
SIGPL여름학교,��08/20/2025

“연속적계산”의기초다지기

이원열
POSTECH

Introduction

• Education + Employment.

• POSTECH: Assistant Professor in CS (2024–Present)
• CMU: Postdoc in CS (2023–2024)
• Stanford: PhD in CS (2014–2017, 2020–2023)
 KAIST: Researcher in CS (2017–2020)
• POSTECH: BS in CS and Math (2010–2014)

• Research.

• PL: POPL (2023, 2020, 2018, 2014), PLDI (2025a, 2025b, 2016), CAV (2025).
• ML: NeurIPS (2020-Spotlight, 2018), ICML (2025, 2023), ICLR (2024-Spotlight), AAAI (2020).

2

Mathematical Properties of Programs and Computations

Research Interests

3

Mathematical Properties of Programs and Computations

⋯

Research Interests

4

• Is a practically-used computation “correct” in any formal sense?
• Is there a more “efficient” computation that is correct?
• Is there any “fundamental limit” to achieving the computation?

EfficiencyCorrectness Fundamental Limits

Mathematical Properties of Programs and Computations

Research Interests

5

Continuous Values

6, 2.8, !
"

, 5, #
$

, ...

Operations on Them

6 + 2.8, !
"
	× 5, sin #

$
, ...

Optimization Computer
Graphics

Scientific
Computing

⋯
Machine
Learning

Differential
Privacy

Early Days

Alan Turing

6

Early Days

Alan Turing

7

These Days

As a result of ~90 years of substantial efforts,

8

TensorFlow PyTorch Pyro Stan

NumPy SciPyGNU Math/Scientific Library Intel MKL

⋯JAX

These Days

As a result of ~90 years of substantial efforts,

9

TensorFlow PyTorch Pyro Stan

NumPy SciPyGNU Math/Scientific Library Intel MKL

⋯JAX

Optimization Computer
Graphics

Scientific
Computing

⋯
Machine
Learning

Differential
Privacy

Fundamental Computations

10

TensorFlow PyTorch

Pyro Stan

TensorFlow PyTorch

⋯

⋯

⋯

Function Evaluation Compute sin 𝑥 .

Sample Generation Sample from 𝒩 𝜇, 𝜎% . NumPy

GNU Math Library Intel MKL

SciPy

⋯

⋯

Fundamental Computations

11

TensorFlow PyTorch

Pyro Stan

TensorFlow PyTorch

⋯

⋯

⋯

Function Evaluation Compute sin 𝑥 .

Sample Generation Sample from 𝒩 𝜇, 𝜎% .

Differentiation Compute ∇𝑓 𝑥 .

Integration
(≈ Probabilistic Inference) Compute ∫ 𝑓 𝑥 	𝑑𝑥.

Function Approximation Approx. 𝑓 using neural nets.

NumPy

GNU Math Library Intel MKL

SciPy

⋯

⋯

Research Questions

12

TensorFlow PyTorch

Pyro Stan

TensorFlow PyTorch

⋯

⋯

⋯

Function Evaluation Compute sin 𝑥 .

Sample Generation Sample from 𝒩 𝜇, 𝜎% .

Differentiation Compute ∇𝑓 𝑥 .

Integration
(≈ Probabilistic Inference) Compute ∫ 𝑓 𝑥 	𝑑𝑥.

Function Approximation Approx. 𝑓 using neural nets.

NumPy

GNU Math Library Intel MKL

SciPy

⋯

⋯

Mathematically Correct?
Can Be More Efficient?

Any Fundamental Limits?

TensorFlow PyTorch

Pyro Stan

TensorFlow PyTorch

⋯

⋯

⋯

Function Evaluation Compute sin 𝑥 .

Sample Generation Sample from 𝒩 𝜇, 𝜎% .

Differentiation Compute ∇𝑓 𝑥 .

Integration
(≈ Probabilistic Inference) Compute ∫ 𝑓 𝑥 	𝑑𝑥.

Function Approximation Approx. 𝑓 using neural

NumPy

GNU Math Library Intel MKL

SciPy

⋯

⋯

Research Questions

13

Use floats intricately.

Assume reals.

Assume differentiability.

Assume integrability.

Underlying theory

Actual implementations

Mathematically Correct?
Can Be More Efficient?

Any Fundamental Limits?

Function Evaluation Compute sin 𝑥 .
[Ongoing 1]
[Ongoing 2]
[POPL 18]
[PLDI 16]

Sample Generation Sample from 𝒩 𝜇, 𝜎% .
[Ongoing 1]
[Ongoing 2]
[PLDI 25a]

Differentiation Compute ∇𝑓 𝑥 .
[ICLR 24] (Spotlight)

 [ICML 23]
 [NeurIPS 20] (Spotlight)

Integration
(≈ Probabilistic Inference) Compute ∫ 𝑓 𝑥 	𝑑𝑥.

[Submitted]
[PLDI 25b]
[POPL 23] [AAAI 20]
[POPL 20] [NeurIPS 18]

Function Approximation
[CAV 25] [ICML 25]
 [Neural Networks 24]

Our Works

14

Use floats intricately.

Assume reals.

Assume differentiability.

Assume integrability.

(Dis)Prove Correctness.
Improve Efficiency.

Prove Fundamental Limits.

Underlying theory

Actual implementations

PL ML

Function Evaluation Compute sin 𝑥 .
[Ongoing 1]
[Ongoing 2]
[POPL 18]
[PLDI 16]

Sample Generation Sample from 𝒩 𝜇, 𝜎% .
[Ongoing 1]
[Ongoing 2]
[PLDI 25a]

Differentiation Compute ∇𝑓 𝑥 .
[ICLR 24] (Spotlight)

 [ICML 23]
 [NeurIPS 20] (Spotlight)

Integration
(≈ Probabilistic Inference) Compute ∫ 𝑓 𝑥 	𝑑𝑥.

[Submitted]
[PLDI 25b]
[POPL 23] [AAAI 20]
[POPL 20] [NeurIPS 18]

Function Approximation
[CAV 25] [ICML 25]
 [Neural Networks 24]

Our Works

15

Use floats intricately.

Assume reals.

Assume differentiability.

Assume integrability.

Underlying theory

Actual implementations

(Dis)Prove Correctness.
Improve Efficiency.

Prove Fundamental Limits.

PL ML

Function Evaluation

16

Problem

• Goal. For 𝑓 ∈ {exp, ln, sin, asin, …} and 𝑥 ∈ 𝔽,

compute 𝑓 𝑥 ∈ ℝ accurately and efficiently.

17

Problem

• Goal. For 𝑓 ∈ {exp, ln, sin, asin, …} and 𝑥 ∈ 𝔽,

compute 𝑓 𝑥 ∈ ℝ accurately and efficiently.

• Fact. We cannot exactly compute 𝑓 𝑥 for almost all 𝑥.

• exp 𝑥 ∉ 𝔽 for all 𝑥 ∈ 𝔽 ∖ {0}.
• ln 𝑥 ∉ 𝔽 for all 𝑥 ∈ 𝔽 ∖ {1}.
• sin 𝑥 ∉ 𝔽 for all 𝑥 ∈ 𝔽 ∖ {0}.
• ⋯
• These are by Lindemann-Weierstrass and Siegel–Shidlovsky Theorems (1885, 1929).

18

Problem

• Goal. For 𝑓 ∈ {exp, ln, sin, asin, …} and 𝑥 ∈ 𝔽,

compute 𝑓 𝑥 ∈ ℝ accurately and efficiently.

• Question. How much accuracy do we want?

19

…0 1…
sin 𝑥

'sin(𝑥)?

Problem

• Goal. For 𝑓 ∈ {exp, ln, sin, asin, …} and 𝑥 ∈ 𝔽,

compute 𝑓 𝑥 ∈ ℝ accurately and efficiently.

• Question. How much accuracy do we want?

• ULP error: err&'(𝑟, 𝑟̂ ≈ 𝑟, 𝑟̂ ∩ 𝔽 .
• Best possible accuracy: 0.5 ulps.
• Typical target accuracy: 1–10 ulps.

20

…0 1…
sin 𝑥

'sin(𝑥) ⟺ 'sin has an error of ≤ 2 ulps.

Problem

• Goal. For 𝑓 ∈ {exp, ln, sin, asin, …} and 𝑥 ∈ 𝔽,

compute 𝑓 𝑥 ∈ ℝ accurately and efficiently.

• Note. It has been well studied for 70+ years.

21

1955 1980 2000 20161968

Existing Solution

• Math Library. Implements routines for evaluating 𝑓 𝑥 .

• Example. GNU libc includes an implementation of math.h.

22

Existing Solution

• Math Library. Implements routines for evaluating 𝑓 𝑥 .

• Different implementations.

• Example.

• GNU libc
• LLVM libc
• CORE-MATH
• Intel Math Library
• AMD Math Library
• Apple Math Library
• CUDA Math Library
• ⋯

23

TensorFlow

PyTorch

Pyro

Stan

NumPy

SciPy

⋯

Existing Solution

• Math Library. Implements routines for evaluating 𝑓 𝑥 .

• Different implementations. Different claims.

• Example.

• GNU libc Claim: ≤ 10 ulps.
• LLVM libc Claim: ≤ 0.5–1 ulps.
• CORE-MATH Claim: ≤ 0.5 ulps.
• Intel Math Library Claim: ≤ 0.6 ulps.
• AMD Math Library [Undocumented]
• Apple Math Library [Undocumented]
• CUDA Math Library Claim: ≤ 1–8 ulps.
• ⋯

24

Existing Solution

• Math Library. Implements routines for evaluating 𝑓 𝑥 .

• Different implementations. Different claims.

• Example.

• GNU libc Claim: ≤ 9 ulps.
• LLVM libc Claim: ≤ 0.5–1 ulps.
• CORE-MATH Claim: ≤ 0.5 ulps.
• Intel Math Library Claim: ≤ 0.6 ulps.
• AMD Math Library [Undocumented]
• Apple Math Library [Undocumented]
• CUDA Math Library Claim: ≤ 1–8 ulps.
• ⋯

25

Are existing math libraries correct?
Can we make them more efficient?

Issues

• GNU libc. Aims to have ≤ 10 ulp error.

• glibc 2.18: cos(4.83...e+9) = -0.396131987972...
• glibc 2.19: cos(4.83...e+9) = +0.396131987972...

26

Issues

• GNU libc. Aims to have ≤ 10 ulp error.

• glibc 2.18: cos(4.83...e+9) = -0.396131987972... (correct)
• glibc 2.19: cos(4.83...e+9) = +0.396131987972... (error > 1018 ulps)

Math libraries keep evolving. Some updates introduce new errors!

27

Issues

• GNU libc. Aims to have ≤ 10 ulp error.

• glibc 2.18: cos(4.83...e+9) = -0.396131987972... (correct)
• glibc 2.19: cos(4.83...e+9) = +0.396131987972... (error > 1018 ulps)

Math libraries keep evolving. Some updates introduce new errors!

28

Issues

• GNU libc. Aims to have ≤ 10 ulp error.

• glibc 2.18: cos(4.83...e+9) = -0.396131987972... (correct)
• glibc 2.19: cos(4.83...e+9) = +0.396131987972... (error > 1018 ulps)

Math libraries keep evolving. Some updates introduce new errors!

• glibc 2.27: sin(2.41...e+23) = 2.3881763752596...e-17 (correct)
• glibc 2.28: sin(2.41...e+23) = 2.3881763752648...e-17 (error > 104 ulps)
• glibc 2.40: Same as glibc 2.28.

29

Issues

• CORE-MATH. Claims to have ≤ 0.5 ulp error.

30

Paul Zimmermann
(INRIA, France)

Best Paper @ ARITH 22

Issues

• CORE-MATH. Claims to have ≤ 0.5 ulp error.

• Correct: acos(+7.49...e-01) = +0.72...
• CORE-MATH: acos(+7.49...e-01) = +1.49... (error > 1017 ulps)

• Correct: erf(+1.48...e+306) = +1.00...e+00
• CORE-MATH: erf(+1.48...e+306) = +1.48...e+306 (error > 1018 ulps)

Even libraries developed by world experts have serious errors!

31

Issues

• CORE-MATH. Claims to have ≤ 0.5 ulp error.

• Correct: acos(+7.499999...e-01) = +7.227342...e-01
• CORE-MATH: acos(+7.499999...e-01) = +1.494609...e+00 (error > 1017 ulps)

• Correct: erf(+1.481253...e+306) = +1.000000...e+00
• CORE-MATH: erf(+1.481253...e+306) = +1.481253...e+306 (error > 1018 ulps)

Even libraries developed by world experts have serious errors!

32

Why do such correctness issues arise?

Intricate Implementations

• Why. These implementations are extremely sophisticated and error-prone.
• Example. CORE-MATH implementation of sin.

33Constant Tables Bit-Level Operations

Intricate Implementations

• Why. These implementations are extremely sophisticated and error-prone.
• Example. CORE-MATH implementation of sin.

34Floating-Point Operations Error Analyses

Intricate Implementations

• Why. These implementations are extremely sophisticated and error-prone.
• Example. CORE-MATH implementation of sin.

35

⋯ ⋯

Intricate Implementations

• Why. These implementations are extremely sophisticated and error-prone.
• Example. CORE-MATH implementation of sin.

• Implements 43 functions.
• Supports 5 floating-point formats.

36

Intricate Implementations

37

• Why. These implementations are extremely sophisticated and error-prone.
• Example. CORE-MATH implementation of sin.

• Implements 43 functions.
• Supports 5 floating-point formats.

How to ensure the correctness of existing libraries?

Research Directions

• Case 1. Input is ≤ 32 bits (and univariate).

• Exhaustive testing. Compute max
)∈+

err&'(𝑓 𝑥 , 𝑃 𝑥 .

38

Research Directions

• Case 1. Input is ≤ 32 bits (and univariate).

• Exhaustive testing. Compute max
)∈+

err&'(𝑓 𝑥 , 𝑃 𝑥 .
• MPFR library. Used to compute 𝑓(𝑥).

39

⋯

RLibm
[POPL 21/22, PLDI 21/22/24/25, Dist. Paper x2]

CORE-MATH
[ARITH 22/23/25, Best Paper]

Research Directions

• Case 1. Input is ≤ 32 bits (and univariate).

• Exhaustive testing. Compute max
)∈+

err&'(𝑓 𝑥 , 𝑃 𝑥 .
• MPFR library. Used to compute 𝑓(𝑥).

• Limitations. Cannot trust MPFR. Cannot apply to new functions.
• Why. Complicated implementation. Implements only basic functions.

40

Research Directions

• Case 2. Input is ≥ 64 bits (or multivariate).

• Exhaustive testing. Infeasible (since 2,$ is too large).
• Program analysis. My previous work [POPL 18, PLDI 16].

41

input (log scale)

Intel’s log

0.59 ulpsulp error
(log scale)

input

Intel’s sin

0.53 ulps
error bounds [PLDI 16]
error bounds [POPL 18]
1 ulp
actual ulp errors

Research Directions

• Case 2. Input is ≥ 64 bits (or multivariate).

• Exhaustive testing. Infeasible (since 2,$ is too large).
• Program analysis. My previous work [POPL 18, PLDI 16].

• Limitations. High computational cost (19 days for log), etc.
• Why. Lack of proper abstraction in existing implementations.

42

These are essentially assembly code. They need civilization!

Sample Generation

47

Problem

• Goal. Let 𝒟 ∈ Exponential 𝜇 , Normal 𝜇, 𝜎 , … be a probability distribution.

• Generate random variates 𝑋	~	𝒟.

48

• Goal. Let 𝒟 ∈ Exponential 𝜇 , Normal 𝜇, 𝜎 , … be a probability distribution.

• Generate random variates 𝑋	~	𝒟.
• Compute cumulative probabilities 𝐹 𝑥 ≔ Pr 𝑋 ≤ 𝑥 for 𝑥 ∈ ℝ.
• Compute quantiles 𝑄 𝑢 ≔ inf 𝑥	|	𝑢 ≤ 𝐹 𝑥 for 𝑢 ∈ 0,1 .
• Compute probabilit densities (if exist) 𝑓 𝑥 ≔ 𝑑𝒟/𝑑𝜆 for 𝑥 ∈ ℝ.
• ⋯

Problem

49

Existing Solution

• Libraries for Probability Distributions.

• C GNU Scientific Library, …
• C++ Standard Library, Boost, …
• Python NumPy, SciPy, PyTorch, …
• Julia Distributions.jl, …

50

Existing Solution

• Libraries for Probability Distributions.

• C GNU Scientific Library, …
• C++ Standard Library, Boost, …
• Python NumPy, SciPy, PyTorch, …
• Julia Distributions.jl, …

51

𝑋	~	𝒟

𝐹(𝑥)

𝑄(𝑢)

Issues

• Issue 1. These functions cannot be exact due to “double”.

• Even worse, their properties are barely known.
• E.g., support, approximation error, … are unknown.

52

_𝑋	~	𝒟̀

_𝐹(𝑥)

_𝑄(𝑢)

Issues

• Issue 1. These functions cannot be exact due to “double”.

• Even worse, their properties are barely known.
• E.g., support, approximation error, … are unknown.

• Issue 2. These functions represent different distributions.

• RV: _𝑋 can be at most ≈ 22.2.
• CDF: _𝐹 becomes 1 at ≈ 17.3.
• QF: _𝑄 takes _𝑄 1 ≈ 16.6.

53

_𝑋	~	𝒟̀

_𝐹(𝑥)

_𝑄(𝑢)

Main Culprit

• Theory. Underlying algorithms assume the Real-RAM model.
• Practice. Actual implementations simply use floating point.

54

Luc Devroye
(McGill U, Canada)

1986

Main Culprit

• Theory. Underlying algorithms assume the Real-RAM model.
• Practice. Actual implementations simply use floating point.

55

Our Work (PLDI 25)

56Existing Approach Our ApproachMath World

Our Work (PLDI 25)

57Existing Approach Our ApproachMath World

Our Work (PLDI 25)

58Existing Approach Our ApproachMath World

entropy
optimal

automatically
synthesized
use only
finite precision

Conclusion

59

Function Evaluation Compute sin 𝑥 .
[Ongoing 1]
[Ongoing 2]
[POPL 18]
[PLDI 16]

Sample Generation Sample from 𝒩 𝜇, 𝜎% .
[Ongoing 1]
[Ongoing 2]
[PLDI 25a]

Differentiation Compute ∇𝑓 𝑥 .
[ICLR 24] (Spotlight)

 [ICML 23]
 [NeurIPS 20] (Spotlight)

Integration
(≈ Probabilistic Inference) Compute ∫ 𝑓 𝑥 	𝑑𝑥.

[Submitted]
[PLDI 25b]
[POPL 23] [AAAI 20]
[POPL 20] [NeurIPS 18]

Function Approximation
[CAV 25] [ICML 25]
 [Neural Networks 24]

Our Works: Correctness, Efficiency, Fundamental Limits

60

Use floats intricately.

Assume reals.

Assume differentiability.

Assume integrability.

Function Evaluation Compute sin 𝑥 .
[Ongoing 1]
[Ongoing 2]
[POPL 18]
[PLDI 16]

Sample Generation Sample from 𝒩 𝜇, 𝜎% .
[Ongoing 1]
[Ongoing 2]
[PLDI 25a]

Differentiation Compute ∇𝑓 𝑥 .
[ICLR 24] (Spotlight)

 [ICML 23]
 [NeurIPS 20] (Spotlight)

Integration
(≈ Probabilistic Inference) Compute ∫ 𝑓 𝑥 	𝑑𝑥.

[Submitted]
[PLDI 25b]
[POPL 23] [AAAI 20]
[POPL 20] [NeurIPS 18]

Function Approximation
[CAV 25] [ICML 25]
 [Neural Networks 24]

Our Works: Correctness, Efficiency, Fundamental Limits

61

Use floats intricately.

Assume reals.

Derivatives of functions
that are non-smooth?

Integrals of functions
that are diverging?

Universal approximation
theorem over floats?

High-Level Messages

• Continuous computations have been actively studied for nearly a century.

• Despite these efforts, many such computations still lack rigorous foundations.

• PL approaches would be crucial in establishing solid foundations of practical computations.

• If you are interested, please feel free to contact me!

62

63

