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우리 연구실의 주된 관심
프로그램 합성과 프로그램 분석

What is program synthesis? •프로그램 합성 가속화 기술

함수형 재귀호출 프로그램 합성 (POPL’23, JFP'25)

프로그램분석 기반 합성 가속화 (PLDI’23)

통계모델 기반 합성 가속화 (PLDI’18)

양방향 탐색 전략 (POPL’21)

• 프로그램 합성 응용 

동형암호 프로그램 최적화 (PLDI’20, TOPLAS’23)

프로그램 합성 기반 패치생성 (FSE’21) 

프로그램 역난독화 (CCS’23)

•프로그램 분석 관련

프로그램 간소화 (CCS’18)

Datalog 분석 합성 (FSE’18)

인스턴트앱 자동생성 (ASEJ’23)

코드보안을 보장하는 분석 (IEEE’22)



우리 연구실의 최근 관심

프로그래밍언어이론과 신경망의 상호보완적 결합

What is program synthesis?



프로그램 합성

• 사용자가 원하는 (생김새 + 행동) 프로그램을 자동 생성하는 기술


• LLM과 차이점?


• 신경망추론이 아닌 다양한 (PL이론기반) 탐색 알고리즘 수행


• (끝난다면) 요구조건 100% 만족 보장

프로그래밍 할 줄 몰라도  
표현할 수 있어야 


(예: 입출력예제, 자연어)

요구조건 프로그램What is program synthesis?



프로그램 합성의 쓸모
• 스펙을 100% 만족 + 기존에 없던 새로운 코드 발견 가능 

• 프로그램 최적화 

• 꼬마최적화(peephole optimization) 발견


• 함수형언어에서 중간계산과정 없애기(deforestation) 


• 데이터가 올때마다 처리하기(stream processing)


• 프로그램 역난독화 

• 표현식 간단히(Mixed Boolean-Arithmetic deobfuscation)


• 분기문 간단히(control-flow deobfuscation)


• 프로그램 검증 

• 반복문 불변식(loop invariant) 추론


• 자료구조 성질(representation invariant) 추론

• 보안 

• 부채널(side-channel)공격을 회피하는 회로 합성


• 샌드박스에서 시스템콜 허용정책 자동생성


• 동형암호회로 가속화



• 스펙을 100% 만족 + 기존에 없던 새로운 코드 발견 가능 

• 프로그램 최적화 

• 꼬마최적화(peephole optimization) 발견


• 함수형언어에서 중간계산과정 없애기(deforestation) 


• 데이터가 올때마다 처리하기(stream processing)


• 프로그램 역난독화 

• 표현식 간단히(Mixed Boolean-Arithmetic deobfuscation)


• 분기문 간단히(control-flow deobfuscation)


• 프로그램 검증 

• 반복문 불변식(loop invariant) 추론


• 자료구조 성질(representation invariant) 추론

프로그램 합성의 한계

• 보안 

• 부채널(side-channel)공격을 회피하는 회로 합성


• 샌드박스에서 시스템콜 허용정책 자동생성


• 동형암호회로 가속화큰 프로그램 생성은 어려움



LLM 기반 코드 생성
• 큰 코드도 잘 작성하나 틀릴 수 있음 (아래 예: Meta LLaMA 3)

let rec maxSum (arr: int list) 

  (i: int) (k: int) 

  (sum: int) (max: int) : int =

  match arr with

  | [] -> max

  | h::t -> if i = k then

      maxSum t (i+1) (k+1) (sum+h) (max)

    else

      let newSum = sum + h in

      let newMax = max (newSum) max in

      maxSum t (i+1) (k+1) newSum newMax

#include <stdio.h>

#include <string>

#include <map>

using namespace std;

string sort_numbers(string numbers){

  map<string, int> m; 

  string s;

  for(i = 0; i<numbers.length(); i++) 

   if (numbers[i] == ‘’){

        m[s] = stoi(s);

        s = “”; 

… 구문오류 (‘’ -> ‘\0’)

타입오류: 함수여야하는데 정수



프로그램 합성의 두 방향

탐색기반(Program synthesis) LLM기반(Neural synthesis)

대두 시기 1960년대 2010년대

입력 입출력 예제, 논리식 자연어 기술, 입출력 예제

제약 조건 만족여부 100% 만족 보장 만족 못시킬 수 있음

생성 가능한 코드 크기 작음 큼

코드생성 방법 탐색 알고리즘 수행 신경망 추론

대표적 예 Flash(Fill, Extract, …), Bluepencil, … GitHub Copilot, Cursor AI, …



프로그램 자동생성을 위한 LLM + 합성 결합
제한된 코드생성 

Constrained Decoding
조건만족? 기본적인 성질들 만족 (문법, 타입, …)

코드크기 큼

신경망안내기반 합성 
Neural-Guided Program Synthesis

조건만족? 100% 만족 보장

코드크기 보통

What is program synthesis?



우리 연구실에서의 LLM + 합성 결합

•LLM 생성 코드의 문법/타입/변수사용 올바름 보장

LLM의 토큰 생성 과정을 감시하며 잘못된 생성 방지

문법/변수사용 올바름: 임의의 언어에 대해

타입 올바름: 강한 정적 타입 언어(예: OCaml)

•LLM 이 안내하는 프로그램 합성 

LLM도 틀린 결과를 내고 탐색기반 합성은 성능문제로 못푸는 문제들에 대해서

시너지: LLM의 솔루션을 힌트로 쓰는 프로그램 합성. 올바른 프로그램 빠르게 생성

What is program synthesis?



LLM의 코드생성 과정

```Give python function that 
concat two string```

def 

Tokenizer

LLM
토큰별 확률

0%

18%

35%

53%

70%

conc string join ... <EOS>

1%9%20%

63%

토큰 선택

``` … def
Tokens

ID

Give

2 … 42992331

<EOS> Token 결과반환

If

프롬프트

What is program synthesis?



제한된 코드생성 (Constrained Decoding)

```Give python function that 
concat two string```

def 

Tokenizer

LLM
토큰별 확률

0%

18%

35%

53%

70%

conc string join ... <EOS>

1%9%20%

63%

``` … def
Tokens

ID

Give

2 … 42992331

<EOS> Token

If

싹수없는 토큰들 
제외 (마스킹)

뒤로 돌아가기 
(백트래킹)

What is program synthesis?

토큰 선택

결과반환

프롬프트



LLM 생성 코드의 올바름 보장 예
문법오류 수정

#include <stdio.h>

#include <string>

#include <map>

using namespace std;

string sort_numbers(string numbers){

  map<string, int> m; 

  string s;

  for(i = 0; i<numbers.length(); i++) 

   if (numbers[i] == ‘’){

        m[s] = stoi(s);

        s = “”; 

… 구문오류 (‘’ -> ‘\0’)

#include <stdio.h>

#include <string>

#include <map>

using namespace std;

string sort_numbers(string numbers){

  map<string, int> m; 

  string s;

  for(i = 0; i<numbers.length(); i++) 

   if (numbers[i] == ‘0’){ temp=“zero”; }

   else if (numbers[i] == ‘1’){ temp=“one”; }

…

What is program synthesis?



LLM 생성 코드의 올바름 보장 예
타입오류 수정

(* Write a function to …
let rec maxSum (arr: int list) (i: int) (k: int) 
(sum: int) (max: int) : int =
  match arr with
  | [] -> max
  | h::t -> if i = k then
      maxSum t (i+1) (k+1) (sum+h) (max)
    else
      let newSum = sum + h in
      let newMax = max (newSum) max in
      maxSum t (i+1) (k+1) newSum newMax

Function 자리에 int가 사용  : TYPE ERROR
int list -> int -> int -> int -> int -> int 올바른 타입의 함수

What is program synthesis?

(* Write a function to …
let rec maxSum (arr: int list) (i: int) (k: int) 
(sum: int) (max: int) : int =
  match arr with
  | [] -> max
  | h::t ->  if i = k then
      maxSum t (i+1) (k+1) (sum+h) (max)
    else
      let newSum = sum + h in
      let newMax = maxSum t (i+1) (k+1) newSum (max) in
      let newMax = maxSum t (i+1) (k) newSum (max) in
      newMax



LLM 생성 코드의 올바름 보장 예
정의되지 않은 변수 사용 오류 수정

from typing import List, Tuple

def sum_product(numbers: List[int]) -> Tuple[int, int]:
    """ For a given list of integers,(10, 24)    """
    if not numbers:
        return (0,1)
    else:
        return (sum(numbers), numbers[0] * sum_product(numbers[1:])[1])

from typing import List, Tuple

def sum_product(numbers: List[int]) -> Tuple[int, int]:
    """ For a given list of integers,(10, 24)    """
    if not numbers:
        return (0,1)
    else:
        return (sum(numbers), reduce(lambda x, y: x*y, numbers))

정의되지 않은 reduce 함수명 사용
(∵ from functools import reduce 없이 사용)

라이브러리 함수 대신 재귀호출로 대체 

What is program synthesis?



LLM이 안내하는 프로그램 합성
What is program synthesis?
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(a) A solution to the synthesis speci�cation

1 let rec f x y =

2 match x with

3 | [] ->

4 match y with

5 | [] -> 0

6 | n2 :: rest2 -> n2 + (f [] rest2)

7 | n1 :: rest1 ->

8 match y with

9 | [] -> n1 + (f rest1 [])

10 | n2 :: rest2 ->

11 match (compare n1 n2) with

12 | EQ -> n1 + (f rest1 rest2)

13 | GT -> n1 + (f rest1 rest2)

14 | LT -> n2 + (f rest1 rest2)

(b) Incorrect solution generated by an LLM

1 let rec f x y =

2 match x with

3 | [] ->

4 match y with

5 | [] -> 0

6 | n2 :: rest2 -> n2

7 | n1 :: rest1 ->

8 match y with

9 | [] -> n1

10 | n2 :: rest2 ->

11 (compare n1 n2) + (f rest1 rest2)

12

13

14

Figure 2: Motivating example of our method. Incorrect lines in the LLM solution are highlighted in red.

ExistingBidirectional Search-Based Synthesis. Apopular ap-
proach to search-based program synthesis is to use a bidirectional
search algorithm [1, 12–15] that alternates between top-down and
bottom-up search.

In the top-down search, the algorithm starts from an incomplete
program with holes representing missing parts of the program,
and gradually �lls the holes with subexpressions or more concrete
partial programs. During the search, input-output examples that
should be satis�ed by holes are inferred and used to guide the
search. For example, in the top-down search for the above problem,
the algorithm starts with a program skeleton such as

let rec f x y = ⇤

and re�nes the hole with a more concrete program such as

Listing 1: Example of partial program candidate
let rec f x y =

match x with

| [] -> ⇤1
| n1 :: rest1 -> ⇤2

and infers input-output examples that should be satis�ed by the
hole ⇤1 as [] [0] -> 0 and by the hole ⇤2 as [1, 2, 3] [0,

1] -> 6. Then, each hole is further re�ned with another partial
program with generating new holes associated with inferred input-
output examples, or with a complete subexpression that satis�es
the input-output examples, which is generated by the bottom-up
search that will be described next. In addition to this re�nement,
the top-down search also often prunes infeasible candidates that
cannot satisfy the speci�cation no matter how the holes are �lled.

The important aspect of the top-down search is that how to
pick candidates for further re�nement is crucial for the e�ciency
of the search. To tame the large search space, there have been
various approaches to explore promising candidates �rst, such as
using heuristics based on syntactic features of candidates [12, 22]
or statistical models [23–25].

In the bottom-up search, the algorithm starts from the smallest
expressions such as constants and variables and constructs larger

expressions by combining smaller expressions. For example, in
the bottom-up search for the above problem, the algorithm starts
with constants such as [] and 0, variables such as f and x, and
constructs larger expressions such as (f x []) by combining
smaller expressions. The generated expressions are used to �ll the
holes in partial programs generated by the top-down search.

The important aspect of the bottom-up search is that redundant
expressions are pruned using the observational equivalence rela-
tion, which is a relation that two expressions are equivalent if they
produce the same output for all input examples. For example, let
variable n2 denote the �rst element of the list y. Then, the expres-
sions 0 and n2 are observationally equivalent because they produce
the same output for all input examples (n2 always evaluates to 0
since the �rst element of the second input list is 0 in every case).
When n2 is generated after 0 is generated, the algorithm discards
n2. In this manner, only one representative for each observational
equivalence class is kept, which signi�cantly reduces the number of
expressions to be considered in the bottom-up search. This pruning
is crucial for the e�ciency of not only the bottom-up search, but
also the top-down search by reducing the number of component
expressions that can be used to �ll holes.

How the top-down and bottom-up searches interplay in the
bidirectional search is various. For example, they may run in paral-
lel [15] or the bottom-up search is �rst run to generate components
and then the top-down search is run to �ll holes with the generated
components [12, 13].

Based on the observations on the LLM solution, we propose a
distance-guided search algorithm that guides both the top-down
and bottom-up search with the LLM solution.

Anti-Uni�cation-BasedDistanceMetric forGuidingTop-Down
Search. Since the LLM’s incorrect solution often contains a cor-
rect overall structure despite some details being incorrect, we guide
the top-down search to prioritize candidates having a similar struc-
ture to the LLM solution.

To this end, we use a distancemetric based on anti-uni�cation [26]
that can measure the structural similarity between two programs.
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(a) A solution to the synthesis speci�cation

1 let rec f x y =

2 match x with

3 | [] ->

4 match y with

5 | [] -> 0

6 | n2 :: rest2 -> n2 + (f [] rest2)

7 | n1 :: rest1 ->

8 match y with

9 | [] -> n1 + (f rest1 [])

10 | n2 :: rest2 ->

11 match (compare n1 n2) with

12 | EQ -> n1 + (f rest1 rest2)

13 | GT -> n1 + (f rest1 rest2)

14 | LT -> n2 + (f rest1 rest2)

(b) Incorrect solution generated by an LLM

1 let rec f x y =

2 match x with

3 | [] ->

4 match y with

5 | [] -> 0

6 | n2 :: rest2 -> n2

7 | n1 :: rest1 ->

8 match y with

9 | [] -> n1

10 | n2 :: rest2 ->

11 (compare n1 n2) + (f rest1 rest2)

12
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14

Figure 2: Motivating example of our method. Incorrect lines in the LLM solution are highlighted in red.

ExistingBidirectional Search-Based Synthesis. Apopular ap-
proach to search-based program synthesis is to use a bidirectional
search algorithm [1, 12–15] that alternates between top-down and
bottom-up search.

In the top-down search, the algorithm starts from an incomplete
program with holes representing missing parts of the program,
and gradually �lls the holes with subexpressions or more concrete
partial programs. During the search, input-output examples that
should be satis�ed by holes are inferred and used to guide the
search. For example, in the top-down search for the above problem,
the algorithm starts with a program skeleton such as

let rec f x y = ⇤

and re�nes the hole with a more concrete program such as

Listing 1: Example of partial program candidate
let rec f x y =

match x with

| [] -> ⇤1
| n1 :: rest1 -> ⇤2

and infers input-output examples that should be satis�ed by the
hole ⇤1 as [] [0] -> 0 and by the hole ⇤2 as [1, 2, 3] [0,

1] -> 6. Then, each hole is further re�ned with another partial
program with generating new holes associated with inferred input-
output examples, or with a complete subexpression that satis�es
the input-output examples, which is generated by the bottom-up
search that will be described next. In addition to this re�nement,
the top-down search also often prunes infeasible candidates that
cannot satisfy the speci�cation no matter how the holes are �lled.

The important aspect of the top-down search is that how to
pick candidates for further re�nement is crucial for the e�ciency
of the search. To tame the large search space, there have been
various approaches to explore promising candidates �rst, such as
using heuristics based on syntactic features of candidates [12, 22]
or statistical models [23–25].

In the bottom-up search, the algorithm starts from the smallest
expressions such as constants and variables and constructs larger

expressions by combining smaller expressions. For example, in
the bottom-up search for the above problem, the algorithm starts
with constants such as [] and 0, variables such as f and x, and
constructs larger expressions such as (f x []) by combining
smaller expressions. The generated expressions are used to �ll the
holes in partial programs generated by the top-down search.

The important aspect of the bottom-up search is that redundant
expressions are pruned using the observational equivalence rela-
tion, which is a relation that two expressions are equivalent if they
produce the same output for all input examples. For example, let
variable n2 denote the �rst element of the list y. Then, the expres-
sions 0 and n2 are observationally equivalent because they produce
the same output for all input examples (n2 always evaluates to 0
since the �rst element of the second input list is 0 in every case).
When n2 is generated after 0 is generated, the algorithm discards
n2. In this manner, only one representative for each observational
equivalence class is kept, which signi�cantly reduces the number of
expressions to be considered in the bottom-up search. This pruning
is crucial for the e�ciency of not only the bottom-up search, but
also the top-down search by reducing the number of component
expressions that can be used to �ll holes.

How the top-down and bottom-up searches interplay in the
bidirectional search is various. For example, they may run in paral-
lel [15] or the bottom-up search is �rst run to generate components
and then the top-down search is run to �ll holes with the generated
components [12, 13].

Based on the observations on the LLM solution, we propose a
distance-guided search algorithm that guides both the top-down
and bottom-up search with the LLM solution.

Anti-Uni�cation-BasedDistanceMetric forGuidingTop-Down
Search. Since the LLM’s incorrect solution often contains a cor-
rect overall structure despite some details being incorrect, we guide
the top-down search to prioritize candidates having a similar struc-
ture to the LLM solution.

To this end, we use a distancemetric based on anti-uni�cation [26]
that can measure the structural similarity between two programs.

3

LLM이 생성한 

오답코드를 참고하여

정답코드 

빠르게 합성



정적 분석 마의 삼각형
단 둘만 가능

• 한계극복 위해 사람들이 LLM을 정적분석에 사용. But 단순 사용은 별로 효과적이지 않음 


•단순사용: 정적 분석 경보와 코드 보여주고 “해당 경보의 진위여부를 알려줘.” 

•토큰 제한: 최대입력토큰수 제한. 코드는 더 거대 

•환각: 믿을 수 없고 일관적이지 않은 답변 — 긴 답변의 진위여부를 체크해야.

안전성 (실제 가능성 모두 포섭)

분석속도 

(대규모 SW분석 가능)

정확도 

(드문 허위정보)



LLM 상호작용을 통한 허위경보 제거

•먼저 정적 분석의 결론 도출 과정(provenance)을 획득

•결론 도출 과정 중, 틀렸을 가능성이 있는 일부 단계들에 대해서 LLM에 질의

•전체 오류 경보의 진위여부를 묻는 것 보다 

•  질문 및 대답 양 적음 — 검증을 위한 노력 감소, 토큰 제한 문제 해결

•  질문의 난이도 감소 — 환각으로 인한 오답 확률 감소   



뒤 이어
What is program synthesis?What is program synthesis?

LLM 오답을 이용한 
양방향탐색 안내

(조한결 박사과정)

LLM이 생성하는 코드에서 
정의되지 않은 변수사용 

금지하기

(박준성, 김진상 석사과정)

 LLM과 상호작용을 통한 
정적분석 허위경보 제거

(주강대 석사과정)



LLM 오답을 이용한 양방향탐색 안내

조한결 박사과정  
What is program synthesis?



0 x 1

0 + x

(x + 1) - x

x + 1

. . .

합성을 위한 두 탐색 전략

하향식 상향식

• 빈 프로그램에서 시작, 구멍을 점차 채움

• 싹수없는infeasible 프로그램 조기 제거

• 작은식들을 조합, 점차 큰 프로그램 생성

• 실행결과가 같은 중복redundant 식들 제거 

(observational equivalence pruning)

Same  
outputs 
(wrt input  
  examples)

Same  
outputs

??1 + ??2
x

3 + ??2

. . .
??1 + (??2 + ??3)

??

function f x = ?? (spec: 0 ⟼ 0, 1 ⟼ 2)
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양방향 탐색 전략
•  하향식으로 뼈대 생성 + 상향식으로 구멍을 채울 식 생성†

 싹수없는 뼈대 제거 + 중복되는 식 제거

•  다양한 합성기가 사용중 (Duet[POPL’21], Simba[PLDI’23], Flashfill++[POPL’23], Synthphonia[PLDI’25])

†Woosuk Lee, Combining the Top-Down Propagation and Bottom-Up Enumeration for Inductive Program Synthesis, POPL’21

??1 + ??2??1 - ??2 x

3 + ??2

0 x 1

0 + x

(x + 1) - x

x + 1

. . .
??1 + (??2 + ??3)

. . .??
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양방향 합성 알고리즘
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양방향탐색 (문법 G, 스펙 ￼ )


1 :   ￼ , ￼ 

2 :   repeat 

3 :           C := 부품식추가(G, n) 

4 :           Q := { ￼  } 


5 :            while Q ￼  do 

6 :                    P := 후보선택(Q) 

7 :                     if P 만족 ￼  then return P 

8 :                     if P 싹수없음 then continue

9 :                     h := 구멍선택(P)

10:                    Q := Q  구멍채우기P(h, G, C)


11 :            done; ￼ 

12:  until 시간제한 초과

Φ

C := ∅ n := 1

□

≠ ∅

Φ

∪

n := n + 1



LLM 오답을 이용한 양방향탐색 개요
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Distance-Guided Search in Program Synthesis with Imperfect
LLM Solutions
Anonymous Author(s)

Abstract
Search-based program synthesis systematically explores a space
of programs to �nd one that satis�es a given speci�cation. While
e�ective for small programs, it struggles with scalability due to
the combinatorial explosion of the search space. In contrast, large
language models (LLMs) can generate large programs but often
produce solutions that are incorrect or fail to meet the speci�cation.
We propose a novel distance-guided search algorithm that lever-
ages imperfect LLM-generated programs to guide both top-down
and bottom-up synthesis. Using an anti-uni�cation-based distance
metric, we prioritize candidates in the top-down search that are
structurally similar to the LLM output. For bottom-up synthesis,
we generate components close to subexpressions of the LLM so-
lution while preserving completeness and pruning e�ciency. We
implement our approach atop T���, a bidirectional synthesizer for
recursive functional programs, and evaluate it on 80 synthesis tasks.
Our results show that distance-guided search e�ectively combines
the strengths of LLMs and search-based methods, solving tasks
beyond the reach of either technique alone.
ACM Reference Format:
Anonymous Author(s). 2025. Distance-Guided Search in Program Synthesis
with Imperfect LLM Solutions. In . ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Search-based program synthesis automatically constructs programs
from speci�cations such as input-output examples or logical con-
straints. It has been applied successfully to tasks including data
wrangling [1, 2], invariant inference [3], program optimization [4],
end-user programming [5], and security [6]. While highly e�ective
for small programs over domain-speci�c languages (DSLs), its scal-
ability is limited due to the combinatorial explosion of the search
space.

In contrast, large language models (LLMs) have demonstrated
remarkable scalability in generating large programs by predicting
code directly from speci�cations. However, this scalability comes
at the cost of reliabilityâĂŤLLM-generated programs often fail to
satisfy the speci�cation, particularly when targeting unfamiliar
DSLs.

The complementary strengths and weaknesses of search-based
synthesis and LLMs have motivated research that integrates the
two [7–11]. Search-based synthesis ensures semantic correctness,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
Conference’17, Washington, DC, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YYYY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: Overview of our distance-guided search algorithm.

while LLMs o�er expressive power. In such approaches, the synthe-
sizer de�nes the DSL as the target language, and the LLM generates
candidate programs in this DSL. Even if the LLM-generated solu-
tion is incorrect, it often contains useful structural hints and can
be used to guide the search by prioritizing candidates close to the
LLM output – under the hypothesis that the correct program lies
in its vicinity.

However, existing LLM-guided synthesis methods face two limi-
tations.

First, they lack a mechanism to adjust the level of con�dence
in the LLM-generated solution. Existing approaches make one of
two assumptions: either (1) the LLM output is mostly correct and
can be directly reused without modi�cation, or (2) it is largely
incorrect but informative enough to train a surrogate model (e.g., a
probabilistic grammar) that indirectly guides synthesis. There is no
middle ground that allows �exible use based on con�dence. Ideally,
we would use the LLM output directly when con�dent and use it
more loosely – e.g., as a search heuristic – when less certain.

Second, priormethods typically support only top-down or bottom-
up synthesis, not both. Top-down synthesis starts with a partial
programwith missing parts (holes) and incrementally �lls the holes,
while bottom-up synthesis composes programs from smaller ex-
pressions. Each has strengths and weaknesses, and bidirectional
synthesis – used in various systems [1, 12–15] – has proven e�ec-
tive. In bidirecioal synthesis, the top-down search generates partial
program candidates with holes, while the bottom-up search gener-
ates components that can be used to �ll in the holes in the partial
program candidates. A uni�ed LLM-guided approach supporting
both strategies is thus desirable.

In this paper, we propose a novel distance-guided search algo-
rithm that leverages imperfect LLM solutions to guide both top-
down and bottom-up synthesis. As shown in Fig. 1, given a synthesis
task that cannot be easily solved by a synthesizer, we �rst use an
LLM to generate a candidate solution. If it fails to satisfy the speci�-
cation, we provide counterexamples and request a revised solution.
After a few iterations, if the LLM still fails, we use its output to
guide the search.

1



예제 문제
• 두 정수 리스트를 받아서, 각 인덱스 마다 원소들을 비교하여 더 큰 것들의 합을 반환하는 
함수 만들기. 리스트 길이가 다를 경우, 더 긴 리스트의 나머지 부분을 결과에 더해서 반환

• 입출력 예제:  
  [ ]       [ 0 ]        ->  0 
 [1, 2, 3] [0, 1]       ->  6 
 [1, 2]    [0, 4, 2, 3] ->  10  
  … 


• SOTA 합성기들 모두 2분내 합성 실패
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(a) A solution to the synthesis speci�cation

1 let rec f x y =

2 match x with

3 | [] ->

4 match y with

5 | [] -> 0

6 | n2 :: rest2 -> n2 + (f [] rest2)

7 | n1 :: rest1 ->

8 match y with

9 | [] -> n1 + (f rest1 [])

10 | n2 :: rest2 ->

11 match (compare n1 n2) with

12 | EQ -> n1 + (f rest1 rest2)

13 | GT -> n1 + (f rest1 rest2)

14 | LT -> n2 + (f rest1 rest2)

(b) Incorrect solution generated by an LLM

1 let rec f x y =

2 match x with

3 | [] ->

4 match y with

5 | [] -> 0

6 | n2 :: rest2 -> n2

7 | n1 :: rest1 ->

8 match y with

9 | [] -> n1

10 | n2 :: rest2 ->

11 (compare n1 n2) + (f rest1 rest2)

12

13

14

Figure 2: Motivating example of our method. Incorrect lines in the LLM solution are highlighted in red.

ExistingBidirectional Search-Based Synthesis. Apopular ap-
proach to search-based program synthesis is to use a bidirectional
search algorithm [1, 12–15] that alternates between top-down and
bottom-up search.

In the top-down search, the algorithm starts from an incomplete
program with holes representing missing parts of the program,
and gradually �lls the holes with subexpressions or more concrete
partial programs. During the search, input-output examples that
should be satis�ed by holes are inferred and used to guide the
search. For example, in the top-down search for the above problem,
the algorithm starts with a program skeleton such as

let rec f x y = ⇤

and re�nes the hole with a more concrete program such as

Listing 1: Example of partial program candidate
let rec f x y =

match x with

| [] -> ⇤1
| n1 :: rest1 -> ⇤2

and infers input-output examples that should be satis�ed by the
hole ⇤1 as [] [0] -> 0 and by the hole ⇤2 as [1, 2, 3] [0,

1] -> 6. Then, each hole is further re�ned with another partial
program with generating new holes associated with inferred input-
output examples, or with a complete subexpression that satis�es
the input-output examples, which is generated by the bottom-up
search that will be described next. In addition to this re�nement,
the top-down search also often prunes infeasible candidates that
cannot satisfy the speci�cation no matter how the holes are �lled.

The important aspect of the top-down search is that how to
pick candidates for further re�nement is crucial for the e�ciency
of the search. To tame the large search space, there have been
various approaches to explore promising candidates �rst, such as
using heuristics based on syntactic features of candidates [12, 22]
or statistical models [23–25].

In the bottom-up search, the algorithm starts from the smallest
expressions such as constants and variables and constructs larger

expressions by combining smaller expressions. For example, in
the bottom-up search for the above problem, the algorithm starts
with constants such as [] and 0, variables such as f and x, and
constructs larger expressions such as (f x []) by combining
smaller expressions. The generated expressions are used to �ll the
holes in partial programs generated by the top-down search.

The important aspect of the bottom-up search is that redundant
expressions are pruned using the observational equivalence rela-
tion, which is a relation that two expressions are equivalent if they
produce the same output for all input examples. For example, let
variable n2 denote the �rst element of the list y. Then, the expres-
sions 0 and n2 are observationally equivalent because they produce
the same output for all input examples (n2 always evaluates to 0
since the �rst element of the second input list is 0 in every case).
When n2 is generated after 0 is generated, the algorithm discards
n2. In this manner, only one representative for each observational
equivalence class is kept, which signi�cantly reduces the number of
expressions to be considered in the bottom-up search. This pruning
is crucial for the e�ciency of not only the bottom-up search, but
also the top-down search by reducing the number of component
expressions that can be used to �ll holes.

How the top-down and bottom-up searches interplay in the
bidirectional search is various. For example, they may run in paral-
lel [15] or the bottom-up search is �rst run to generate components
and then the top-down search is run to �ll holes with the generated
components [12, 13].

Based on the observations on the LLM solution, we propose a
distance-guided search algorithm that guides both the top-down
and bottom-up search with the LLM solution.

Anti-Uni�cation-BasedDistanceMetric forGuidingTop-Down
Search. Since the LLM’s incorrect solution often contains a cor-
rect overall structure despite some details being incorrect, we guide
the top-down search to prioritize candidates having a similar struc-
ture to the LLM solution.

To this end, we use a distancemetric based on anti-uni�cation [26]
that can measure the structural similarity between two programs.
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Distance-Guided Search in Program Synthesis with Imperfect
LLM Solutions
Anonymous Author(s)

Abstract
Search-based program synthesis systematically explores a space
of programs to �nd one that satis�es a given speci�cation. While
e�ective for small programs, it struggles with scalability due to
the combinatorial explosion of the search space. In contrast, large
language models (LLMs) can generate large programs but often
produce solutions that are incorrect or fail to meet the speci�cation.
We propose a novel distance-guided search algorithm that lever-
ages imperfect LLM-generated programs to guide both top-down
and bottom-up synthesis. Using an anti-uni�cation-based distance
metric, we prioritize candidates in the top-down search that are
structurally similar to the LLM output. For bottom-up synthesis,
we generate components close to subexpressions of the LLM so-
lution while preserving completeness and pruning e�ciency. We
implement our approach atop T���, a bidirectional synthesizer for
recursive functional programs, and evaluate it on 80 synthesis tasks.
Our results show that distance-guided search e�ectively combines
the strengths of LLMs and search-based methods, solving tasks
beyond the reach of either technique alone.
ACM Reference Format:
Anonymous Author(s). 2025. Distance-Guided Search in Program Synthesis
with Imperfect LLM Solutions. In . ACM, New York, NY, USA, 11 pages.
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1 Introduction
Search-based program synthesis automatically constructs programs
from speci�cations such as input-output examples or logical con-
straints. It has been applied successfully to tasks including data
wrangling [1, 2], invariant inference [3], program optimization [4],
end-user programming [5], and security [6]. While highly e�ective
for small programs over domain-speci�c languages (DSLs), its scal-
ability is limited due to the combinatorial explosion of the search
space.

In contrast, large language models (LLMs) have demonstrated
remarkable scalability in generating large programs by predicting
code directly from speci�cations. However, this scalability comes
at the cost of reliabilityâĂŤLLM-generated programs often fail to
satisfy the speci�cation, particularly when targeting unfamiliar
DSLs.

The complementary strengths and weaknesses of search-based
synthesis and LLMs have motivated research that integrates the
two [7–11]. Search-based synthesis ensures semantic correctness,
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Figure 1: Overview of our distance-guided search algorithm.

while LLMs o�er expressive power. In such approaches, the synthe-
sizer de�nes the DSL as the target language, and the LLM generates
candidate programs in this DSL. Even if the LLM-generated solu-
tion is incorrect, it often contains useful structural hints and can
be used to guide the search by prioritizing candidates close to the
LLM output – under the hypothesis that the correct program lies
in its vicinity.

However, existing LLM-guided synthesis methods face two limi-
tations.

First, they lack a mechanism to adjust the level of con�dence
in the LLM-generated solution. Existing approaches make one of
two assumptions: either (1) the LLM output is mostly correct and
can be directly reused without modi�cation, or (2) it is largely
incorrect but informative enough to train a surrogate model (e.g., a
probabilistic grammar) that indirectly guides synthesis. There is no
middle ground that allows �exible use based on con�dence. Ideally,
we would use the LLM output directly when con�dent and use it
more loosely – e.g., as a search heuristic – when less certain.

Second, priormethods typically support only top-down or bottom-
up synthesis, not both. Top-down synthesis starts with a partial
programwith missing parts (holes) and incrementally �lls the holes,
while bottom-up synthesis composes programs from smaller ex-
pressions. Each has strengths and weaknesses, and bidirectional
synthesis – used in various systems [1, 12–15] – has proven e�ec-
tive. In bidirecioal synthesis, the top-down search generates partial
program candidates with holes, while the bottom-up search gener-
ates components that can be used to �ll in the holes in the partial
program candidates. A uni�ed LLM-guided approach supporting
both strategies is thus desirable.

In this paper, we propose a novel distance-guided search algo-
rithm that leverages imperfect LLM solutions to guide both top-
down and bottom-up synthesis. As shown in Fig. 1, given a synthesis
task that cannot be easily solved by a synthesizer, we �rst use an
LLM to generate a candidate solution. If it fails to satisfy the speci�-
cation, we provide counterexamples and request a revised solution.
After a few iterations, if the LLM still fails, we use its output to
guide the search.

1



•  GPT-4o-mini 사용. 틀릴 경우 피드백 제공. 3회까지 기회주기 

•  그럼에도 오답 생성

LLM에 질의
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(a) A solution to the synthesis speci�cation

1 let rec f x y =

2 match x with

3 | [] ->

4 match y with

5 | [] -> 0

6 | n2 :: rest2 -> n2 + (f [] rest2)

7 | n1 :: rest1 ->

8 match y with

9 | [] -> n1 + (f rest1 [])

10 | n2 :: rest2 ->

11 match (compare n1 n2) with

12 | EQ -> n1 + (f rest1 rest2)

13 | GT -> n1 + (f rest1 rest2)

14 | LT -> n2 + (f rest1 rest2)

(b) Incorrect solution generated by an LLM

1 let rec f x y =

2 match x with

3 | [] ->

4 match y with

5 | [] -> 0

6 | n2 :: rest2 -> n2

7 | n1 :: rest1 ->

8 match y with

9 | [] -> n1

10 | n2 :: rest2 ->

11 (compare n1 n2) + (f rest1 rest2)

12

13

14

Figure 2: Motivating example of our method. Incorrect lines in the LLM solution are highlighted in red.

ExistingBidirectional Search-Based Synthesis. Apopular ap-
proach to search-based program synthesis is to use a bidirectional
search algorithm [1, 12–15] that alternates between top-down and
bottom-up search.

In the top-down search, the algorithm starts from an incomplete
program with holes representing missing parts of the program,
and gradually �lls the holes with subexpressions or more concrete
partial programs. During the search, input-output examples that
should be satis�ed by holes are inferred and used to guide the
search. For example, in the top-down search for the above problem,
the algorithm starts with a program skeleton such as

let rec f x y = ⇤

and re�nes the hole with a more concrete program such as

Listing 1: Example of partial program candidate
let rec f x y =

match x with

| [] -> ⇤1
| n1 :: rest1 -> ⇤2

and infers input-output examples that should be satis�ed by the
hole ⇤1 as [] [0] -> 0 and by the hole ⇤2 as [1, 2, 3] [0,

1] -> 6. Then, each hole is further re�ned with another partial
program with generating new holes associated with inferred input-
output examples, or with a complete subexpression that satis�es
the input-output examples, which is generated by the bottom-up
search that will be described next. In addition to this re�nement,
the top-down search also often prunes infeasible candidates that
cannot satisfy the speci�cation no matter how the holes are �lled.

The important aspect of the top-down search is that how to
pick candidates for further re�nement is crucial for the e�ciency
of the search. To tame the large search space, there have been
various approaches to explore promising candidates �rst, such as
using heuristics based on syntactic features of candidates [12, 22]
or statistical models [23–25].

In the bottom-up search, the algorithm starts from the smallest
expressions such as constants and variables and constructs larger

expressions by combining smaller expressions. For example, in
the bottom-up search for the above problem, the algorithm starts
with constants such as [] and 0, variables such as f and x, and
constructs larger expressions such as (f x []) by combining
smaller expressions. The generated expressions are used to �ll the
holes in partial programs generated by the top-down search.

The important aspect of the bottom-up search is that redundant
expressions are pruned using the observational equivalence rela-
tion, which is a relation that two expressions are equivalent if they
produce the same output for all input examples. For example, let
variable n2 denote the �rst element of the list y. Then, the expres-
sions 0 and n2 are observationally equivalent because they produce
the same output for all input examples (n2 always evaluates to 0
since the �rst element of the second input list is 0 in every case).
When n2 is generated after 0 is generated, the algorithm discards
n2. In this manner, only one representative for each observational
equivalence class is kept, which signi�cantly reduces the number of
expressions to be considered in the bottom-up search. This pruning
is crucial for the e�ciency of not only the bottom-up search, but
also the top-down search by reducing the number of component
expressions that can be used to �ll holes.

How the top-down and bottom-up searches interplay in the
bidirectional search is various. For example, they may run in paral-
lel [15] or the bottom-up search is �rst run to generate components
and then the top-down search is run to �ll holes with the generated
components [12, 13].

Based on the observations on the LLM solution, we propose a
distance-guided search algorithm that guides both the top-down
and bottom-up search with the LLM solution.

Anti-Uni�cation-BasedDistanceMetric forGuidingTop-Down
Search. Since the LLM’s incorrect solution often contains a cor-
rect overall structure despite some details being incorrect, we guide
the top-down search to prioritize candidates having a similar struc-
ture to the LLM solution.

To this end, we use a distancemetric based on anti-uni�cation [26]
that can measure the structural similarity between two programs.
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(a) A solution to the synthesis speci�cation

1 let rec f x y =

2 match x with

3 | [] ->

4 match y with

5 | [] -> 0

6 | n2 :: rest2 -> n2 + (f [] rest2)

7 | n1 :: rest1 ->

8 match y with

9 | [] -> n1 + (f rest1 [])

10 | n2 :: rest2 ->

11 match (compare n1 n2) with

12 | EQ -> n1 + (f rest1 rest2)

13 | GT -> n1 + (f rest1 rest2)

14 | LT -> n2 + (f rest1 rest2)

(b) Incorrect solution generated by an LLM

1 let rec f x y =

2 match x with

3 | [] ->

4 match y with

5 | [] -> 0

6 | n2 :: rest2 -> n2

7 | n1 :: rest1 ->

8 match y with

9 | [] -> n1

10 | n2 :: rest2 ->

11 (compare n1 n2) + (f rest1 rest2)
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14

Figure 2: Motivating example of our method. Incorrect lines in the LLM solution are highlighted in red.

ExistingBidirectional Search-Based Synthesis. Apopular ap-
proach to search-based program synthesis is to use a bidirectional
search algorithm [1, 12–15] that alternates between top-down and
bottom-up search.

In the top-down search, the algorithm starts from an incomplete
program with holes representing missing parts of the program,
and gradually �lls the holes with subexpressions or more concrete
partial programs. During the search, input-output examples that
should be satis�ed by holes are inferred and used to guide the
search. For example, in the top-down search for the above problem,
the algorithm starts with a program skeleton such as

let rec f x y = ⇤

and re�nes the hole with a more concrete program such as

Listing 1: Example of partial program candidate
let rec f x y =

match x with

| [] -> ⇤1
| n1 :: rest1 -> ⇤2

and infers input-output examples that should be satis�ed by the
hole ⇤1 as [] [0] -> 0 and by the hole ⇤2 as [1, 2, 3] [0,

1] -> 6. Then, each hole is further re�ned with another partial
program with generating new holes associated with inferred input-
output examples, or with a complete subexpression that satis�es
the input-output examples, which is generated by the bottom-up
search that will be described next. In addition to this re�nement,
the top-down search also often prunes infeasible candidates that
cannot satisfy the speci�cation no matter how the holes are �lled.

The important aspect of the top-down search is that how to
pick candidates for further re�nement is crucial for the e�ciency
of the search. To tame the large search space, there have been
various approaches to explore promising candidates �rst, such as
using heuristics based on syntactic features of candidates [12, 22]
or statistical models [23–25].

In the bottom-up search, the algorithm starts from the smallest
expressions such as constants and variables and constructs larger

expressions by combining smaller expressions. For example, in
the bottom-up search for the above problem, the algorithm starts
with constants such as [] and 0, variables such as f and x, and
constructs larger expressions such as (f x []) by combining
smaller expressions. The generated expressions are used to �ll the
holes in partial programs generated by the top-down search.

The important aspect of the bottom-up search is that redundant
expressions are pruned using the observational equivalence rela-
tion, which is a relation that two expressions are equivalent if they
produce the same output for all input examples. For example, let
variable n2 denote the �rst element of the list y. Then, the expres-
sions 0 and n2 are observationally equivalent because they produce
the same output for all input examples (n2 always evaluates to 0
since the �rst element of the second input list is 0 in every case).
When n2 is generated after 0 is generated, the algorithm discards
n2. In this manner, only one representative for each observational
equivalence class is kept, which signi�cantly reduces the number of
expressions to be considered in the bottom-up search. This pruning
is crucial for the e�ciency of not only the bottom-up search, but
also the top-down search by reducing the number of component
expressions that can be used to �ll holes.

How the top-down and bottom-up searches interplay in the
bidirectional search is various. For example, they may run in paral-
lel [15] or the bottom-up search is �rst run to generate components
and then the top-down search is run to �ll holes with the generated
components [12, 13].

Based on the observations on the LLM solution, we propose a
distance-guided search algorithm that guides both the top-down
and bottom-up search with the LLM solution.

Anti-Uni�cation-BasedDistanceMetric forGuidingTop-Down
Search. Since the LLM’s incorrect solution often contains a cor-
rect overall structure despite some details being incorrect, we guide
the top-down search to prioritize candidates having a similar struc-
ture to the LLM solution.

To this end, we use a distancemetric based on anti-uni�cation [26]
that can measure the structural similarity between two programs.
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Distance-Guided Search in Program Synthesis with Imperfect
LLM Solutions
Anonymous Author(s)

Abstract
Search-based program synthesis systematically explores a space
of programs to �nd one that satis�es a given speci�cation. While
e�ective for small programs, it struggles with scalability due to
the combinatorial explosion of the search space. In contrast, large
language models (LLMs) can generate large programs but often
produce solutions that are incorrect or fail to meet the speci�cation.
We propose a novel distance-guided search algorithm that lever-
ages imperfect LLM-generated programs to guide both top-down
and bottom-up synthesis. Using an anti-uni�cation-based distance
metric, we prioritize candidates in the top-down search that are
structurally similar to the LLM output. For bottom-up synthesis,
we generate components close to subexpressions of the LLM so-
lution while preserving completeness and pruning e�ciency. We
implement our approach atop T���, a bidirectional synthesizer for
recursive functional programs, and evaluate it on 80 synthesis tasks.
Our results show that distance-guided search e�ectively combines
the strengths of LLMs and search-based methods, solving tasks
beyond the reach of either technique alone.
ACM Reference Format:
Anonymous Author(s). 2025. Distance-Guided Search in Program Synthesis
with Imperfect LLM Solutions. In . ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Search-based program synthesis automatically constructs programs
from speci�cations such as input-output examples or logical con-
straints. It has been applied successfully to tasks including data
wrangling [1, 2], invariant inference [3], program optimization [4],
end-user programming [5], and security [6]. While highly e�ective
for small programs over domain-speci�c languages (DSLs), its scal-
ability is limited due to the combinatorial explosion of the search
space.

In contrast, large language models (LLMs) have demonstrated
remarkable scalability in generating large programs by predicting
code directly from speci�cations. However, this scalability comes
at the cost of reliabilityâĂŤLLM-generated programs often fail to
satisfy the speci�cation, particularly when targeting unfamiliar
DSLs.

The complementary strengths and weaknesses of search-based
synthesis and LLMs have motivated research that integrates the
two [7–11]. Search-based synthesis ensures semantic correctness,
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Figure 1: Overview of our distance-guided search algorithm.

while LLMs o�er expressive power. In such approaches, the synthe-
sizer de�nes the DSL as the target language, and the LLM generates
candidate programs in this DSL. Even if the LLM-generated solu-
tion is incorrect, it often contains useful structural hints and can
be used to guide the search by prioritizing candidates close to the
LLM output – under the hypothesis that the correct program lies
in its vicinity.

However, existing LLM-guided synthesis methods face two limi-
tations.

First, they lack a mechanism to adjust the level of con�dence
in the LLM-generated solution. Existing approaches make one of
two assumptions: either (1) the LLM output is mostly correct and
can be directly reused without modi�cation, or (2) it is largely
incorrect but informative enough to train a surrogate model (e.g., a
probabilistic grammar) that indirectly guides synthesis. There is no
middle ground that allows �exible use based on con�dence. Ideally,
we would use the LLM output directly when con�dent and use it
more loosely – e.g., as a search heuristic – when less certain.

Second, priormethods typically support only top-down or bottom-
up synthesis, not both. Top-down synthesis starts with a partial
programwith missing parts (holes) and incrementally �lls the holes,
while bottom-up synthesis composes programs from smaller ex-
pressions. Each has strengths and weaknesses, and bidirectional
synthesis – used in various systems [1, 12–15] – has proven e�ec-
tive. In bidirecioal synthesis, the top-down search generates partial
program candidates with holes, while the bottom-up search gener-
ates components that can be used to �ll in the holes in the partial
program candidates. A uni�ed LLM-guided approach supporting
both strategies is thus desirable.

In this paper, we propose a novel distance-guided search algo-
rithm that leverages imperfect LLM solutions to guide both top-
down and bottom-up synthesis. As shown in Fig. 1, given a synthesis
task that cannot be easily solved by a synthesizer, we �rst use an
LLM to generate a candidate solution. If it fails to satisfy the speci�-
cation, we provide counterexamples and request a revised solution.
After a few iterations, if the LLM still fails, we use its output to
guide the search.

1



•  전체적인 구조 유사

•  정답의 중요부분이 그대로 존재하거나, 약간 다르게 존재

틀렸지만 유용

￼28

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Distance-Guided Search in Program Synthesis with Imperfect LLM Solutions Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

(a) A solution to the synthesis speci�cation

1 let rec f x y =

2 match x with

3 | [] ->

4 match y with

5 | [] -> 0

6 | n2 :: rest2 -> n2 + (f [] rest2)

7 | n1 :: rest1 ->

8 match y with

9 | [] -> n1 + (f rest1 [])

10 | n2 :: rest2 ->

11 match (compare n1 n2) with

12 | EQ -> n1 + (f rest1 rest2)

13 | GT -> n1 + (f rest1 rest2)

14 | LT -> n2 + (f rest1 rest2)

(b) Incorrect solution generated by an LLM

1 let rec f x y =

2 match x with

3 | [] ->

4 match y with

5 | [] -> 0

6 | n2 :: rest2 -> n2

7 | n1 :: rest1 ->

8 match y with

9 | [] -> n1

10 | n2 :: rest2 ->

11 (compare n1 n2) + (f rest1 rest2)

12

13

14

Figure 2: Motivating example of our method. Incorrect lines in the LLM solution are highlighted in red.

ExistingBidirectional Search-Based Synthesis. Apopular ap-
proach to search-based program synthesis is to use a bidirectional
search algorithm [1, 12–15] that alternates between top-down and
bottom-up search.

In the top-down search, the algorithm starts from an incomplete
program with holes representing missing parts of the program,
and gradually �lls the holes with subexpressions or more concrete
partial programs. During the search, input-output examples that
should be satis�ed by holes are inferred and used to guide the
search. For example, in the top-down search for the above problem,
the algorithm starts with a program skeleton such as

let rec f x y = ⇤

and re�nes the hole with a more concrete program such as

Listing 1: Example of partial program candidate
let rec f x y =

match x with

| [] -> ⇤1
| n1 :: rest1 -> ⇤2

and infers input-output examples that should be satis�ed by the
hole ⇤1 as [] [0] -> 0 and by the hole ⇤2 as [1, 2, 3] [0,

1] -> 6. Then, each hole is further re�ned with another partial
program with generating new holes associated with inferred input-
output examples, or with a complete subexpression that satis�es
the input-output examples, which is generated by the bottom-up
search that will be described next. In addition to this re�nement,
the top-down search also often prunes infeasible candidates that
cannot satisfy the speci�cation no matter how the holes are �lled.

The important aspect of the top-down search is that how to
pick candidates for further re�nement is crucial for the e�ciency
of the search. To tame the large search space, there have been
various approaches to explore promising candidates �rst, such as
using heuristics based on syntactic features of candidates [12, 22]
or statistical models [23–25].

In the bottom-up search, the algorithm starts from the smallest
expressions such as constants and variables and constructs larger

expressions by combining smaller expressions. For example, in
the bottom-up search for the above problem, the algorithm starts
with constants such as [] and 0, variables such as f and x, and
constructs larger expressions such as (f x []) by combining
smaller expressions. The generated expressions are used to �ll the
holes in partial programs generated by the top-down search.

The important aspect of the bottom-up search is that redundant
expressions are pruned using the observational equivalence rela-
tion, which is a relation that two expressions are equivalent if they
produce the same output for all input examples. For example, let
variable n2 denote the �rst element of the list y. Then, the expres-
sions 0 and n2 are observationally equivalent because they produce
the same output for all input examples (n2 always evaluates to 0
since the �rst element of the second input list is 0 in every case).
When n2 is generated after 0 is generated, the algorithm discards
n2. In this manner, only one representative for each observational
equivalence class is kept, which signi�cantly reduces the number of
expressions to be considered in the bottom-up search. This pruning
is crucial for the e�ciency of not only the bottom-up search, but
also the top-down search by reducing the number of component
expressions that can be used to �ll holes.

How the top-down and bottom-up searches interplay in the
bidirectional search is various. For example, they may run in paral-
lel [15] or the bottom-up search is �rst run to generate components
and then the top-down search is run to �ll holes with the generated
components [12, 13].

Based on the observations on the LLM solution, we propose a
distance-guided search algorithm that guides both the top-down
and bottom-up search with the LLM solution.

Anti-Uni�cation-BasedDistanceMetric forGuidingTop-Down
Search. Since the LLM’s incorrect solution often contains a cor-
rect overall structure despite some details being incorrect, we guide
the top-down search to prioritize candidates having a similar struc-
ture to the LLM solution.

To this end, we use a distancemetric based on anti-uni�cation [26]
that can measure the structural similarity between two programs.

3

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Distance-Guided Search in Program Synthesis with Imperfect LLM Solutions Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

(a) A solution to the synthesis speci�cation

1 let rec f x y =

2 match x with

3 | [] ->

4 match y with

5 | [] -> 0

6 | n2 :: rest2 -> n2 + (f [] rest2)

7 | n1 :: rest1 ->

8 match y with

9 | [] -> n1 + (f rest1 [])

10 | n2 :: rest2 ->

11 match (compare n1 n2) with

12 | EQ -> n1 + (f rest1 rest2)

13 | GT -> n1 + (f rest1 rest2)

14 | LT -> n2 + (f rest1 rest2)

(b) Incorrect solution generated by an LLM

1 let rec f x y =

2 match x with

3 | [] ->

4 match y with

5 | [] -> 0

6 | n2 :: rest2 -> n2

7 | n1 :: rest1 ->

8 match y with

9 | [] -> n1

10 | n2 :: rest2 ->

11 (compare n1 n2) + (f rest1 rest2)

12

13

14

Figure 2: Motivating example of our method. Incorrect lines in the LLM solution are highlighted in red.

ExistingBidirectional Search-Based Synthesis. Apopular ap-
proach to search-based program synthesis is to use a bidirectional
search algorithm [1, 12–15] that alternates between top-down and
bottom-up search.

In the top-down search, the algorithm starts from an incomplete
program with holes representing missing parts of the program,
and gradually �lls the holes with subexpressions or more concrete
partial programs. During the search, input-output examples that
should be satis�ed by holes are inferred and used to guide the
search. For example, in the top-down search for the above problem,
the algorithm starts with a program skeleton such as

let rec f x y = ⇤

and re�nes the hole with a more concrete program such as

Listing 1: Example of partial program candidate
let rec f x y =

match x with

| [] -> ⇤1
| n1 :: rest1 -> ⇤2

and infers input-output examples that should be satis�ed by the
hole ⇤1 as [] [0] -> 0 and by the hole ⇤2 as [1, 2, 3] [0,

1] -> 6. Then, each hole is further re�ned with another partial
program with generating new holes associated with inferred input-
output examples, or with a complete subexpression that satis�es
the input-output examples, which is generated by the bottom-up
search that will be described next. In addition to this re�nement,
the top-down search also often prunes infeasible candidates that
cannot satisfy the speci�cation no matter how the holes are �lled.

The important aspect of the top-down search is that how to
pick candidates for further re�nement is crucial for the e�ciency
of the search. To tame the large search space, there have been
various approaches to explore promising candidates �rst, such as
using heuristics based on syntactic features of candidates [12, 22]
or statistical models [23–25].

In the bottom-up search, the algorithm starts from the smallest
expressions such as constants and variables and constructs larger

expressions by combining smaller expressions. For example, in
the bottom-up search for the above problem, the algorithm starts
with constants such as [] and 0, variables such as f and x, and
constructs larger expressions such as (f x []) by combining
smaller expressions. The generated expressions are used to �ll the
holes in partial programs generated by the top-down search.

The important aspect of the bottom-up search is that redundant
expressions are pruned using the observational equivalence rela-
tion, which is a relation that two expressions are equivalent if they
produce the same output for all input examples. For example, let
variable n2 denote the �rst element of the list y. Then, the expres-
sions 0 and n2 are observationally equivalent because they produce
the same output for all input examples (n2 always evaluates to 0
since the �rst element of the second input list is 0 in every case).
When n2 is generated after 0 is generated, the algorithm discards
n2. In this manner, only one representative for each observational
equivalence class is kept, which signi�cantly reduces the number of
expressions to be considered in the bottom-up search. This pruning
is crucial for the e�ciency of not only the bottom-up search, but
also the top-down search by reducing the number of component
expressions that can be used to �ll holes.

How the top-down and bottom-up searches interplay in the
bidirectional search is various. For example, they may run in paral-
lel [15] or the bottom-up search is �rst run to generate components
and then the top-down search is run to �ll holes with the generated
components [12, 13].

Based on the observations on the LLM solution, we propose a
distance-guided search algorithm that guides both the top-down
and bottom-up search with the LLM solution.

Anti-Uni�cation-BasedDistanceMetric forGuidingTop-Down
Search. Since the LLM’s incorrect solution often contains a cor-
rect overall structure despite some details being incorrect, we guide
the top-down search to prioritize candidates having a similar struc-
ture to the LLM solution.

To this end, we use a distancemetric based on anti-uni�cation [26]
that can measure the structural similarity between two programs.
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Distance-Guided Search in Program Synthesis with Imperfect
LLM Solutions
Anonymous Author(s)

Abstract
Search-based program synthesis systematically explores a space
of programs to �nd one that satis�es a given speci�cation. While
e�ective for small programs, it struggles with scalability due to
the combinatorial explosion of the search space. In contrast, large
language models (LLMs) can generate large programs but often
produce solutions that are incorrect or fail to meet the speci�cation.
We propose a novel distance-guided search algorithm that lever-
ages imperfect LLM-generated programs to guide both top-down
and bottom-up synthesis. Using an anti-uni�cation-based distance
metric, we prioritize candidates in the top-down search that are
structurally similar to the LLM output. For bottom-up synthesis,
we generate components close to subexpressions of the LLM so-
lution while preserving completeness and pruning e�ciency. We
implement our approach atop T���, a bidirectional synthesizer for
recursive functional programs, and evaluate it on 80 synthesis tasks.
Our results show that distance-guided search e�ectively combines
the strengths of LLMs and search-based methods, solving tasks
beyond the reach of either technique alone.
ACM Reference Format:
Anonymous Author(s). 2025. Distance-Guided Search in Program Synthesis
with Imperfect LLM Solutions. In . ACM, New York, NY, USA, 11 pages.
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1 Introduction
Search-based program synthesis automatically constructs programs
from speci�cations such as input-output examples or logical con-
straints. It has been applied successfully to tasks including data
wrangling [1, 2], invariant inference [3], program optimization [4],
end-user programming [5], and security [6]. While highly e�ective
for small programs over domain-speci�c languages (DSLs), its scal-
ability is limited due to the combinatorial explosion of the search
space.

In contrast, large language models (LLMs) have demonstrated
remarkable scalability in generating large programs by predicting
code directly from speci�cations. However, this scalability comes
at the cost of reliabilityâĂŤLLM-generated programs often fail to
satisfy the speci�cation, particularly when targeting unfamiliar
DSLs.

The complementary strengths and weaknesses of search-based
synthesis and LLMs have motivated research that integrates the
two [7–11]. Search-based synthesis ensures semantic correctness,
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Figure 1: Overview of our distance-guided search algorithm.

while LLMs o�er expressive power. In such approaches, the synthe-
sizer de�nes the DSL as the target language, and the LLM generates
candidate programs in this DSL. Even if the LLM-generated solu-
tion is incorrect, it often contains useful structural hints and can
be used to guide the search by prioritizing candidates close to the
LLM output – under the hypothesis that the correct program lies
in its vicinity.

However, existing LLM-guided synthesis methods face two limi-
tations.

First, they lack a mechanism to adjust the level of con�dence
in the LLM-generated solution. Existing approaches make one of
two assumptions: either (1) the LLM output is mostly correct and
can be directly reused without modi�cation, or (2) it is largely
incorrect but informative enough to train a surrogate model (e.g., a
probabilistic grammar) that indirectly guides synthesis. There is no
middle ground that allows �exible use based on con�dence. Ideally,
we would use the LLM output directly when con�dent and use it
more loosely – e.g., as a search heuristic – when less certain.

Second, priormethods typically support only top-down or bottom-
up synthesis, not both. Top-down synthesis starts with a partial
programwith missing parts (holes) and incrementally �lls the holes,
while bottom-up synthesis composes programs from smaller ex-
pressions. Each has strengths and weaknesses, and bidirectional
synthesis – used in various systems [1, 12–15] – has proven e�ec-
tive. In bidirecioal synthesis, the top-down search generates partial
program candidates with holes, while the bottom-up search gener-
ates components that can be used to �ll in the holes in the partial
program candidates. A uni�ed LLM-guided approach supporting
both strategies is thus desirable.

In this paper, we propose a novel distance-guided search algo-
rithm that leverages imperfect LLM solutions to guide both top-
down and bottom-up synthesis. As shown in Fig. 1, given a synthesis
task that cannot be easily solved by a synthesizer, we �rst use an
LLM to generate a candidate solution. If it fails to satisfy the speci�-
cation, we provide counterexamples and request a revised solution.
After a few iterations, if the LLM still fails, we use its output to
guide the search.

1

LLM오답에 없으나 
(f rest1 rest2)와 유사



LLM 오답을 이용한 
양방향 탐색 유도 알고리즘

양방향탐색 (문법 G, 스펙 ￼ , LLM 오답 ￼ )


1 :   ￼ , ￼ 

2 :   repeat 

3 :           C := 부품식추가(G, ￼ , ￼ ) 


4 :           Q := { ￼  } 


5 :            while Q ￼  do 


6 :                    P := 후보선택(Q, ￼ ) 


7 :                     if P 만족 ￼  then return P 

8 :                     if P 싹수없음 then continue

9 :                     h := 구멍선택(P)

10:                     Q := Q  구멍채우기P(h, G, C)


11 :            done; ￼ 

12:  until 시간제한 초과

Φ PLLM

C := ∅ n := 1

n PLLM

□

≠ ∅

PLLM

Φ

∪

n := n + 1
￼29

LLM 오답과 비슷한 후보  
먼저 탐색



• 공통패턴 뽑기anti-unification: 두 프로그램의 공통부분만 남기고 불일치되는 부분을 변수로

• 후보 프로그램 A와 LLM오답 사이 거리: LLM오답에서 패턴 변수에 해당하는 부분 크기의 합

• 거리가 짧은 순으로 후보 프로그램들 탐색 — 구멍은 특별히 취급 (어떤 프로그램도 될 수 있음)

• 복잡도 ￼  으로 ￼  이상의 복잡도의 문자열/트리수정거리 보다 많은 후보 탐색에 유리O(n) O(n2)
￼30
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(a) A solution to the synthesis speci�cation

1 let rec f x y =

2 match x with

3 | [] ->

4 match y with

5 | [] -> 0

6 | n2 :: rest2 -> n2 + (f [] rest2)

7 | n1 :: rest1 ->

8 match y with

9 | [] -> n1 + (f rest1 [])

10 | n2 :: rest2 ->

11 match (compare n1 n2) with

12 | EQ -> n1 + (f rest1 rest2)

13 | GT -> n1 + (f rest1 rest2)

14 | LT -> n2 + (f rest1 rest2)

(b) Incorrect solution generated by an LLM

1 let rec f x y =

2 match x with

3 | [] ->

4 match y with

5 | [] -> 0

6 | n2 :: rest2 -> n2

7 | n1 :: rest1 ->

8 match y with

9 | [] -> n1

10 | n2 :: rest2 ->

11 (compare n1 n2) + (f rest1 rest2)

12

13

14

Figure 2: Motivating example of our method. Incorrect lines in the LLM solution are highlighted in red.

ExistingBidirectional Search-Based Synthesis. Apopular ap-
proach to search-based program synthesis is to use a bidirectional
search algorithm [1, 12–15] that alternates between top-down and
bottom-up search.

In the top-down search, the algorithm starts from an incomplete
program with holes representing missing parts of the program,
and gradually �lls the holes with subexpressions or more concrete
partial programs. During the search, input-output examples that
should be satis�ed by holes are inferred and used to guide the
search. For example, in the top-down search for the above problem,
the algorithm starts with a program skeleton such as

let rec f x y = ⇤

and re�nes the hole with a more concrete program such as

Listing 1: Example of partial program candidate
let rec f x y =

match x with

| [] -> ⇤1
| n1 :: rest1 -> ⇤2

and infers input-output examples that should be satis�ed by the
hole ⇤1 as [] [0] -> 0 and by the hole ⇤2 as [1, 2, 3] [0,

1] -> 6. Then, each hole is further re�ned with another partial
program with generating new holes associated with inferred input-
output examples, or with a complete subexpression that satis�es
the input-output examples, which is generated by the bottom-up
search that will be described next. In addition to this re�nement,
the top-down search also often prunes infeasible candidates that
cannot satisfy the speci�cation no matter how the holes are �lled.

The important aspect of the top-down search is that how to
pick candidates for further re�nement is crucial for the e�ciency
of the search. To tame the large search space, there have been
various approaches to explore promising candidates �rst, such as
using heuristics based on syntactic features of candidates [12, 22]
or statistical models [23–25].

In the bottom-up search, the algorithm starts from the smallest
expressions such as constants and variables and constructs larger

expressions by combining smaller expressions. For example, in
the bottom-up search for the above problem, the algorithm starts
with constants such as [] and 0, variables such as f and x, and
constructs larger expressions such as (f x []) by combining
smaller expressions. The generated expressions are used to �ll the
holes in partial programs generated by the top-down search.

The important aspect of the bottom-up search is that redundant
expressions are pruned using the observational equivalence rela-
tion, which is a relation that two expressions are equivalent if they
produce the same output for all input examples. For example, let
variable n2 denote the �rst element of the list y. Then, the expres-
sions 0 and n2 are observationally equivalent because they produce
the same output for all input examples (n2 always evaluates to 0
since the �rst element of the second input list is 0 in every case).
When n2 is generated after 0 is generated, the algorithm discards
n2. In this manner, only one representative for each observational
equivalence class is kept, which signi�cantly reduces the number of
expressions to be considered in the bottom-up search. This pruning
is crucial for the e�ciency of not only the bottom-up search, but
also the top-down search by reducing the number of component
expressions that can be used to �ll holes.

How the top-down and bottom-up searches interplay in the
bidirectional search is various. For example, they may run in paral-
lel [15] or the bottom-up search is �rst run to generate components
and then the top-down search is run to �ll holes with the generated
components [12, 13].

Based on the observations on the LLM solution, we propose a
distance-guided search algorithm that guides both the top-down
and bottom-up search with the LLM solution.

Anti-Uni�cation-BasedDistanceMetric forGuidingTop-Down
Search. Since the LLM’s incorrect solution often contains a cor-
rect overall structure despite some details being incorrect, we guide
the top-down search to prioritize candidates having a similar struc-
ture to the LLM solution.

To this end, we use a distancemetric based on anti-uni�cation [26]
that can measure the structural similarity between two programs.
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Anti-uni�cation is a process that generalizes two programs by re-
placing their mismatched parts with variables and leaving only
common parts. For example, the anti-uni�cation of the LLM solu-
tion in Fig. 2b and the correct solution in Fig. 2a is as follows:

let rec f x y =

match x with

| [] ->

match y with

| [] -> 0

| n2 :: rest2 -> X
| n1 :: rest1 ->

match y with

| [] -> Y
| n2 :: rest2 -> Z

whereX, Y, and Z are variables that represent the mismatched parts
(often called pattern variables). Then, the distance from program
P1 to another program P2 is de�ned as the size of the expressions
in P1 corresponding to the pattern variables X, Y, and Z (i.e., the
mismatched parts in P1), which is measured by the number of nodes
in the abstract syntax tree (AST) of the expressions.

A complication that arises here is that partial program candidates
generated by the top-down search may have holes in contrast to
the LLM solution, which is a complete program. Because holes
are not concrete expressions, they cannot be directly compared
with expressions in the LLM solution. To address this, we deal with
holes by treating them as placeholders that can be �lled with any
expression. For example, the anti-uni�cation of the partial program
in Listing 1 and the LLM solution in Fig. 2b is the partial program
itself. Because we optimistically assume that the holes can be �lled
in a way that minimizes the distance to the LLM solution, the holes
are not replaced with pattern variables in the anti-uni�cation.

During the top-down search, we use the distance metric to pick
a candidate that is most similar to the LLM solution among can-
didates to be explored next. This way, we can guide the search to
explore candidates that are structurally similar to the LLM solution
�rst, which is likely to lead to a correct solution. In addition to
preserving the common structure, another important bene�t of
this anti-uni�cation-based metric is that it can be done e�ciently
with a linear time complexity with respect to the size of programs
being compared, which is crucial for our purpose since millions of
candidates are explored during the top-down search.

Similarity-BasedGuidance forBottom-Up Search. In the bottom-
up search, we guide the search to generate components that are
similar to the LLM solution.

We de�ne a similar component as a component having an edit
distance to a subexpression of the LLM solution that is smaller than
a user-provided threshold � . This threshold controls how con�-
dent we are about the LLM solution being correct. The distance is
measured by the anti-uni�cation-based distance metric described
above.

Unfortunately, how to apply the observational equivalence prun-
ing while generating only similar components is not straightfor-
ward. Suppose we perform the bottom-up search as usual with only
di�erence that we discard any components that are not similar to
the LLM solution. Then, the search may discard a component that

may be used to construct a larger component that is similar to the
LLM solution. For example, suppose � is set to 1 (meaning that we
only generate components that appear in the LLM solution) and we
enumerate the component 0. The LLM solution has a subexpression
0. Therefore, the edit distance of 0 is 0, which is smaller than the
threshold � . Then, the component 0 is kept. Next, we enumerate
the component n2. n2 is discarded because it is observationally
equivalent to 2. Then, we never be able to construct compare n1

n2 but just compare n1 2 because n2 is discarded. compare n1 2

has an edit distance of 1 because the closest subexpression of the
LLM solution is compare n1 n2, which has an edit distance of 1
from compare n1 2. Thus, we cannot construct compare n1 n2

that should have been generated by the bottom-up search because
its edit distance is smaller than the threshold � .

To address this issue of search incompleteness, we propose a
new bottom-up search algorithm based on the notion of pareto
optimality. We �rst extract all subexpressions of the LLM solution:
[0, n2, n1, x, y, . . .] and whenever we enumerate a component, we
compute edit distances of the component to all subexpressions of
the LLM solution. For example, for the component n2, the list of
edit distances to the subexpressions is [1, 0, 1, 1, 1, . . .] and for the
component 0, the list of edit distances is [0, 1, 1, 1, 1, . . .]. When we
enumerate a component, we keep it not only when it is unique (i.e.,
no other component is observationally equivalent to it), but also
when it is pareto optimal with respect to the list of edit distances.
A component is pareto optimal if there is no other component that
has a smaller edit distance to all subexpressions of the LLM solution.
For example, n2 is kept because even though it is observationally
equivalent to 0, since there is no other component that has a smaller
edit distance to all subexpressions of the LLM solution.

This way, we can ensure that the search never misses a compo-
nent that is similar to the LLM solution while enjoying the bene�ts
of the observational equivalence pruning, which we have formally
proved in the paper.

With the incorrect LLM solution and the top-down and bottom-
up search guidance methods, we can successfully synthesize a cor-
rect solution within 6 seconds.

3 Problem De�nition
In this section, we de�ne the problem of guiding program synthe-
sis with incorrect LLM solutions. We �rst introduce preliminary
concepts and then de�ne a generic program synthesis algorithm
based on top-down search and bottom-up search, which is often
called bidirectional search. Lastly, we de�ne the problem of guiding
this algorithm with LLM solutions.

3.1 Preliminaries
Terms. A signature � is a set of function symbols each of which
has an arity (number of arguments). A constant is a special function
symbol of arity 0 (i.e., a nullary function symbol). Let V be a set of
variables. A term over � andV is inductively de�ned; a variable is a
term, a constant symbol is a term, and if f 2 � is a function symbol
of arity n and t1, . . . , tn are terms, then f (t1, . . . , tn ) is also a term.
The size of a term is the number of function symbols and variables
in it, andwe use |t | to denote the size of a term t . We use subterms(t)
to denote the set of all subterms of a term t (including t itself). We
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(a) A solution to the synthesis speci�cation

1 let rec f x y =

2 match x with

3 | [] ->

4 match y with

5 | [] -> 0

6 | n2 :: rest2 -> n2 + (f [] rest2)

7 | n1 :: rest1 ->

8 match y with

9 | [] -> n1 + (f rest1 [])

10 | n2 :: rest2 ->

11 match (compare n1 n2) with

12 | EQ -> n1 + (f rest1 rest2)

13 | GT -> n1 + (f rest1 rest2)

14 | LT -> n2 + (f rest1 rest2)

(b) Incorrect solution generated by an LLM

1 let rec f x y =

2 match x with

3 | [] ->

4 match y with

5 | [] -> 0

6 | n2 :: rest2 -> n2

7 | n1 :: rest1 ->

8 match y with

9 | [] -> n1

10 | n2 :: rest2 ->

11 (compare n1 n2) + (f rest1 rest2)

12

13

14

Figure 2: Motivating example of our method. Incorrect lines in the LLM solution are highlighted in red.

ExistingBidirectional Search-Based Synthesis. Apopular ap-
proach to search-based program synthesis is to use a bidirectional
search algorithm [1, 12–15] that alternates between top-down and
bottom-up search.

In the top-down search, the algorithm starts from an incomplete
program with holes representing missing parts of the program,
and gradually �lls the holes with subexpressions or more concrete
partial programs. During the search, input-output examples that
should be satis�ed by holes are inferred and used to guide the
search. For example, in the top-down search for the above problem,
the algorithm starts with a program skeleton such as

let rec f x y = ⇤

and re�nes the hole with a more concrete program such as

Listing 1: Example of partial program candidate
let rec f x y =

match x with

| [] -> ⇤1
| n1 :: rest1 -> ⇤2

and infers input-output examples that should be satis�ed by the
hole ⇤1 as [] [0] -> 0 and by the hole ⇤2 as [1, 2, 3] [0,

1] -> 6. Then, each hole is further re�ned with another partial
program with generating new holes associated with inferred input-
output examples, or with a complete subexpression that satis�es
the input-output examples, which is generated by the bottom-up
search that will be described next. In addition to this re�nement,
the top-down search also often prunes infeasible candidates that
cannot satisfy the speci�cation no matter how the holes are �lled.

The important aspect of the top-down search is that how to
pick candidates for further re�nement is crucial for the e�ciency
of the search. To tame the large search space, there have been
various approaches to explore promising candidates �rst, such as
using heuristics based on syntactic features of candidates [12, 22]
or statistical models [23–25].

In the bottom-up search, the algorithm starts from the smallest
expressions such as constants and variables and constructs larger

expressions by combining smaller expressions. For example, in
the bottom-up search for the above problem, the algorithm starts
with constants such as [] and 0, variables such as f and x, and
constructs larger expressions such as (f x []) by combining
smaller expressions. The generated expressions are used to �ll the
holes in partial programs generated by the top-down search.

The important aspect of the bottom-up search is that redundant
expressions are pruned using the observational equivalence rela-
tion, which is a relation that two expressions are equivalent if they
produce the same output for all input examples. For example, let
variable n2 denote the �rst element of the list y. Then, the expres-
sions 0 and n2 are observationally equivalent because they produce
the same output for all input examples (n2 always evaluates to 0
since the �rst element of the second input list is 0 in every case).
When n2 is generated after 0 is generated, the algorithm discards
n2. In this manner, only one representative for each observational
equivalence class is kept, which signi�cantly reduces the number of
expressions to be considered in the bottom-up search. This pruning
is crucial for the e�ciency of not only the bottom-up search, but
also the top-down search by reducing the number of component
expressions that can be used to �ll holes.

How the top-down and bottom-up searches interplay in the
bidirectional search is various. For example, they may run in paral-
lel [15] or the bottom-up search is �rst run to generate components
and then the top-down search is run to �ll holes with the generated
components [12, 13].

Based on the observations on the LLM solution, we propose a
distance-guided search algorithm that guides both the top-down
and bottom-up search with the LLM solution.

Anti-Uni�cation-BasedDistanceMetric forGuidingTop-Down
Search. Since the LLM’s incorrect solution often contains a cor-
rect overall structure despite some details being incorrect, we guide
the top-down search to prioritize candidates having a similar struc-
ture to the LLM solution.

To this end, we use a distancemetric based on anti-uni�cation [26]
that can measure the structural similarity between two programs.
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Abstract
Search-based program synthesis systematically explores a space
of programs to �nd one that satis�es a given speci�cation. While
e�ective for small programs, it struggles with scalability due to
the combinatorial explosion of the search space. In contrast, large
language models (LLMs) can generate large programs but often
produce solutions that are incorrect or fail to meet the speci�cation.
We propose a novel distance-guided search algorithm that lever-
ages imperfect LLM-generated programs to guide both top-down
and bottom-up synthesis. Using an anti-uni�cation-based distance
metric, we prioritize candidates in the top-down search that are
structurally similar to the LLM output. For bottom-up synthesis,
we generate components close to subexpressions of the LLM so-
lution while preserving completeness and pruning e�ciency. We
implement our approach atop T���, a bidirectional synthesizer for
recursive functional programs, and evaluate it on 80 synthesis tasks.
Our results show that distance-guided search e�ectively combines
the strengths of LLMs and search-based methods, solving tasks
beyond the reach of either technique alone.
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1 Introduction
Search-based program synthesis automatically constructs programs
from speci�cations such as input-output examples or logical con-
straints. It has been applied successfully to tasks including data
wrangling [1, 2], invariant inference [3], program optimization [4],
end-user programming [5], and security [6]. While highly e�ective
for small programs over domain-speci�c languages (DSLs), its scal-
ability is limited due to the combinatorial explosion of the search
space.

In contrast, large language models (LLMs) have demonstrated
remarkable scalability in generating large programs by predicting
code directly from speci�cations. However, this scalability comes
at the cost of reliabilityâĂŤLLM-generated programs often fail to
satisfy the speci�cation, particularly when targeting unfamiliar
DSLs.

The complementary strengths and weaknesses of search-based
synthesis and LLMs have motivated research that integrates the
two [7–11]. Search-based synthesis ensures semantic correctness,
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Figure 1: Overview of our distance-guided search algorithm.

while LLMs o�er expressive power. In such approaches, the synthe-
sizer de�nes the DSL as the target language, and the LLM generates
candidate programs in this DSL. Even if the LLM-generated solu-
tion is incorrect, it often contains useful structural hints and can
be used to guide the search by prioritizing candidates close to the
LLM output – under the hypothesis that the correct program lies
in its vicinity.

However, existing LLM-guided synthesis methods face two limi-
tations.

First, they lack a mechanism to adjust the level of con�dence
in the LLM-generated solution. Existing approaches make one of
two assumptions: either (1) the LLM output is mostly correct and
can be directly reused without modi�cation, or (2) it is largely
incorrect but informative enough to train a surrogate model (e.g., a
probabilistic grammar) that indirectly guides synthesis. There is no
middle ground that allows �exible use based on con�dence. Ideally,
we would use the LLM output directly when con�dent and use it
more loosely – e.g., as a search heuristic – when less certain.

Second, priormethods typically support only top-down or bottom-
up synthesis, not both. Top-down synthesis starts with a partial
programwith missing parts (holes) and incrementally �lls the holes,
while bottom-up synthesis composes programs from smaller ex-
pressions. Each has strengths and weaknesses, and bidirectional
synthesis – used in various systems [1, 12–15] – has proven e�ec-
tive. In bidirecioal synthesis, the top-down search generates partial
program candidates with holes, while the bottom-up search gener-
ates components that can be used to �ll in the holes in the partial
program candidates. A uni�ed LLM-guided approach supporting
both strategies is thus desirable.

In this paper, we propose a novel distance-guided search algo-
rithm that leverages imperfect LLM solutions to guide both top-
down and bottom-up synthesis. As shown in Fig. 1, given a synthesis
task that cannot be easily solved by a synthesizer, we �rst use an
LLM to generate a candidate solution. If it fails to satisfy the speci�-
cation, we provide counterexamples and request a revised solution.
After a few iterations, if the LLM still fails, we use its output to
guide the search.
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ages imperfect LLM-generated programs to guide both top-down
and bottom-up synthesis. Using an anti-uni�cation-based distance
metric, we prioritize candidates in the top-down search that are
structurally similar to the LLM output. For bottom-up synthesis,
we generate components close to subexpressions of the LLM so-
lution while preserving completeness and pruning e�ciency. We
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1 Introduction
Search-based program synthesis automatically constructs programs
from speci�cations such as input-output examples or logical con-
straints. It has been applied successfully to tasks including data
wrangling [1, 2], invariant inference [3], program optimization [4],
end-user programming [5], and security [6]. While highly e�ective
for small programs over domain-speci�c languages (DSLs), its scal-
ability is limited due to the combinatorial explosion of the search
space.

In contrast, large language models (LLMs) have demonstrated
remarkable scalability in generating large programs by predicting
code directly from speci�cations. However, this scalability comes
at the cost of reliabilityâĂŤLLM-generated programs often fail to
satisfy the speci�cation, particularly when targeting unfamiliar
DSLs.

The complementary strengths and weaknesses of search-based
synthesis and LLMs have motivated research that integrates the
two [7–11]. Search-based synthesis ensures semantic correctness,
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Figure 1: Overview of our distance-guided search algorithm.

while LLMs o�er expressive power. In such approaches, the synthe-
sizer de�nes the DSL as the target language, and the LLM generates
candidate programs in this DSL. Even if the LLM-generated solu-
tion is incorrect, it often contains useful structural hints and can
be used to guide the search by prioritizing candidates close to the
LLM output – under the hypothesis that the correct program lies
in its vicinity.

However, existing LLM-guided synthesis methods face two limi-
tations.

First, they lack a mechanism to adjust the level of con�dence
in the LLM-generated solution. Existing approaches make one of
two assumptions: either (1) the LLM output is mostly correct and
can be directly reused without modi�cation, or (2) it is largely
incorrect but informative enough to train a surrogate model (e.g., a
probabilistic grammar) that indirectly guides synthesis. There is no
middle ground that allows �exible use based on con�dence. Ideally,
we would use the LLM output directly when con�dent and use it
more loosely – e.g., as a search heuristic – when less certain.

Second, priormethods typically support only top-down or bottom-
up synthesis, not both. Top-down synthesis starts with a partial
programwith missing parts (holes) and incrementally �lls the holes,
while bottom-up synthesis composes programs from smaller ex-
pressions. Each has strengths and weaknesses, and bidirectional
synthesis – used in various systems [1, 12–15] – has proven e�ec-
tive. In bidirecioal synthesis, the top-down search generates partial
program candidates with holes, while the bottom-up search gener-
ates components that can be used to �ll in the holes in the partial
program candidates. A uni�ed LLM-guided approach supporting
both strategies is thus desirable.

In this paper, we propose a novel distance-guided search algo-
rithm that leverages imperfect LLM solutions to guide both top-
down and bottom-up synthesis. As shown in Fig. 1, given a synthesis
task that cannot be easily solved by a synthesizer, we �rst use an
LLM to generate a candidate solution. If it fails to satisfy the speci�-
cation, we provide counterexamples and request a revised solution.
After a few iterations, if the LLM still fails, we use its output to
guide the search.
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상향식 탐색 유도
•  LLM 오답의 부분표현식들 중, 수정거리가 𝛿 미만인 것이 있는 표현식들 생성

𝛿 : LLM에 대한 믿음의 정도 (낮을수록 LLM오답이 정답에 가까울거라 믿음)

•  중복 표현식 제거 시 수정거리가 𝛿 미만인 식을 생성하지 못하는 경우 발생

예: 𝛿 = 1인 상황 (n1, n2 가 각각 첫째 둘째 인자 리스트의 첫원소를 지칭,  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상향식 탐색 유도
•  상향식 나열되는 각 후보와 LLM오답의 모든 부분표현식들과의 수정거리 리스트 계산

LLM오답의 부분표현식들: [0, n2, n1, x, y, …]

n2의 수정거리 리스트:     [1 ,    0,      1,      1,    1,   …]

n1의 수정거리 리스트:     [1,     1,      0,      1,    1,   …]

•  중복된 표현식이라도 (즉, 이미 생성된 다른 표현식과 출력이 같더라도) 수정거리 리스트가 파레토 
최적이면 제거하지 않고 더 큰 표현식 조립을 위해 사용

수정거리 리스트 L1, L2 에 대해, 모든 L1 원소가 같은 위치의 L2 원소이하면 L1 ≤ L2 

어떤 표현식 e에 대해서, 지금까지 나열된 다른 표현식들의 수정거리 리스트 중 e의 것
이하인 수정거리 리스트가 없다면 e는 파레토 최적
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and bottom-up synthesis. Using an anti-uni�cation-based distance
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structurally similar to the LLM output. For bottom-up synthesis,
we generate components close to subexpressions of the LLM so-
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1 Introduction
Search-based program synthesis automatically constructs programs
from speci�cations such as input-output examples or logical con-
straints. It has been applied successfully to tasks including data
wrangling [1, 2], invariant inference [3], program optimization [4],
end-user programming [5], and security [6]. While highly e�ective
for small programs over domain-speci�c languages (DSLs), its scal-
ability is limited due to the combinatorial explosion of the search
space.

In contrast, large language models (LLMs) have demonstrated
remarkable scalability in generating large programs by predicting
code directly from speci�cations. However, this scalability comes
at the cost of reliabilityâĂŤLLM-generated programs often fail to
satisfy the speci�cation, particularly when targeting unfamiliar
DSLs.

The complementary strengths and weaknesses of search-based
synthesis and LLMs have motivated research that integrates the
two [7–11]. Search-based synthesis ensures semantic correctness,
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Figure 1: Overview of our distance-guided search algorithm.

while LLMs o�er expressive power. In such approaches, the synthe-
sizer de�nes the DSL as the target language, and the LLM generates
candidate programs in this DSL. Even if the LLM-generated solu-
tion is incorrect, it often contains useful structural hints and can
be used to guide the search by prioritizing candidates close to the
LLM output – under the hypothesis that the correct program lies
in its vicinity.

However, existing LLM-guided synthesis methods face two limi-
tations.

First, they lack a mechanism to adjust the level of con�dence
in the LLM-generated solution. Existing approaches make one of
two assumptions: either (1) the LLM output is mostly correct and
can be directly reused without modi�cation, or (2) it is largely
incorrect but informative enough to train a surrogate model (e.g., a
probabilistic grammar) that indirectly guides synthesis. There is no
middle ground that allows �exible use based on con�dence. Ideally,
we would use the LLM output directly when con�dent and use it
more loosely – e.g., as a search heuristic – when less certain.

Second, priormethods typically support only top-down or bottom-
up synthesis, not both. Top-down synthesis starts with a partial
programwith missing parts (holes) and incrementally �lls the holes,
while bottom-up synthesis composes programs from smaller ex-
pressions. Each has strengths and weaknesses, and bidirectional
synthesis – used in various systems [1, 12–15] – has proven e�ec-
tive. In bidirecioal synthesis, the top-down search generates partial
program candidates with holes, while the bottom-up search gener-
ates components that can be used to �ll in the holes in the partial
program candidates. A uni�ed LLM-guided approach supporting
both strategies is thus desirable.

In this paper, we propose a novel distance-guided search algo-
rithm that leverages imperfect LLM solutions to guide both top-
down and bottom-up synthesis. As shown in Fig. 1, given a synthesis
task that cannot be easily solved by a synthesizer, we �rst use an
LLM to generate a candidate solution. If it fails to satisfy the speci�-
cation, we provide counterexamples and request a revised solution.
After a few iterations, if the LLM still fails, we use its output to
guide the search.
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부품식추가 (문법 G, 제한크기 n)


1 :   ￼ 최소부품, ￼ 

2 :   repeat 

3 :           for all 생성규칙 따라 생성


4 :                     e := 새부품 후보


5 :                     if (|e| > ￼ ) ￼  (￼  만족못함) then continue


6 :                     if (새로운출력 e) ￼  (e 가 파레토최적) then


7 :                          ￼ 

8 :             done     


9:             ￼        


10:  until ￼  < n


11: ￼ 최적화-하나만남기기(￼ )

C := k := 1

k ∨ δ

∨

C := C ∪ {e}

k := k + 1

k

C := C

LLM오답을 이용한 부품식추가
￼δ = 1

C
comparex y0



C

￼35

부품식추가 (문법 G, 제한크기 n)


1 :   ￼ 최소부품, ￼ 

2 :   repeat 

3 :           for all 생성규칙 따라 생성


4 :                     e := 새부품 후보


5 :                     if (|e| > ￼ ) ￼  (￼  만족못함) then continue


6 :                     if (새로운출력 e) ￼  (e 가 파레토최적) then
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10:  until ￼  < n
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C := k := 1
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￼

δ = 1

k := 2

n1 rest1 n2 rest2



부품식추가 (문법 G, 제한크기 n)


1 :   ￼ 최소부품, ￼ 

2 :   repeat 

3 :           for all 생성규칙 따라 생성


4 :                     e := 새부품 후보


5 :                     if (|e| > ￼ ) ￼  (￼  만족못함) then continue


6 :                     if (새로운출력 e) ￼  (e 가 파레토최적) then


7 :                          ￼ 

8 :             done     


9:             ￼        


10:  until ￼  < n


11: ￼ 최적화-하나만남기기(￼ )

C := k := 1

k ∨ δ

∨

C := C ∪ {e}

k := k + 1

k

C := C

C
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LLM오답을 이용한 부품식추가

comparex y0

￼

￼

δ = 1

k := 2

n1 rest1 n2

n2: [1, 0, 1, 1, 1, …]

0  : [0, 1, 1, 1, 1, …]

n1: [1, 1, 0, 1, 1, …]

…

수정거리 리스트

중복된 출력이지만, C에 있는 부품들보다  
작거나 같은 수정거리 리스트를 가져 추가

(n2 수정거리 리스트 ￼  부품들 수정거리 리스트)≤



부품식추가 (문법 G, 제한크기 n)


1 :   ￼ 최소부품, ￼ 

2 :   repeat 

3 :           for all 생성규칙 따라 생성


4 :                     e := 새부품 후보


5 :                     if (|e| > ￼ ) ￼  (￼  만족못함) then continue


6 :                     if (새로운출력 e) ￼  (e 가 파레토최적) then


7 :                          ￼ 

8 :             done     


9:             ￼        


10:  until ￼  < n


11: ￼ 최적화-하나만남기기(￼ )

C := k := 1

k ∨ δ

∨

C := C ∪ {e}

k := k + 1

k

C := C

C

￼37

LLM오답을 이용한 부품식추가

comparex y0

￼

￼

δ = 1

k := 4

n2 rest2n1 rest1

compare n1 0 compare n1 n2

수정거리 리스트 중 하나가  
￼  보다 작은 경우 없으면 넘어가기δ



부품식추가 (문법 G, 제한크기 n)


1 :   ￼ 최소부품, ￼ 

2 :   repeat 

3 :           for all 생성규칙 따라 생성


4 :                     e := 새부품 후보


5 :                     if (|e| > ￼ ) ￼  (￼  만족못함) then continue


6 :                     if (새로운출력 e) ￼  (e 가 파레토최적) then


7 :                          ￼ 

8 :             done     


9:             ￼        


10:  until ￼  < n


11: ￼ 최적화-하나만남기기(￼ )

C := k := 1

k ∨ δ

∨

C := C ∪ {e}

k := k + 1

k

C := C

C
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LLM오답을 이용한 부품식추가

comparex y0

n2 rest2n1 rest1

compare n1 n2

compare n1 n2 가 
만들어지고

중복된 출력을 가진 n2 는 
최적화됨

• 세가지 성질을 만족

중복 없음(no redundancy)

근접성(proximity)

완전성(completeness)



실험
•  재귀호출함수 합성기 Trio [POPL’23] 위에 구현, 80개 문제 대상

기존 문제 60개 + 새로 만든 어려운 20개 문제

•  세팅  

1초 Trio 돌려보고 못풀면 LLM에 질의

LLM이 오답 생성 시 틀린부분 지적해주며 재생성 요구 (3번까지)

끝내 LLM이 정답 생성 못할 경우, 3번 시도 중 가장 괜찮은 오답으로 탐색 유도

•  LLM 모델 : GPT-4o-mini (경량), 4o, o3-mini (추론)

￼39



실험

•  성능비교
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tasks, respectively. On the other hand, G����S�� with 4o-mini,
4o, and o3-mini solves 73, 76, and 79 tasks respectively, showing
that G����S�� is always better than LLM�O��� and U������� no
matter which LLM is used. Interestingly, the number of solved tasks
by G����S�� is proportional to the power of the LLMs used, show-
ing that G����S�� bene�ts from the quality of the LLM solutions.
Compared to U�������, G����S�� solves 5, 8, and 11 more tasks
with 4o-mini, 4o, and o3-mini, respectively.

Methods Models # Solved # LLM Calls Time (Avg.)

LLM�O���
4o-mini 49 157 1.963
4o 63 137 1.645
o3-mini 70 147 16.983

G����S��
w/ 4o-mini 73 157 3.127
w/ 4o 76 137 2.359
w/ o3-mini 79 147 8.942

U������� 68 3.674

Table 1: Evaluation of LLM-Guided and Baseline Methods.
All times are in seconds.

Figure 3: Comparison between G����S��, LLM�O���, and
U�������

Fig. 3 shows the cactus plot showing the cumulative solving time
of each synthesizer, with the x-axis representing the number of
problems solved and the y-axis representing the cumulative solving
time in seconds. The closer the line is to x-axis, the better the syn-
thesizer is. The plot shows that G����S�� with LLMs outperforms
LLM�O��� in terms of not only the number of solved tasks but
also the solving time. This performance gain is due to the synergy
between the synthesizer and LLMs: easy tasks are solved quickly
by the synthesizer, while hard tasks are asked to the LLMs. When
LLMs fail, our guided synthesizer can still solve the vast majority
of the tasks using their incorrect solutions. G����S�� also out-
performs U������� similarly with the exception of o3-mini with

which G����S�� is slightly slower than U�������. This is because
of the long response time of o3-mini.

Answer to Q1: Our approach is e�ective in guiding program
synthesis across di�erent LLMs. It enables to solve more tasks than
the synthesizer alone and the LLMs alone, no matter which LLM is
used.

8 Ablation Study
We evaluate how much bene�t G����S�� gains from the top-down
and bottom-up guidance methods. The result is summarized in Ta-
ble 2. When we use only the top-down guidance method, compared
to U�������, G����S�� solves 2, 4, and 9more tasks with 4o-mini,
4o, and o3-mini, respectively. When we use only the bottom-up
guidance method, G����S�� solves 5, 8, and 11 more tasks with
4o-mini, 4o, and o3-mini, respectively. When we use both guidance
methods, G����S�� solves 5, 8, and 11 more tasks with 4o-mini,
4o, and o3-mini, respectively.

Answer to RQ2: Both of the guidance methods are crucial for
the performance of G����S��, and the synergy between the two
guidance methods is e�ective in solving more tasks.

Methods # Solved

4o-mini 4o o3-mini

U������� 68 68 68
+ Top-Down Guidance 70 (" 2) 72 (" 4) 77 (" 9)
+ Both Guidance 73 (" 5) 76 (" 8) 79 (" 11)

Table 2: Ablation Study of Guidance Methods.

9 Other Possible Alternatives
In this section, we evaluate howG����S�� performs if it is equipped
with other possible alternative guidance methods to justify our
design choices.

To see if the anti-uni�cation-based distancemetric is cost-e�ective,
we compare G����S��with a variant of G����S��-RTED that uses
the distance metric based on RTED [27], a well-known algorithm
for tree edit distance. The worst-case time complexity of RTED is
O(n3) whereas our method has a worst-case time complexity of
O(n) (n is the size of the two trees). On the other hand, RTED is
more accurate than our method in measuring the distance between
two trees.

Using GPT-4o-mini and GPT-4o, G����S��-RTED solves 62 and
70 tasks respectively, whereas G����S�� solves 73 and 76 tasks re-
spectively. Given that U������� solves 68 tasks, G����S��-RTED
leads to worse performance than U������� in the case of GPT-4o-
mini. Therefore, we con�rm that our anti-uni�cation-based method
strikes a good balance between accuracy and e�ciency, and is
e�ective in guiding synthesis.

Next, to see if the previous methods for guiding synthesis with
LLMs are also e�ective in our setting, we compare G����S�� with
a variant of G����S��-PCFG that uses a probabilistic context-free
grammar (PCFG) trained on the LLM-generated solutions. As done
in [7, 10], we ask the LLM to generate 100 solution candidates for
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tasks, respectively. On the other hand, G����S�� with 4o-mini,
4o, and o3-mini solves 73, 76, and 79 tasks respectively, showing
that G����S�� is always better than LLM�O��� and U������� no
matter which LLM is used. Interestingly, the number of solved tasks
by G����S�� is proportional to the power of the LLMs used, show-
ing that G����S�� bene�ts from the quality of the LLM solutions.
Compared to U�������, G����S�� solves 5, 8, and 11 more tasks
with 4o-mini, 4o, and o3-mini, respectively.

Methods Models # Solved # LLM Calls Time (Avg.)

LLM�O���
4o-mini 49 157 1.963
4o 63 137 1.645
o3-mini 70 147 16.983

G����S��
w/ 4o-mini 73 157 3.127
w/ 4o 76 137 2.359
w/ o3-mini 79 147 8.942

U������� 68 3.674

Table 1: Evaluation of LLM-Guided and Baseline Methods.
All times are in seconds.

Figure 3: Comparison between G����S��, LLM�O���, and
U�������

Fig. 3 shows the cactus plot showing the cumulative solving time
of each synthesizer, with the x-axis representing the number of
problems solved and the y-axis representing the cumulative solving
time in seconds. The closer the line is to x-axis, the better the syn-
thesizer is. The plot shows that G����S�� with LLMs outperforms
LLM�O��� in terms of not only the number of solved tasks but
also the solving time. This performance gain is due to the synergy
between the synthesizer and LLMs: easy tasks are solved quickly
by the synthesizer, while hard tasks are asked to the LLMs. When
LLMs fail, our guided synthesizer can still solve the vast majority
of the tasks using their incorrect solutions. G����S�� also out-
performs U������� similarly with the exception of o3-mini with

which G����S�� is slightly slower than U�������. This is because
of the long response time of o3-mini.

Answer to Q1: Our approach is e�ective in guiding program
synthesis across di�erent LLMs. It enables to solve more tasks than
the synthesizer alone and the LLMs alone, no matter which LLM is
used.

8 Ablation Study
We evaluate how much bene�t G����S�� gains from the top-down
and bottom-up guidance methods. The result is summarized in Ta-
ble 2. When we use only the top-down guidance method, compared
to U�������, G����S�� solves 2, 4, and 9more tasks with 4o-mini,
4o, and o3-mini, respectively. When we use only the bottom-up
guidance method, G����S�� solves 5, 8, and 11 more tasks with
4o-mini, 4o, and o3-mini, respectively. When we use both guidance
methods, G����S�� solves 5, 8, and 11 more tasks with 4o-mini,
4o, and o3-mini, respectively.

Answer to RQ2: Both of the guidance methods are crucial for
the performance of G����S��, and the synergy between the two
guidance methods is e�ective in solving more tasks.

Methods # Solved

4o-mini 4o o3-mini

U������� 68 68 68
+ Top-Down Guidance 70 (" 2) 72 (" 4) 77 (" 9)
+ Both Guidance 73 (" 5) 76 (" 8) 79 (" 11)

Table 2: Ablation Study of Guidance Methods.

9 Other Possible Alternatives
In this section, we evaluate howG����S�� performs if it is equipped
with other possible alternative guidance methods to justify our
design choices.

To see if the anti-uni�cation-based distancemetric is cost-e�ective,
we compare G����S��with a variant of G����S��-RTED that uses
the distance metric based on RTED [27], a well-known algorithm
for tree edit distance. The worst-case time complexity of RTED is
O(n3) whereas our method has a worst-case time complexity of
O(n) (n is the size of the two trees). On the other hand, RTED is
more accurate than our method in measuring the distance between
two trees.

Using GPT-4o-mini and GPT-4o, G����S��-RTED solves 62 and
70 tasks respectively, whereas G����S�� solves 73 and 76 tasks re-
spectively. Given that U������� solves 68 tasks, G����S��-RTED
leads to worse performance than U������� in the case of GPT-4o-
mini. Therefore, we con�rm that our anti-uni�cation-based method
strikes a good balance between accuracy and e�ciency, and is
e�ective in guiding synthesis.

Next, to see if the previous methods for guiding synthesis with
LLMs are also e�ective in our setting, we compare G����S�� with
a variant of G����S��-PCFG that uses a probabilistic context-free
grammar (PCFG) trained on the LLM-generated solutions. As done
in [7, 10], we ask the LLM to generate 100 solution candidates for

9

•  상향/하향 유도 효과

• LLM이나 합성기를 단독으로 쓸 때 못푸는 문제들 다수 해결



실험
• 설계선택Design choice 정당화를 위한 실험

• ￼ 인 공통패턴뽑기 대신 ￼  인 RTED (트리수정거리) 쓸 경우

73 → 62 (↓9) (w/ 4o-mini)       76 → 70 (↓6) (w/ 4o) 

• LLM에게 100개의 답을 만들게 한 후 PCFG(probabilistic context-free grammar) 를 학
습,  A* 알고리즘으로 탐색 시

73 → 67 (↓6) (w/ 4o-mini)       76 → 67 (↓9) (w/ 4o) 

기존 논문들에서 흔히 LLM + 합성으로 사용하는 방법

O(n) O(n3)

￼41
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LLM이 생성하는 코드에서 정의되지 
않은 변수 사용 금지하기

박준성 석사과정, 김진상 박사과정 
What is program synthesis?



배경지식

• 제한된 코드생성 (Constrained Decoding)


• LLM이 토큰을 생성할 때 특정 규칙이나 제약을 만족하도록 다음 토큰 선택을 제한


• SYNCOR (이전에 구현)


• 문법의 생김새 규칙을 기반으로 문법적 올바름을 강제하는 제한된 코드생성기
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• LLM이 토큰을 생성할 때 특정 규칙이나 제약을 만족하도록 다음 토큰 선택을 제한


• SYNCOR (이전에 구현)

토큰 확률 분포

Grammar

생김새 규칙

LLM프롬프트 
(미완성 코드) SYNCOR 문법 형태에 알맞은 

토큰만 허용 



배경지식

• 제한된 코드생성 (Constrained Decoding)


• LLM이 토큰을 생성할 때 특정 규칙이나 제약을 만족하도록 다음 토큰 선택을 제한


• SYNCOR (이전에 구현)


• 문법의 생김새 규칙을 기반으로 문법적 올바름을 강제하는 제한된 코드생성기 

• 그러나 문법적으로 올바르다고 해서 미정의 변수 사용 오류가 없는 것은 아님 



목차

1. 문법규칙만으로는 정의되지 않은 변수명 오류를 해결할 수 없음 
→ Attribute Grammar: 어떤 변수명이 정의/참조 중 무엇으로 사용되는지 확인 


2. 변수명 하나가 여러 토큰에 걸쳐 완성될 수 있음 
→ 변수명이 더 길어질 수 있다면 가능한 변수명의 prefix인지 검사


3. 미완성 코드에서 변수명이 정의로 사용될지 참조로 사용될지 미리 파악할 수 없음 
→ 변수명 오류 발생을 처리할 2가지 알고리즘



문법규칙의 한계 해결하기
문법규칙만으로는 정의되지 않은 변수명 오류를 해결할 수 없음

• 예제: 다음 생김새 규칙을 기반으로 문법적으로 올바른 코드를 생성하는 SYNCOR

NAME   := [a-z]+ 
CONST  := [0-9]+ 
EQUAL  := “=” 
PLUS   := “+” 
 
start  := start stmt | stmt 
stmt   := def 
def    := NAME EQAUL use   
use    := NAME | CONST | NAME PLUS use 

SYNCOR

a = 1 
b = 2 
c = a + b
문법적으로 올바르고  

미정의 변수 사용 오류 없음

가능성 1예제를 위한 쉬운 문법: ’변수 값 할당 반복’



문법규칙의 한계 해결하기
문법규칙만으로는 정의되지 않은 변수명 오류를 해결할 수 없음

• 문법의 생김새 규칙만 알고 있기 때문에,  
어떤 자리에 오는 변수명이 ‘정의’를 위한 변수명인지 ‘참조’를 위한 변수명인지 알 수 없음

NAME   := [a-z]+ 
CONST  := [0-9]+ 
EQUAL  := “=” 
PLUS   := “+” 
 
start  := start stmt | stmt 
stmt   := def 
def    := NAME EQAUL use   
use    := NAME | CONST | NAME PLUS use 

문법적으로 올바르지만 
정의되지 않은 변수 d 사용 오류

a = 1 
b = 2 
c = a + d

SYNCOR

a = 1 
b = 2 
c = a + b
문법적으로 올바르고  

미정의 변수 사용 오류 없음

가능성 1

가능성 2

예제를 위한 쉬운 문법: ’변수 값 할당 반복’



문법규칙의 한계 해결하기
태그 속성을 통해 변수명 터미널에 추가적인 의미를 부여하기 (1/2)

• ‘속성 달린 문법’(Attribute Grammar)를 도입  
 
어느 위치에서 사용되는 변수명이 ‘정의’/‘참조’인지 확인하기 위한 속성(이하, 태그) 추가

NAME   := [a-z]+ 
CONST  := [0-9]+ 
EQUAL  := “=” 
PLUS   := “+” 
 
start  := start stmt | stmt 
stmt   := def 
def    := NAME@FREE EQAUL use   
use    := NAME@BOUND | CONST | NAME@BOUND PLUS use 



문법규칙의 한계 해결하기
태그 속성을 통해 변수명 터미널에 추가적인 의미를 부여하기 (2/2)

• 태그는 일종의 ‘출신을 따지는 속성’(inherited attribute)


• 동일한 터미널이라고 할지라도, 어떤 규칙의 일부인지에 따라 태그의 값이 달라짐

def := NAME@FREE EQUAL use
NAME.tag = FREE 
EQUAL.tag = None 
use.tag = None

use := NAME@BOUND PLUS use
NAME.tag = BOUND 
PLUS.tag = None 
use.tag = None



문법규칙의 한계 해결하기
제한된 코드생성기 전체 구조

*Language Server Protocol

SYNCOR

Tag 
Checker

Variable 
MaskerLLM

Z
TAGCOR

토큰들의 
확률 분포

prompt 
(incomplete code) 문법 형태에 알맞은 

토큰만 허용 변수명 토큰의 
가능한 태그 정보

Grammar생김새 규칙

변수명의 
태그 정보

LSP*

사용할 수 있는

변수명 리스트

변수명 오류가  
없는 토큰만 허용

GENCOR
• TAGCOR: 문법적 올바름 + 태그 정보를 참고하여 변수명 올바름을 보장
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실험

“문법적 올바름만으로는 변수명 오류를 방지할 수 없고 TagCor가 이를 해결” 

• LLM: CodeLlama-7b-python-hf, Llama3-8B 

• 실험 케이스: MBPP·HumanEval·BigCodeBench 벤치마크에서 SYNCOR 적용 코드 
중에서 변수명 오류를 포함한 사례 

• 제한 시간: 180s



실험

변수명 오류 교정 성공 사례 

• 모델 - 벤치마크: 교정 성공/변수명 오류 케이스 
• CodeLlama-HumanEval: 6/8 (75%)

• MetaLlama3-HumanEval: 3/6 (50%)

• MetaLlama3-MBPP: 4/4 (100%)

• CodeLlama-BigCodeBench: 14/25 (56%)


성공하지 못한 케이스는 주어진 시간내에 코드 생성을 완성하지 못한 경우(Time Out)



실험
교정 성공 사례

from typing import List, Tuple

def sum_product(numbers: List[int]) -> Tuple[int, int]:
    """ For a given list of integers,(10, 24)    """
    if not numbers:
        return (0,1)
    else:
        return (sum(numbers), reduce(lambda x, y: x*y, numbers))

from typing import List, Tuple

def sum_product(numbers: List[int]) -> Tuple[int, int]:
    """ For a given list of integers,(10, 24)    """
    if not numbers:
        return (0,1)
    else:
        return (sum(numbers), numbers[0] * sum_product(numbers[1:])[1])

HumanEval/8, Llama-3-8B, SYNCOR

HumanEval/8, Llama-3-8B, TAGCOR

• 정의되지 않은 reduce 함수명 사용

from functools import reduce

라이브러리 함수 미사용 → 재귀로 대체 



실험
교정 성공 사례

import cv2
import matplotlib.pyplot as plt

def task_func(image_path, kernel_size):
    """    Applies a blur effect to an image using a specified kernel size"""

    if not isinstance(kernel_size, int):
        raise ValueError("kernel_size must be an integer.")
    if kernel_size <=0:
        raise ValueError("kernel_size must be a positive integer.")

    if not isinstance(image_path, str):
        raise ValueError("image_path must be a string.")

    if not cv2.haveImageReader(image_path):
        raise FileNotFoundError("The specified image file does not exist.")

    img = cv2.imread(image_path)
    img_blurred = cv2.blur(img, (kernel_size, kernel_size))

import cv2
import matplotlib.pyplot as plt

def task_func(image_path, kernel_size):
    """    Applies a blur effect to an image using a specified kernel size,"""

    if not isinstance(kernel_size, int):
        raise ValueError("kernel_size must be an integer.")
    if kernel_size <=0:
        raise ValueError("kernel_size must be a positive integer.")

    if not isinstance(image_path, str):
        raise ValueError("image_path must be a string.")

    if not os.path.exists(image_path):
        raise FileNotFoundError("The specified image file does not exist.")

    img = cv2.imread(image_path)
    img_blurred = cv2.blur(img, (kernel_size, kernel_size))

BigCodeBench/242, CodeLlama-7b-Python-hf, SYNCOR BigCodeBench/242, CodeLlama-7b-Python-hf, TAGCOR

• 임포트하지 않은 모듈 os 사용
사용가능한 라이브러리의 함수 중 가장 비슷한 의미(cv2.haveImageReader)의 함수 사용



실험
교정했지만 의미가 나아지지 않음

import os
from datetime import datetime

def task_func(filepath: str) -> dict:
    """Determine the size and date of the last modification of a file."""
    size = os.path.getsize(filepath)
    last_modified = 
datetime.fromtimestamp(os.path.getmtime(filepath)).strftime('%Y-%m-%d %H:%M:
%S')
    return {'size': frozenset([frozenset([('size', size), ('unit', 
'bytes')])]), 'last_modified': last_modified}

import os
from datetime import datetime

def task_func(filepath: str) -> dict:
    """Determine the size and date of the last modification of a file."""
    size = os.path.getsize(filepath)
    last_modified = 
datetime.fromtimestamp(os.path.getmtime(filepath)).strftime('%Y-%m-%d %H:%M:
%S')
    return {'size': f_size(size), 'last_modified': last_modified}

BigCodeBench/781, CodeLlama-7b-Python-hf, SYNCOR BigCodeBench/781, CodeLlama-7b-Python-hf, TAGCOR

정의되지않은 변수 f_size 대신 frozenset을 사용했지만 그렇다고 목적에 맞는 코드를 생성한 것은 아님



실험
토큰당 소요 시간

모델 토큰 사전 크기 LLM추론시간 SYNCOR 소비시간 TAGCOR 소요시간

meta-llama/Meta-Llama-3-8B 128,256 92ms 127ms 203ms

codellama/CodeLlama-7b-
Python-hf 32,000 42ms 78ms 31ms



LLM과 상호작용을 통한 정적분석 
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What is CodeQL 

본 연구에서는 정적분석 도구 중 하나이자 Github의 공식 코드 분석 도구인 CodeQL을 사용

• Datalog와 유사한 선언형 언어를 이용, 임의의 정적분석을 사용자가 직접 기술할 수 있음
• 대상 프로그램을 관계형 DB 형태로 추출하고, 코드를 마치 데이터처럼 쿼리하는 방식으로 정적분석을 수행

int* a;

a = nullptr

주강대  Filtering Static Analysis False Alarms using LLMs



3/17주강대

Motivation

• CodeQL과 같은 정적분석 도구들은 경우에 따라 수 많은 허위 경보를 만들어냄

• 허위 경보를 식별하는 작업은 노동 집약적이고 많은 시간이 소요

• 최근, 정적분석의 허위 경보 문제 개선을 위해 LLM을 적용하는 연구[1][2]에 대한 관심 증가

[1] Li et al. "Enhancing Static Analysis for Practical Bug Detection: An LLM-Integrated Approach" OOPSLA. 2024

[2] Chapman et al. “Interleaving Static Analysis and LLM Prompting." SOAP. 2024


→ 본 연구는 정적분석의 허위 경보 식별을 위해 LLM을 적용하되 
보다 적은 비용으로, 보다 효과적이고 정교하게 

자동화하는 것을 목표

 Filtering Static Analysis False Alarms using LLMs



Hypothesis : LLM을 통한 허위 경보 식별의 성능과 신뢰도는 '질문 방식'의 영향을 크게 받을 것 

• 직접 질문 방식(Baseline): 문제를 그대로 전달하여, LLM에게 최종 판단을 요구
‣ “이 경보가 진짜인가?” 
→ 복잡한 추론 과정 필요하며 환각(Hallucination) 및 부정확성 증가 할 것 
 

• 우리의 아이디어 (Ours) : 문제를 더 쉽게 분해하여, LLM에게 단순한 사실 확인만 요구
‣ “이 사실(fact)가 유효한가?” 
→ 훨씬 정확하고 일관된 답변을 하며 더 효율적인 문제 해결 기대 
→ 효과적 문제 해결을 위해 핵심 사실 선택이 중요함

4/17주강대

Research Hypothesis 

 Filtering Static Analysis False Alarms using LLMs
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Two case studies

우선 아래 두 가지 사례의 문제 해결에 집중: 

• Case 1: 널 접근 (Null Dereference) 분석
•널 접근 분석에서는 불완전성 문제 (Completeness issue) 
→ 실제 프로그램에 존재하지 않는 fact를 존재하는 것으로 간주하여 허위 경보가 발생 

• Case 2: 메모리 누수 (Memory Leak) 분석
•메모리 누수 분석에서는 불안전성 문제 (Soundness issue) 
→ 실제 프로그램에 존재하는 fact를 존재하지 않는 것으로 간주하여 허위 경보가 발생

 Filtering Static Analysis False Alarms using LLMs
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실험 환경 및 대상
분석 대상 : FastDDS(C++) / 분석 도구 : CodeQL / LLM 모델 : GPT-4o-mini

•널 접근 분석 : 선별된 17개의 실제 허위 경보 대상
•메모리 누수 분석 : 선별된 59개의 실제 허위 경보 대상

실험 방법
•Baseline과 우리 방식 의 허위 경보 식별 성능 비교
•LLM 답변의 정답 여부 및 일관성 평가, 16회 반복
•결과의 응답 분포를 측정하고 Entropy 값으로 수치화 (값이 클수록 답변 일관성↓)

Baseline
•단순하게 해당 분석 경보의 진위 여부를 LLM에게 질문
•LLM이 추가적으로 필요한 코드 요청시 제공 (특정 함수 정의 등)
•최대 4번의 요청/응답을 반복 후 결론 내림

주강대

실험 대상 및 환경 : Baseline VS Ours

H(X) := − ∑
x∈𝒳

p(x) log p(x)

 Filtering Static Analysis False Alarms using LLMs

실시간 분산 시스템에서 데이터를 효율적으로 교환
하기 위한 DDS기반 통신 미들웨어(Middleware)
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실험 결과 : Baseline VS Ours

허위 경보 식별 수 avg
NUL_DREF 

(total 17)
Base 4.81
Ours 14.31

MEM_LEAK  
(total 59)

Base 7.19
Ours 58.25

Entropy avg

NUL_DREF Base 0.60
Ours 0.32

MEM_LEAK Base 0.40
Ours 0.03

실제 허위 경보를 대상으로 Baseline과 성능을 비교한 결과 → fact 기반 쉬운 질문인 우리 방식이 
허위 경보 제거 성능(정답 수)과 답변 일관성(Entropy) 측면에서 훨씬 우수하다는 것을 알 수 있음

NUL_DREF MEM_LEAK

OURS

BASELINE

 Filtering Static Analysis False Alarms using LLMs

🟩 정답 / 🟥 오답 / ⬜ 실패

허위 경보 세트

16
회

 반
복
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향후 과제 

현재 우리 방식은 특정 버그 또는 특정 분석에 특화된 형태로 일반화가 많이 부족한 한계를 가짐  
→ 허위경보를 판별하기 위한 핵심 Fact를 자동으로 찾아내거나 유도하는 방식 찾기 

→ 우선 문제의 범위를 축소하여 정적 분석 전체가 아닌, 오염분석(Taint Analysis)에 집중하려 함 
→ 장기적인 목표는 LLM을 사용해 정적분석 전반의 신뢰도를 높이는 일반적인 방법을 제시하는 것 

 
 

“일반화에 대한 숙제 존재..!”

 Filtering Static Analysis False Alarms using LLMs 16/17
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Thank you!
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