• Can deliver up to ~2× speedups over conventional JavaScript

Sungkyunkwan University (SKKU) Security Lab 8 SIGPL Winter School 2026Sungkyunkwan University (SKKU) Security Lab 8 SIGPL Winter School 2026

WebAssembly (Wasm)

• A new type of code that can be run in modern browsers

• The 4th language to run natively in browsers (following HTML, CSS, and

JavaScript)

• Supported in Nods.js, standalone VMs

• Developed by a W3C working group in 2017

• Low-level binary format for a stack-based virtual machine

• The code size is significantly smaller than the JavaScript code

• The execution time of WASM binaries is just 20% slower than the execution of

same native code (near-native performance)

Sungkyunkwan University (SKKU) Security Lab 9 SIGPL Winter School 2026Sungkyunkwan University (SKKU) Security Lab. 9 SIGPL Winter School 2026

C, C++, Rust, Go, …

Complied from C, C++, Rust, Go, …

Sungkyunkwan University (SKKU) Security Lab 10 SIGPL Winter School 2026Sungkyunkwan University (SKKU) Security Lab 10 SIGPL Winter School 2026

Instruction Set

Sungkyunkwan University (SKKU) Security Lab 11 SIGPL Winter School 2026

• We can load a WebAssembly module into a web application and call it from JavaScript

• It’s not a replacement for JavaScript, it works alongside JavaScript

Sungkyunkwan University (SKKU) Security Lab 12 SIGPL Winter School 2026Sungkyunkwan University (SKKU) Security Lab 12 SIGPL Winter School 2026

https://mtharrison.github.io/wasm-raytracer/

https://mtharrison.github.io/wasm-raytracer/
https://mtharrison.github.io/wasm-raytracer/
https://mtharrison.github.io/wasm-raytracer/

Sungkyunkwan University (SKKU) Security Lab 13 SIGPL Winter School 2026Sungkyunkwan University (SKKU) Security Lab 13 SIGPL Winter School 2026

Sungkyunkwan University (SKKU) Security Lab 14 SIGPL Winter School 2026Sungkyunkwan University (SKKU) Security Lab 14 SIGPL Winter School 2026

Cryptomining using WASM

• CryptoJacking

✓ Unauthorized use of computing resources to mine cryptocurrencies

• CoinHive

✓ Created in 2017

✓ “Our miner uses WebAssembly and runs with about 65% of the performance of a native

Miner.”

• Attackers just need to insert the following snippet of code on victim websites

Sungkyunkwan University (SKKU) Security Lab 15 SIGPL Winter School 2026Sungkyunkwan University (SKKU) Security Lab 15 SIGPL Winter School 2026

Monero Cryptominer

• Cryptonight PoW hash algorithm

• ASIC-resistant

• It uses computing resources to mine Monero Cryptocurrency

Sungkyunkwan University (SKKU) Security Lab 16 SIGPL Winter School 2026Sungkyunkwan University (SKKU) Security Lab. 16 SIGPL Winter School 2026

Sungkyunkwan University (SKKU) Security Lab 17 SIGPL Winter School 2026Sungkyunkwan University (SKKU) Security Lab 17 SIGPL Winter School 2026

Cryptojacking Malware

• Fileless malware

• Implemented in browsers

• Mine cryptocurrency without

user’s knowledge/consent

Sungkyunkwan University (SKKU) Security Lab 18 SIGPL Winter School 2026Sungkyunkwan University (SKKU) Security Lab 18 SIGPL Winter School 2026

How can we detect cryptojacking malware?

Sungkyunkwan University (SKKU) Security Lab 19 SIGPL Winter School 2026Sungkyunkwan University (SKKU) Security Lab 19 SIGPL Winter School 2026

Why Wasm Malware?

• Wasm allows code to be run on browers in near native speed

• Malware authors write code that performs mining functions in C/C++ and

then compile it to Wasm using Emscripten

• Majority of cryptojacking malware is implemented in Wasm

Sungkyunkwan University (SKKU) Security Lab 20 SIGPL Winter School 2026Sungkyunkwan University (SKKU) Security Lab 20 SIGPL Winter School 2026

Motivation & Research Goal

• Several detectors exist.

• Dynamic behavior feature-based: detect mining behavior from execution footprints
(CPU/cache/timing)

✓ Outguard (CPU usage in-browser detection), MineSweeper (cache-event–assisted detection)

• Program analysis-based: recover IR/CFG-level structure to identify mining semantics

✓ MinerRay (semantics-aware analysis of cryptojacking logic)

• Raw-binary or opcode-based classifiers: CNN/DNN on bytecode-derived representations

✓ MINOS (Wasm→image CNN), WasmGuard (raw-binary ML with adversarial training)

Crypojacker

Benign

Sungkyunkwan University (SKKU) Security Lab 21 SIGPL Winter School 2026Sungkyunkwan University (SKKU) Security Lab 21 SIGPL Winter School 2026

Motivation & Research Goal

Are they robust against (automatically generated) Wasm - specific binary perturbations?

• Several detectors (Minos, MineSweeper, MinerRay, WasmGuard, etc.) exist.

Sungkyunkwan University (SKKU) Security Lab 22 SIGPL Winter School 2026Sungkyunkwan University (SKKU) Security Lab 22 SIGPL Winter School 2026

Motivation & Research Goal

Are they robust against (automatically generated) Wasm - specific binary perturbations?

• Several detectors (Minos, MineSweeper, MinerRay, WasmGuard, etc.) exist.

• Real-world adversarial capabilities for malware diversification.

Sungkyunkwan University (SKKU) Security Lab 23 SIGPL Winter School 2026Sungkyunkwan University (SKKU) Security Lab 23 SIGPL Winter School 2026

Motivation & Research Goal

• Several detectors (Minos, MineSweeper, MinerRay, WasmGuard, etc.) exist.

Existing diversification methods’ impact on real - world detectors remains unexplored.

• Real-world adversarial capabilities for malware diversification.

Are they robust against (automatically generated) Wasm - specific binary perturbations?

1. C source - level or LLVM - level diversification only (e.g., CROW, Tigress, emcc - obf)

2. Coarse - grained diversification methods (e.g., wasm - mutate)

3. Not designed for targeting malware detectors (e.g., WASMixer)

4. Limited diversification methods tested on selected detectors (e.g., Madvex)

Sungkyunkwan University (SKKU) Security Lab 24 SIGPL Winter School 2026Sungkyunkwan University (SKKU) Security Lab 24 SIGPL Winter School 2026

Motivation & Research Goal

• Systematically evaluate which types and magnitudes of fine-grained, semantics-preserving

binary-level perturbations cause Wasm malware detectors to fail.

When Does Wasm Malware Detection Fail?

Are they robust against (automatically generated) Wasm - specific binary perturbations?

Existing diversification methods’ impact on real - world detectors remains unexplored.

• Several detectors (Minos, MineSweeper, MinerRay, WasmGuard, etc.) exist.

• Real-world adversarial capabilities for malware diversification.

Sungkyunkwan University (SKKU) Security Lab 25 SIGPL Winter School 2026Sungkyunkwan University (SKKU) Security Lab 25 SIGPL Winter School 2026

Our Framework: SWAMPED

Wasm
Binary

Wasm
Text

1. Parse the Wasm binary into text format.

Disassemble the binary for structural and instruction-level visibility.

Sungkyunkwan University (SKKU) Security Lab 26 SIGPL Winter School 2026Sungkyunkwan University (SKKU) Security Lab 26 SIGPL Winter School 2026

Our Framework: SWAMPED

Wasm
Binary

Wasm
Text

Section Parsing
for Perturbation

Perturbation
Methods

P1

P3 P4
…

P8 P9

P6 P15

P2

P5 P20
…

P6 P7
…

P7

Identified
Sections

Type

Import

Function

Global

Export

Element

Data (Missing)
…

Table

2. Identify sections and select applicable perturbation methods.

Determine which perturbations can be applied based on the binary’s composition
(e.g., skip data encryption if no data entries exist).

Sungkyunkwan University (SKKU) Security Lab 27 SIGPL Winter School 2026Sungkyunkwan University (SKKU) Security Lab 27 SIGPL Winter School 2026

Our Framework: SWAMPED

Wasm
Binary

Wasm
Text

Section Parsing
for Perturbation

Perturbation
Methods

Perturbation Placement
and Deployment

𝜷

Placement
Distribution

P1

P3 P4
…

P8 P9

P6 P15

P2

P5 P20
…

P6 P7
…

P7

Identified
Sections

Type

Import

Function

Global

Export

Element

Data (Missing)
…

Table

3. Distribute perturbations using the Beta-distribution model to control where changes occur.

Adjust α and β parameters to bias the spatial distribution of perturbations within applicable regions.

Sungkyunkwan University (SKKU) Security Lab 28 SIGPL Winter School 2026Sungkyunkwan University (SKKU) Security Lab 28 SIGPL Winter School 2026

Our Framework: SWAMPED

Wasm
Binary

Wasm
Text

Section Parsing
for Perturbation

Perturbation
Methods

Perturbation Placement
and Deployment

𝜷

Placement
Distribution

Perturbed
Wasm

Binaries

P1

P3 P4
…

P8 P9

P6 P15

P2

P5 P20
…

P6 P7
…

P7

Identified
Sections

Type

Import

Function

Global

Export

Element

Data (Missing)
…

Table

4. Generate perturbed binaries by varying perturbation ratios to control
 how many changes are applied.

Tune the perturbation ratio (0–100%) to control density and quantify detector tolerance.

Sungkyunkwan University (SKKU) Security Lab 29 SIGPL Winter School 2026Sungkyunkwan University (SKKU) Security Lab 29 SIGPL Winter School 2026

Our Framework: SWAMPED

Wasm
Binary

Wasm
Text

Section Parsing
for Perturbation

Perturbation
Methods

Perturbation Placement
and Deployment

𝜷

Placement
Distribution

Perturbed
Wasm

Binaries

Execution and
Interpretation

Analysis/
Detection

Tools

Result
Interpretation

Iterate for the perturbation
ratio fulfillment

Signal
(Feedback)

P1

P3 P4
…

P8 P9

P6 P15

P2

P5 P20
…

P6 P7
…

P7

Identified
Sections

Type

Import

Function

Global

Export

Element

Data (Missing)
…

Table

5. Evaluate the perturbed binaries with detection tools and normalize
 the results into Detected, Suspected, and Benign.

Standardize heterogeneous outputs across detectors to consistently determine evasion outcomes.

Sungkyunkwan University (SKKU) Security Lab 30 SIGPL Winter School 2026Sungkyunkwan University (SKKU) Security Lab 30 SIGPL Winter School 2026

Our Framework: SWAMPED

Wasm
Binary

Wasm
Text

Section Parsing
for Perturbation

Perturbation
Methods

Perturbation Placement
and Deployment

𝜷

Placement
Distribution

Perturbed
Wasm

Binaries

Execution and
Interpretation

Analysis/
Detection

Tools

Result
Interpretation

Iterate for the perturbation
ratio fulfillment

Result
Report

Signal
(Feedback)

P1

P3 P4
…

P8 P9

P6 P15

P2

P5 P20
…

P6 P7
…

P7

Identified
Sections

Type

Import

Function

Global

Export

Element

Data (Missing)
…

Table

6. Analyze robustness degradation by checking binaries whose results
 shift from Detected/Suspected to Benign.

Measure how much and which perturbations erode detection confidence.

Sungkyunkwan University (SKKU) Security Lab 31 SIGPL Winter School 2026Sungkyunkwan University (SKKU) Security Lab 31 SIGPL Winter School 2026

Semantics-Preserving Perturbation Methods

ID Perturbation Method

P1 Function Signature Insertion

P2 Import Insertion

P3 Function Insertion

P4 Function Body Cloning

P5 Global Insertion

P6 Element Insertion

P7 Export Insertion

P8 Data Insertion

P9 Data Encryption

P10 Custom Section Insertion

P15 Direct to Indirect Call Transformation

P16 Add/Sub Operation Transformation

P17 Shift Operation Transformation

P18 Eqz Operation Transformation

P19 Offset Expansion

P20 Transforming XOR/OR to MBA

P21 Constant Value Splitting

P22 Constant Value Transformation

P11 NOP Insertion

P12 Stack OP Insertion

P13 Opaque Predicate Insertion

P14 Proxy Function Insertion

Structural Perturbation

Code Perturbation (Insertion)

Code Perturbation (Transformation)

Our perturbations comprehensively cover
all major Wasm sections and instruction categories

P1

P3 P4
…

P6 P15

P2

P5 P20
…

P6 P7
…

P7

Type

Import

Function

Global

Export

Element

Table

Data

Custom

P8 P9

P10

Section ID

Sungkyunkwan University (SKKU) Security Lab 32 SIGPL Winter School 2026Sungkyunkwan University (SKKU) Security Lab 32 SIGPL Winter School 2026

Semantics-Preserving Perturbation Methods

P15 Direct to Indirect Call Transformation

P16 Add/Sub Operation Transformation

P17 Shift Operation Transformation

P18 Eqz Operation Transformation

P19 Offset Expansion

P20 Transforming XOR/OR to MBA

P21 Constant Value Splitting

P22 Constant Value Transformation

P11 NOP Insertion

P12 Stack OP Insertion

P13 Opaque Predicate Insertion

P14 Proxy Function Insertion

Code Perturbation (Insertion)

Code Perturbation (Transformation)

Our perturbations comprehensively cover
all major Wasm sections and instruction categories

P1

P3 P4
…

P6 P15

P2

P5 P20
…

P6 P7
…

P7

Type

Import

Function

Global

Export

Element

Table

Data

Custom

P8 P9

P10

Section ID

ID Perturbation Method

P1 Function Signature Insertion

P2 Import Insertion

P3 Function Insertion

P4 Function Body Cloning

P5 Global Insertion

P6 Element Insertion

P7 Export Insertion

P8 Data Insertion

P9 Data Encryption

P10 Custom Section Insertion

Structural Perturbation

Before Data XOR Encryption:
(data $d0 (i32.const 1024) "Thisisdata...")

After Data XOR Encryption:

(start $decryptData)
(data $d0 (i32.const 1024)"+\02R\06\07fAm...")

Sungkyunkwan University (SKKU) Security Lab 33 SIGPL Winter School 2026Sungkyunkwan University (SKKU) Security Lab 33 SIGPL Winter School 2026

Semantics-Preserving Perturbation Methods

P15 Direct to Indirect Call Transformation

P16 Add/Sub Operation Transformation

P17 Shift Operation Transformation

P18 Eqz Operation Transformation

P19 Offset Expansion

P20 Transforming XOR/OR to MBA

P21 Constant Value Splitting

P22 Constant Value Transformation

Code Perturbation (Transformation)

Our perturbations comprehensively cover
all major Wasm sections and instruction categories

P1

P3 P4
…

P6 P15

P2

P5 P20
…

P6 P7
…

P7

Type

Import

Function

Global

Export

Element

Table

Data

Custom

P8 P9

P10

Section ID

ID Perturbation Method

P1 Function Signature Insertion

P2 Import Insertion

P3 Function Insertion

P4 Function Body Cloning

P5 Global Insertion

P6 Element Insertion

P7 Export Insertion

P8 Data Insertion

P9 Data Encryption

P10 Custom Section Insertion

Structural Perturbation

P11 NOP Insertion

P12 Stack OP Insertion

P13 Opaque Predicate Insertion

P14 Proxy Function Insertion

Code Perturbation (Insertion)

Before Stack OP Insertion:
 i32.const 1

 i32.and
 i32.or

After Stack OP Insertion:

 i32.const 1
 i32.and
 i64.const -7
 i64.const -1
 i64.add
 drop
 i32.or

Sungkyunkwan University (SKKU) Security Lab 34 SIGPL Winter School 2026Sungkyunkwan University (SKKU) Security Lab 34 SIGPL Winter School 2026

Semantics-Preserving Perturbation Methods

Our perturbations comprehensively cover
all major Wasm sections and instruction categories

P1

P3 P4
…

P6 P15

P2

P5 P20
…

P6 P7
…

P7

Type

Import

Function

Global

Export

Element

Table

Data

Custom

P8 P9

P10

Section ID

ID Perturbation Method

P1 Function Signature Insertion

P2 Import Insertion

P3 Function Insertion

P4 Function Body Cloning

P5 Global Insertion

P6 Element Insertion

P7 Export Insertion

P8 Data Insertion

P9 Data Encryption

P10 Custom Section Insertion

Structural Perturbation

P11 NOP Insertion

P12 Stack OP Insertion

P13 Opaque Predicate Insertion

P14 Proxy Function Insertion

Code Perturbation (Insertion)

P15 Direct to Indirect Call Transformation

P16 Add/Sub Operation Transformation

P17 Shift Operation Transformation

P18 Eqz Operation Transformation

P19 Offset Expansion

P20 Transforming XOR/OR to MBA

P21 Constant Value Splitting

P22 Constant Value Transformation

Before Transforming XOR to MBA:
 i32.add
 i32.xor
 local.get $l21

After Transforming XOR to MBA:

 i32.add
 global.set $global_1
 global.set $global_2
 global.get $global_1
 global.get $global_2
 i32.add
 i32.const 2
 ...
 i32.sub
 local.get $l21

Code Perturbation (Transformation)

Sungkyunkwan University (SKKU) Security Lab 35 SIGPL Winter School 2026Sungkyunkwan University (SKKU) Security Lab 35 SIGPL Winter School 2026

Experimental Setup

• 74 Wasm malware samples (unique samples from all public sources)

• 48K perturbed variants
• 6 target detectors
• Evaluation metric: Evasion rate (%), Average Perturbation Ratio for successful evasions (%)

Detector Base Technique Target Granularity

Minos CNN-based image recognition Cryptojacker Program

MineSweeper Profiling-based instruction frequency Cryptojacker Function

MinerRay Semantic-aware IR & CFG analysis Cryptojacker Function

WasmGuard Adversarially trained DNN Malware Program

MalConv* Byte-pattern DNN Malware Program

AvastNet* Hierarchical byte-feature DNN Malware Program

* We trained MalConv and AvastNet on the WasmGuard dataset

Sungkyunkwan University (SKKU) Security Lab 36 SIGPL Winter School 2026Sungkyunkwan University (SKKU) Security Lab 36 SIGPL Winter School 2026

Key Findings (1/4)

Feature-based detectors: Over-fitted to targets

• Dynamic behavior or program structure-based detectors (i.e., MineSweeper, MinerRay)
fail when minor perturbations alter instruction frequencies or control/data-flow links.

MinerRay

MineSweeper

Detector Perturbation Evasion rate Perturbation ratio

Shift Operation
Transformation

43/43 15.6%

45.2%33/43
Direct to Indirect Call

Transformation

Sungkyunkwan University (SKKU) Security Lab 37 SIGPL Winter School 2026Sungkyunkwan University (SKKU) Security Lab 37 SIGPL Winter School 2026

Key Findings (2/4)

Raw byte-based models: Fragile to layout & distribution shifts

• Minos, WasmGuard, MalConv and AvastNet easily break when instruction
or data distributions change.

Minos

AvastNet

Detector Perturbation Evasion rate Perturbation ratio

Data Encryption 31/31 54.8%

10.9%43/43
Stack Operation

Insertion
(Numeric Arithmetic)

Sungkyunkwan University (SKKU) Security Lab 38 SIGPL Winter School 2026Sungkyunkwan University (SKKU) Security Lab 38 SIGPL Winter School 2026

Key Findings (3/4)

Adversarial training: More effective than other techniques

• WasmGuard’s hardens the detector on seen perturbations, yet unseen
perturbations (e.g., XOR→MBA) still achieve full evasion.

WasmGuard

Detector Perturbation Evasion rate Perturbation ratio

Global Insertion -

42.3%
Transforming XOR

to MBA

0/31

31/31

Sungkyunkwan University (SKKU) Security Lab 39 SIGPL Winter School 2026Sungkyunkwan University (SKKU) Security Lab 39 SIGPL Winter School 2026

Key Findings (4/4)

Practical implication: Reported accuracy ≠ Robustness

• Even detectors scoring >99 % on clean samples collapse under semantics-preserving changes.

For every detector, at least one perturbation method effectively bypassed the majority of samples.

Robustness and accuracy vary significantly across systems, depending on the perturbation type.

We highlight the need for systematic evaluation and defense against perturbations in future designs.

Sungkyunkwan University (SKKU) Security Lab 40 SIGPL Winter School 2026Sungkyunkwan University (SKKU) Security Lab 40 SIGPL Winter School 2026

Summary and Question

Accuracy under the systematic adversarial perturbation is largely unknown.

Essential to test Wasm analysis/detection techniques with SWAMPED

GitHub

SKKUSecLab/SWAMPED

Framework code,

perturbed samples,

and statistical results

Taeyoung Kim — Ph.D. Student, Security Lab

Sungkyunkwan University (SKKU), South Korea

Email: tykim0402@skku.edu

“When Does Wasm Malware Detection Fail? A Systematic
Analysis of Their Robustness to Evasion,” ASE 2025

	슬라이드 1
	슬라이드 2: Hyoungshick Kim (김형식)
	슬라이드 3
	슬라이드 4: Web Script Language War
	슬라이드 5: JavaScript
	슬라이드 6: NaCl
	슬라이드 7: asm.js
	슬라이드 8: WebAssembly (Wasm)
	슬라이드 9
	슬라이드 10: Instruction Set
	슬라이드 11
	슬라이드 12
	슬라이드 13
	슬라이드 14: Cryptomining using WASM
	슬라이드 15: Monero Cryptominer
	슬라이드 16
	슬라이드 17: Cryptojacking Malware
	슬라이드 18
	슬라이드 19: Why Wasm Malware?
	슬라이드 20: Motivation & Research Goal
	슬라이드 21: Motivation & Research Goal
	슬라이드 22: Motivation & Research Goal
	슬라이드 23: Motivation & Research Goal
	슬라이드 24: Motivation & Research Goal
	슬라이드 25: Our Framework: SWAMPED
	슬라이드 26: Our Framework: SWAMPED
	슬라이드 27: Our Framework: SWAMPED
	슬라이드 28: Our Framework: SWAMPED
	슬라이드 29: Our Framework: SWAMPED
	슬라이드 30: Our Framework: SWAMPED
	슬라이드 31: Semantics-Preserving Perturbation Methods
	슬라이드 32: Semantics-Preserving Perturbation Methods
	슬라이드 33: Semantics-Preserving Perturbation Methods
	슬라이드 34: Semantics-Preserving Perturbation Methods
	슬라이드 35: Experimental Setup
	슬라이드 36: Key Findings (1/4)
	슬라이드 37: Key Findings (2/4)
	슬라이드 38: Key Findings (3/4)
	슬라이드 39: Key Findings (4/4)
	슬라이드 40: Summary and Question

