
고려대 소프트웨어 분석 연구 소개

오학주

고려대학교

2025 SIGPL 여름학교

• Python infrastructures

• Intermediate language, types, compiler correctness, analysis, optimization

Software Analysis Lab @Korea Univ.
• Program analysis

• Fuzzing, symbolic execution, static analysis, verification

• Program repair

• Static analysis-guided repair, fault localization, LLM-based repair

• Emerging domains

• Smart contracts, Quantum, AI, ADS (Autonomous Driving System)

자율주행 시스템 (ADS) 테스팅

HW SW

• 대상 ADS: Autoware (https://autoware.org/)

• 시뮬레이터: Carla (https://carla.org/)

https://autoware.org/
https://carla.org/

시드 풀

변이 생성기

실행기 (시뮬레이터) 이상행동시드 시나리오

추가적인 변이 필요

시드 시나리오

변이 시나리오

• 통상적인 변이 기반 블랙박스 퍼징

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Mutant
Generator

Simulation
Predictor

 is likely
redundant
m

ADS Under TestDriving Record

Physical
Simulator

 is likely
unique

m

Bug-inducing
Scenarios

Seed
Scenario

Mutant
Scenario m

Speed-Prediction
Models

Figure 1: Overview of P!"#$!%&.

dynamics (e.g., real-time synchronization), our predictor is light-
weight and fast, as it focuses on capturing partial driving records,
such as speeds at waypoints along a planned route.

Experimental results demonstrate that P!"#$!%& is highly e!ec-
tive at detecting critical violations in ADS. We applied P!"#$!%& to
evaluate recent versions of Autoware [34], a popular open-source
ADS with industrial applications such as autonomous valet park-
ing [1] and cargo delivery [2]. P!"#$!%& identi"ed 23 previously
unknown violations, of which 16 have been con"rmed by the devel-
opers. To benchmark performance, we compared P!"#$!%& against
three state-of-the-art tools: ScenarioFuzz [71], D!%’(F")) [55], and
SAMOTA [50]. The result shows that P!"#$!%& signi"cantly out-
performs these tools in detecting unique violations.

Contributions. We summarize our contributions below.
• We propose a novel approach for boosting the e#ciency of

ADS testing. The main technical contribution is simulation
prediction, which enables the e#cient detection and prun-
ing of likely redundant scenarios without running physical
simulators.

• We prove the practicality of P!"#$!%& by reporting 23 new
bugs found in Autoware [34] and conducting the compar-
ative experiments with the three state-of-the-art testing
tools: D!%’(F")) [55], SAMOTA [50], ScenarioFuzz [71].

• We make our tool and data publicly available. 1

2 Overview
2.1 Motivating Example
Figure 2a depicts a driving record 𝐿𝐿 generated from the simulation
of a scenario 𝑀𝐿 . The ego vehicle traveled from west to east, while
the NPC vehicle moved from north to south, both at a speed of 20
km/h. Even though the vehicles’ trajectories overlap at the junction,
they neither encountered nor collided with each other, since the
ego vehicle passed the intersecting point much earlier. Figures 2b–
2d depict candidate scenarios 𝑀𝑀–𝑀𝑁 with each vehicle’s expected
trajectory (which can be obtained from ADS’s planning module,
such as [40], given the starting and end points of each scenario).

Given candidate scenarios 𝑀𝑀–𝑀𝑁 , P!"#$!%& analyzes their run-
time behavior without simulator execution, and determines that
scenarios 𝑀𝑀 and 𝑀𝑂 are likely redundant with 𝑀𝐿 , while scenario 𝑀𝑁

1Artifact link for reviewing: https://anonymous.4open.science/r/anonymous1-7EDD

(a) Driving record 𝑃𝐿 for 𝑄𝐿 (b) 𝑄𝑀 with a planned route
(likely redundant)

(c) 𝑄𝑁 with a planned route
(likely redundant)

(d) 𝑄𝑂 with a planned route
(likely unique)

Figure 2: Examples for illustrating our goal. (a) shows a
schematic driving record of 𝐿𝐿 generated by executing a sce-
nario 𝑀𝐿 . (b)–(d) present schematic scenarios of 𝑀𝑀–𝑀𝑁 .

exposes distinct behavior. To reach this conclusion, P!"#$!%& pre-
dicts that executing 𝑀𝑀 and 𝑀𝑂 would generate driving records similar
to 𝐿𝐿 from the ego vehicle’s perspective; assuming each vehicle trav-
els at 20 km/h, the ego vehicle would move along a straight line
without vehicle interactions, as in 𝐿𝐿 . Speci"cally, in 𝑀𝑀 , the ego
vehicle arrives at the intersection much later (Figure 2b), and in
𝑀𝑂 , the vehicles’ expected trajectories do not overlap (Figure 2c).
Conversely, 𝑀𝑁 is likely unique, as it would involve an interaction
where both vehicles approach the intersection nearly simultane-
ously, producing a distinct driving record (Figure 2d). As a result,
P!"#$!%& prunes 𝑀𝑀 and 𝑀𝑂 from the testing space and executes 𝑀𝑁
only.

Comparison to Existing Approaches.Our approach introduces
a novel simulation predictor that statically analyzes scenarios’
runtime behavior to identify and eliminate redundant scenarios.
While some ADS testing tools aim to reduce redundant scenarios
(e.g., [47, 51, 56, 58, 66, 69, 73]), their methods are typically limited
and fall into two categories. The "rst category consists of tools
that identify redundant scenarios dynamically by executing them
on a physical simulator. These tools can either prune [47, 51, 56]
or deprioritize [69] subsequent scenarios (i.e., mutants). However,
they are inherently unable to eliminate initial redundant scenarios
like 𝑀𝑀 and 𝑀𝑂 . The second category adopts a static approach, but
without analyzing runtime behavior [58, 66, 73]. Instead, they rely
on static "elds of the scenario–such as the starting and ending
points of vehicles–to identify redundancy. This can easily lead to
incorrect pruning of scenarios like 𝑀𝑁 , which may be considered

2

ADS

Unique Challenge: High Simulation Cost

자율주행 시스템 (ADS) 테스팅

• “정적 분석”: 시뮬레이터 실행 전에 ADS의 행동을 예측

시드 풀

변이 생성기

실행기 (시뮬레이터) 이상행동시드 시나리오

추가적인 변이 필요

시드 시나리오

변이 시나리오
117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Mutant
Generator

Simulation
Predictor

 is likely
redundant
m

ADS Under TestDriving Record

Physical
Simulator

 is likely
unique

m

Bug-inducing
Scenarios

Seed
Scenario

Mutant
Scenario m

Speed-Prediction
Models

Figure 1: Overview of P!"#$!%&.

dynamics (e.g., real-time synchronization), our predictor is light-
weight and fast, as it focuses on capturing partial driving records,
such as speeds at waypoints along a planned route.

Experimental results demonstrate that P!"#$!%& is highly e!ec-
tive at detecting critical violations in ADS. We applied P!"#$!%& to
evaluate recent versions of Autoware [34], a popular open-source
ADS with industrial applications such as autonomous valet park-
ing [1] and cargo delivery [2]. P!"#$!%& identi"ed 23 previously
unknown violations, of which 16 have been con"rmed by the devel-
opers. To benchmark performance, we compared P!"#$!%& against
three state-of-the-art tools: ScenarioFuzz [71], D!%’(F")) [55], and
SAMOTA [50]. The result shows that P!"#$!%& signi"cantly out-
performs these tools in detecting unique violations.

Contributions. We summarize our contributions below.
• We propose a novel approach for boosting the e#ciency of

ADS testing. The main technical contribution is simulation
prediction, which enables the e#cient detection and prun-
ing of likely redundant scenarios without running physical
simulators.

• We prove the practicality of P!"#$!%& by reporting 23 new
bugs found in Autoware [34] and conducting the compar-
ative experiments with the three state-of-the-art testing
tools: D!%’(F")) [55], SAMOTA [50], ScenarioFuzz [71].

• We make our tool and data publicly available. 1

2 Overview
2.1 Motivating Example
Figure 2a depicts a driving record 𝐿𝐿 generated from the simulation
of a scenario 𝑀𝐿 . The ego vehicle traveled from west to east, while
the NPC vehicle moved from north to south, both at a speed of 20
km/h. Even though the vehicles’ trajectories overlap at the junction,
they neither encountered nor collided with each other, since the
ego vehicle passed the intersecting point much earlier. Figures 2b–
2d depict candidate scenarios 𝑀𝑀–𝑀𝑁 with each vehicle’s expected
trajectory (which can be obtained from ADS’s planning module,
such as [40], given the starting and end points of each scenario).

Given candidate scenarios 𝑀𝑀–𝑀𝑁 , P!"#$!%& analyzes their run-
time behavior without simulator execution, and determines that
scenarios 𝑀𝑀 and 𝑀𝑂 are likely redundant with 𝑀𝐿 , while scenario 𝑀𝑁

1Artifact link for reviewing: https://anonymous.4open.science/r/anonymous1-7EDD

(a) Driving record 𝑃𝐿 for 𝑄𝐿 (b) 𝑄𝑀 with a planned route
(likely redundant)

(c) 𝑄𝑁 with a planned route
(likely redundant)

(d) 𝑄𝑂 with a planned route
(likely unique)

Figure 2: Examples for illustrating our goal. (a) shows a
schematic driving record of 𝐿𝐿 generated by executing a sce-
nario 𝑀𝐿 . (b)–(d) present schematic scenarios of 𝑀𝑀–𝑀𝑁 .

exposes distinct behavior. To reach this conclusion, P!"#$!%& pre-
dicts that executing 𝑀𝑀 and 𝑀𝑂 would generate driving records similar
to 𝐿𝐿 from the ego vehicle’s perspective; assuming each vehicle trav-
els at 20 km/h, the ego vehicle would move along a straight line
without vehicle interactions, as in 𝐿𝐿 . Speci"cally, in 𝑀𝑀 , the ego
vehicle arrives at the intersection much later (Figure 2b), and in
𝑀𝑂 , the vehicles’ expected trajectories do not overlap (Figure 2c).
Conversely, 𝑀𝑁 is likely unique, as it would involve an interaction
where both vehicles approach the intersection nearly simultane-
ously, producing a distinct driving record (Figure 2d). As a result,
P!"#$!%& prunes 𝑀𝑀 and 𝑀𝑂 from the testing space and executes 𝑀𝑁
only.

Comparison to Existing Approaches.Our approach introduces
a novel simulation predictor that statically analyzes scenarios’
runtime behavior to identify and eliminate redundant scenarios.
While some ADS testing tools aim to reduce redundant scenarios
(e.g., [47, 51, 56, 58, 66, 69, 73]), their methods are typically limited
and fall into two categories. The "rst category consists of tools
that identify redundant scenarios dynamically by executing them
on a physical simulator. These tools can either prune [47, 51, 56]
or deprioritize [69] subsequent scenarios (i.e., mutants). However,
they are inherently unable to eliminate initial redundant scenarios
like 𝑀𝑀 and 𝑀𝑂 . The second category adopts a static approach, but
without analyzing runtime behavior [58, 66, 73]. Instead, they rely
on static "elds of the scenario–such as the starting and ending
points of vehicles–to identify redundancy. This can easily lead to
incorrect pruning of scenarios like 𝑀𝑁 , which may be considered

2

ADS

정적 분석기

과거 주행기록과 중복

새로운 주행양상

아이디어

프루닝 성능

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

P!"#$!%&: Testing Autonomous Driving Systems by Pruning Likely Redundant Scenarios Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

no tools reported speeding violations in our experiments. We also
note that, Table 1 shows the numbers after manually discarding
false positives (i.e., violations for which the ego vehicle is not re-
sponsible). Concretely, through our careful manual investigations
of all the log !les generated by the fuzzers, we identi!ed four false
positive cases: (1) collision due to an NPC rushing to the ego vehicle,
(2) stalling due to a stationary NPC blocking the ego vehicle (when
lane changes are not possible), (3) trivial stalling occurred at the
ego vehicle’s starting point (considered false positives due to poor
reproducibility), (4) false alarms due to the unresolved error [7] in
CARLA. The total number of false positives raised by each fuzzer is:
P!"#$!%& (81), ScenarioFuzz (143), D!%’(F")) (22), SAMOTA (18).

Table 1 shows that P!"#$!%& outperforms the three fuzzers in
bug detection. For example, P!"#$!%& surpassed ScenarioFuzz, the
current state-of-the-art in ADS testing, in both total bug counts
(111 vs. 58) and unique bug counts (65 vs. 23). The results also show
that P!"#$!%& is particularly e"ective in detecting collision that is
arguably the most critical type of violation, consistently generating
more violation-triggering scenarios across all four maps.

Testing E!ciency. Table 2 compares the testing e#ciency using
two metrics: unique scenario ratio (UniqSExecS) and unique simulation-
time ratio (UniqTExecT). For each tool, the four columns (ExecS, UniqS,
ExecT, UniqT) report the numbers averaged over 12 executions (4
runs → 3 repetitions). ExecT and UniqT report the pure simulation
time, excluding time spent on all other tasks (e.g., logging, waiting
for the activation of Autoware’s modules in each simulation).

The results con!rm our claim in Section 1 on the competing tools;
the three existing techniques fall short of e#ciently diversifying
test scenarios. For example, ScenarioFuzz [71], the best competi-
tor in Table 1, recorded a very low testing e#ciency of 8.3% in
terms of unique scenario ratio, i.e., 91.7% of the executed scenarios
were redundant with respect to other tested scenarios. By contrast,
P!"#$!%& achieved a far better testing e#ciency of 45.4%. Based
on these results, we conclude that P!"#$!%&’s superior bug-!nding
ability largely lies in its competitive testing e#ciency.

Simulation Prediction Overhead. The cost of simulation pre-
diction was almost negligible compared to that of physical simu-
lation [27]. While the average simulation time (per scenario) of
P!"#$!%& was 308.7 sec, the average simulation-prediction time
was 10.2 sec, including 2.4 sec for learning.

5.2 Importance of Our Pruning
Setup. To evaluate the signi!cance of simulation prediction-

based pruning (Section 3.2), we developed two variants of P!"#$!%&:
Basic and Field.Basic refers to the basic algorithm (Section 3.1) with-
out static pruning. Field extends Basic by performing static pruning
based on scenario-!eld similarity, as in [58, 66, 73]; see supplement
G for implementation details of Field. We ran the two variants
under the same experimental setup (Section 5.1.1) as P!"#$!%&.
We then created the cactus plots (Figure 3) to compare the num-
ber of detected violations (y-axis) over the cumulative testing time
(x-axis), aggregated every 30 minutes across 12 runs. We excluded
false positives from the violation counts as in Table 1.

Results. The results in Figure 3 show that our pruning is criti-
cal for enhancing the bug-!nding ability of P!"#$!%&. Compared

Figure 3: Importance of our pruning technique (P!"#$!%&).

to Basic, P!"#$!%& could detect 2.1 times more potential viola-
tions (111 vs. 52). This is a notable improvement given that Basic
itself is not a trivial approach; it adopts two optimizations (Sec-
tion 3.1.1, 3.1.2) from prior work, and also performs mutations to
increase vehicle interactions (supplement A). By contrast, Fieldwas
far less e"ective, detecting only 77 violations in total.

Precision and Recall of Pruning. To analyze why P!"#$!%&
detected more violations compared to Field, we compared their
precision (= |CorrectlyPruned |

|Pruned |) and recall (= |CorrectlyPruned |
|Redundant |). Here, Re-

dundant, Pruned andCorrectlyPruned refer to the sets of redundant,
pruned, and correctly pruned (i.e.,CorrectlyPruned = Redundant↑
Pruned) scenarios. We !rst built a ground-truth dataset from Ba-
sic’s execution log, assigning each scenario a label: “redundant”
or “unique”. We then applied each pruning method to the dataset
following the scenario execution order in Basic’s run. The pre-
cision and recall are the following: P!"#$!%& (69.6%, 69.8%) and
Field (61.6%, 68.2%). These statistics align with the results in Figure 3
and the motivating example in Section 2. Existing static pruning
(Field) has lower precision than P!"#$!%& and therefore may incor-
rectly prune scenarios that lead to violations. P!"#$!%& mitigates
this issue by leveraging simulation prediction for precise pruning.

5.3 Discovering New Violations
P!"#$!%& was also e"ective at discovering previously unknown
bugs in industrial ADS. During the development and evaluation of
P!"#$!%& (from December 2023 to March 2025), we successfully
found several new bugs in the following versions of Autoware.
f6b14ec [26] (July 2023), eeed846 [25] (Jan. 2024), 7877192 [24]
(May 2024), 4a3de49 [22] (Dec. 2024), and 75549a6 (Jan. 2025) [23].

Bug-Reporting Process. To minimize the burden on the Au-
toware developers, we avoided reporting duplicated issues, by
carefully investigating the root causes of violations discovered
by P!"#$!%&. Following [55], we replayed the violation-triggering
scenarios, and manually inspected their log !les to see whether
each module of Autoware emitted proper commands or accurately
interpreted data from other components. After identifying faulty
modules in each driving situation, we checked whether similar
issues had been reported already on the GitHub repository [4], and
reported issues only when we were con!dent that they are distinct.

9

베이스라인 (No pruning)

겉모습 분석 기반 프루닝

의미 분석 기반 프루닝

찾은 오류
• 23 reported, 16 confirmed233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Supplemental Material for ICSE 2026 Submission Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Table 2: The bugs in Autoware [5–9] found by P!"#$!%&. Type: violation type (“Invasion” indicates lane invasion). ACK: whether
the bug is con!rmed by developers or not (⊋ if con!rmed). Module: the name of the associated faulty module identi!ed by
Autoware developers (“pending” if not yet identi!ed). Description: the context or cause of the violation.

ID Commit Module Type Description ACK
1 f6b14ec Control Collision Weak braking on a downhill. ⊋

2 eeed846 Localization Stalling Miscalculated the ego vehicle’s position while turning. ⊋
3 eeed846 Localization Stalling Fails to estimate the ego vehicle’s position on a slippery surface. ⊋
4 eeed846 Planning Stalling Inde!nitely stops while making a turn at a sharp corner.
5 eeed846 pending Collision Fails to yield to the NPC vehicle while crossing the intersection.
6 eeed846 pending Stalling Failed to change lanes to pass a stopped NPC vehicle ahead. ⊋
7 eeed846 pending Stalling Submodule in planning module crashes while turning the corner. ⊋
8 eeed846 pending Stalling Unable to resume driving after stopping at a downhill slope. ⊋
9 eeed846 Control Collision Fails to decelerate properly after over-accelerating on low-friction surface. ⊋

10 7877192 Perception Collision Late detection of a small obstacle leads to failure in stopping in time. ⊋
11 7877192 Planning Stalling Does not perform lane change required to reach the destination.
12 7877192 pending Stalling Remains stopped after yielding to the NPC vehicle at the intersection.
13 4a3de49 Localization Stalling Halts unnecessarily due to localization error at roundabout. ⊋
14 4a3de49 Perception Stalling Detects a non-blocking object as an obstacle ahead. ⊋
15 4a3de49 pending Collision Fails to consistently detect a small obstacle in front. ⊋
16 4a3de49 Planning Collision Incorrectly calculated a drivable area ahead as non-drivable.
17 4a3de49 Planning Stalling Incorrectly recognize the slowly approaching vehicle as moving away.
18 4a3de49 pending Collision Fails to yield to the NPC vehicle exiting from a roundabout. ⊋
19 4a3de49 Planning Stalling Underestimates required acceleration for uphill. ⊋
20 4a3de49 Control Stalling Stops near the destination at the corner. ⊋
21 4a3de49 pending Stalling Remains stopped despite the obstacle ahead having cleared. ⊋
22 4a3de49 pending Stalling Failed to drive downhill when initialized close to the slope start.
23 75549a6 pending Invasion Produces an invalid backward plan instead of a valid forward route. ⊋

Gaël Varoquaux. 2013. API design for machine learning software: experiences
from the scikit-learn project. In ECML PKDD Workshop: Languages for Data
Mining and Machine Learning. 108–122.

[13] Yiru Jiao. 2023. A fast calculation of two-dimensional Time-to-Collision. https:
//github.com/Yiru-Jiao/Two-Dimensional-Time-To-Collision. Accessed: July
2025.

[14] Ziyuan Zhong, Gail Kaiser, and Baishakhi Ray. 2022. Neural network guided
evolutionary fuzzing for !nding tra"c violations of autonomous vehicles. IEEE
Transactions on Software Engineering (2022).

3

2. 연구 내용

연구내용

초기 결과. 연구팀은 제안 기술의 초기 버전을 구현하여 실효성을 확인하였으며, 이를 토대로 향후 8개월간 완성도 있는 결과를 산출할 수 있을 것임.

- 먼저 테스팅 대상 자율주행 소프트웨어로는 Autoware, 시뮬레이터로는 Carla를 사용하여 기존 테스팅 기술들이 얼마나 많은 중복된 테스트를 수행하는지
확인하였음. Carla에서 제공하는 맵들을 대상으로 가장 최신 테스팅 기술인 ScenarioFuzz를 12시간 동안 테스팅을 수행한 결과, 평균 183개의 시나리오를 생
성 및 테스트할 수 있었으며, 이는 하나의 시나리오를 실행하는 데 평균 4분이 소요됨을 뜻함. 이 중 동일한 주행 양상을 보이는 시나리오가 179개(97.8%)에
달하였으며, 이를 통해 가장 최신 기술 조차도 중복 테스트로 인해 발생하는 비효율성 문제가 매우 심각함을 확인함.

- 제안 기술의 실효성을 검증하기 위해 간단한 요약 실행기를 개발하여 ScenarioFuzz에 접목해 보았음. 분석할 시나리오가 주어졌을 때, Autoware의 플래너
모듈을 활용하여 운행 중인 모든 차량의 주행 경로를 정적으로 예측하였음. 각 차량에 대해 각 주행 경로 위치에서의 속도를 예측하는 모듈을 추가로 개발하
여 차량들의 전체 주행 시뮬레이션을 정적으로 수행함. 이후, 이러한 정적 주행 기록이 서로 다른 경우에만 실제 실행기를 호출함. 이러한 프로토타입만으로
도 중복된 시나리오로 인해 낭비되는 테스팅 시간을 약 60% 절감할 수 있었으며, 이를 통해 기존 기술로는 발견되지 않았던 Autoware의 이상 행동(오류) 18
건을 찾았고 이 가운데 5건을 새롭게 발견, 개발자에게 보고하여 및 알려지지 않았던 오류임을 확인받았음 (아래 테이블). 본 연구를 통해 더욱 정교한 요약
실행기를 개발하면, 기존 분석에서 확인된 중복 시나리오 179개 중 대부분을 사전에 예측하여 제거할 수 있을 것으로 기대됨. 이를 통해 테스팅 시간을 90%
이상 절감하고, 기존 기술로는 발견하지 못했던 오류들을 월등히 높은 효율로 찾아낼 수 있을 것으로 예상됨.

오류 ID 원인 모듈 오류 타입 설명

1 Planning/Control 충돌 내리막길에서 앞에 차량이 있음을 인지했지만 브레이크를 충분히 밟지 못함

2 Perception 충돌 작은 물체(사람)을 너무 늦게 인지하여 충돌

3 Perception 멈춤 안개가 짙은 상황에서 내리막길 주행 중에 도로를 장애물로 인식해서 멈춤

4 Planning 충돌 교차로에서 좌회전시에 직진 차량에 양보하지 않고 주행하여 충돌

5 Control 멈춤 어두운 상황에서 마찰력이 작은 도로를 지날 때 차량을 적절히 제어하지 못하고 인도를 침범

표 1. 제안 기법의 초기 버전을 통해 찾은 Autoware 오류들 (개발자 확인을 완료한 오류들만 포함)

1 2 543

• 정적 분석 정확도 향상

• 다른 Physical AI 시스템 테스팅으로 확장: 로봇, 드론, etc

확장 계획

• 산업 전반에 걸쳐 핵심 프로그래밍 언어로 도약 중

• 웹, 과학 계산, 금융, AI 에이전트, 로봇, 고성능 시스템, 고신뢰 시스템, …

 Python 코드의 안전성 성능 이식성 확보 기술 필요⇒ ⋅ ⋅

Python

• PyTER: Effective program repair for Python type errors. FSE 2022

• Towards effective static type-error detection for Python. ASE 2024

• Boosting Python type inference models. In submission

• Automating Python library migrations. In submission

• Python intermediate language. In progress

• Python compiler testing. In progress

Our Research on Python
안전성

안전성

안전성

이식성

안전성, 이식성

안전성

• 타입 오류 검출

• Mypy, Pyre (Meta), Pytype (Google), Pyright (MS)

• 제한적 성능: Pyright 오류 탐지율은 20% 수준

• 정적 타입 추론

Static Types for Python
ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Wonseok Oh and Hakjoo Oh

where ω𝐿𝑀𝐿 contains types of changed class members (𝐿, 𝑀) → 𝑁𝑁
after calling the method𝑂 as follows:

ω𝐿𝑀𝐿 =

[
(𝐿, 𝑀) ↑↓

{
ω
↔𝐿
𝑀𝐿 (𝐿, 𝑀) if ω

↔𝐿
𝑀𝐿 (𝐿, 𝑀) ω {Any}

ω↗ (𝐿, 𝑀) otherwise
| (𝐿, 𝑀) → 𝑁𝑁

]

where ω
↔𝐿
𝑀𝐿 (𝐿, 𝑀) is a result of re-running the type inference for the

method𝑂 with removing types of class members (𝐿, 𝑀) → 𝑁𝑁 , which
is similar to Eq (4), as follows:

(_, ω↔𝐿
𝑀𝐿) =

⊔
(ε,_)→𝑂 (lsm)

%!body(𝑂)"(ε, ω↗ [(𝐿, 𝑀) ↑↓ {Any} | (𝐿, 𝑀) → 𝑁𝑁])

In other words, ω𝐿𝑀𝐿 considers only the members whose types have
changed in the method𝑂 while keeping the types of other members
as types in ω↗.

In summary, given a cluster 𝑃 , the method𝑂 → M𝑁
elim eliminates

type errors in the cluster 𝑃 , which means ω𝐿𝑀𝐿 is a re!ned mem-
ber environment that removes unintended types of class members
(𝐿, 𝑀) → 𝑁𝑁 .

Applying to Summary. Finally, we generate 𝑄↗ from the sum-
mary 𝑄 with the re!ned member environment for each cluster 𝑃 as
follows:

𝑄↗ =
⊔
𝑁 →ϑ

⊔
𝐿err→M𝐿

err

⊔
𝐿→M𝐿

elim

𝑄 [l ↑↓ 𝑄 ↔(l) | l → lines(merr)]

where 𝑄 ↔ = F!"#S$%%&’((𝑁𝑁 ,𝑂,𝑂err)

where lines(𝑂) denote lines of a method 𝑂 and M𝑁
err is a set

of methods where type errors in a cluster 𝑃 occur, de!ned as
{𝑂𝑃 | ↘(_, 𝑅) → 𝑃 }.

5 EVALUATION
In this section, we experimentally evaluate Pyinder to answer the
following research questions:

(1) E!ectiveness: How e"ectively does Pyinder detect type
errors in our benchmarks?

(2) Ablation study: How does each feature of Pyinder con-
tribute to the !nal performance?

(3) Generality: Can Pyinder detect critical type errors in un-
seen, recently developed open-source Python projects?

We implemented Pyinder on top of Pyre [13] and compared its
performance with four existing tools, Mypy (v1.9.0) [46], Pytype
(v2024.04.11) [17], Pyre (v0.9.18) [13], and Pyright (v1.1.339) [37], on
Python 3.9.18. All experiments were conducted on a Linux machine
(Ubuntu 22.04) with an Intel Zeon CPU and 128GB memory.

5.1 E!ectiveness and Ablation Study
Se!ing. We evaluated Pyinder and existing tools on the 68 type

errors from 20 open-source projects (from 4k to 417k lines). All tools
were evaluated on the same criteria for type errors as described in
Section 2. Since all tools, including Pyinder, produce warnings other
than type errors, we only counted type-error alarms within our
scope (Section 2). We did not set a time budget for the tools, except
for Pytype. While other tools !nish within an average of about 10
minutes, Pytype took a signi!cantly longer time. Therefore, we set
a time limit of 2 hours in the case of Pytype.

Figure 4: Venn Diagram of the number of detected bugs by
each type analysis tool.

Table 2: Comparison with existing type analysis tools on the
of alarms and analysis time (both per 1KLoC).

Mypy Pyre Pytype Pyright Pyinder
#alarms/KLoC 4.72 8.38 1.74 11.37 4.57
time(s)/KLoC 0.48 0.26 98.28 0.98 5.78

External libraries. When running a tool on a program, we
chose not to include the source code of external libraries that the
program relies on. This is because including external libraries in-
creased the program size signi!cantly. On average, the programs in
our benchmarks used 26 external libraries, which led to an increase
in program size by more than 7.4 times. For example, when external
libraries were included, the size of program homeassistant in-
creased by 55 times. Thus, instead of including library source code,
we ran all tools with typeshed [47], which provides type hints for
the Python standard library as well as some third-party libraries.

E"ectiveness of Pyinder. Figure 4 shows that Pyinder outper-
forms existing tools in detecting type errors. Pyinder uncovered 34
bugs, more than doubling the count collectively detected by Mypy,
Pyre, Pytype, and Pyright. Pyright identi!ed 15 bugs, while Mypy
and Pyre detected 6 and 4 bugs, respectively. The set of bugs dis-
covered by Pyinder was a superset of those detectable by existing
tools while there was no clear overlap between the existing tools.

Table 2 compares Pyinder and existing tools in terms of the num-
ber of alarms and analysis time on the 68 benchmarks (averaged
over 1K lines of code). The results clearly show the bene!t of us-
ing Pyinder over the existing tools; Pyinder reports fewer alarms
than existing tools, and running Pyinder requires less time than
collectively running the existing tools.

Ablation study. To assess the contribution of each feature de-
scribed in Section 3, we created 9 variants of Pyinder as shown
in Table 3. For example, V1 denotes a variant that is identical to
Pyinder except that it merges types into Any at merge points.

Figure 5 shows the results of the ablation study. While V1 and V2
decreased the number of detected bugs by 26 and 9, respectively, V3
resulted in increased analysis time and the number of total alarms.
When we set the call depth limit to 6 (V4), the cost increased by
about 2.1 times, decreasing the number of detected bugs due to
timeout, while V5 increased the cost by 1.4 times. When using V6, 5

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Limitation. Despite their advancements, these state-of-the-art
models share a common limitation: they struggle to make accurate
predictions for rare or unseen types that are underrepresented in
the training or !ne-tuning data. While they excel at predicting sta-
tistically common types like int or str (with an average accuracy of
→86%), their performance drops signi!cantly for data-dependent pa-
rameterized types such as List[Dict[str, int]] (→30%) or program-
speci!c user-de!ned types (→54%). Furthermore, this di"culty ex-
tends even to simple types when they appear in statistically infre-
quent usage patterns from the training data.

The example in Figure 1 illustrates this problem. The correct type
for project_id at line 11 is int since it is passed to the DocStore.read
method at line 12, which returns an int value. However, T!"#$ [28],
a state-of-the-art model, incorrectly infers the type of project_id
at line 11 as str. To understand this failure, we examined how
project_id is annotated in the training dataset used for T!"#$. As
shown in Figure 2, we found that project_id is annotated as str in
approximately 90% of the cases, suggesting that the model is biased
towards predicting str for this variable.

This Work. To address this limitation, we present TypeCare, a
new technique for improving the performance of type inference
models for Python. TypeCare is a model-agnostic, post-processing
method that re!nes the outputs of existing models using code con-
text information, without requiring any retraining or !ne-tuning.
We propose two key components for re!nement: (1) Re-Ranking,
which leverages semantic and syntactic information to prioritize
more plausible types, and (2) Augmentation, which generates
new candidate types that are likely to be correct based on code
context. First, TypeCare re-ranks the model output, i.e., a ranked
list of candidate types, by leveraging type validity and code usage
patterns observed across the project, promoting correct types to
the top. Second, to maximize the e#ectiveness of the re-ranking
step, TypeCare augments uncertain predictions with additional
contextually plausible type candidates.

We evaluated TypeCare by applying it to three state-of-the-art
type inference models: T%&#T5 [30], T!"#$ [28], and T%&#G#’ [21].
The results show that TypeCare consistently improves top-1 accu-
racy across all models and settings. In single-variable prediction
tasks, TypeCare increased the top-1 accuracy of T%&#T5, T!"#$, and
T%&#G#’ from 71.4%, 67.8%, and 65.4% to 81.1%, 75.8%, and 73.6%,
respectively. The improvements were especially signi!cant for com-
plex types, such as parameterized and user-de!ned types, where
TypeCare improved the baseline models by up to 40.1%. Moreover,
in the challenging task of function signature prediction, TypeCare
increased the top-1 accuracy of T%&#T5 from 59.1% to 74.5%.

Contributions. In summary, our contributions are as follows:

• We propose a novel re!nement approach, TypeCare, that
enhances type prediction models by re-ranking and aug-
menting model outputs using code context information.
By requiring no model retraining, TypeCare o#ers a light-
weight and practical solution for improving Python type
inference models.

• We prove the e#ectiveness of our approach in real-world
settings. We show that TypeCare substantially improves

1 class A:

2 text: Union[str, bytes]

3
4 def ident(self, i_value: str):

5 validate(i_value[1:])

6 msg = self.text + i_value

7
8 def data(self, d_value: bytes):

9 d = d_value.decode('utf-8')

10 return d

11
12 def scope(self, s_value: <FILL_IN>):

13 validate(s_value[1:])

14 msg = self.text + s_value

Model Output

1. s_value: bytes ✁

2. s_value: int ✁

3. s_value: str ✂

Figure 3: A simpli!ed examplewhere the goal is to predict the
type of s_value at line 12. The correct type is str, but the recent
model, T!"#$ [28], predicts bytes as the top-1 candidate.

top-1 accuracy of existing models, with up to a 40.1% gain
on complex, parameterized and user-de!ned types.
We also demonstrate the robustness of our approach through
diverse evaluation settings and ablation studies.

2 Overview
In this section, we illustrate the high-level ideas of our approach
using examples.

Type Prediction Problem. In this paper, we consider the cloze-
style type prediction problem for annotating Python function sig-
natures, a problem setting that has been widely adopted in recent
studies [4, 5, 28–30]. Listing 1 illustrates an example, where the
<FILL_IN> placeholders indicate the positions in the function signa-
ture to be predicted. Given such input, the goal of a type inference
model is to infer the appropriate types for x, y, and the return value.

Listing 1: An example of the type prediction problem
1 def add(x: <FILL_IN>, y: <FILL_IN>) -> <FILL_IN>:

2 return x + y

However, state-of-the-art type inference models [21, 28, 30] of-
ten fail to predict complex or project-speci!c types that occur in-
frequently in the training data. To overcome this limitation, we
introduce TypeCare, a post-processing technique that leverages
code context to re!ne model predictions. Our approach consists
of two main components: (1) Re-ranking the model’s outputs to
prioritize the correct type, and (2) Augmenting the model outputs
with additional, contextually plausible types.

2.1 Code Context-based Re-Ranking
The goal of the re-ranking step is to improve the model outputs
by promoting the correct types based on the surrounding code
context. To this end, we propose a scoring method that combines
semantic signals derived from static type checkers and syntactic
signals obtained from code usage patterns.

2

Fundamental Question: 동적 언어의 타입을 정적으로 예측한다는 것이 무엇인가?

오원석 (15분)

Python 중간 언어

• Python 코드의 안전성 성능 이식성 확보 필요. 하지만 정확한 분석, 최적화, 변환이 매우 어려운 상황⋅ ⋅ Confidential

• Hard to analyze unsafe code

• Hard to optimize inefficient code

• Hard to translate unportable code

→
→
→

Python

As-Is To-Be

Python-to-IR Compiler IR Interpreter

IR Analyzer IR Optimizer IR Translator

safe
code

efficient
code

portable
code

Informal, complex, and implicit Formal, minimal, and explicit

IR

Figure 2: Project Overview

• Explicit: In PyIR, every instruction and expression has a single, transparent

semantics directly reflected in the syntax. One can predict program behavior

simply by reading the PyIR code, without inferring hidden control flow, im-

plicit dispatch, or dynamic fallbacks. This transparency eliminates much of

the ambiguity that complicates traditional Python analysis.

Figure 3 presents an illustrative PyIR program for the Python expression x +

y.2 It makes the complex and implicit behavior discussed in Section 2.1 explicit

and transparent, using only a minimal set of language constructs. Whereas Python

hides dynamic dispatch behind the + operator, PyIR exposes each intermediate

step—method lookup, NotImplemented fallback, and error handling—as concrete,

analyzable code. The resulting program is also minimal, relying solely on core con-

structs such as field access, function calls, and assignments. Working on such PyIR

programs, analysis tool builders can avoid Python’s complex dynamic semantics and

instead target a small, explicit, and well-defined language. This greatly reduces

engineering e!ort and enables precise analysis, optimization, and transformation.

IR Infrastructures PyIR will enable many tasks that are otherwise infeasible

with Python. In this project, we focus on analysis, optimization, and translation,

2This PyIR program is for illustration purposes and does not represent the final version.

This proposal is intended solely for the panel review of Samsung Research Funding Center for Future Technology and may contain
trade secret, industrial technology or privileged and confidential information otherwise protected under applicable law including the
Unfair Competition Prevention and Trade Secret Protection Act. Any unauthorized dissemination, distribution, copying of use of the
information contained in this communication is strictly prohibited and subject to legal action.

5

이석현 (15분)

• Physical AI 테스팅

• Python 타입 분석 및 추론

• Python 중간 언어 인프라

정리

피드백 / 공동 연구 환영합니다!

