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Introduction

• Education + Employment.

• POSTECH:    Assistant Professor in CS   (2024–Present)
• CMU:      Postdoc in CS           (2023–2024)
• Stanford:      PhD in CS            (2014–2017, 2020–2023)
    KAIST:      Researcher in CS           (2017–2020)
• POSTECH:   BS in CS and Math           (2010–2014)

• Research.

• PL:    POPL (2023, 2020, 2018, 2014),  PLDI (2025a, 2025b, 2016),  CAV (2025).
• ML:   NeurIPS (2020-Spotlight, 2018),  ICML (2025, 2023),  ICLR (2024-Spotlight),  AAAI (2020).
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Mathematical Properties     of     Programs and Computations

Research Interests
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Mathematical Properties     of     Programs and Computations

⋯

Research Interests

4

• Is a practically-used computation “correct” in any formal sense?
• Is there a more “efficient” computation that is correct?
• Is there any “fundamental limit” to achieving the computation?

EfficiencyCorrectness Fundamental Limits
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Early Days
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These Days

As a result of ~90 years of substantial efforts,
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Fundamental Computations
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Use floats intricately.

Assume reals.

Assume differentiability.

Assume integrability.

Underlying theory

Actual implementations
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Function Evaluation Compute sin 𝑥 .
[Ongoing 1]
[Ongoing 2]
[POPL 18]
[PLDI 16]

Sample Generation Sample from 𝒩 𝜇, 𝜎% .
[Ongoing 1]
[Ongoing 2]
[PLDI 25a]

Differentiation Compute ∇𝑓 𝑥 .
[ICLR 24] (Spotlight)

                                     [ICML 23]
                                     [NeurIPS 20] (Spotlight)

Integration
(≈ Probabilistic Inference) Compute ∫ 𝑓 𝑥 	𝑑𝑥.

[Submitted]
[PLDI 25b]
[POPL 23]                [AAAI 20]
[POPL 20]                [NeurIPS 18]

Function Approximation
[CAV 25]                   [ICML 25]
                                     [Neural Networks 24]

Our Works
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Function Evaluation
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Problem

• Goal. For 𝑓 ∈  {exp, ln, sin, asin, …} and 𝑥 ∈ 𝔽,

compute 𝑓 𝑥 ∈ ℝ  accurately and efficiently.
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Problem

• Goal. For 𝑓 ∈  {exp, ln, sin, asin, …} and 𝑥 ∈ 𝔽,

compute 𝑓 𝑥 ∈ ℝ  accurately and efficiently.

• Fact.  We cannot exactly compute 𝑓 𝑥  for almost all 𝑥.

•  exp 𝑥 ∉ 𝔽   for all 𝑥 ∈ 𝔽 ∖ {0}.
•    ln 𝑥 ∉ 𝔽   for all 𝑥 ∈ 𝔽 ∖ {1}.
•   sin 𝑥 ∉ 𝔽   for all 𝑥 ∈ 𝔽 ∖ {0}.
•                           ⋯
• These are by Lindemann-Weierstrass and Siegel–Shidlovsky Theorems (1885, 1929).
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Problem

• Goal. For 𝑓 ∈  {exp, ln, sin, asin, …} and 𝑥 ∈ 𝔽,

compute 𝑓 𝑥 ∈ ℝ  accurately and efficiently.

• Question.  How much accuracy do we want?
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Problem

• Goal. For 𝑓 ∈  {exp, ln, sin, asin, …} and 𝑥 ∈ 𝔽,

compute 𝑓 𝑥 ∈ ℝ  accurately and efficiently.

• Question.  How much accuracy do we want?

• ULP error:  err&'( 𝑟, 𝑟̂ ≈ 𝑟, 𝑟̂ ∩ 𝔽 .
• Best possible accuracy:  0.5 ulps.
• Typical target accuracy:  1–10 ulps.
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sin 𝑥

'sin(𝑥) ⟺    'sin has an error of ≤ 2 ulps.



Problem

• Goal. For 𝑓 ∈  {exp, ln, sin, asin, …} and 𝑥 ∈ 𝔽,

compute 𝑓 𝑥 ∈ ℝ  accurately and efficiently.

• Note.  It has been well studied for 70+ years.
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Existing Solution

• Math Library.  Implements routines for evaluating 𝑓 𝑥 .

• Example.  GNU libc includes an implementation of math.h.    
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Existing Solution

• Math Library.  Implements routines for evaluating 𝑓 𝑥 .

• Different implementations.

• Example.

• GNU libc    
• LLVM libc    
• CORE-MATH   
• Intel Math Library   
• AMD Math Library   
• Apple Math Library  
• CUDA Math Library  
• ⋯
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Existing Solution

• Math Library.  Implements routines for evaluating 𝑓 𝑥 .

• Different implementations. Different claims.

• Example.

• GNU libc      Claim:  ≤ 10 ulps.
• LLVM libc      Claim:  ≤ 0.5–1 ulps.
• CORE-MATH     Claim:  ≤ 0.5 ulps.
• Intel Math Library   Claim:  ≤ 0.6 ulps.
• AMD Math Library   [Undocumented]
• Apple Math Library   [Undocumented]
• CUDA Math Library  Claim:  ≤ 1–8 ulps.
• ⋯

24



Existing Solution

• Math Library.  Implements routines for evaluating 𝑓 𝑥 .

• Different implementations.  Different claims.

• Example.

• GNU libc      Claim:  ≤ 9 ulps.
• LLVM libc      Claim:  ≤ 0.5–1 ulps.
• CORE-MATH     Claim:  ≤ 0.5 ulps.
• Intel Math Library   Claim:  ≤ 0.6 ulps.
• AMD Math Library   [Undocumented]
• Apple Math Library   [Undocumented]
• CUDA Math Library  Claim:  ≤ 1–8 ulps.
• ⋯
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Are existing math libraries correct?
Can we make them more efficient?



Issues

• GNU libc.  Aims to have ≤ 10 ulp error.

• glibc 2.18:     cos(4.83...e+9)  = -0.396131987972...
• glibc 2.19:    cos(4.83...e+9)  = +0.396131987972...
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Issues

• GNU libc.  Aims to have ≤ 10 ulp error.

• glibc 2.18:     cos(4.83...e+9)  = -0.396131987972...  (correct)
• glibc 2.19:    cos(4.83...e+9)  = +0.396131987972...  (error > 1018 ulps)

Math libraries keep evolving.  Some updates introduce new errors!
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Issues

• GNU libc.  Aims to have ≤ 10 ulp error.

• glibc 2.18:     cos(4.83...e+9)  = -0.396131987972...  (correct)
• glibc 2.19:    cos(4.83...e+9)  = +0.396131987972...  (error > 1018 ulps)

Math libraries keep evolving.  Some updates introduce new errors!

• glibc 2.27:     sin(2.41...e+23) = 2.3881763752596...e-17  (correct)
• glibc 2.28:    sin(2.41...e+23) = 2.3881763752648...e-17  (error > 104 ulps)
• glibc 2.40:     Same as glibc 2.28.
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Issues

• CORE-MATH.  Claims to have ≤ 0.5 ulp error.

30

Paul Zimmermann
(INRIA, France)

Best Paper @ ARITH 22



Issues

• CORE-MATH.  Claims to have ≤ 0.5 ulp error.

• Correct:                acos(+7.49...e-01) = +0.72...
• CORE-MATH:     acos(+7.49...e-01) = +1.49...      (error > 1017 ulps)

• Correct:                erf(+1.48...e+306) = +1.00...e+00
• CORE-MATH:     erf(+1.48...e+306) = +1.48...e+306  (error > 1018 ulps)

Even libraries developed by world experts have serious errors!
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Issues

• CORE-MATH.  Claims to have ≤ 0.5 ulp error.

• Correct:                acos(+7.499999...e-01) = +7.227342...e-01
• CORE-MATH:     acos(+7.499999...e-01) = +1.494609...e+00   (error > 1017 ulps)

• Correct:                erf(+1.481253...e+306) = +1.000000...e+00
• CORE-MATH:     erf(+1.481253...e+306) = +1.481253...e+306  (error > 1018 ulps)

Even libraries developed by world experts have serious errors!
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Why do such correctness issues arise?



Intricate Implementations

• Why.  These implementations are extremely sophisticated and error-prone.
• Example.  CORE-MATH implementation of sin.

33Constant Tables Bit-Level Operations



Intricate Implementations

• Why.  These implementations are extremely sophisticated and error-prone.
• Example.  CORE-MATH implementation of sin.

34Floating-Point Operations Error Analyses



Intricate Implementations

• Why.  These implementations are extremely sophisticated and error-prone.
• Example.  CORE-MATH implementation of sin.
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Intricate Implementations

• Why.  These implementations are extremely sophisticated and error-prone.
• Example.  CORE-MATH implementation of sin.

• Implements 43 functions.
• Supports 5 floating-point formats.
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Intricate Implementations
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• Why.  These implementations are extremely sophisticated and error-prone.
• Example.  CORE-MATH implementation of sin.

• Implements 43 functions.
• Supports 5 floating-point formats.

How to ensure the correctness of existing libraries?



Research Directions

• Case 1.  Input is ≤ 32 bits (and univariate).

• Exhaustive testing.  Compute max
)∈+

err&'( 𝑓 𝑥 , 𝑃 𝑥 .
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Research Directions

• Case 1.  Input is ≤ 32 bits (and univariate).

• Exhaustive testing.  Compute max
)∈+

err&'( 𝑓 𝑥 , 𝑃 𝑥 .
• MPFR library.   Used to compute 𝑓(𝑥).
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Research Directions

• Case 1.  Input is ≤ 32 bits (and univariate).

• Exhaustive testing.  Compute max
)∈+

err&'( 𝑓 𝑥 , 𝑃 𝑥 .
• MPFR library.   Used to compute 𝑓(𝑥).

• Limitations.  Cannot trust MPFR.     Cannot apply to new functions.
• Why.        Complicated implementation.  Implements only basic functions.
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Research Directions

• Case 2.  Input is ≥ 64 bits (or multivariate).

• Exhaustive testing.  Infeasible (since 2,$ is too large).
• Program analysis.    My previous work [POPL 18, PLDI 16].

41
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Research Directions

• Case 2.  Input is ≥ 64 bits (or multivariate).

• Exhaustive testing.  Infeasible (since 2,$ is too large).
• Program analysis.    My previous work [POPL 18, PLDI 16].

• Limitations.  High computational cost (19 days for log), etc.
• Why.        Lack of proper abstraction in existing implementations.
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These are essentially assembly code.  They need civilization!



Sample Generation

47



Problem

• Goal. Let 𝒟 ∈ Exponential 𝜇 , Normal 𝜇, 𝜎 , …  be a probability distribution.

• Generate random variates     𝑋	~	𝒟.
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• Goal. Let 𝒟 ∈ Exponential 𝜇 , Normal 𝜇, 𝜎 , …  be a probability distribution.

• Generate random variates     𝑋	~	𝒟.
• Compute cumulative probabilities  𝐹 𝑥 ≔ Pr 𝑋 ≤ 𝑥   for 𝑥 ∈ ℝ.
• Compute quantiles     𝑄 𝑢 ≔ inf 𝑥	|	𝑢 ≤ 𝐹 𝑥  for 𝑢 ∈ 0,1 .
• Compute probabilit densities (if exist)  𝑓 𝑥 ≔ 𝑑𝒟/𝑑𝜆  for 𝑥 ∈ ℝ.
• ⋯

Problem
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Existing Solution

• Libraries for Probability Distributions. 

• C    GNU Scientific Library, …
• C++   Standard Library, Boost, …
• Python  NumPy, SciPy, PyTorch, …
• Julia   Distributions.jl, …
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Existing Solution

• Libraries for Probability Distributions. 

• C    GNU Scientific Library, …
• C++   Standard Library, Boost, …
• Python  NumPy, SciPy, PyTorch, …
• Julia   Distributions.jl, …
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Issues

• Issue 1.  These functions cannot be exact due to “double”.

• Even worse, their properties are barely known.
• E.g., support, approximation error, … are unknown.
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Issues

• Issue 1.  These functions cannot be exact due to “double”.

• Even worse, their properties are barely known.
• E.g., support, approximation error, … are unknown.

• Issue 2.  These functions represent different distributions.

• RV:  _𝑋 can be at most ≈ 22.2.
• CDF: _𝐹 becomes 1 at ≈ 17.3.
• QF: _𝑄 takes _𝑄 1 ≈ 16.6.
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Main Culprit

• Theory.  Underlying algorithms assume the Real-RAM model.
• Practice.  Actual implementations simply use floating point.
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Main Culprit

• Theory.  Underlying algorithms assume the Real-RAM model.
• Practice.  Actual implementations simply use floating point.
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Our Work (PLDI 25)
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Conclusion
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Assume differentiability.
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Use floats intricately.

Assume reals.

Derivatives of functions
that are non-smooth?

Integrals of functions
that are diverging?

Universal approximation 
theorem over floats?



High-Level Messages

• Continuous computations have been actively studied for nearly a century.

• Despite these efforts, many such computations still lack rigorous foundations.

• PL approaches would be crucial in establishing solid foundations of practical computations.

• If you are interested, please feel free to contact me!
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