

S|

'|O‘|:|- [H A OFQ1771?
’
XDIX}E‘R—FEI |'

24

jod

S|

I0[Ct, HEME| REZN?

24

jod

“The End”

S|

I0[Ct, HEME| REZN?

“The End”

O

O 0ONOUTRAWN—O

]

of
-

id(v, i){
if (i > 0)
return id(y, i-1);}
return v;}

main(){
i = input();
vl =id(l,i);//A
v2 =id(2,i);//B

Oj| 5| = = 124

T 2= RAS ERY

id | 2| id | 2] id |2
B e
/l
main

g\
4 20 2] id |2
assert (vl = v2);//query —> 8,2] —> 8,2,2]|— -

34 24 7|gH 4 S5 29

(3-context sensitivity)

O 0ONOUTRAWN—O

id(v, i){
if (i > 0){
return id(v, i-1);}
return v;}

main(){
i = input();
vl =id(l,i);//A
v2 =id(2,i);//B
assert (vl !=v2);//query

]

Oj| 5| = = 124

8: =1id(2,i);
assert (vl '=v2);//query

'5} E=h =n

Oj| 5| = = 124

K7h Q4 7|

id(v, i){
if (i > 0){
return id(v, i-1);}
return v;}

main(){
i = input();
vl =id(l,i);//A
v2 =id(2,i);//B
assert (vl !=v2);//query

o hWPN—O

o O N

10: }
Of|A| == 124

O 0ONOUTRAWN—O

]

K7h Q4 7|

id(v, i){
if (i > 0){
return id(v, i-1);}
return v;}

main(){
i = input();
vl =id(l,i);//A
v2 =id(2,i);//B
assert (vl !=v2);//query

Oj| 5| = = 124

Call-Site Sensitivity 5&,&5’&
 The best-known flavor of context sensitivity, which uses call-

sites as contexts.

* A method is analyzed under the context that is a sequence
of the last k call sites

Partial Context-sensitivity

» The mosteemmon way: keep only the'lop-miost k contnuations isa-called k- thn)

KAIST

 k =0:ignore all contexts, i.e., context-insensitive

K = oo: keep all contexts, i.e., fully context-sensitive

® The most common way: .'/.. nly
strings (called k-CFA)

* Approach: set an upper bound for length of
contexts, denoted by k

* For call-site sensitivity, each context consists of the last k

e In p“ac'tic,k is a small number (usually <3)
 Method contexts and heap contexts may use different k
e e.g., k=2 for method contexts, k=1 for heap contexts

(B 7|9 E : Context Sensitivity Static Analysis Lecture)

“A key part of the appeal of last k-based context abstraction is its
simplicity and universal applicability.”

- A reviewer [expert]

(3-context sensitivity)

13

O 0ONOUTRAWN—O

id(v, i){
if (i > 0){
return id(v, i-1);}
return v;}

main(){
i = input();
vl =id(l,i);
v2 =id(2, i);
assert (vl !=v2);//query

]

Oj| 5| = = 124

= AotA| & A7

Exercise

class S {
Object id(0Object a) { return a; }
Object id2(0Object a) { return id(); }
Iy

class C extends S {
void fun1() {
Object al = new A1();
Object bl = id2(al);
+H}

class D extends S {
void fun2() {
Object a2 = new A2(Q);
Object b2 = id2(a2);
+H}

@ What is the result of 1-call-site-sensitive analysis? -?'-735_.*3.:.*

Hakjoo Oh AAA616 2022 Fall, Lecture 8 October 18, 2022 28 /31

t:l - .
—fale

Exercise

class S {
Object id(0Object a) { return a; }
Object id2(0Object a) { return id(); }

Al A

} ~
class C extends S { p N =
void fun1() { = L.
Object al = new A1(Q);
Object bl = id2(al); 151
}} _ _ ° o o ° I §
I | -call-site sensitivity= 3=

void fun2() {)
Object a2 = new A2();
Object b2 = id2(a2);

F}

@ What is the result of 1-call-site-sensitive analysis?

Hakjoo Oh

October 18, 2022

28 /31

3 A 7|Htetr o= QOF

(3-context sensitivity)

17

id(v, i){
if (i > 0){
return id(v, i-1);}
return v;}

main(){
i = input();
vl =id(l,i);
v2 =id(2, i);
assert (vl !=v2);//query

o hWPN—O

o O N

10: }

Oj| 5| = = 124

Challenge: |
= I._Oﬂ B R_’tg ﬁé.* f7ﬂ mOH—HOIE I

19

OFXEr k 7|12 QOF vs T

ZQ 17K 7|Ht @oFo| OFX|Tt 271 7|Ht QOIHLI H &=

2500

bloat

—
<[1000

00| [

1300 1400 1500 1600 1700 1800 1900

)é})l)k = OI-EI-O‘ 7HA

|_E|:|-—

2000

o 2-ctx = VUM B Jeie= rﬂgm %té.’

: -

..it covers more than two-thirds of the precision advantage of 2objH"
-Smaragdakis et al. [PLDI’ 14] |

. 98.8% of the precision of 2obj can be preserved...” |
Li et al. [OOPSLA’ 18] |

“Scaler still attains most of the precision gains of 20bj ...”

f%oo 1460 1500 {
A Li et al. [FSE’ 18]
_I?_Jk-l
— " 1"

. — N S S TN — R S 2 $ — N S i - o < TN " N S . - 3 - - N Sanm . > TN — i 3 < > g — - & < :
- . = o R - . S 7 S o - . S -) _ S o A = . el - ' P S _ E A =) _ B = =)
i Qi o — o e N TN S - L — o - s ol QLo oS o DRy \— o s o e Qb e DR o e G loars o e S e e DR A o g g = e oy

T15}7 |

ol &=

ln
4
KO

J

submitted

—>» | Combination | =>

IIIIIIIIII

IIIIIIIIII

Obj2CFA

—

Tunneling

ol=7| |

| T
e

24

e DE:FQ kI QOFHIAIS EEOR DHEY|

lllllllllllllllllllllllll

llllllllllllllllllllllllll

w718 K29

(Obiject Sensitivity)

<

K| 7|Ht 29F |
(Call Site Sensitivity) |

= » o il i " Sl vy 4

VS

25

Call graph | Call graph |

1981 2002 2010 2022

Parameterized Object Sensitivity for Points-to
Analysis for Java

ANA MILANOVA

Rensselaer Polytechnic Institute
ATANAS ROUNTEV

Ohio State University

and

BARBARA G. RYDER

Rutgers University

The goal of points-to analysis for Java is to determine the set of objects pointed to by a reference
variable or a mferenw object field. We present object sensitivity, a new form of context sensitivity
for flow-1 ts-t lysis for Java. The key idea of our approach is to analyze a method

separately for each of the object names that represent run-time objects on which this method may
be invoked. To ensure flexibility and practicality, we propose a parameterization framework that

allows lysis desi s to control the deoffs b cost and pr in the object-sensitive

analysis.
Side-effect analysis determines the memnry locations that may be modified by the execution of a
Def-use 1 ifies pairs of stat ts that set the value of a memory

locahun and subsequently use that value. The information computed by such analyses has a wide
variety of uses in compilers and software tools. This work proposes new versions of these analyses
that are based on object-sensitive pointe-to analysis,

We have implemented two instantiations of our parameterized object-sensitive points-to analy-
aia. On a set of 23 Jsvn pmgrams our ex'penments show that these analyses have comparable cost
to a context-1 1 for Java which is based on Andersen’s analysis for C. Qur
results also show that ubject sensitivity sxgmﬁeantly improves the precision of side-effect unnlysls
and call graph construction, compared to (1) cont; itive lysis, and (2) context
‘points-to analysis that models context using the invoking call site. These experimenta demonstrate
that cbject-sensitive analyses can achieve sub ial precision imp: , while at the same
time remaining efficient and practical.

1S

A preliminary version of this article appeared in Procesdings of the Inter on
Software Testing and Analysis (July), 2002, pp, 1-11.

This research was supparted in part by National Science Foundation (NSF) grant (‘CR 9900988
Author's addresses: A. Milanova, Dep of Comp Science, Ri Polytech Inati-
tute, 110 8th Street, Troy, NY 12180; email: mil s.rpi.edu; A, R , Department of Cam-
puter Science and Engineering, Ohio State University, 2015 Neil Avenue, Columbus, OH 43210;
email: rountev@ese.ohio-state edu; B. G. Ryder, Department of Computer Science, Rutgers Univer-
sity, 100 Frelinghuysen Road, Piscataway, NJ 08854; email: ryder@rs.rutgers.edu.

Permission to make digital or hard copies of part or all of this work for personal or clasarcom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servera,

Context-sensitive points-to analysis: is it worth it?*
Ondfej Lhotdk ' and Laurie Hendren®
olhotak@uwaterloo.ca hendren@sable.megill.ca

1 School of Computer Science, University of Waterloo, Waterloo, ON, Canada
? School of Computer Science, McGill University, Montreal, QC, Canada

Abstract. We present the results of an irical study evaluating the p
of subset-based peints-to analysis with several variations of context sensitivity on
Java benchmarks of significant size. We compare the use of call site strings as the
context abstraction, object sensitivity, and the BDD-based context-sensitive algo-
rithm proposed by Zhu and (nlman. and by Whaley and Lam. Our study includes
that context itively specialize only pointer variables, as well as ones
that also specialize the heap al ion. We both ch istics of the
points-to sets themselves, as well as effects on the precision of client analyses. To
guide development of efficient analysis implementations, we measure the number
of contexts, the number of distinet contexts, and the number of distinet pcmls-lu
sets that arise with each context ivity To eval , we
measure the size of the call graph in terms of methods and edges, the number of
devirtualizable call sitcs, and the number of casts statically provable to be safe.
The results of our study indicate that object-sensitive analysis implementations are
likely to scale better and more predictably than the other approaches; that object-
sensitive analyses ane more precise than comparable variations of the other ap-
proaches; that speci g the heap ab ision more than ex-
tending the length of contex! strings; and that the proﬁmon of cycles in Java call
graphs severely reduces precision of analyses that forsake context sensitivity in
cyclic regions.

1 Introduction

Docs context sensitivity significantly improve precision of interprocedural analysis of
object-oriented programs? It is often suggested that it could, but lack of scalable imple-
mentations has hindered thorough empirical verification of this intuition.

Of the many context sensitive points-to analyscs that have been proposed (c.g. [1,4,
8,11,17-19,25,28-31}), which improve precision the most? Which are most effective for
specific client analyses, and for specific code patterns? For which variations are we likely
to find scalable implementations? Before devoting resources to finding efficient imple-
mentations of specific analyses, we should have empirical answers to these questions.

This study aims to provide these answers, Recent advances in the use of Binary De-
cision Diag (BDDs) in program analysis [3, 12,29, 31] have made context sensitive
analysis efficient enough to perform an empirical study on benchmarks of significant size.
Using the JEDD system [14], we have implemented three different families of context-

Evaluating the Benefits of Context-Sensitive
Points-to Analysis Using a BDD-Based
Implementation

ONDREJ LHOTAK
University of Waterloo
and

LAURIE HENDREN
McGill University

We present Pannig, a framework of BDD-based context-sensitive points-to and call graph analyses
for Java, as well as client analyses that use their results, PAvoLe supports several variations of
context-sensitive analyses, including eall site strings and object sensitivity, and context-sensitively
specializes hoth pointer variables and the heap abstraction. We empirically evaluate the preci-

ificant Java programs. We find that that object-

sensitive analyses are more precise Qhan comparable variations of the other approaches, and that
apecializing the heap abstraction improves precision more than extending the length of context
strings.

sion of these context-sensiti on si

Categories and Subject Descri D.3.4 [Progr 1
Constructs and Features

Processors; D.3.3 [Pro.

gr) 1
General Terms: Languages, Design, Experimentation, Measurement

Additional Key Words and Phrasea: Interprocedural program analysis, context sensitivity, binary
decision diagrams, Java, points-to analysis, call graph construction, cast safety analysis

ACM Reference Format:

Lhoték, O. and Hendren, L. 2008, Evaluating the benefits of context-gensitive pointe-to analysis

using a BDD-based implementation. ACM Trans. Softw. Engin. Method. 18, 1, Article 3 (September
2008), 53 pages. DOI = 10.1145/1391984.1391987 http//doi.acm.org/10.1145/1391984. 1391987

This is a revised and extended version of an article which appeared in Proceedings of the 15th
International Conference on Compiler Construction, Lecture Notes in Computer Seience, vol. 3923.
Springer, 47-64.

Authors' addresses: O. Lhotak, D. R. Cheriton School of Computer Science, University of Waterloo,
200 University Avenue West, Waterloo, ON, N2L 3G1, Canada; L. Hendren, School of Com-
puter Science, MeGill University, 3480 University Street, Room 318, Montreal, QC, H3A 2A7,
Canada

Permission to make digital or hard copies of part or all of this work for personal or elassroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work awned by others than ACM must be
honored. Abstracting with eredit is pnrmltted To copv uthnrwme to rcpuhlnh to pmt on servers,

Strictly Declarative Specification of Sophisticated Points-to Analyses

Martin Bravenboer

Department of Computer Science
University of Massachusetts, Amherst
Ambherst, MA 01003, USA
martin.bravenboer@acm.org

Abstract

We present the Door framework for pomts-to analysis of
Java programs. Door builds on the idea of specifying pointer
analysis algorithms declaratively, using Datalog: a logic-
based language for defining (recursive) relations, We carry
the declarative approach further than past work by describ-
ing the ful’ end-to-end analysis in Dau]og nnd upun-uzmg
ly using & novel technigue sp geting

hlghlv recursive Datalog programs.
As a result, Duur uducvcs several benefits, including full
rder-of- in runtime. We compare
Door with Lhotak md Hendren's Pavoie, which defines the
state of the art for context-sensitive analyses. For the exact
same logical po ini (and, 7 identi-

cal precision} Door is more than 15x faster than Paboie for

Doop pk a range of al . including context
call-site itive, and object analyses,
hrmark all tfied moduhrl) as ona code base.

Yannis Smaragdakis

yannis@cs.umass.edu

analyses, Tt is, thus, not surprising that a weslth of research
has been devoted to efficient and precise pointer analysis
technigues. Context-sensitive analyses are the most common
class of precise points-to analyses. Context sensitive analysis
approaches qualify the analysis facts with a context abstrac-
tion, which captures a static notion of the dynamic context
of amethod. Typical contexts include abstractions of method
call-sites (for a call-site sensitive analysis—the traditional
meaning of “context-sensitive™) or recerver objects (for an
object-sensitive analysis),

In this work we present Door: a general and versatile
p(-inu-w analysis framework that makes feasible the most
precise context-sensitive amalyses rcponcd in the literature.

a 1-call-site sensitive analysis of the DaCapo b
with fower but still sub | speedups for other imp

analyses, Additionally, Door scales 10 very precise analyses
that are impossible with PappLe and Whaley et al.’s bddbddb,

directly addressing open probl in past li Finally,

peedups of an order-of- de for several imy
analyses.
The main clements of our approach arc the usc of the Dat-
" alog 1 for specifying the program analyses, and the

Cnmpared to the prior state of the art, Door often achieves

our implementation is modular and can be easily config
to analyses with a wide range of charactenstics, largely due
to its declarativeness.

Categories and Subject Descriptors F3.2 [Logrct aud
Meanings of Programs]. S of

aggressive optimization of the Datalog program. The use of
Datalog for program analysis (both low-level [13,23,29] and
high-level [6,9]) is far from new. Our novel optimization ap-

pro:u h, hm\e\cr accounts for several orders of magnitude of

Languages—Program Analysis; D.1.6 [I’mgrammmg
Technigues): Logic Programming

d analyses typically
run over 1000 lunca more sluwly Generally our optimiza-
tions fit well the appmch of handling program facts as a

General Terms Algorithms, | Perfc

1. [Introduction

Points-to (or pointer) analysis intends to answer the question
*“what objects can a program variable point to?” This ques-
tion forms the basis for practically all higher-level program

databasc, by sy y the indexing scheme and
the] cval of Datalog impl i Fur-
thermore, our approach is entirely Datalog based, encoding
declaratively the logic required both for call graph construc-
tion as well as for handling the full semantic complexity
of the Java language (e.g., static initialization, finalization,
reference objects, threads, exceptions, reflection, etc.). This
makes our pointer analysis specifications clegant, modular,
bul alw efficient and easy to tune. (.xcmtally. cur work is a

<

2022

= -
o N
o Ul
o o

2call ;
u |

500 -

Analysis time (s)

| obj | call
250 A . .
700 800 900 1000 1100 1200

H# alarms

bl
A

1981 2002 2010 2022

\ Object-Sensitivity

| @ The dominant flavor of context-sensitivity for obje

£ languages.

@ It uses object abstractions (i.e. allocation sites) as
qualifying a method'’s local variables with the alloc
receiver object of the method call.

A class A { void m() { return; } }

b = new B(Q);
b.m();

£ The context of m is the allocation site of b.

Hakjoo Oh AAA616 2019 Fall, Lecture 8

Lecture Notes:
Pointer Analysis

Obiject-Sensitivity | Object-sensitive pointeJ

(vs. call-site sensitivity)

15-8190: Program Analysis

Jonathan Aldrich
. - jonathan.aldrichRes.cmu.edu
(iearam e Milanova, Rountev, and Ryder. Parameteriz -
class S { sensitivity for points-to analysis for Java. AC

Object id(Object a) { return a; }
Object id2(Object a) { return id(a)

1 Motivation for Pointer Analysis

Eng. Methodol., 2005.
In programs with pointers, program analysis can become more

» Context-sensitive interprocedural pointer analysis| — Consider constant-propagation analysis of the following progry

class C extends S { 15§y
void funl() { * For context, use stack of receiver objects 2: pi=&s
Object al = new Al(); T syiz
: - : . ? R rint z
} Ob'] ect bl id2 (al) 4 1-cq = (More next Week.) In order to analyze this program correctly we must be ay
" : i ion 3 p points to =. I this information is available we
} ful e Lhotak and Hendren. Context-sensitive poif| = fowtmaonaion
class D extends S { fun .
void fun2() { id2 WOfth It? CC 06 feplspi=yl(a) = [z~ oly)]le where must-point-to(}
Object a2 = new A2(); id2 - T ——
Ob_] ect b2 = id2(a2); id: ° ObJeCt'SenSItlve pOlnter analYSIS more preC|Se tha must-pf)?n‘:foin(;(‘;vnnxaatic;r)\,,:,ndat:egnapeifof; ;‘;St::n;\:pdaa)!’z
} S for Java variable z, because we know with confidence that assigning tg
id2 to z. A technicality in the rule is quantifying over all z such

point to z. How is this possible? It is not possible in C or Java;
a language with pass-by-reference, for example C++, it is possilf
names for the same location are in scope.

Of course, it is also possible that we are uncertain to whic
distinct locations p points. For example:

furl e Likely to scale better
fun

Yannis Smaragdakis
University of Athens

: KOREA

UNIVERSITY

1981

Pointer Analysis

Yannis Smaragdakis
University of Athens
smaragd@di.uoa.gr

George Balatsouras
University of Athens
gbalats@di.uoa.gr

new

the vssence of koo dedge

Boston — Delft

Carnegie

Mellon

National and Kapodistrian
University of Athens

. - ol T £
= > . — Qi _ B

2010

University

the essence of knowledge

oo e " . _posma e N

F7(HE Qok2 CHAIO 2 Sh= o117} 220X :
| A L 1L = O — - L — -

Making k-Object-Sensitive Pointer An

! Pick Your Contexts Well: Underst More Precise with Still k-Limitin

12 The Making of a Precise and Scald

b Yannis Smaragdakis Martin Bravenbog Tian Tan!, Yue Li', and Jingling Xue'? Data-Driven ConteXt-senSitiVity for Points-to Analyﬁs

1981

Precision-Guided Context Sensitivity for Pointer Ana]

X Deparment of Computs Scics JogicBlx . e e e L p—— Precision-Preserving Yet Fast Object-Sensitive Pointer y
v C! ol < iibe 3 orea University, Kepubhd
. Amberst, MA 01003, 2 ion O\ bdist 2 . . . EPLa
S e] id C Advanced Innovation C YUE L1, Anthos University, Demmark MINSEOK JEON’, Korea University, Repul Analysis with Partial Context Sensitivity '
X University of Athens, 1578 Hyb"d onte] TIAN TAN, Aarhus University, Denmark SUNGDEOK CHA, Korea University, Repul D
yannis@cs.umass.edu—sma ANDERS M@LLER, Aarhus University, HAKJOO OHT, Karea University, Republic L . G h b d H s g - 9
) a Abstract. Object-sensitiv Efficient 4 YANNIS SMARAGDAKIS, University q earning urapn-base euristig JINGBO LU, UNSW Sydney, Australi)
'y abstraction for pointer analj - . i X e & s ~ INGLING XUE, UNSW Sydney, Au: '
k-object-sensitive pointer a) Modeling the He Context sensitivity is an essential technique Scalability-First Welresik o new data diver appitiach Lo dehi without Handcrafting Applicatic J ' ydney, 4
[4 ; SR . for Java. While context-sensitivity has greater i . ata . E ls
N Abstract S:;f {serk c?jntext ellement.b :b;eWEdb"h“ appl)"mlg Liontext vs?nsmv(llry P Self-Tunlng other precision-improving techniques, it is difficy Obje.c!--s‘im;uv“by. 15 w“l.dy u:';d asac (|
Object-sensitivity has emerged call, may end up using sor] Tia alance between analysis precision and sp most from context-sensitivity and decide how nf sensitively for object-oriented languagg z
Tor piiinte:t0 sralysis do object ducing a finer partition of t do not provide much insight into what chal Yue Li Tian Tan designing such rules is a nontrivial and lahorio MINSEOK JEON, MYUNGHO LEE, and HAK){ programs, k-object-sensitive pointer af . . i . .
\ :m},s:ﬁ“;,: :ﬁ,ﬁx‘ ‘:‘bc'::}:" method call. In this paper, School of C4 principled approach for identifying precisio Aarhus University Aarhus Universit] overcome these challenges, we propose an autom: X X values of k, where k < 2 typically. A fd Maki ng Pointer AnalyS|s More Precise by Unleashi ng the
4 mentations deviate significant] Abstract improving the precision of a explain where most of the imprecision arises yueli@es.au.dk tiantan@cs.av.d context-sensitivity from codebases. In our approd We present GRAPHICK, a new technique for automatically K-obj t an;l 26 only thods i f 1 . sge e '
object-sensitive analysis. The : still usi imiti A : P . heuristic rules, in disjunctive form of properties o Striking a balance between precision and scalability of oy YRS LAY SOME RICOUS-A1 Power (o] Se ective Context senSItIVl .
i y y " . by still using a k-limiting c an efficient algorithm to recognize these fl Prop g P ty ; B i
dogrees of freedom, relating (o COMEXt-scasitive poins-to analysis is valuabl) g B Abstract : o ABSTRACT context-sensitivity. We present a greedy algorith} R : analysis. While already effective, these H g A
S st every method call and objeq] Precision with good performance, The standa allocation sites that are re tradeoffs between analysis precision and spd . e sensitivity is important in pointer analysis to ensure We hiplemenitad curaphecach in ths Doog frar heuristics. For example, because applying context sensf = o limited in the efficien
; for the analysis design space, aff SCOSivity are call-site-sensitivity (KCEA) ag Object, Allocation Graph (| Mai points-to analysis techniques fo Our experimental results on standard bend| precision, but existing teck i fier flams it Aditabis o TR Al 3 smpractical. pointer analviis tyoically uses a Hieusistic to o seq ¥ .1“’"‘ st 1 TIAN TAN, Nanjing University, China R
. deestanding of object s Cy both flavors of context-sensitivityl p: A Tandusets wely pecdoninantly oo @ sllocal b) % pee Uspngu s nmpreciciahe analyses: conventional object-sensitivity, selecti p) , poO. y P y that makes k~0b_{ run mg‘mﬁcantly fastd S
H s 8 0" 0b) S but at an infeasibly high cost, We show thaf (e.g., a context-insensitive anguag Y pr : Y applies context sensitivity partially, only on || bility. Many variants of context-sensitivity exist, and it is diff : tal results show that ch & Pas search has shi th: loiti th (7 2 3 YUE LI Nanjing University, China .
sensitive analyscs. The result 5o of call.site- and object-scnsitivity for roeram and then avoid thd 10D 10 model heap objects. We present M £t ision of a highl . to choose one that leads to reasonable analysis time and obf SPnn I s s oncepproacL ey ast research has shown that exploiting the program’s EAGLE is to enable k-obj to analyze a md g ’ !
5 diaxt ”’:“ P‘“" ""‘_P‘f.’“fa‘f’“‘*‘f ysis is bighly profitable. Namely, by kecping P 3 _gf the T Besai heap abstraction that is specifically devel (9.8‘8%) ORUIEretsion o 4 gy precac o high precision. without running the analysis multiple times. CCS Concepts: « Theory of computation — cost-effective analysis heuristics, promoting the recent t] some of its selected variables/allocation XIAOXING MA, Nanjing University, China 14
& :,"g‘c,‘ \‘;“G";;‘?‘;“ ‘_"".mk,,' only when analyzing sclected language featy b pr!?graul. EAR the needs of an important class of type- with a context-sensitive heap), with a substg We present the Scarer framework that addresses this protf chine learning approaches; h representations of programs obtained from a pre-al 5 S : y CHANG XU. Nanijing U ity, CI q
b hicg,nf,a[,m;m:,n“dnd“‘:}i:'; approximate the precision of an analysis that precision that is guaranteed] guch as call graph construction, devirtual CCS Concents: « Theory of computation J 562 ¢ficicntly estimates the amount of points-to informa . W) . grap P.es' n . Of Progr 080 s pre by reasoning about (,ontex!.-fn.:?-ldngua , Nanjing University, China b
: text depth. We also introduce | & all tmes. In tems of specd. the welective have implemented BEAN as fail casting. By merging equivalent autor pls: ry P that would be needed to analyze each method with different va Additional Key Words and Phrases: Data-driven such heuristics remains challenging, requiring a great del} based on a new CFL-reachability form} YANNIS SMARAGDAKIS, University of Athens, Greece 4
& proximation of object-sensitivil | S 2 ST A o0 _“;“‘;‘r’;"fm_ i two state-of-the-art whole-j§ type-consistent objects that are created b; Additional Key Words and Phrases: static arf °f :’““‘x‘h;’m‘"‘“ﬁh It 'h‘? selects “; ‘PP“’P"é“r ATy ACM Reference Format: aim to reduce this burden by learning graph-based heurist comparing it with the prior art in termg - » . . U
» ity at substantially reduced costl i o e amay of analyses (e.gl representative clients (may-] sitc absiraction, MAHJONG cnables an allod ;‘K :“1‘ % :’ ‘lh;;‘ "‘:‘ﬂ af‘l““l:‘]"' ol I'“I’“'ﬁ"" informatig Sehun Jeong, Minseok Jeon, Sungdeok Cha, and Hi sinlicationsneciBe feabiies To do oo we prekent afeal Traditional context-sensitive pointer analysis is hard to scale for large and complex Java programs. To address f J
$ 2 ¢ al us 7 S . s et . GO Py . 5 ounded, while /i e ava e space naximize preci 3 et K 5 % O va 1 & 2 s s
) _r,'.‘:k:.; ! ‘:::1?7"“:‘1:‘::; 2-object-scositive with a context-sensitive heaf nine large Java programs fr] Points-to analysis to run significantly fusterf ACM Reference Format: o :,],mm:\;, I e e e G Analysis. Proc. ACM Program. Lang. 1, OOPSLA, ppY it ; e P CCS Concepts: - Theory of computaty this issue, a series of selective context-sensitivity approaches have been proposed and exhibit promising results.
x s P) blishing a new set of performance/y . . nearly the same precision for type-dependey Yue Li, Tian Tan, Anders Moller, and Yann Y R 2 https://doi.org/10,1145/3133924 algorithm for learning analysis heuristics within the langu ; ; ; : ; >
| stead upper bounds on the dyng succeeded in making both a MARJONG i ‘simple:concepually, 20 S i » dictable ility for all the programs (e.g., spee : ; N7 A 3 Additional Key Words and Phrases: Poi In this work, we move onc step further towards producing highly-precise pointer analyses for hard-to-analyze ;
N Our resulis expose the influend Cartegories and Subject Descriptors F:3.2 |1} under each client at only s i il aite basd oo Pointer Analysis. Proc. ACM Program. Langy can reach 10x for 2-object ity), while p g a preci used it to learn graph-based heuristics for object sensit, Java programs by presenting the Uni ty-Relay framework, which takes selective context sensitivity to the next
0 of points-10 analysis and demofl of P]: Semantics of P L caslly’ Do gy ALOCALID-RILD, PointE org/10.1145/3276511 that matches or even exceeds that of the best alternative techni how that hi al and te higH ACM Reference Format: A : > : . R)
v with major impact: It decisivel] Analysis; D34 [Programming Languag demonstrate its effectiveness by discussing & 1 INTRODUCTION show that our approach 1s general and can generate hig d level. Briefly, Unity-Relay is a one-two punch: given a set of different selective context-sensitivity approaches,

a spectrum of analyses that s
times faster than an analogous
ity {comparable (o analyses wit
precision (comparable 1o the by
same conlext depth)

Categaries and Subject Descr

Compilers
General Terms Algorithms, Languages, Perl

Keywords poinis-to analysis, context-s

sensilivity; lype-sensitivity

1 Introduction

Pointer analysis, as an enabling]
client applications, including bug

why it is a better alternative of the allocation
for type-dependent clients and evaluating

12 large real-world Java programs with five
points-to analyses and three widely used]
clients. MAHJONG is expected 1o provide si
for many program analyses where call grap|

CCS CONCEPTS
1 INTRODUCTION + Theory of computation — Program analysis;
Pointer analysis is a fundamental fami|
pointer variables in a program. Such i

inter-procedural control flow in object-o

KEYWORDS
static analysis, points-to analysis, Java

ACM Reference Format:

Points-to analysis is one of the most impor
memory locations that a pointer variable ma;
for many program verification tasks (e.g., de
of subsequent higher-level program analyses

program understanding tools.

heuristics are as competitive as the existing state-of-the-aj
CCS Concepts: » Software and its engineering — Autd
Additional Key Words and Phrases: Data-driven static anal}

Jingbo Lu and Jingling Xue. 2019. Pre]
Partial Context Sensitivity. Proc. ACM]
https://dot.org/10.1145/3360574

1 INTRODUCTION

say § = S1,..., S Unity-Relay first provides a mechanism (called Unity) to combine and maximize the
precision of all components of S. When Unity fails to scale, Unity-Relay offers a scheme (called Relay) to
pass and accumulate the precision from one approach S; in S to the next, Sy, leading to an analysis that is
more precise than all approaches in §.

As a proof-of-concept, we instantiate Unity-Relay into a tool called BATON and extensively evaluate it on

of Programs): of i I i compiler optimisation [6,33], aj . : N Eowratoms < 3 tackoaik : . " analysis, Context sensitivity, Heap abstraction : k) ; 7 ;
'8 Analysis 1. Intr) ". ; R [e] CCS Concepis »Theory of computatiq engineering tools, e.g., for bug detectid Yue Li, Tian Tan, Andecs Meller, snd Yannis Saaragdakis, 2018, Scalal]_:‘" object "_”"“ed languagl‘s. c"“m“l e For object-oriented languages such a set of hard-to-analyze Java programs, using general precision metries and popular clients. Compared with U
: D31 [Programming L4~ Points-to analysis is a static program analysis mensions of pointer analysis preq analysis [Arzt et al. 2014; Grech and S First Pointer Analysis with Self-Tuning Context-Sensitivity. In Pracee| guish method's local variables and objects ACM Reference Format: . : % : 2 s 3 k
< Theciy- Sengnbes, puting all objects (typically identificd by allocd Py 0/ O+ programs, Bow-sen analysis st etal 3 of the 26th ACM Foint European Sofiware Enginevring Conference and S I : . precision for pointer analysis [Lhd the state of the art, Baron achieves the best precision for all metrics and clients for all evaluated programs. X
e i ; gram varisble may point to, The arew of poff - 07 /-1 PTOE ’ ‘ T . [Fink et al. 2008; Pradel et al. 2012],] stum on the Foundations of Softare Engineering (ESEC/ESE '18) Nove “The first and second authors contributed equally to 1 Minseok Jeon, Myungho Lee, and Hakjoo Oh. 2020. Leay insensitive pointer analysis, such as The difference in precision is often dramatic—up to 71% of alias pairs reported by previously-best algorithms
h General Terms Algorithms, | its close relative, aliay analysis) has been the] For object-oriented programs, e] Keywords po ysis, heap Sdiaranietal 4-9, 2018, Lake Buena Vista, FL, USA. ACM, New York, NY. USA, 1. pf TCorresponding author ithout Handerafting Application-Specific Feat PA g RS T SRS i d
g 5 ridharan et al. 2007]. h RS R Had without Hander g Application-Specific Features. & 4 - d to be s and el ted. !
4 carch and is among the most standardized and ¥ 4 it OrE/ 10,1 145/3236024,3236041 od. are jound o spurious and eliminated.
] 8 8 : is known to deliver trackable an| : g Ty - . : : I A R once, producing one points-to set)
R inter-procedural analyses. The emphasis of poi 1. Introduction For decades, numerous analysis techr) Authors’ email 5. Jeong, a (November 2020), 31 pages. https://doi.org/10.1145/34282 ; aynin : . "
it s el v i rithms is on combining fairly precise modeling There are two general appro; ' recise and more efficient. especially fo] 1 INTRODUCTION H. Oh. hakjoo_ochékorea.ackr allocation site in the method. In ¢ CCS Concepts: » Theory of computation — Program analysis. - 4
clnroom s« srmad i e e Yith scalability. The challenge s to pick judicl griented programs, call-site-send ~ Poinier Analyses should be designed 1o P ; © eoneies CSPCCIATY 100 potmer anatysisis afumilyofstaic snalyss techniues that pro Permission to make digital or hard copies of all or pur) multiple times under different call 0 ; fo i ; Sl
3 forprosit o commerca adanagsand | thal will allow satisfactory precision ata rexsdl) thers). A k-CFA in cost and precision for specific groups Balatsouras 2015; Sridharan et al. 2019 | ¢ undation for many other analyses and software engines provided that copies are not made or distributed for p 1 INTRODUCTION > X 4 Additional Key Words and Phrases: Pointer Analysis, Alias Analysis, Context Sensitivity, Java B,
\ - ﬁ;:;';:;j pj";‘gj ‘u‘:‘;“;-“t l'“:“ "’““]’“g'l‘ "‘5‘,‘.”““"3(?’“‘“;:'; oflesy lew ; 20] (among others). i lems. We do not need a different pointe precision is context sensitivity [Milanoy tasks such as program slicing [35, 39], reflection analysis [19, the full citation on the first page. Copyrights for comy] . . X thereby producing multiple points-| L o
. & - ~ e - ¢ Xity, St-Casd o ; sl 9 o % 4 : 3 " - . . r:
] POPL1), Jumuary 2625, 2011, Aust fuﬁm‘é:c‘c”ml;ﬁcﬁ;ﬁn thi:‘:-el:; call by using a sequence of k ¢4 client problem, bui rather we should lool Smaragdakis et al. 2011], which allows ea bug detection [13, 26], security analysis [1, 23], program veri Abstracting with credit is permitted. To copy otherwis Pointer analysm is a fundamental program analYSl abstract objects for modeling every] ACM Reference Format: f]
Copyright @ 2011 ACM 976145030l 54 precision often also exhibit better sverag] Site). In contrast, a k-object-sen: client problems with similar needs. R R A . tion [8, 27), and program debugging and comprehension [5. prior specific permission and/or a fee. Request pernis; various software engineering tools. The goal of poi To tame the combinatorial explo] Tian Tan, Yue Li, Xiaoxing Ma, Chang Xu, and Yannis Smaragdakis. 2021. Making Pointer Analysis More
J since smaller points-to sets lead totess work. | Jabels with each denoting a nd __Ba] toseparate the static abstractions of diff§ The goal of pointer analysis i to statically compute set of ob) © 2017 Association for Computing Machinery. : ; z 5 P! Pricise by Unlsashing the Power o Salactive C Sensitivi ACM Lang. 5. OOPSLA.]
anei g - - - b d as their all sites) that a program variable 2475-1421/2017/10-ART100 estimate heap objects that pointer variables may r sequence of k context elements, un| recise by Unleashing the Power of Selective Context Sensitivity. Proc. Program. Lang. 5, OO) "
O T nener] | These suthons conubared equally to this wrk Authors’ email addresses: yueli@cs.au.dk, tiantand point to during run time. Although stating this goal is simple| https://doi oeg/10 1145/ 3133924 essential for virtually all kinds of program an alys object-oriented programs: (1) k-call Article 147 (October 2021), 27 pages. https://doi.org/10.1145/3485524 K
f 5 : 4 ;
& oy make | o hard alt o f th t fo i o many 3 2 g o make digital or bard co of all or ol ock for 0 . . - .
Clowooe 1 1 petod ot fo proided B g e ek made ¢ ahrbted n,,:;:cm,’:mme pBeciend found during the pre-analysis, MAl (e e o apentes sbhois e omtiod et copes s o s et : : et al. 2015; Livshits and Lam 2003; Naik et al. 2006, of a method by its k-most-recent ca
;‘ oot or commerial huiage and o e s i el aton i€ i R possible 80 comgl] Pein 6 mike dighal o i copo of it of ks etk fc il o jeets if both ore type-consistent, i.q| for proft or commerciludvaniage and thn copiesbear this notee and the ul ciation « program size is far from a reliable predictor—for ex: . 2 4 1 INTRODUCTION Iy
4 00 the first page. To cupy therwise, 10 republish 1 post on servers or 1 rytibule e s tve] claocon e s grancd wiibou e provd tht couesore ok o ordrboted gL dousth e the frst page. Copyrights or cossponcat of this work owned by others tha the (12718 methods) is smaller than briss (26582 m et al. 2014; Avots et al. 2005; Grech and Smaragd thors' addresses: Jingbo Syds }
By 1o Hists, requites prioe specific permission aodfor a fee. and a call-sic-scnsitive Al gor piogx o commercial advantage and thae coples bear this wotice and the fall cRation om along the Same SCQUCACE yharis) must be honored. Abstracting with credit 3 permitted. To copy atberwise, or Z able £ P b Authors’ a sses: Jingbo Lu, UNSW Sy Pointer analysis is i rtant f ; of real- 1d licati h as bug detecti Ch. p
3 PLDI'LS, Jube 16-19, 015, Seatie, WA, USA not even clear whether thf| o i fest puzo. Conyrights for compenents of this week ownad by ofees hin ACM 4 common type. We formulate the | - esbtish pt specific permission cver, 2type is not scalable for the former but sc: rogram verifiers [Fink et al. 2008], symbolic exe iinglin s omter lysis is important for an array of real-world applications such as bug detection [Chandra
_ Copyeight) 2013 ACM 07814802201 4 &1 406, $15.00 all Ells t Ao ks one can h stracting Wi credt 1 permined. To copy alhcrwise, o republish, 5 ‘ 3 e Requeat pennissions fram prmisslons@acm.oog : latter; prog -t al. » Sy Jingling@cse.unsw.edu.au. stal - Naik et al ity analvsis [Arzt et al. 5 « Livshits and Lam 2
3 i n sy o 0 it Es,rgis peio pocfc i amile s type-consistency of two objects as | 1SR R R SRR fepeir tools. [Gao: et al, 2015; Hong et al, 2020; I et al. 2009; et al. 2006], security analysis [Arzt et al. 2014; Livshits and Lam 2005], program
e, Resgiest pensissions from Pennissicns & scim. o k : S 3 ; Nowrd 2 rriterr Hackin " ao et al. - Hong et al. : Lel g 7 Z ' 3 25
b, b PLDIIZ. - § . - alence of two sequenlhll automata ht held by Iw. ownenauthor(s). Publication sghts beensed to ACM. PTG RR ¢ P ’ g ’ ‘-enﬁcatl‘)n [l,.lnk Ct al 2008; Ijradc] C' ﬂl z()] 2] ﬂnd program undcrsfﬂndl]‘lg [l" (.t al 2016' \Hndhﬂrdll A
7, June 18-23, 2017, Barcelona, Spain applying a classic Hoperoft-Karp al] A°M 1811, $1500 These are all popalas apen-sauree applications, induding the hea o
\ ;t 2007 ﬁ‘cMr.;zg-mguﬂmgi&‘sﬁy#&?lsw PPIYIng (o arp. i 43236041 eclipse) of the DisCapn benchmarks |3) 'S
! il doi arg/10.1143/1062341 3062 — R
P —— “Corresponding author »
iy —— *Corresponding author I
8] y
& 8
R ’h
N \ =2l PO = ’ A . RO = o, yo g o - - v A o on, < y y on = - il aii on - - = = g S
— 7 e N S - e Tl LTy Ty g — . - e L oyt —= > - Gt~ R — . N p — . - PR By o T ARt — . - PN 9 e o N D — - [P
D - g 2 - > - g 2 —~ -
©SF - e " P DN 2 SRS Q . <l ~AISX -V —Q <l ¥ AR <, 3 z.v o - B - soare o —

)

“For comparison
superiority of ob

1

Pointer anal

Making k-Object-Sensitive Po|
More Precise with Still k

Tian Tan', Yue Li*, and Jingling

! School of Computer Science and Engineering

? Advanced Innovation Center for Imaging Tech

Abstract, Object-sensitivity is regarded as argul
abstraction for pointer analysis in object-oriented

k-object-sensitive pointer analysis, which uses a sef
sites (as k context elements) to represent a calling
call, may end up using some context. elements req
ducing a finer partition of the space of (concrete)
method call. In this paper, we introdnce BEAN, af
improving the precision of any k-object-sensitive 2

by still using a k-limiting context abstraction, The
allocation sites that are redundant context elemd
Object Allocation Graph (OAG), which is built b
(e.g., a context-insensitive Andersen’s analysis) pd
program and then avoid them in the subsequent k
ysis for the program. BEAN is generally more prec|
precision that is guaranteed to be as good as k-obj
have implemented BEAN as an open-source tool a
two state-of-the-art whole-program pointer analy:
representative clients (may-ehas and may-fou-cast
nine large Java programs from the DaCapo bench
succeeded in making both analyses more precise fo
under each client at only small increases in analys|

Introduction

sis, as an enabling technology, plays a

client applications, im'ludmg bug detection [3, 25,35, 1

compiler optimisation [6,

3], and program understal

mensions of pointer analysis precision are flow-sensitiy
For C/C++ programs, flow-sensitivity is needed by r
For object-oriented programs, e.g., Java programs, hj
is known to deliver trackable and useful precision [17]

There are two general approaches to achieving col

oriented programs, call-site-sensitivity (k-CFA) [27]

24,29] (among others). A k-CFA anal

s represents a

call by using a sequence of & call sites (i.e., k label
site). In contrast, a k-object-sensitive analysis uses k
F labels with each denoting a new statement) as conf]

B 0 St 2 - b sBa - a
d - R=0 A% ' - = 25D
2 _ o~ - 5 = _ > N o =~

D
~f
<
D
=3
0
-
al
¢
al
N
N
el
—
O
al
D
=
O
-
wn
H
=)
Q)
H
D
H
-
D

-Tan et al. [2016] | |

Pick Your Contexts Well: Understal

Hybrid Context-Sensitivity for PI

Introspective Analysis: Context-Sensitivity, Across the lI A Machine-Learning Algorithm with Disjunctive Model for

The Making of a Precise and Scala Data-Driven Program Analysis
. . . George Kastrinis ~ Yannis Smar. Yannis Smaragdakis George Kastrinis George Balatsouras
Scalability-First Pointer Analys}| Yannis Smaragdakis Martin Bravenboer, Department of Infornatics Depastient of Iaferistics . +
se”‘.Tuning Context-Sensiti Department of Computer Scicnce, LogicBlox Ine University of Athens Precision-Guided Context Sensmwty fq University of Athens MINSEOK JEON, SEHUN JEONG", SUNGDEOK CHA, and HAKJOO OH", Korea University,
University of Massachusetts, Two Midtown Plaza {gkastrinis,smaragd} @di.uca. g1 {smaragd.gkastrinis,gbalats }@di.uoa.gr Republic of Korea
i e Ao N Amberst, MA 01003, USA Atlanta, GA 30309, US
ue Li ian Tan lers Molle; and Department of Informatics, martin bravenbcer@acm YUE LI Fodimpaitcs sepirt 3 hine-leatning g : : istuncti dri p sig
Y 5 o Aarhus University, Denmark We present a new machine-learning algorithm with disjunctive model for data-driven program analysis
Aarhus University Aarhus University Aarhus Universit| University of Athens, 15784, Greece TIAN TAN 5 : o) hall 7 5 lysis i b ial £ al eff ired f 5
yueli@es.au.dk tiantan@cs.audk amoeller@cs.au.q s Ak , Aarhus University, Denmark ne major challenge in static program analysis is a substantial amount of manual effort required for tuning
ABSTRACT Abstract O of tff ANDERS MOLLER, Aarhus University, Denmark Abstract of paints-to analysis is (o yield usefully preciseinfof] € analysis performance. Recently, data-driven program analysis has emerged to address this challenge
s tmeon (+10690 Context-sensitive polnis-o analysis is valuable for achieving high mxv’:.’v'::ﬁ: YANNIS SMARAGDAKIS, University of Athens, Greece Context-sensitivity is the primary approach for adding more preci- :T;;":K ”:m"t’\':":nl'l’;‘ ;““:’d:;‘sc’"\;“’:u;‘i]m by automatically adjusting the analysis based on data through a learning algorithm. Although this new
peecisioa, but existing techubques suffes from \mpredictable acali- e [l :::‘:»:v\\;z ::,\d performance. 1{'&;‘;’:":: ““L‘:“" ofcontext- et info Context sensitivity is an essential technique for ensuring high precisi :‘;5“"" ‘m"’;‘f“*:;:“fj‘;‘:]':‘n‘ :l:‘i:r::t‘yk"g:':::;::":'glw‘ near-lincar behavios in practios; by exploiting pro approach has proven promising for various program analysis tasks, its effectiveness hlas been limited due
bility. Many variants of context-sensitivity exist, and it is difficult - O g exi-densi same contex] 2 Ve £ s ey ; N and maintaining precision. Indesd precision and pef] to simple-minded learning models and algorithms that are unable to capture sophisticated, in particular
Abstract L. Iny Combining both favors of contexi-scasitivity incrcases prevision observed that applying context sensitivity partially, only on a select sfj however, is that they are bi-modal; cither the analysis is precise &P pre e p g P P! P!
0 chogle ode tat lpada'to vtdyiviahle Aalysls i dic bty - ;) but at an infeasibly high cost. We show that 3 selective combi. 84 CORRRS. i % P ¥ OIY O 8 SECCLSY - nough that it manipalates only manageable sets of data, and thus £0 band-in-hand in a good poinis-to amalysis Al digjunctive, program properties. Ta overcome this shortcoming, this article presents a new disjunctive model
high precision. without running the analysis multiple times s Object-sensitivity bas cmerged as an excellent context abstraction Pountztof tion of call.site- and object-sensitivity for Java points-ta anal- naturally resfl balance between analysis precision and speed. However, existing te scales impressively well, ar the y5is gets Aiuwklv derailed at the algonthms are often found o be both more pred 4) ‘ 3 3
We present the ScALzn framework that addresses this problem, "“"‘fl"“"““" ";‘"'V“":"“'E"“I““”""""""“m"”“l‘ D"'l‘"“" ";"’:"" "“:” r}"’ ysis is highly profitable. Namely, by keeping & combined context m’:‘“‘::ﬁ";: do not provide much insight into what characterizes this method sl fir sign of imprecision and becomes orders-of-magnitude more becanse smaller points-to sets lead to less work (14 for data-driven program analysis as well as a learning algorithm to find the model parameters. Our model uses
. 3 : ical sucoess ver, Dbject-sensitivity is pove o sists of o % > AT s s ;. . - : 3 s
SeaLe efficiently estimates the amount of points-to information - u:su::\ "m- ;:):;:x': e ‘E';‘h :rnzli:lh':;hr[-" 0 i“>, ';LYAI d‘g]:““n ,lc‘i L':,;c‘:“‘ only when analyzing sclected language features, we can closely 2.2 .Y" 4] principled approach for identifying p critical methods, based expeasive i would be espected givea the pragrane's sizs, Thars Context-senshilviiy is a common way of pursuind - boolean formulas over atomic features and therefore is able to express nonlinear combinations of program
that would be needed to analyze each method with different variants et £ ghet, p a ¥ ¥ approximate the precision of an analysis that keeps both contexts X 5 5 X ;< s currently no approach that makes precise Y in points-to analysis. It consists of quali 2 hnical chall is efficiently d - £ d bool f 1 b £
of context-sensitivity, It then sclects an appropriate variant for o mentations deviate significantly from the original definition of an toduringl o Gil times. In terms of speed, the sclective combination of both A call-sivf - explain where most of the imprecision arises in context-insensitive pol ses (of ary Bavors call-site, object-, oF !).1‘7 etnative) i o ables and objects with context information: the ana Properties. Key technical challenge is efficiently determine a set of good boolean formulas as brute-force
each method so that the tatal amount of points-to information is 5 3:{.“:&:25;?;1 ::,]lf::". .l\?:hiﬁfﬂ,'i“,'.ﬁﬁf-lﬁiﬂsﬁu;:ﬁ ,‘,ﬂ,jl,,““f Kinds of context ot only vastly outperforms non-selective combi- 'ﬁb;::f’::?; an efficient algorithm to recognize these flow patterns in a given prdd \he hoard at a level 1o that of & contes ive anale formatien (e.£.. “What objects this method argumer} - search would simply be impractical. We present a stepwise and greedy algorithm that efficiently learns
bounded, while utilixing the available space to maxtikze preciion, 1k at f»m ihiod eall and object sreatiin We offis u cloanmmodd . poluier tl | cout | ;,:;:::‘,;h: :.:: ;‘,f:;";;':,‘;gf’ﬁ"{;"":m ?nf:g“”,igr method arguf] tradeoffs between analysis precision and speed. ysis. To address this issue. we propose introspective analysis: (:,fir‘:flq‘::r:'.:: S :‘;ﬁ:‘.:.m(ﬁ‘ "“";"‘ ‘)"fr’fﬂ:l':“ boolean formulas. We show the effectiveness and generality of our algorithm with two static analyzers:
Our experimental results demonstrate that Scates achieves pre- S for the aialyiis design spece, arid discuss 8 foomal mnd fiformal u- ohicct ol 2 s 3 o €. 1-object-scusitive, method invo Our 1 results on dard benchmark and real-world prof] techaigue for uniformly scaling context-sensitive analysis by efim- T D b SRR A LR TR D T = o B rede 4. > i P R .
dictable scalability for al the evalusted programs (e.g. speedups S ol :ofow;&ﬁ];‘m Girotms fouml e Ryeri l.‘dmh“ m‘..'.éi“.‘l‘ill :1:.;;“”“1““wmm‘_:::,‘.&é:&m) e i s A e R rmm:’_ﬂ insting its porformance-detrimental behavior, at & small precision i o detaity m:{:wm{n: toavoid precis context-sensitive points-to analysis lgr Java and ﬂuw sensitive interval analysis for C. Experimental results
can reach 10x for 2-object-sensitivity), while providing a precision @ f qensitive analyses. The results are surprising in their extent, We anlysis £ mechodinved| *PP v nsitfvity partially, on'y 5 P g expense. Introspective analysis consists of 2 common adaptivity :ﬁmlmwcu;::i: S “;""m>3:““;df’:'l":,‘:“hl_ show that our automated technique significantly improves the performance of the state-of-the-art techniques
that matches or even exceeds that of the best alternative techniques. Figure 1: Comparisof .5 ¢ pagt | tions huve made u sub-optimal choice of bind unyl] Categories and Subject Descriptors ¥.3.2 [Logics and Meanings in the code ¢ (‘?fS 8%) of the precision of a highly-precise conventional context-sensifl patern: first perform ¥ couex-insensitive analyid, then wse the i jon, such as “,,1;}.‘,,,.,,,;,,,,‘”,\. ly_s 23).0f including ones hand-crafied by human experts.
sensitivity, 2-typesel oniext to the severe detriment of precision and performance. We Furthernl] ©f Programs): Semantics of Programming Languages—Program a consew-insfl with a context-sensitive heap), with a substantial speedup (on averag results o selectively refine (ie., analyze coate ely) pro- 119, 20), and tspe-sensitivity [24], '
CCS CONCEPTS ses. The y-axis is trfl jefine a “full-object-sensitive” analysis thut results in significantly anulysis | Aualysis D34 [Programming Languages): Processos— method feo g \ R gram clements that will 1ot casse cxplosioa in the nmning time Rtk Tl b & i CCS Concepls: « Theory of computation — Program analysis; » Computing methodologies — Ma-
« Theory of computation — Program analysis andall truncated casfl higher procision, and often performance, for the exact same con interact § Compilers fooseparatclf] CCS Concepts: « Theary of comy Y Progeam TS Gapece. The techoloal chelleng: 18 by Sppeupelsacly Sdcify Jush 159 he gl bive a townos ke’ i ins :
? text depth. We also introduce “type-seasitivity” as an explicit ap- functiond to anything - . .) . program elements. We show thit a simple but principled approach even the best algorithns have a commoa fsilure of - chine learning approaches.
KEYWORDS to produc of objoct ity that preserves high context qual chieves] Gemeral Terms Algorithms, Languages, Performance ony2 may pofl Additional Key Words and Phrases: stalic analysis, points-to analysis, | can be remarkubly effective, achieving scalability (often with dra- cannot "}M'\:ﬂ?mm P::Ejlﬁﬂll{l\bl‘cpg‘l‘l;.v‘-
alability 12, 30, 35).] AT "k ol it s 5 : sitic speedup) for b X I Sataly oubofieded mance of a |, context analysis is bimods i ; au A s s sensitivity .
st analyss, pofts-to analysis Java th ;y [l 5] ity at tially reduced cost, A tyy points-to unilysis consists § Keywords points-n amalysis; context.sensitivey; object- ¢ c2sss € (| ACM Reference Format: o ‘ktr’fc“mg“_ms'u‘c ek pioTiatly Seiisitive sl od Beé Bocw asocisted B vy | Add.l‘n'onal Key Words and Phrases: Data-driven program analysis, Static analysis, Context-sensitivity, Flow-
ued to develop sophisll makes an unconventional usc of types as context: the context ypes objectall oeitivity: typo-sensitivity void footofl L . e : P Y contexts™ [15]; “algorithms completely hit a wall tivit
ACM Refecence Format; 16, 18, 22, 24, 25,32, 3 : type jects involve " % f e y \ Yue Lij, Tian Tan, Anders Moller, and Yannis Smaragdakis. 2018, Pre} : < : - . contexts™ [15]; “algorithms completely hit a wal sensitivity
e ISR ate niot dynamic types of objects involved in the analysls, but in- il Categories and Subject Descriptors 3.2 |Logics and Meanings ations, with the number of tuples exploding ex
Yue Li, Tian Tan, Anders Maller, and Yaemis Smaragiakis. 2013, Scdabilty One of the key mecl stead upper bounds an the dynamic types of their allocator abjects. 107) ove : Pointer Analysis. Proc. ACM Program, Lang. 2, OOPSLA, Article 141 (| - £7p%wries st Subect Bescrlp e L e Proos’ Rifoent published sesul [12] full ta rn'a 2 objert] | AGM Rsference Format:
First Pomter Analysis with Sell-Tuning Context Sensitivily. In Procredings i context sensitivity, Our results expose the influence of context choice on the quality while sefj 1. Introduction s Creen ouiel or10.1145/3276511 Aalyas: DIA I, L i v sis In under 90mins for 2 of 10 DaCapo benchmark % : 3 3 z i
o the 26th ACM Joint Esropen Sefhwure Enginceriog Confirmee and Sympo- analyzed dfferently ol of points-io snalysis and demonsirate type-sensitiviy o be an idca kinds of | Foints-1o anatysis is a static program analysis that consists of com= o1 tascll C(m;llr:;s = ¥ % benchmarks take meee thin 1.000sce, although md| Minseok Jeon, Sehun Jeong, Sungdeok Cha, and Hakjoo Oh. 2017. A Machine-Learning Algorithm with
n:mm'hr fw--imm:ofsq"mgrr-‘-n:{mr{méfé}-P} 18), Nevember Context sensitivity hasl] with major impact: It decisively advances the state-of-the-art with (18, 1914 puting all objects (typically identified by alkocation site) that a pro- marks of similar or larger size get analyzed in unde Disjunctive Model for Data-Driven Program Analysis. ACM Trans. Program. Lang. Syst. 9, 4, Article 39
4-9, 2018, Lake Burma Visa, FL. USA. ACM. New York, NY, USA, 1 pages : i g - 4 ; of s g ? 1 INTRODUCTION . X . § g]
i/ hlotarg/10. ¥ 0% context information usy a spectrum of analyses that simultancously enjoy speed (several Ever gram variable may point to. The area af points-to analysis (and c2.200{of General Terms Algorithms, Languages, Performance Thus, when contexi-sensitivity woeks, it work (December 2017), 42 pages. hitps://doi.org/0000001.0000001
and type-sensitivity [times faster than an analogous object-sensitive analysis), scalabil- al. {13], its close relative, alias analysis) has beca the focus of iatense re- o Pointer analysis is a fundamental family of static analyses tll kewords points-io analysis; context-sensitivity, obiect- teems of both precision and performance. When i O BARCY MUPH/CORARIN &
former is strictly morel] ity { lyses with much less cont fity), and itisa sl search and is among the most standardized and well-understood of 1 3 7y pol ysis; Y obj it fails miserably, quickly exploding in complex]
1 INTRODUCTION 37, However, with anyl] Precision 1o the best object-sensitive analysis with the yielding || inter-procedural analyses. The emphasis of poisis-to anslysis algo- incontat o POIDtEr variables in a program. Such information is essential] sensiivity: type-sensitivity context-inseasitive analyses uniformly scale well. § 1 INTRODUCTION
P?mtt:ja-luivﬁ;s isa fanu:;\" :f “:::1 nnalv:ﬁtrh:lqwﬂhal_ PROVBe gain in precision, scalf $4mE context depth) alaa :::'rr»" :c:x:::.lc-t‘;mm:%nfﬁmf ﬁ:.;ﬁmgﬁﬁ(wﬁﬁwﬁ of nstractioff inter-procedural control flow in object-oriented programs, and i SSes puts. Figure | vividly demonstrates this phenomed
s foundation for many other analyses and software engineerin analyses engc i ; xRt G 2 , A - b o . R - . ; .
tasks, such as pmgwny sticing [36, yun] reflection snalys: [19 o i ': f::;’,:'v’:'fﬂ‘ Categories and Subject Descripiors ¥.22 |Logics and Meanings scns:mc that will allow satlsfactory preelsion at 4 reasonable cost. Farther- ‘“ﬂ““- 2 bl engineering tools, e.g., for bug detection [Chandra et al. 200 1. Introduction gr:mﬂi ?:':Bs;’ﬁ*;:t?::‘j:ﬂz One major challenge in static program analysis is a substantial amount of manual effort required
» 33 . etrics Propr 3 s { Py . P o “allocation- 2 AL o 5 . 3 . ¢ hole- i 2 . s g e . R N
bug detection [19, 26), security analysis [1. 23], program verifica- Figure 1 shows tin} 'j\l llfv';x_”ml Semantics of Programming Languages—Program Is. conce) iz a:rv:;msr: N eing Wedihe often leads o higher asymp- o :;J“f""d‘, analysis [Arzt et al. 2014; Grech and Smaragdakis 2017; Livshit] :’:’:c"‘ ‘:;If':“"::".l:‘mﬁr‘:'ff_"":;‘“‘rr‘;‘m l‘d’::':v';';'g::‘ ysis with context-sensitive hesp (2objH). (The chf for tuning the analysis performance for real-world applications. Practical static analysis tools use a
< i s R nalysis malizing] ic complexity, this worst-case behavior is rarcly encountered m J . 5 R T hoals p X R : y 2 2 Y 4 2 5 = REEE ST 2 R 2o 5
;:” I"-l{‘l]v “‘}le':’J:"]"_“‘d'b:‘ﬂl‘l"iﬁ_:ﬁ"‘ “’mP':‘f“-‘:‘"; [l”- ;3- grams’ under 2-objed . DA (Prog Languages): Formal Definitions and e m: sctual peactics, Tnstead, tecniques thal i ¢ffbctive st maintsining the allocatiofl tion [Fink et al. 2008; Pradel et al. 2012), and program debugginl level program analysis tasks. Points-10 analysis computes the set of analysis tme of the longest-runaing benchimarksg yarjety of heuristics to optimize their performance. For example, context-sensitivity is essential
e e R e Ly the most precise variaz Theory—Semantics What] £00d precision often also exhibit better average-case performance, £ et Sridharan et al. 2007] objects (abstracted as their allocation sites) that a program variable bl pnd: jythan, thied out: tfies Hming oo & 3 - : it disti . », : = 2
(abstracted as their allocation sites) that a program variable M3y (3¢000 1921 and cont 3 bt [it oo * context. Th - 2007). N) may point to during rantime The promise, as well as the challenge, @4 would 1ot ferminate even for much longer i for analyzing object-oriented programs, as it distinguishes method’s local variables and objects in
point to during rua time. Although stating this goal is simple, it is X General Terms Algorithims, Linguages, Perfarmance £4e ey ; will analyze For decades, numerous analysis techniques have been develof be scen, context-insensitive analyses vary relativel gogro o4 (ollino contexts. However, applyin context-sensitivity to all methods in the program
- - - ® 20bj is not scalabl 2 g better-kn objects that ¢ precise and more efficient, especially for object-oriented langu Permission to suike dighal o dard capes of sl or part of this woek foc personal o formance, while context-sensitivity often causes mf £ e » apP1y x 8 TG prog
s a1 gl W Dout 0 provbed that ek ¢ Bt e . imcinted = sis uses fragment nei v v ins chsamom e i grawed withou foe provided tha copios are ot mock o distmbaled memory use) fo explode. does not scale and therefore real-world static analyzers apply context-sensitivity only to profitable
e o programsisels far the methll Purscaision 10 maks digeal or Suod copsos of all ur part of s wurk G perccond e mor to how nf] Balatsouras 2015; Sridharan et al. 2013]. One of the most sul] foc ot e commercial utvantags and that conscs beas i netice s e full it Faced with this unpredictability of context-sen 3 % 34 : %
e g e T mp ol i etk oo by el s , haderi Permission to make digiel o hard copies of all or part of s work for perenal or separated] sssroom we s prastiad wiou T peovided that copies wee not sude ur distnewed may b ramd R PRATY 3 G 112 i pnge; Copighits i compeniy of s enk cwesad by thecs Wi the $ N GiNceins Eas methods determined by some heuristic rules [Smaragdakis et al. 2014]. Another example is a
Py b by eyt g el (2718 methods) s @ ¢ Bnted without fw rovided fhic copies ors et mads or distrbuted per call-f] foromitce commercial sdvnlsce and h coies bear s e nd the fulliaion - ,: ssipoif Procision is context sensitivity [Milanova et al. 2002, 2005; Sh. smihon(s) myst be honceed. Abstracting with creditis permitted. To cony uthersise. o mnaz:mm is o ;n it .nxqu;_ context-ing 3 < 3 Mi = Z
Saeadere g i i 1) ey x 2 B Al ¢ o the firw puge. T cugy alerwise, U repablish, 10 post o servess oo o edivribte 3 K ¥ repudsiish, 00 post un servers o 1o tedistibuie 10 lists. requires pelor specifc pemiiios 3 . cant preci P 4) S G o Ainé g .]
AL o pok o e 0 ook K T e sp i :l::r ;Zl“" i 0ek o penlls ox cosaiell advamtags e’ i cople m“.‘j"‘ff:“f":"_‘jf; that led § .,‘(f_'.i“,,;.,’,-‘,ﬁ‘,,;,,, ,,"‘;',;," g ol and acall-at Smaragdakis et al. 2011], which allows each program method to bl 2o e ';:,;:4 ;v:n‘u»n:n:(vr-:'[v‘r'n:am:|@juu it xwe:u.bcmf:m?més_“g::: !u:ci:l, ';:;' mf:\:i rcldllonal. analysis ?ugh a.s O{WS with Getagons ['. finé 2006]. Because it lf lmpractlca]‘lo keep ."a.d(
Es® 4 Noverubyr 649, 2018 Lake Bavma Vists, H. USA e apecifc pemission sad o u fe: Informat} pLovis, Ju 16-15, 2013, Sewle. WA USA. not even clel o separate the static abstractions of different dynamic instantia§ ~ PLOCU June 011, 014, Bdintursh, Uied Kitgdom. 3 chewing expensive context-sensitivity is not an opg of all variable relationships in the program, static analyzers employ variable-clustering heuristics
© 1913 Copyright bebd by the owner/authacts) Publicotnn rights boensed e ACM T T i e 2013, At Toxes, USA. that lod (f] Cepyrighe @ 2013 ACM 978- 1 4S(5- 2014401 406 SIS0 all calls to 1| ZQ‘ ‘«“%f?fl?';?ﬁ»?.’l’".’ sx‘i‘o‘u Pablication rights lieased te ACM. insensitive analysis is just ool good enough, Repd
“m”.w,‘ rie ’:«”.”‘, ,‘vm” e:i,;:::-?!l:f:ﬁl,l":p‘l:::n PEARS SRR Vi 2 Authors’ email add yueli@cs au.dk, ti s.awdl, 1k a0 hitp/idx ot orgf10.1 L4S23942591. 2554520 try [4] and scademic researchers [3] alike reiterd *The first and second authors contributed equally to this work
10, -
Corresponding authar
———————
S
S il < \ @i ~ai . g A @ilieeai . RN A @iie—ai : g — A@uie—ai . oo e . e G -sie Lasam AR L s
e e o v e — —T = Cmia i - = — £ = e o e D e o - = e o e - == PP . P = e o e o o o o o 0y PRVl N - s 2y PTD Pd o .
D - 5 = 4 = - - B - 4 = ~ B
-2 w0 s . 3 < v o o — sag au yiReQyT e 3 .o et = 40 SR BU y

7 |
\
A
U
b
o
B
— = & SN — P
S — 2 Te e
b ‘4
v 2
'\
\ N !
s ¢
\
(Vi
=== = v —~ D s g A S =
r AR o CY o el o g o comr o o N TR

“We do not consider call-site sensitive analyses as they are

typically both less precise and scalable...

1

Pointer anal
client applications, im'ludmg bug detection [3, 25,35, 1
compiler optimisation [6,
mensions of pointer analysis precision are flow-sensitiy
For C/C++ programs, flow-sensitivity is needed by r
For object-oriented programs, e.g., Java programs, hj
is known to deliver trackable and useful precision [17]

oriented programs, call-site-sensitivity (k-CFA) [27]
24,29] (among others). A k-CFA anal
call by using a sequence of & call sites (i.e., k label
site). In contrast, a k-object-sensitive analysis uses k
F labels with each denoting a new statement) as conf]

Making k-Object-Sensitive Po|
More Precise with Still k

Tian Tan', Yue Li*, and Jingling

! School of Computer Science and Engineering

? Advanced Innovation Center for Imaging Tech

Abstract, Object-sensitivity is regarded as argul
abstraction for pointer analysis in object-oriented

k-object-sensitive pointer analysis, which uses a sef
sites (as k context elements) to represent a calling
call, may end up using some context. elements req
ducing a finer partition of the space of (concrete)
method call. In this paper, we introdnce BEAN, af
improving the precision of any k-object-sensitive 2

by still using a k-limiting context abstraction, The
allocation sites that are redundant context elemd
Object Allocation Graph (OAG), which is built b
(e.g., a context-insensitive Andersen’s analysis) pd
program and then avoid them in the subsequent k
ysis for the program. BEAN is generally more prec|
precision that is guaranteed to be as good as k-obj
have implemented BEAN as an open-source tool a
two state-of-the-art whole-program pointer analy:
representative clients (may-ehas and may-fou-cast
nine large Java programs from the DaCapo bench
succeeded in making both analyses more precise fo
under each client at only small increases in analys|

Introduction

sis, as an enabling technology, plays a

3], and program understal

There are two general approaches to achieving col

s represents a

9

Scalability-First Pointer Analys}|
Self-Tuning Context-Sensi

Pick Your Contexts Well: Understal
The Making of a Precise and Scalal

Yannis Smaragdakis
Department of Computer Science,

Unsversity of Massachusetts,
Amberst, MA 01003, USA

Martin Bravenboer
LogicBlox Inc

Two Midtown Plaza
Atlanta, GA 30309, US»

Hybrid Context-Sensitivity for PI

George Kastrinis

Yannis Smarj
Departnent of Infonnatics
University of Athens
{gkastrinis,smaragd } @di.uoa. g1

Precision-Guided Context Sensitivity fq

Introspective Analysis: Context-Sensitivity, Across the lI A Machine-Learning Algorithm with Disjunctive Model for

Yannis Smaragdakis

Abstract

Context-sensitivity is the primary approach for adding more preci-
sion 10 a points-to analysis, while hopefully also maintaining scal-
ubility. An oft-reported problem with context-sensitive analy
however, is that they are bi-modal: cither the analysis is precise
enough that it manipalaies only manageable scts of data, and thus
scales impressively well, or the analysis gets quickly desailed at the
first sign of imprecision and becomes arders-of-magnitude more
expensive than would be expected given the program's size, There

George Kastrinis
Department of Informatics
University of Athens
{smaragd.gkastrinis,gbalats }@di voa.gr

George Balatsouras

of points-1o analysis is to yield usefully precise infod
sacrificing scalability: the unalysis inputs are large
algorithms are typically quadratic or cubic, but
near-lincar behavior in practice, by exploiting proj
and maintaining precision. Indeed precision and per
g0 hand-in-hand in a good points-to analysis al
algonthms are often found 1o be both more prel
because smaller points-to sets lead 10 less work [14)
Context-senstiiviry is a common way of pursuin)
ility in points-to analysis. It consists of quali

is currently no approach that makes precise analy-
ses (of any flavor: call-site-, object-, or type-sensitive) scale across.
the board at a level 1o that o a ive anil-
ysis. To address this issue, we propose introspective analysis: a
technigue for uniformly scaling context-sensitive analysis by efim-
inating its performance-detrimental behavior, at a small precision
expense. Introspective analysis consists of a common adaptivity
patern: first perform a context-insensitive analysis, then use the

nles

ables and objects with context information: the any
formaticn (e.g., “what objects this method argumer]
over all possible executions that map to the samg
while separating executions that map to different
way, context-sensitivity attempts 1o avoid precisi
ing the behavior of different dynamic program
sensitivity comes in many Asvors. depending on they
i such as call-stie-sensiriviry (22, 23). of

results to selectively refine (ie., analyze ly) pro-
gram clements that will not cause explosion in the running time
or space. The technical challenge is to appropriately identify such
program elements. We show that a simple but principled approach
can be remarkably effective, achieving scalability (often with dra-
matic speedup) for b ks p I letely out-of-reach
for deep context-seasitive analyses.

Categories and Subject Descriptors F3.2 | Logics and Meanings

of Programs) i of Languag Program
Analysis; D34 [F g L s
Compilers

General Terms Algorithms, Languages, Performance

Keywords points-to analysis; context-sensitivity, object-

sensitivity; lype-sensitivity

1. Introduction

Points-to analysis is probably the most common whole-program
static analysis, and often serves as a substrate for a variety of high-
level program analysis tasks. Points-1o analysis computes the set of
objects (abstracted as their allocation sites) that a program variable
may point to during runtime. The promise, as well as the challenge,

Permission tn suike digital ar dard copies of sl or part af thés woek fo pessonal or
chassmoom wse s gramad without foe provided that copios are nst made o distribated
Fee geufil ce commmercial advantage e thal copics bear this negice sl the (ull clatos
an the fins page. Copynghts for componeats of tus wark owsed by others than the
smtaoris) st be honcerd. Ahstracting with creditis permitted, To copy othersise. or
sepuuish, 05 pout un evver e 1o redistrbuie 10 fists. equires pelor apecife pemiisios
madion 0 feo. Roquest permissions from pereissons® som orz

PLOFI, Jute 9-11, 2014, Edinturgh, United Kirgom

Copyright is heid by the ownerfausborts). Pablicarion rights lisesed 19 ACM.

ACM 978 1-4503.2784- 81406, .. $15.00.

hipitx ol org/10.1 1452394291 2994520

[19. 201, and type-sensifivity [24]

I d fact about context-sensitivity,
even the best algorithms have a common failure of
cannot maintain precision. Past literature repors tf
mance of a [...] deep-context analysts is bimodal”|
sensitive analyses have been associated with very |
contexls™ [15]; “algorithms completely hit a wall
ations, with the number of tuples exploding expo
Recent published resulis [12] fail to ran a 2-object-]
sis in under 90mins for 2 of 10 DaCapo benchmark]
benchmarks take moee than 1.000sec, although md
marks of similar or larger size get analyzed in undd]

Thus, when contexi-sensitivity works, it worky
terms of both precision and performance. When it}
it fails misersbly, quickly exploding in complexy
context-insensitive analyses uniformly scale well,
puts. Figure | vividly demonstrates this phenomey
Capo benchmarks, analyzed wilh the Doop framew
context-insensitive (insens) analysis and a 2-objec
ysis with 2 context-sensitive heap (20bjH). (The chy
analysis ume of the longest-runaing benchmarks)
hsqldb and jython, timed oot after 90mins on a
and would not serminate even for much longer ting
be seen, context-insensitive analyses vary relativel
formance, while context-sensitivity often canses mf
memory use) 10 explode.

Faced with this unpredictability of context-seny
mon reaction is to avosd it, favoring context-ing
ses, and, consequently, missing siguificant precis
well-behaved programs. Even worse, for some af
chewing expensive context-sensitivity is not an opf
insensitive analysis is just nol good enough. Repa
try [4] and scademic researchers [3] alike reiter:

Ym_» Li) Tian 'I_‘an) Anders‘ Mollg and Departiment of Informatics, martin bravenbcan@acm YUE LI, Aarhus University, Denmark
Aarhus University Aarhus University Aarhus Universit] University of Athens, 15784, Greece TIAN TAN S -
yueli@cs.au.dk tiantan@cs.audk amoeller@cs.au.d umass.adi i.uoa.gr , Aarhus University, Denmark
AB: CT Abstract O of] ANDERS MOLLER, Aarhus University, Denmark
{oean DI Comtext-sensitive polnis-to analysis is vatuable for achieving kigh cismafperford YANNIS SMARAGDAKIS, University of Athens, Greece
Context-sensitivity is important in pointer analysis to ensure high precision with good performance. The standard flavors of context- sensitivity ccf
::;:\m;:;;u:::‘:;:iﬁm:‘:::;?:ﬂ‘:p;: l:l:b :;:ﬁtcﬂ: 3 sensitivity are call y (kCFA) and obj :::::::{.‘: Context sensitivity is an essential technique for ensuring high precisi
4 G y nl Abstract 1. In§ Combining both Bavors of contexi-scasitivity increases precision Sevr . e sl
to choose one that leads to reasorable analysis time and cbtains = s but at an %mwmlv high cost. We show that 3 selective combi- enteantews. | observed that applying context sensitivity partially, only on a select 5
high precision, without running the analysis multiple times. o (.Ph]t\‘1-)cvll!l|lnl_\' has emerged as an c“dkf“ context _xlmmcum FPointsate ration of call:site- and object-sensitivity for Java points-to anal- namnl}y resfl halance between analysis precision and speed. However, existing te]
We present the Scarzn framewark that addresses this problem, for points-t0 analysis in abject-oriented lmjuages Despite itsprue - most M) yyisis pighly profitable. Nauucly, by kecping a combined conext o differery - 45 1ot provide much insight into what characterizes this method s
ScaLen efficiently estimates the amount of points-to information o fheal success, bowever, object-sensitivity s poorly understood For — sists of f - only when analyving selecicd language fearures, we can closely (SO) g b for identifyi critical miethods. baséd
that would be needed to analyze each method with different variants iR vp Sonh 1200 Nghes, pan e npke: oxpiessidl approvimate the precision of an spalysi that keeps both contexts 1253 i b oo most S P Tmiebl i arties o contbtSasenaiite
of context-sensitivity. It then sclects an appropriate variant for = :::,:\: :;;m»:z:z:;g: ‘;i‘:: “’u;“:“ J_f’l";"“:m \s;‘k’:::m“: ;1\”::: :;.gl u?m In terms oll <peo?. the e.l:mv: cmhr‘mnpn Mh;:p il o "; i:— W f: "mlh" he imprecisi 0: ar 9&‘5 in context-insensitive pol
r g 4 g o - S5, L X iy Ly inds of context not only vastly outperforms non-selective combi- an efficient algorithm to recognize se flow terns in a given pre
¢k matbod o Wiatths tetal anicisit of poinkich kafeergtion t8 . E | degrecs of fieedom, relating to which context clements are picked mechanil] pavious b 18 sioe fasier doun aniore chloct sensitive santals i Thatis, the ol 2 & oftnize thcse Law pitte gvenp
bounded, while utilizing the available space to maximize precision, 8 A Biod aall and oblact &l WG sl a ela el ter & y e Qore- BEARA methad argaf tradeoffs between analysis precision and speed.
Our experimental results demonstrate that ScALER achieves pre- = sttt Ao orarr ok Ao Ur s pounter (§ result holds for a large armay of analyses (c.g., 1-object-scasitive, . 1 R s
dictabl P:’ bility for all the evaluated d" ¢ o for the analysis design space, und discuss u formal and informal us- object-ofl 2-object-sensitive with 1 o itive heap, type method invo Our exy results on b and real-world pro
ictabe:scatability for afl (a0 avaluated Brogrants (@.§. Spoadups & & derstanding of object-sensitivity and of bow to create good object- Lambda uablishing a pew set of performance/precision sweet spots. tha mmal ek applies context sensitivity partially, only on the identified precision-cr]
can reach 10x for 2-object-sensitivity), while providing a precision 4 ¢ 4 sensitive analyses. The results are surprising in their extent. We unilysis meodinvod) S C ision of a highl : oial i
that matches or even exceeds that of the best alternative techniques. Figure 1: Comparisol find that past tions huve made u sub-optimal choice of bind unyl] Categories and Subject Descriptors ¥.:3.2 [Logics and Meanings in the code o] (%) of the precision of a highly-precise conventional context-sensif
sensitivity, 2-typesed oniexts, to the severe detriment of precisica and performance. We Furthernf] ©f Programs]: Semantics of Programming Langunges—Program a context-inyll with a context-sensitive heap), with a substantial speedup (on averag
CCS CONCEPTS ses. The y-axis is trll jefine 2 “fusll-object-sensitive” analysis that resuls in significantly unalysis | Analysis; D34 (Programming Languages): Processors— mediod foo 4 cose a0 o T £ — P Sy
« Theory of computation — Pregram analysis: andalltruncatedcasf higher procision, and often pecformance, for the exact same con inferact Compilers ::;:v’:“h:r‘::‘ ANCEPLS: = 1eory o ¥ ogram ysis;
text depth. We also introduce “type-seasitivity” as an explicit ap- functiond " Y 7 o , o giicsc oo s
KEYWORDS llen [m p,od,,,i« > of abjoct ity that preserves high ooatext qual schicves]] Gemeral Terms Algorithms, Languages, Performance obs2 may pofl Additional Key Words and Phrases: static analysis, points-to analysis,
scalability [12, 30, 35]. ity at reduced cost, A Ly tivee paints-to unulysis consists ? : s
v . N Y As-to unalys wards ints-to amalysis; comtext-sensitivity; object- ¢ class € { -
static analysis, points-to analysis, Java ued to develop sophisl makes an unconventional use of types as context: the context types object af Z’“,m,,y_ ‘I:(,,(,,ﬁ,,.,,“. ’ ~ R, veld oot ?Chr-‘k;fcre;‘:u ;or;n-rM " 3 Yannis § daki B
ACM Refecence Format: 16,18, 22, 24, 25,32, 3 ate not dynamic types of objects involved in the analysis, but in- informat} ¢ - ' ue Li, Tian Tan, Anders Moller, and Yannis Smaragdakis. 2018, Pre]
ve L, Tian Tan, Anders Maller, and Yoonis Smaragdakss. 2018, Scalability af the key mec) stead upper bounds on the dynamic types of their allocator abjects 10™) ove: 4 ointer Analysis . ACH ram, Lang. 2, S icle
Yue L, Tian Tan, Anders Maller, and Yanmis Smaragdakis. 2018 Scalabilit One of the k H i upper bound; he dyn: ypes of their all bj) Pointer Analy Proc. ACM Prog Lang. 2, OOPSLA, Article 141
First Pointer Analysis with Sel-Tuning Confext-Sensitvily In Procevdings i cantext sensitivity, f Our results expose the iafluence of context choice on the quality while seff 1. Introduction 3 claes Clien] /10.1145/3276511
ofthe 261h ACM Joint Eropean Seftwure Engineering Confirmee and Sympo- — unalyzed differently ol of points-to snalysis and demonstrate type-sensitivity to be an idea kinds of | Foints-1o anatysis is a static program analysis that consists of com= o1 tascll
stum om the M"""‘“‘"‘: "f’“‘""‘“" Engineeriag (ESBCFSE 1), Neverber Context sensitivity hasl| ~ with mujor impact: It decisively advances the state-of-the-art with (18,1914 puting all objects (typically identified by alkcation site) that a pro- INTRODUCTION
S VIR T ety Sacn Vinte M T G oW Yok, NL VA M 9 contextinformationusf] & spestrum of anufyses that simaltancously enjoy speed (severnl Ever| gram variable may point to. The area of points-to amalysis (and » ¢2.f00(of] 1
hazpscd fdut g/ 10 o and type-sensitivity [J] times faster than aa analogous object-sensitive analysis), scalabil- al [13]. 4 its close relative, alias analysis) has beea the focus of intense re- 1w Pointer analysis is a fandamental family of static analyses th
N ETETIoN former is strictly more] ity bl yses with much less cont tivity),and it is s sl search and is among the mas: standardized and well-undersiood of o} : L ; n Abea ;
1 : 37). However, withany] Precision to the best ebject tive analysis with the yvielding)| inter-procedural analyses. The emphasis of poinis-to analysis algo- e pointer variables in a program. Such information is essential
Pointer analysis is a family of static analysis techniques that provide gain in precision, scald same context depth) sersitivy rithms is on combining fairly precise modeling of pointer behavior of mml'w mler-pmceduml control flow in objecborienled programs, and i
a foundation for many other analyses and software engineering ot e tiat peon anglyses | with scalability. The challenge is to pick judicious approximations H ’b; X 2 ” 2 o A
ing (36,39 9,31 prog Categories and Subject Descriptors 32 [Loglcs and Meanings tivel] that will allow sasfactory precision at a reasonabie cost, Farther- Henee, a engineering tools, e.g., for bug detection [Chandra et al. 200
tasks, such as program slicing [36, 39), reflection analysis [19, metrics may have com| % - =y ! sersitivel 2 allocation-s, ¥
bug detection [19, 26], security analysis [1. 23], program verifica- Figure 1 shows tin] ;’\/ ’I"'K_'mll Semantics of Programming Languages—Program is conce more, although I!lfh:\‘lsm! Wm“:;lﬁf_'f“ leads l‘(‘ higher ﬂ‘W'I'P- an object, t analysis [Arzt et al. 2014; Grech and Smaragdakis 2017; Livshit]
tion [8, 27), and program debugging and comprehension [5, 21 prame’ under 2-objed] 1y 3 | (2, " Sefiait malizingll totic complexity, if worat came bebvioe is rircly encomtored in— y yo ioll tion [Fink et al. 2008; Pradel et al. 2012], and program debuggin|
PRI ; D3 [Prog Languages]: Formal [< and cven mofl actual practice. Instead, techniques that are effective at maintaining i . prog
The goal of pointer analysis is to statically compute a set of objects the most precise varia o s < d ixion oftcn alao exhibit bottor e the method y e,
(abstracted as their allocation sites) that a program variable may A 320, and Thoory—Semantics What] £00d precision often also exhibit better average-case performance, context, Thuf] Stidharan et al. 2007].
3 2 (2type) [32], and cont est way f| Since smaller points-to sets lead to less work : :
point to during rua time. Although stating this goal is simple, it is 2005 is not scalablf] Gemeral Terms - Algorithims, Linguages, Performance Bett I will analyze For decades, numerous analysis techniques have been develof
. is not sci 2) er-kn) Mbjects that 3 R “ .
Fermissin t» make diptal of hard coptes of all ot of this work toc personid oc while it can finish 58 uses },,{;‘n‘;‘,{ﬁ precise and more efficient, especially for object-oriented langul
o ,“L’,,.‘“i'tiﬁ‘_‘l;.’jﬁ'.‘.',."ST:L‘.‘I?,’:I'..".Z*&.‘:” rv:;mz":l‘l::zm + rogramsizois farf the methfl Prresiun o make digisl or Suod copioe of all ar part of i wurk Gor persotnal ar norto how mfl Balatsouras 2015; Sridharan et al. 2013]. One of the most sy
catthe first poge. Copyrights for companents of this work owned by otbers thn the (12718 methods) is]| Permieion to mak digte or bard coies of ol or prt of s work fir persral e B . ol Ot b iy o s S andto T ey may be ren] ision is vity [Milanova et al. 2002, 2005; Sh.
wlu\vu::-lh'hmnﬂ'\k b f“'r.m‘ =.:m..,m....|...x T capy oeheswac, o ever, 2type is not "l.l’:u';‘;?wﬂlzlvy‘rﬂ:"::\:;:ru:;ﬁ: tht .T'L'Z'"SI&I}."J.LL‘J per call- ::'5:':1";::":. “’:a‘.::.:’ u-lu:::'n;.«‘hw :e::r:-.r‘ugw_:‘m:y:!ﬂ::.‘u‘:n %15 6k i }:lnrcclsmn :. L‘onle{r’l sensitivity [anova ct al. , 2005; Sh
TR ko posk vl fevers 5 lta ol A T o g el 6y s s profl o comnansrs 1 coples e il aoedond e A s hat led 1 o s, souives i speciic pesmasion b # fox and a call-stf] Stmaragdakis et al. _l(]ll]. wluc.h allows.each program x'ne‘lhod l({b
ESE 4 Noverubr ¢-9, 2014 Lake Bavma Vists, R, USA e wpocific pemissinn sadoru e Informat}l pLore, Jue 16-19. 2013, Seaule. WA, USA. not even clel {o separate the static abstractions of different dynamic instantia)
© 2913 Copyright bekd by the owner/authocts) Publicanan rights soensed b ACM e il 2011, Awem, Texas, USA. that led Cepyright @ 2013 ACM 9781 45053- 201 4-8/1 306, . $15.00 all calls to |
N O78-1-45(3.557: “These are all pogular apen- gy B - - -
Tyl ectpseof he EaCapo e HATRSHELINS el 2 Authors” ensail addresses: yueli@es.an dk, s dic, amoeller @es.au-
———————
Nt g 2 0 A S ali g = o ~ar 528 g i = s g g s = g 3 = S
AL S Pty . e N P A e~ P P s e P B £ 12 Y oy e 5

Data-Driven Program Analysis

MINSEOK JEON, SEHUN JEONG', SUNGDEOK CHA, and HAKJOO OHf, Korea University,
Republic of Korea

We present a new machine-learning algorithm with disjunctive model for data-driven program analysis.
One major challenge in static program analysis is a substantial amount of manual effort required for tuning
the analysis performance. Recently, data-driven program analysis has emerged to address this challenge
by automatically adjusting the analysis based on data through a learning algorithm. Although this new
approach has proven promising for various program analysis tasks, its effectiveness has been limited due
to simple-minded learning models and algorithms that are unable to capture sophisticated, in particular
disjunctive, program properties. To overcome this shortcoming, this article presents a new disjunctive model
for data-driven program analysis as well as a learning algorithm to find the model parameters. Our model uses
boolean formulas over atomic features and therefore is able to express nonlinear combinations of program
properties. Key technical challenge is efficiently determine a set of good boolean formulas as brute-force
search would simply be impractical. We present a stepwise and greedy algorithm that efficiently learns
boolean formulas. We show the effectiveness and generality of our algorithm with two static analyzers:
context-sensitive points-to analysis for Java and flow-sensitive interval analysis for C. Experimental results
show that our automated technique significantly improves the performance of the state-of-the-art techniques
including ones hand-crafted by human experts.

CCS Concepts: « Theory of computation — Program analysis; « Computing methodologies — Ma-
chine learning approaches.

Additional Key Words and Phrases: Data-driven program analysis, Static analysis, Context-sensitivity, Flow-
sensitivity

ACM Reference Format:

Minseok Jeon, Sehun Jeong, Sungdeok Cha, and Hakjoo Oh. 2017. A Machine-Learning Algorithm with
Disjunctive Model for Data-Driven Program Analysis. ACM Trans. Program. Lang. Syst. 9, 4, Article 39
(December 2017), 42 pages. hitps://doiorg/0000001.0000001

1 INTRODUCTION

One major challenge in static program analysis is a substantial amount of manual effort required
for tuning the analysis performance for real-world applications. Practical static analysis tools use a
variety of heuristics to optimize their performance. For example, context-sensitivity is essential
for analyzing object-oriented programs, as it distinguishes method’s local variables and objects in
different calling-contexts. However, applying context-sensitivity to all methods in the program
does not scale and therefore real-world static analyzers apply context-sensitivity only to profitable
methods determined by some heuristic rules [Smaragdakis et al. 2014]. Another example is a
relational analysis such as ones with Octagons [Miné 2006]. Because it is impractical to keep track
of all variable relationships in the program, static analyzers employ variable-clustering heuristics

*The first and second authors contributed equally to this work
*Corresponding authar

YRR

=7

'y
o

)

| X

“We do not discuss the performance of our approach for call-site-

sensitivity since call-site-sensitivity is less important than others
- Jeon et al. [201 9]

I

Making k-Object-Sensitive Po|
More Precise with Still k

Tian Tan', Yue Li*, and Jingling

! School of Computer Science and Engineering
2

Scalability-First Pointer Analys]
Self-Tuning Context-Sensi

Pick Your Contexts Well: Understal
The Making of a Precise and Scalal

Yannis Smaragdakis Martin Bravenboer
Department of Computer Science,
Unsversity of Massachusetts,
Ambierst, MA 01003, USA

LogicBlox Inc
Two Midtown Plaza
Atlanta, GA 30309, US

Hybrid Context-Sensitivity for PI

George Kastrinis

Yannis Smarj

Department of Infonnatics
University of Athens

{gkastrinis,smaragd } @di.uca. g1

Precision-Guided Context Sensitivity fq

Introspective Analysis: Context-Sensitivity, Across the lI A Machine-Learning Algorithm with Disjunctive Model for

Yannis Smaragdakis

George Kastrinis

George Balatsouras

Department of Informatics
University of Athens

{smaragd gkastri

Abstract

Context-sensitivity is the primary approach for adding more preci-
sion 10 a points-to analysis, while hopefully also maimtaining scal-
ubility. An oft-reported problem with context-sensitive analy
however, is that they are bi-modal: cither the analysis is precise
enough that it manipalaies only manageable scts of data, and thus
scales impressively well, or the analysis gets quickly decailed at the
first sign of imprecision and becomes arders-of-magnitude more
expensive than would be expected given the program's size, There

s, gbalats }0di.uoa.gr

of points-1o analysis is to yield usefully precise infod
sacrificing scalability: the unalysis inputs are large
algorithms are typically quadratic or cubic, but
near-lincar behavior in practice, by exploiting proj
and maintaining precision. Indeed precision and per
g0 hand-in-hand in a good points-to analysis al
algonthms are often found 1o be both more prel
because smaller points-to sets lead 10 less work [14)
Context-senstiiviry is a common way of pursuin)
ility in points-to analysis. It consists of quali

is currently no approach that makes precise analy-
ses (of any flavor: call-site-, object-, or type-sensitive) scale across
the board at a level 1o that of a conte i il
ysis. To address this issue, we propose introspective analysis: a
technigue for uniformly scaling context-sensitive analysis by efim-
inating its performance-detrimental behavior, at a small precision
expense. Introspective analysis consists of a common adaptivity
patern: first perform a context-insensitive analysis, then use the

ables and objects with context information; the aniy
formaticn (e.g., “what objects this method argumer]
over all possible executions that map to the samg
while separating executions that map to different
way, context-sensitivity attempts 1o avoi i
ing the behavior of different dynamic progrem
sensitivity comes in many fAsvors. depending on they
i such as call-stie-sensiriviry (22, 23). of

i precision

results to selectively refine (ie., analyze 1y) pro-
gram elements that will not canse cxplosion in the running time
or space. The technical challenge is to approprintely identify such
program elements. We show that a simple but principled approach
can be remarkably effective, achieving scalability (often with dra-
matic speedup) for b ks previousl letely out-of-reach
for deep context-seasitive analyses.

Categories and Subject Descriptors F3.2 [Logics and Meanings
of Programs] antics of ing Languages—Program
Anulysis; D34 [Programming Languages|: Processors
Compilers

General Terms Algorithms, Languages, Performance

Keywords points-to analysis;
sensitivity; lype-sensitivity

context-sensitivity, object-

1. Introduction

Points-to analysis is probably the most common whole-program
static analysis, and often serves as a substrate for a variety of high
level program analysis tasks. Points-1o analysis computes the set of
objects (abstracted as their allocation sites) that a program variable
may point to during runtime. The promise, as well as the challenge,

Permission tn suike digital ar dard copies of sl or part af thés woek fo pessonal or
chassmoom wse s gramad without foe provided that copios are nst made o distribated
fex peufit e commmereial advantage sl tsa copies bear (s notice sed the (ull cilatis
an the firs: page. Copynights for compoacnts of this wark owsed by others than the
mithor(s) must be honcerd. Abstracting with credit s permittad, To cony othersise. or
sepuuish, 05 pout un evver e 1o redistrbuie 10 fists. equires pelor apecife pemiisios
mudion o feo. Reqeest permissions from permiesons®som.org

PLOPIA, June 9-11, 2014, Edinturgh, United Kigdom

Copyright is heid by the ownerfausborts). Pablicarion rights lisesed 19 ACM.

ACM 978-1-4503.2784- /1406, $15.00.

hipitx ol org/10.1 1452394291 2994520

[19. 201, and type-sensifivity [24]

An oft-remarked fact about ¢ sensitivity,
even the best algorithms have a common failure of
cannot maintain precision. Past literature repors tf
mance of a [...] deep-context analysts is bimodal”|
sensitive analyses have been associated with very I
contexts™ [15]; “algonrithms completely hit a wall
ations, with the number of tuples exploding expo
Recent published resulis [12] fail to ran a 2-object-]
sis in under 90mins for 2 of 10 DaCapo benchmark]
benchmarks take moee than 1.000sec, although m
marks of similar or larger size get analyzed in unde]

Thus, when context-sensitivity works, it work
teems of both precision and performance. When il
it fails misersbly, quickly exploding in complexy
context-insensitive analyses uniformly scale well,
pats. Figure | vividly demonstrates this phenomey
Capo benchmarks, analyzed wilh the Doop framew
context-insensitive (insens) analysis and a 2-objec
ysis with 2 context-sensitive heap (2o0bjH). (The ch
analysis ume of the longest-runaing benchmarks)
hsqgldb and jython, timed oot after 90mins on a
and would not serminate even for much longer ting
be seen, context-insensitive analyses vary relativel
formance, while context-sensitivity often canses mf
memory use) 1o explode.

Faced with this unpredictability of context-seny
mon reaction is to avosd it, favoring context-ing
ses, and, consequently, missing siguificant precis
well-behaved programs. Even worse, for some af
chewing expensive context-sensitivity is not an opy
insensitive analysis is just ool good enough. Repo
try [4] and scademic researchers [3] alike reiter:

Advanced Innovation Center for Imaging Tech| Yue Li Tian Tan Anders Molle and Department of Informatics, martin bravenbcan@acm YUE LI, Aarhus University, Denmark
Aarhus University Aarhus University Aarhus Universit| University of Athens, 15784, Greece TIAN T’AN = o
yueli@cs.au.dk tiantan@cs.audk amoeller@cs.au.d umass.ed i.uoa.gr X , Aarhus University, Denmark
p Sy) , 4 Iniversity,
Abstract, Object-sensitivity is regarded as argul ABSTRACT timeout {10890 Abstract < ,U",‘ “T."h ¢:5]5]RSS SACSI&IAE(?D:BI?I‘;S University, Deamiark
i S B OREnRE prean G100 Contexi-sensitive polnts-to analysis is vatuable for achieving kigh Sision/pexion , University of Athens, Greece
abstraction for pointer analysis in object-oriented § Coptext-senstivity i important in pointer analyssto ensare high Comec s ol vt s ok fc v i (00 o ! y ;
k-object-sensitive pointer analysis, which uses a sef precision, but existing techniques suffer from unpredictable scala- ws | e semiitivity are call (KCFA} and obj context ioforl o0 sensitivity is an essential technique for ensuring high precisi
sites (as k context elements) to represent a calling bility. Many variants of context-sensitivity exist, and it is difficult - Abstract 1. Inf Combining both favors of contexi-scasitivity increases precision ARG COUIER) Ivi itivity partially -only ¢
call, may end up using some context eleinents et to choose one that leads to ressonsble analysis time and obtains o0 but at an infeasibly high cost. We show Ihat a selective combi- enteontexts. | observed that applying c'ontcxtAscnsmwty partially, enly on a Mtlcd 5|
i M q ition of th G of fonosete) high precision, without running the analysis multiple times. o Object-sensitivity bas emerged as an excellenr context absteaction Points-tol o vion of call-site- and object. sensitivity for Java points-to anal- naturally resfl balance between analysis precision and speed. However, existing te
rmu(t :;gd,n :])]erd::\‘r; ::, ion of t 1:‘ s[:z::r ::i 2 lu Ul;; \t;l ¢ We present the ScALzn framework that addresses this problem, :‘l"‘r‘:l’:i”;“‘ T.:l\::;:“‘"v::ru‘::Tr.‘y‘:.||:,a?u-[:.:§|: KTS':‘::{’";";' Z‘;::’.:}’T ysis is highly profitable. Namely, by keeping & combined context :::Sxﬂz;r;: do not provide much insight into what characterizes this method s
ethod call. s er, we introdnce - al . ot 5 ical success, ver, object-sensitivity is pooely s L ! 3 o & " s BT ST Ty
£ o 4 pap N > Searma eMoienily edtimates the amoisat of posaty lo ihdbeation e instance, for a context depth of 2 or higher, past scalable imple- expressid anly, whien s yuaeg. ciceted gt foshurex’ wo, o clowcly [22.23]and | principled approach for identifying precision-critical methods, based
improving the precision of any k-object-sensitive ax that would be needed to analyze each method with different variants atlons ‘owiate slaianthy o the 1 definit - PR approximate the prevision of an analysis that keeps both contexts AL | i of the imprecisi ises i it live
by still using a k-limiting context abstraction, The of context-sensitivity. It then sclects an appropriate variant for e mentatioas deviate significantly from the original definition of an oduringl o all times. In terms of sposd, the sclective combination of both 4 explain where most of the imprecision arises in context-insensitive pol
by still using a &-limiting context abstraction, Thy 1 tive analysis, The n is that the analysis b ally ev H ;. i labels of insy "y : s . :
; ' ;] g 5 . u object-sensitive analysis, The reason is that the unalysis has many cally vl kinds of context not only vastly outperforms non-selective combi- an efcient algorithm ta recognize these flow pattems in 4 given pr
R7 0 3 each method so that the total amount of points-to information is G rees of freedo 3 hich context ¢l cked ol - . That is, the 4 4 & P B P
sites 3 2 k ! = W wrees of freedom, relating to which context elements are picked mechanif pations but is also faster than a mere object-sensitive analysis. This . % 3
2 SRS % bounded, while utilizing the available space to maximize precision. 8 rEEANETX " S ’ 2 7 AR 5 tradeoffs between analysis precision and speed.
Object Allocation Graph (OAG), which is built b f st every method call and object creation. We offer a clean model pointer @l result holds for a Jarge amay of analyses (c.g., 1-object-sensitive, e
;] & contant-bng a5 tive And e alysis) Qar experhuesial sesulbe desanostrale thet Scasmn achieves pre- - for the analysis design space, and discuss u formal and informal objcct-ofl 2-object-sensitive with 1 Tewp, trpe-oe . method invo Our exy 1 results on dard benchmark and real-world prao
(e.g.. a context-insensitive Andersen’s analysis) pql dictable scalability for all the evaluated programs (¢.g. speedups @& & derstanding of object-sensitivity and of bow to create good object- Lambda # tablishing 3 bew set of performance/precision sweet Spots. the analysis o 4pplies context sensitivity partially, only on the identified precision-ci]
program and then avoid them in the subsequent k can reach 10x for 2-object-sensitivity), while providing a precision - = sensitive analyscs. The results are surprising in their extent. We snulysis method inved 98.8%) of th ision of a highly: % Sl t s
ysis for the program. BEAN is generally more proc] thatmatches or even exceeds that of the best alternative techniques. ::“::;v’;t’c‘;'“""“: find that past tions huve made u sub-optimal choice of - bind uny) Ctegories and Subject Descriptors F3.2 |Logics andl Meamings 1 e oo (ik %) o : % |p ‘"“T" hﬂ ’)gh ’l':"m: f'm:ﬂmwn: wr(““]
n: , 2-type z : i < .. We 4 S g - a context-iny cr -sensitive heap), with a substantial speedup (on averaj
scisi at i 5 g AR ‘ ko F conlexts, to the severe detriment of precisicn and performance. We Furthernl] @f Programs|: Semantics of Programming Languages—Program with a context-se cap), P P £
Kﬂuﬁloﬂ Ith&‘ ‘: Kl“"*;:"'l:“d to be as good ‘”’"‘ ‘1’67 CCS CONCEPTS lt: :'uhv y-axis : trll define a “full-object-sensitive” analysis that results in significantly snalysis | Analysiss D34 (Programming Languages): Processors— medhod *j:: CCS Concepts: Theary of — Program analysi
ave implemented BEAN as an open-source tool a Theory of : . andall truncated casfl pioher peocs D G Dt for th e wnct § Compilers foa separatel] ‘e . T ysis;
A . ry of computation — Program analysis igher procision, and often pecformance, for the exact same con: Inferac 2
two state-of-the-art whole-program pointer analy: ext dej 150 s ¢ s 2 ici ¢ 10 anything s ” b q
s oabata e (v l:zl:’i x-mdpn i foike "'(KEYWORDS hall to produc fexk deplh. “j;.i;f::""”d"“ P 9"::'::(; h‘,‘::'zf:lﬂ:;‘:ﬁ f]"')::'\"“:' General Terms Algorithms, Languages, Performancs obs2 may pofl Additional Key Words and Phrases: static analysis, points-to analysis,
spresentative clients y-ahas nay-foul-cas scalability [12, 30, 35) p) es high ca o c
P K X B 1. % ’ " " o8 e ity at reduced cost. A type-sensitive poimts-to unulysis congists Keywords poimts-to analysis; context-sensitivity; ohject- ¢ class € { ACM Reference Format:
nine large :lﬂ\?\ programs from the DaCapo I.n nech static analysis, points-to analysis, Java ued to develop sophisl makes an unconseutional use of types as context: the context fypes ohject m{“umv. ‘I:C'K“{“M“‘ y vity joct s zoote] ACM Reference For -.M S O
succeeded in making both analyses more precise fo ACM Reference Format: 16, 18, 22, 24 12,3 ate niot dynamic types of objécts involved in the saalysis, but in- informatl Y by Y ue Li, Tian Tan, Anders Maller, and Yannis Smaragdakis. 2018, Pre]
under each client at only small increases in analys| Yue L, Tian Tan, Anders Maller, and Yennis Smaragdakss. 2012 Scalability One of the key meclll stead upper bounds an the dynamic types of their allocator objects 10™) ove . Pointer Analysis. Proc. ACM Program. Lang. 2, OOPSLA, Article 141 (
Pt o Al Sl g ooy InPrins i e s § - Ou s apo e o f ComhtsCh o e gy Wik of 1. Jatroducion s aia e
of thve 261h ACM Joini pran Seftware Engineeriag Conferamcs and Sym) analyze ferently af of points-1o analysis and demonstrate type-sensitivity to be an idea kinds of Foints-10 anafysis ks a static program analysis that consists of com- 1. facl x:
. stum on the Foundations of Software Engineertng (ESEC/FSE ‘28), November Context sensitivity hasf] with major impact: It decisively advances the state-of-the-art with [18, 19] ing all objects (typically identified by alk: ste) tha)
1 Introduction 4-9, 2018, Lake Buema Vista, L. USA, ACM. New York, NY,USA, 1/ pages. o : F ank audta) : sy drates pioe i avers i o sl meetal sl 1 INTRODUCTION
) 20161 A ? W NT.USA, contextinformationus] & spestrum of anafyses that simultancously enjoy speed (severnl Ever | gram variable may point ta. The area of points-to analysis (aod ¢ ¢2.200(o]
hepsfduLorg/10 e and type-sensitivity [times faster than an analogous object-sensitive analysis), scalabile al, {13], its close n:l‘.m\‘m alias analysis) has hA:m the focus of intense re- w Pointer analysis is a fundamental fam ly of static analyses tH
Pointer analysis, as an enabling technology, plays a 1 INTRODUCTION former is strictly more]] ity (bl lyses with much less ensitivity), and itis asll search and is among the most standardized and well-understood of ¢ 3 2 5 x % Ry 5
et applivations. Sictudingb e debackiia [3,25.35 : » 37). However, withany] Precision to the best ebject tive analysis with the yiclding [l inter-procedural analyses. The emphasis of poists-io analysis algo- i pointer variables in a program. Such information is essential
: < Pphc :) ; g“ g de .4 129, ’ i p(.mm?,,,,yym |g;(am|]yofs(a(|.(analysis .cchmq.\rs(hal_ provide gain in precision, scal same context depth) wmlfnx rithms is on combining fairly precise modeling of pointer behavior of mstractioff inter-procedural control flow in object-oriented programs, and i
compiler optimisation [6,33], and program understa] a foundation for many other analyses and software engineering in the sense that prog 2 i 2 analyses | with scalability. The challenge i to pick judicious approximations (Hence. 5. b4 2 1 for bug detecti Chandra et al. 200
mensions of pointer analysis precision are flow-sensitiy tasks, such as program slicing [36,39), reflection analysis [19, 31 setilcs may havecoml] - CoeEeriem and Subject Dexcriptors. ¥.3.2 [Logics and Meanings sersitivel] that will allew satlsfactory precision at a reasonabie cost, Further- {tienee, 2 b4 engineering tools, e.g., for bug detection [Chandra et al. 200
For C/C “l tivity i led | bug detection [13, 26), security analysis [1. 23], program veri| Figure 1 shows tim} ”A’ ’I"’g_""’“l Semantics of Programming Langusges—Program is concef] more, although increasing precision often leads to higher asymp- an objoct, M analysis [Arzt et al. 2014; Grech and Smaragdakis 2017; Livshit]
R St ek Prograni, Taw-oensluiivy. 1 eered oy X tion [8, 27). and program debugging and comprehension [5, grams under 2-objec| 13 g Language . g b ey o Tl Ccommered s the allocatiofl tion [Fink et al. 2008; Pradel et al. 2012, and program debuggin|
For object-orientéd Frograms, &.g., Java prograis, by THe gt of s Sty e SRS comiaste et f objcils , ; D3| [Programming Languages): Formal Definitions and actual practice, Instead, techniques that arc effective st maintining bt s can |
e » e gl ; i . the most precise varia Tyegry Semantics goad precision often also exhibit better average-case performance, Sridharan et al. 2007].
is known to deliver trackable and useful precision [17] (ebstracted as their allocation sites) that a program variable may (2type) [32], and cant : since somallor poiafs.bo stk laad 16 1w woek context. Thu] .)
Thira are toro, ganoral Approaches o achicving b point to during rua time. Although stating this goal is simple, it is 2605 is mot scalabll] Gemeral Terms Algorithens, Lunguages, Performance will analyze For decades, numerous analysis techniques have been develof
o Al At sichieving & . is not se , 4 et that 4 X 2 €
oriented programs, call-site-sensitivity (k-CFA) [27] Femnission t make digtal o hard coples of all o7 pert of this work foe persons ot while it can finish ?“Jsmm Mf precise and more efficient, especially for object-oriented langul
24, 29| (amon otl;’lsj Ak (‘FA- anal -sx ;(uAsx‘m a S el o et baog ks G et e o * program size is fa ff Perscassion (0 maks digital or o cupsos of all ur part of s wurk Gox perecenl e nor to how nf] Balatsouras 2015; Sridharan et al. 2013]. One of the most su|
24,29 (a ers). A k-CFA analysis represents A pomiveion bo sk digital o7 bard copses of all o pet of i wirk for peronal o ol clisaroom e x graviid wiou T that Cogien e o€ s or distrued : SRR By s
¥ 8 ." X ¥ the first pogee. Copyri bmpoments of this wck owned by elbirstham thie (12718 methods) is Pousd kil o T <wpiow oF ol o0 g of ke s e or oflioe osansarrial i vaniacs e thai copit bas; thid acxioe o ho il ciaion may be remd precision is context sensitivity [Milanova et al. 2002, 2005; Sh
call by using a sequence of k call sites (i.e., k labelg (hai(3) it be hutsesd. g with cadil 4 permiliod. To copy othewae, of - 3 o aut foe prov per call- o - it is mot
Y s 5 ’ Ak Ll g sblish, te post om servers ot bo ridistribube to liats, Tequires prioc specilc pennission ever, 2type is not satage w2d o the firw puge. T cugy alserwise, U repablih, 10 post o servers oo o sedivribate Posg o cdaks al 2 hich all } thod to H
site). In contrast, a k-object-sensitive analysis uses k e o i g i v Latter: 5 that lod tl 16 s, sequires prioe specidi pesmission audin s fox and ncall-st Smaragdakis et al. 2011], which allows each program method to
TS A 2 2% e AR ESH 4 Noverubr ¢-9, 2014 Lake Bavma Vists, Informat}l pLore, Jue 16-19. 2013, Seaule. WA, USA. not even clel {o separate the static abstractions of different dynamic instantia)
k labels with each denoting a new statement) as cont} 513 Copyright bekd by the i shts Bsoensed e ACM) 2011, Ausgm, Texas, USA. that led (f Copyrighe @ 2013 ACM 9751 4503-20 144/ 506, 1500 all calls to 4|
N 0T 508.557! ‘These are al pulas apen-| oyl <. i Q.00 8 >) N :
P g A et eckipee) of he BaCape ben e W Vi 2 Authors” enail add yueli@cs au.dk, s.au.dk, ller @cs.au.
——————— -
g el 2 A S g 2 R 2 v 7 = A 2 v z 7 = 3 = g i B g 2 0 A 5 g
B oo e 2 e a2 PIINRP V20N o e e a2 PR O W PTG B2 Ty o m e & QR s e o oy s

Data-Driven Program Analysis

MINSEOK JEON, SEHUN JEONG', SUNGDEOK CHA, and HAKJOO OHf, Korea University,
Republic of Korea

We present a new machine-learning algorithm with disjunctive model for data-driven program analysis.
One major challenge in static program analysis is a substantial amount of manual effort required for tuning
the analysis performance. Recently, data-driven program analysis has emerged to address this challenge
by automatically adjusting the analysis based on data through a learning algorithm. Although this new
approach has proven promising for various program analysis tasks, its effectiveness has been limited due
to simple-minded learning models and algorithms that are unable to capture sophisticated, in particular
disjunctive, program properties. To overcome this shortcoming, this article presents a new disjunctive model
for data-driven program analysis as well as a learning algorithm to find the model parameters. Our model uses
boolean formulas over atomic features and therefore is able to express nonlinear combinations of program
properties. Key technical challenge is efficiently determine a set of good boolean formulas as brute-force
search would simply be impractical. We present a stepwise and greedy algorithm that efficiently learns
boolean formulas. We show the effectiveness and generality of our algorithm with two static analyzers:
context-sensitive points-to analysis for Java and flow-sensitive interval analysis for C. Experimental results
show that our automated technique significantly improves the performance of the state-of-the-art techniques
including ones hand-crafted by human experts.

CCS Concepts: « Theory of computation — Program analysis; « Computing methodologies — Ma-
chine learning approaches.

Additional Key Words and Phrases: Data-driven program analysis, Static analysis, Context-sensitivity, Flow-
sensitivity

ACM Reference Format:

Minseok Jeon, Sehun Jeong, Sungdeok Cha, and Hakjoo Oh. 2017. A Machine-Learning Algorithm with
Disjunctive Model for Data-Driven Program Analysis. ACM Trans. Program. Lang. Syst. 9, 4, Article 39
(December 2017), 42 pages. hitps://doiorg/0000001.0000001

1 INTRODUCTION

One major challenge in static program analysis is a substantial amount of manual effort required
for tuning the analysis performance for real-world applications. Practical static analysis tools use a
variety of heuristics to optimize their performance. For example, context-sensitivity is essential
for analyzing object-oriented programs, as it distinguishes method’s local variables and objects in
different calling-contexts. However, applying context-sensitivity to all methods in the program
does not scale and therefore real-world static analyzers apply context-sensitivity only to profitable
methods determined by some heuristic rules [Smaragdakis et al. 2014]. Another example is a
relational analysis such as ones with Octagons [Miné 2006]. Because it is impractical to keep track
of all variable relationships in the program, static analyzers employ variable-clustering heuristics

*The first and second authors contributed equally to this work
*Corresponding authar

S ey - ° 27 - . " e >z - 7 - - 0 - P = o raga
= . o — : S o A5 e el = B

/)

_ \\“
it
13
,'
J ’
!
Do
i q
Y o
-)
1
o
‘: f
B
4 o
D S
\
f
;3
.‘ ‘
/ /) .
3 N g
i
Do
‘,A ‘
7 8
A
o
-
X
13
/'
.
4
"3
\
%
b
-3
y
A
o
a
13
/'
.
o
»
)
¢
8
= Iy
Y
i e

'y
o

| X

=T - e =) &5 Suds e a0 - er g s - = . SR = N =, TP BT ..
fma i - - =3 e ' - Akn. i - = = N

o~ o . _ = N 2 _ |~ . o _ . _ = =~
-3 ™ ~ = = N) - Y < LS ~ -3 = r L=~ 3

“We do not discuss the performance of our approach for call-site-

sensitivity since call-site-sensitivity is less important than others
- Jeon et al. [2019] | |

I

1

Pointer anal
client applications, including bug detection [3, 25,35,
compiler optimisation [6,33], and program understal
mensions of pointer analysis precision are flow-sensi
For C/C++ programs, flow-sensitivity is needed by r
For object-oriented programs, e.g., Java programs, hj
is known to deliver trackable and useful precision [17]

oriented programs, call-site-sensitivity
24,29] (among others). A k-CFA analysis represents a
call by using a sequence of & call sites (i.e., k label
site). In contrast, a k-object-sensitive analysis uses k

F labels with each denoting a new statement) as conf]

Making k-Object-Sensitive Po|
More Precise with Still k

Tian Tan', Yue Li*, and Jingling

! School of Computer Science and Engineering

? Advanced Innovation Center for Imaging Tech

Abstract, Object-sensitivity is regarded as argul
abstraction for pointer analysis in object-oriented
k-object-sej ve pointer analysis, which uses a sef
sites (as k context elements) to represent a calling
call, may end up using some context elements req
ducing a finer partition of the space of (concrete) ¢
method call. In this paper, we introdnce BEAN, af
improving the precision of any k-object-sensitive
by still using a k-limiting context abstraction, The
allocation sites that are redundant context elemd
Object. Allocation Graph (OAG), which is built b
(e.g., a context-insensitive Andersen’s analysis) pd
program and then avoid them in the subsequent k
ysis for the program. BEAN is generally more prec]
precision that is guaranteed to be as good as k-obj
have implemented BEAN as an open-source tool a
two state-of-the-art whole-program pointer analy:
ative clients (may-alias and maoy-fou-cast
nine large Java programs from the DaCapo bench
succeeded in making both analyses more precise fo
under each client at only small increases in analys]

Introduction

sis, as an enabling technology, plays a

1

There are two general approaches to achieving col
(k-CFA) [27]

Scalability-First Pointer Analys}|
Self-Tuning Context-Sensi

Pick Your Contexts Well: Understal

The Making of a Precise and Scala

Yannis Smaragdakis
Department of Computer Science,

Unsversity of Massachusetts,
Amberst, MA 01003, USA

Martin Bravenboer

LogicBlox Inc
Two Midtown Plaza
Atlanta, GA 30309, US

Hybrid Context-Sensitivity for PI

George Kastrinis

Yannis Smar
Department of Infonnatics
University of Athens
{gkastrinis,smaragd } @di.uca. g1}

Precision-Guided Context Sensitivity fq

Introspective Analysis: Context-Sensitivity, Across the

Yannis Smaragdakis

Abstract

Context-sensitivity is the primary approach for adding more preci-
sion 10 a points-to analysis, while hopefully also maintaining scal-
ubility. An oft-reported problem with context-sensitive analy
however, is that they are bi-modal: cither the analysis is precise
enough that it manipalaies only manageable scts of data, and thus
scales impressively well, or the analysis gets quickly derailed at the
first sign of imprecision and becames arders-of-magnitude more

han would be expected given the program's size. There

George Kastrinis
Department of Informatics
University of Athens
{smaragd.gkastrinis,gbalats }@di voa.gr

George Balatsouras

of points-1o analysis is to yield usefully precise info
sacrificing scalability: the unalysis inputs are large
algorithms are typically quadratic or cubic, but
near-lincar behavior in practice, by exploiting proj
and maintaining precision. Indeed precision and per
20 hand-in-hand in a good points-to analysis al
algonthms are often found 1o be both mare p
because smaller points-to sets lead 10 less work |1
Contex-senstiiviry is a common way of pursuin
ility in points-to analysis. It consists of quali

is currently no approach that makes precise analy-
ses (of any flavor: call-site-, object-, or type-sensitive) scale across
the board at a level 1o that o a ive anil-
ysis. To address this issue. we propose introspective analysis:
technigue for uniformly scaling context-sensitive analysis by efim-
inating its performance-detrimental behavior, at a small precision
expense. Introspective analysis consists of a common adaptivity
patiern: first perform a comtext-insensitive analysis, then use the

ables and objects with context information; the
formation (e.g.. “what objects this method argu:
over all possible executions that map to the samg
while separating exceutions that map to different
way, context ivity attempts 1o avoid precisi
ing the behavior of different dynamic progrem
sensitivity comes in many fsvors. depending on th
such as call-stie-sensiriviry (22, 23). of

results to selectively refine (i.e.. analyze ly) pro-
gram clements that will not cause explosion in the running time
or space. The technical challenge is to appropriately identify such
program elements. We show that a simple but principled approach
can be remarkably effective, achieving scalability (often with dra-
matic speedup) for benchmarks previously completely out-of-reach
for deep context-seasitive analyses.

Categories and Subject Descriptors F3.2 [Logics and Meanings
of Programs]: of ing Languag: Program
Analysis, D34 [Py b L .
Compilers

General Terms Algorithms, Languages, Performance

Keywords points-to analysis;
sensitivity; lype-sensitivity

contexi-sensitivity;

objest-

1. Introduction

Points-to analysis is probably the most common whole-program
static analysis, and often serves us a substrate for a variety of high-
level program analysis tasks. Points-to analysis computes the set of
objects (abstracted as their allocation sites) that a program variable
may point to during runtime. The promise, as well as the challenge,

Permission tn suike digial ar bard copies of sdl or part of this wock for pessonal or
chassroom wee is gramod without fos provided that copios are nse made o distribwted
fee prufit e commmercial advantage wnd thal copics bear this notice sl ihe ull cititio
an the firs: page. Copynghits fur compeazats of this wark owsed by others than the
smthoris) st be honeend. Ahstracting with creditis permittad, To copy otherise. or
sepubiish, 55 post o sevvers o o te distribule 10 ists. requires pelor speci e pemissin
madion 0 feo. Roquest permissions from pereissons® som orz

PLOPIA, Jue 9-11, 2014, Edintergh, United Kirgrdom

Copyright is heid by the ownerfausborts). Pablicarion rights lisesed 19 ACM.

ACM 97314503 2764-8/1406. . $15.00

hiip/ix ot org/10.1 142994291 2554520

[19, 201, and type-sensitivity [24]
Anoft ked fact about co S Y.
even the best algorithms have a common failure of
cannot maintain precision. Past literature reports
mance of a [...] deep-context analysts is bimodal” ,
sensitive analyses have been associated with very I8 3
contexts”™ [15]; “algorithms completely hit a wall
ations, with the number of tuples exploding expo
Recent published resulis [12] fail to run a 2-object-
sis in under 90mins for 2 of 10 DaCapo benchmar
benchmarks take moee than 1.000sec, although my
marks of similar or larger size get analyzed in undd

Thus, when contexi-sensilivity works, it worky
terms of both precision and performance. When il
it fails misersbly, quickly exploding in complexi
context-insensitive analyses uniformly scale well,
puts. Figure | vividly demonstrates this phenome
Capo benchmarks, analyzed wilh the Doop fram
context-insensitive (insens) analysis and a 2-objecl’
ysis with 2 context-sensitive heap (20bjH). (The ch
analysis ume of the longest-running benchmark:
hsqldb and jython, timed oot after 90mins on a
and would not serminate even for much longer ti
be seen, context-insensitive analyses vary relativel
formance, while context-sensitivity often canses
memory use) 10 explode.

Faced with this unpredictability of context-se
mon reaction is to avosd it, favoring context-ing
ses, and, consequently, missing siguificant precis
well-behaved programs. Even worse, for some
chewing expensive context-sensitivity is not an opf
insensitive analysis is just nol good enough. Rep
try [4] and scademic researchers [3] alike rei

Yu(: Li) Tian 'I_':m) Anders Mellc_- and Departiment of Informatics, martin bravenbcan@acm YUE LI, Aarhus University, Denmark
Aarhus University Aarhus University Aarhus Universit University of Athens, 15784, Greece TIAN TAN 5 :
yueli@cs.au.dk tiantan@cs.audk amoeller@cs.au.d umass.ed i.uoa.gr » Aarhus University, Denmark
AB cr Abstract O of] ANDERS MOLLER, Aarhus University, Denmark
frean 000 Comtext-sensitive polnis-to analysis is vatuable for achieving kigh cismafperford YANNIS SMARAGDAKIS, University of Athens, Greece
C“"}fx"ifgis:'l"“!;: important "\P:;"“;Y M‘l)”’:&ﬂ:;;" '“ull!h precision with good performance. The standard flavors of context- ““:':‘:I“
:E;vn:‘:n;v:::miﬁm‘:‘;s,;;;&:"’md l:‘ a dtif!ﬁccu; v | e . i 3 ztl:::vﬂy a!r; ; = y (kCFA) and obje: ::’.':w “:“:'I Context sensitivity is an essential technique for ensuring high precisi
‘ ¢ . Abstract . Im ‘ombining both flavors of contexi-scasitivity increases precision <) ey ol
to choose one that leads to reasorable analysis time and obtains = 5 % 4 ; 7 but at an l:mwmly high cost. We show that a selective combi- enteantews. | observed that applying contéxb sen vty partially, anly.on % Mfk“ N
high precision, without running the analysis multiple times - Object-sensitivity bas cerged as an eTm@. context absraction .,...ur-n mation of call.site- and object.sensitivity for Java points-to anal- 'f':“':l’,‘; resfl balance hetween analysis precision and speed. However, existing te]
We present the ScAten framewark that addresses this problem, l«{rrnnh‘rm .-:ulwxmn:nc@onmulq miguagzs Wi‘"*"*r":ﬂ' most O ysis is bighly profitable. Namely, by keeping & combined contest TR FEHY do not provide much insight inta what characterizes this method s}
ScaLen efficiently estimates the amount of points-to information o0 fiow “f““; %, Soweyet, D ~'“""‘r";""':3f 18 poorly: mx IA';;;‘_‘“" or sists of of - anly when analyzing selected language features, we can closely 2223 4 44 principled h for identifyi: critical methods, based
Hhiat would be ieeded 6 arialyae each method with different variants instance, for a context depeh of 2 oc higher, past scalable imple- expressidd gonroximate the precision of an analysis that keeps both contexts 122, 23] an ; PP YIng p x o
e s deviat ficantly from th I defi ¢ d i i A call-siy lain wh t of the im| i text-insensiti
of context-sensitivity. It then sclects an appropriate variant for 20 mentations deviate sigmficantly from the origimal inition of an to vLlr!rn- at all times. In terms of le the selective combination of both tabots of expiain where most of the precision arises in context-insensitive pol
ks imaibosl o SAL RS botal smbrunt of Goinhrt Ialbrination & i object-sensitive analysis, The reason is that the analysis has many cally evel Kinds of context not only vastly owtperforms non-selective combi- abcls of SUR 1, e flicient algorithm to recognize these flow patterns in a given pr
ety P SR, 20 . degrees of freedom, relating to which context clements are picked mechanif x b m ablct enaies That is, the | a 2
bounded, while utilizing the availabie space to maximize precision nations buut {8 also fasier than a mere bject-sensitive analysks. This tradeoffs between analysis precision and speed.
. ; f‘u A Pélth‘ hp 3 at every method eall and object creation. We affer a clean model pointer 8 result holds for a Jarge amay of analyses (c.g., 1-object-sensitive, method arga e yais s SPC. ?

o éxperknesal resulls desnanirale it Scaram achlewes pre-) for the analysis design space, and discuss u formal and informal wa-— objest-ofl 2.obye with 1.0 itive heap, type method imvod Our exy results on b and real-world pro
dictable scalability for all the evaluated programs (¢.g., speedups & &S derstanding of object-sensitivity and of bow to create good object- lambda tablishing a pew set of performance/precision sweet spots. the mnalydig applies context sensitivity partially, anly on the identified precision-cr]
can reach 10x for 2~0b}c((-smsllmtyl. while providing a precision ‘ v sensitive analyses. The results are surprising in their extent. We analysis mechod inved (98.8%) of th ision of a highly- I toiial contet -
$hak il hes oc v garsedi hiatof e béstal k Flguce 1:.C fin that past implementations huve made u sub-optimal choice of hind uny]| Categoriex and Subject Descriptars ¥:3.2 |Logics and Meanings 1 the code cf (95.8%) o tae precision of a high'y-precise conventiona context-sensi

sensitivity, 2-typesel oniext to the severe detriment of precision and performance. We Furthernl] of Programs]: Semantics of i ram a context-insfl with a context-sensitive heap), with a substantial speedup (on averag
CCS CONCEPTS ses. The y-axis is trll Jefine 2 “full-object-sensitive™ analysis that results in significantly unalysis | Analysiss D34 (Programming Languages): Processors— method teo ccse ts: « Th £ — Pro lysi
+ Theory of computation — Pregram analysis; andalltruncated casf hipher progision, and often performance, for the exact e conr interact § Compilers ‘ic:nscvarym;‘?l oncepts: » Theory of ogram ysis;
text depth. We also introduce “type-seasitivity” as an explicit ap- furctiony Loons o - » ; " oo . s
KEYWORDS llen [(., p,od,,,;« > of objort ity that preserves high context quale chieves] Gemeral Terms Algorithms, Languages, Performance obs2 may pofl Additional Key Words and Phrases: static analysis, points-to analysis,
scalability [12, 30, 35]. ity at inlly reduced cost. Aty sitive poimts-to unalysis consists ? : s
’ .) Al 0 umalys words points-to analysis; comtext-sensitivity, object- ¢ class C { ACM Reference Format:
static analysis, points-to analysis, Java ued to develop sophisll makes an unconventional usc of types as context: the context ypes object ab) i,"“,m,.y_ ‘I:;,,gm,.,,w ’ ~ R, veld oot Yue Li. Tian Tan. Anders Mol d Yannis S dakis. 2018, P
ACM Refecence Format: A 16, 18, 22, 24, 25,32, 3 ate not dynamic types of objects involved in the saalysis, but in- informat] s y } ue Li, Tian Tan, lers Maller, and Yannis Smaragdakis. 2018, Pre|
Yue Li, Tian Tan, Anders Maller, and Yeanis Smaragdakis. 2018, Scalability- One of the key mech stead upper bounds on the dynamic types of their allocator abjects 107) ove . Pointer Analysis. Proc. ACM Program. Lang. 2, OOPSLA, Article 141
First Pointer Analysis with Sell-Tuning Context Sensitrvily. In Proceedings i context sensitivity, f| Our results expose the influcnce of context choics on the quality while s 1. Introduction 3 claee Cliend org/10.1145/3276511
ofthe 26th ACM Joint Esropesn Seftwure Engineering Confermee and Sympo- unalyzed differently ol of points-to analysis and demonstrate type-sensitivity to be an idea kinds of | Foints-1o anatysis is a static program analysis that consists of com= o1 tascll
stum on the M'-’ufm: of Software Engnecriag (ESEC/FSE °13), November Context sensitivity hasf|l ~ with mujor impact: It decissvely advances the state-of-the-art with [18, 1914 puting all objects (typically identified by alkocation site) that a pro-
£0, 2018 Lake Borns Vista, L. USA, ACM. New York, NT.USA. L' pa86%. copentinfurmationus] & spectrum of analyses that simultancously enjoy speed (several Ever | gram variable may pownt to. The area of points-to amlysis (iod + ¢3.200¢off 1 INTRODUCTION
and type-sensitivity [times faster than an analogous object-sensitive ar aly‘l?). scalabil al. 13, x}a close relative, alias analysis) has beea m.. focus of intense re Pointer analysis is a fundamental family of static analyses th)

INTRODUCTION former is strictly more] ity (comparable to analyses with much less context-sensitivity), and it is o sl search and is among the most standardized and well-understood of 0 3 Z % x % 3 &

1 : 37). However, withamyf] Precision to the best ebject tive analysis with the yvielding)| inter-procedural analyses. The emphasis of poinis-to analysis algo- e pointer variables in a program. Such information is essential
Painter analysis isa family of static analysis techniques that provide i in precision, scals 321 context depth) seesitivi] - rithms is on combining fairly precise modzling of pointer behavior Lot inter-procedural control flow in object-oriented programs, and iff
a foundation for many other analyses and software engineering in the sense that progra - v 2 anglyses | with scalability. The challenge is to pick judicious approximations H abd 3 2 ” 2 A Yo
tasks, such as program slicing {36, 39), reflection analysis [19, 31, St may oy o Categories and Subject Descriptors ¥3.2 [Logics and Meanings sersitivel] that will allow satisfactory preeision at a reasonable cost. Farther- ‘_ﬂ‘lm“’;m "] engineering tools, e.g., for bug detection [Chandra et al. 200
bug detection [13, 26], security analysis [1. 23], program verifica- Figure 1 shows tin] :!n::;x_'mll Semantics of Programming Languages—Program 1s conce] more, almcmp: m;;\‘mng p‘rms:;lof’en‘lem I(t‘ higher ﬂ‘y‘z‘l’- an objest, o analysis [Arzt et al. 2014; Grech and Smaragdakis 2017; Livshiy
tion [§, 27), and program debugging and comprehension (5, 21). prame’ under 2-objed e 1 Yefinit maliriig) | lotic couipleity. (s soorstoms beavioe i iscly sxcoumornd s the allocstiof] tion [Fink et al. 2008; Pradel et al. 2012], and program debuggin
HE Gl of it At e 6 st AT hmsaiata & ook ;DAL (F L J: Formal [< and even mof] actual practice. Instead, techniques that are cffeetive At maintaining ozt i 3
p e el drrrpriestytoh nlmy e able may themost precise variad TheorySemantics What] £00d precision often also exhibit better average-case performance, cdoens Sridharan et al. 2007).

e S L SN, A e S {2type) [32], and cant est way | ince smaller paints-o sets lead to less work condat. Tivn Fordocade lysis techni ha 1
point to during run time. Although stating this goal is simple, it is « 2605 is not scaablf] Gemeral Terms Algorithens, Lunguages, Perfoemance il ‘v:ll mnllg-j: or decades, numerous analysis techniques have been devel

% octs that i : . :
Femmission to make digstal o hard coples of sl or pert of this work toc persons ot while it can finish £i8 uses r a’gmenl ai] precise and more efficient, especially for object-oriented langu
22’,::‘.’;:“:::.‘:1213‘:3.’:3‘.‘; .":RL’.‘:?,,'.“.I'..‘.‘:‘&.‘.?.";,‘.", ':IJ:I::' ;:‘m-‘-lu: « programsiaeisfurf the methfl Prresiun o make digisl or Suod copioe of all ar part of i wurk Gor persotnal ar nor to how nfl Balatsouras 2015; Sridharan et al. 2013]. One of the most su|
i . 4 3 coaiciedon o ik i o7 s doses o oll o it of i sk o peondl i clssrorn w3« grastie wHSou T peovihed st copics see ot sl ur distrwed S R o PRATY 5

pro oo b ke ey ey gkt (t2718 methodspia] JEEEC S v':“;lrn:\'n:"m::lic erovided thet oot T ;ﬁr:l‘lo Tor prufl ce commmurcial sdvantige and that cogies bear his sceice snd the full cilaion 5o :;‘;: precision is context sensitivity [Milanova et al. 2002, 2005; Sh,
:::wlmr opostons o o€ specic permission L‘;’::;_Zlme 39 ok for prafit o commersial sdvantage sad Gt copies bear s mtee aad de full clabo that led 1 :(fiﬁ:;‘zf;f'“m ;;;Mv m::;zﬁr:-_ et o sedivribite nd ncatl] Smaragdakis et al. 2011], which allows each program method to i
ESECTSE ‘(4 Noverbyr ¢-9, 2014 Lake Savna Vishy, F. USA Informat} proris, Juelo-ta. L WA USA. not even cle g sey the static ab of different dynamic instantia)
© 1913 Copyrigtt behd by the owner/authocis) Publiconnn rights boensed b ACM (el . A, Texas, USA. that led 4 Copynight @ 2013 ACM 9781 4505-20 14401 406 SIS0 all calls to |

ey o e::;:;:.;u:r\.’v‘.‘pﬁ:n SI3-490-08 1411 S10.00 below, a Authors” enil add yueli@cs au.dk, t s.adle, 1k A

———————
= g ~p St 0 2 2 J" S ali g e = A S a g 7 g 2 - 36 e g

o o R T e o 4 TNy W PINEESDNO ZP T2 a2 PINEES e O PV WX — a2 s

/)

—

X 3
7 s
N
)
.

X

13

2
.
b
|

z
B

O]

.
A
o

13

/ ¥
.
[

)

N

X

&

Y
£a S o et el

,‘
o
o
o
’
;
’
g
g
g
g
’
f

1 Context Tunneling %

Precise and Scalable Points-to Analysis via Data-Driven g

\ MINSEOK JEON, Korea University, Republic of Korea %
SEHUN JEONG, Korea University, Republic of Korea
HAKJOO OH?", Korea University, Republic of Korea

35 We present context tunneling, a new approach for making k-limited context-sensitive points-to analysis AN - pian i - e ; i g - ; o " e e ; e . | g ; - - S
, precise and scalable. As context-sensitivity holds the key to the development of precise and scalable points-to i

b " analysis, a variety of techniques for context-sensitivity have been proposed. However, existing approaches ¥ % d
such as k-call-site-sensitivity or k-object-sensitivity have a significant weakness that they unconditionally K. i

| update the context of a method at every call-site, allowing important context elements to be overwritten k3 |
I‘ by more recent, but not necessarily more important, context elements. In this paper, we show that this is a B
0 key limiting factor of existing context-sensitive analyses, and demonstrate that remarkable increase in both B ¢
3 precision and scalability can be gained by maintaining important context elements only. Our approach, called
’ context tunneling, updates contexts selectively and decides when to propagate the same context without . n I

modification.

We attain context tunneling via a data-driven approach. The effectiveness of context tunneling is very
| sensitive to the choice of important context elements. Even worse, precision is not monotonically increasing
with respect to the ordering of the choices. As a result, manually coming up with a good heuristic rule for 3
context tunneling is extremely challenging and likely fails to maximize its potential. We address this challenge >
\ by developing a specialized data-driven algorithm, which is able to automatically search for high-quality -
b | heuristics over the non-monotonic space of context tunneling.

We implemented our approach in the Doop framework and applied it to four major flavors of context-
sensitivity: call-site-sensitivity, object-sensitivity, type-sensitivity, and hybrid context-sensitivity. In all cases,
1-context-sensitive analysis with context tunneling far outperformed deeper context-sensitivity with k = 2 in
both precision and scalability.

\ CCS Concepts: «» Theory of computation — Program analysis; « Computing methodologies — Ma- 5
N chine learning approaches; L,

=
Ral

=
A

14 Additional Key Words and Phrases: Points-to analysis, Context-sensitive analysis, Data-driven program . o i
‘S analysis X 0
ACM Reference Format: '. K ,
» Minseok Jeon, Sehun Jeong, and Hakjoo Oh. 2018. Precise and Scalable Points-to Analysis via Data-Driven 9 s
Context Tunneling. Proc. ACM Program. Lang. 2, OOPSLA, Article 140 (November 2018), 50 pages. hilps b L - - N RN FRACMRRSE INIPSRNPC S N N o > N SN s ~ AR NRASNNRSE IS A 3 "N A
//dot.org/10.1145/3276510 ; s i i s TR e ; o " " = < o N ’ < % . g . " h PEMET . h o j

*Corresponding author

Authors” addresses: Minseok Jeon, minseok_jeon@korea.ac.kr, Department of Computer Science and Engineering, Korea
University, 145, Anam-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea; Sehun Jeong, gifaranga@korea.ac.kr, Department /
\ of Computer Science and Engineering, Korea University, 145, Anam-ro, Sungbuk-gu. Seoul, 02841, Republic of Korea; 1
Hakjoo Oh, hakjoo_ch@korea.ac kr, Department of Comp Science and Engincering, Korea University, 145, Anam-ro,
Sungbuk-gu, Seoul, 02841, Republic of Korea.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
M the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. N

b Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires |

prior specific permission and/or a fee. Request permissions from permissions@acm.org. i

© 2018 Association for Computing Machinery.

2475-1421/2018/11-ART140

hittps://doi.org/10.1145/3276510 (b

— E—-I! AE = O

1981 2002 2010 2018

Return of CFA: Call-Site Sensitivity Can Be Superior to I “ L= T = }V
Object Sensitivity Even for Object-Oriented Programs Ll K4 BTl \ 9

MINSEOK JEON and HAKJOO OH?", Korea University, Republic of Korea i

In this paper, we challenge the commonly-accepted wisdom in static analysis that object sensitivity is superior
to call-site sensitivity for object-oriented programs. In static analysis of object-oriented programs, object
sensitivity has been established as the dominant flavor of context sensitivity thanks to its outstanding precision. : ‘
On the other hand, call-site sensitivity has been regarded as unsuitable and its use in practice has been 3 . /3
constantly discouraged for object-oriented programs. In this paper, however, we claim that call-site sensitivity 3 ' L 5 4
is generally a superior context abstraction because it is practically possible to transform object sensitivity into ‘ ittt

more precise call-site sensitivity. Our key insight is that the previously known superiority of object sensitivity b & ‘
holds only in the traditional k-limited setting, where the analysis is enforced to keep the most recent k context ; | | h
elements. However, it no longer holds in a recently-proposed, more general setting with context tunneling. | 3
With context tunneling, where the analysis is free to choose an arbitrary k-length subsequence of context gl

strings, we show that call-site sensitivity can simulate object sensitivity almost completely, but not vice versa. . 7 F H O O t H O t
To support the claim, we present a technique, called OBj2CFa, for transforming arbitrary context-tunneled - 7 l 7
object sensitivity into more precise, context-tunneled call-site-sensitivity. We implemented OBj2CFA in Doop) - H A I I I _I

and used it to derive a new call-site-sensitive analysis from a state-of-the-art object-sensitive pointer analysis. S h
Experimental results confirm that the resulting call-site sensitivity outperforms object sensitivity in precision v s 3

and scalability for real-world Java programs. Remarkably, our results show that even 1-call-site sensitivity can

| (Object sensitivity) (Call-site Sensitivity)

“Since its introduction, object sensitivity has emerged as the dominant flavor of context
sensitivity for object-oriented languages.”

—Smaragdakis and Balatsouras [2015] Ty £
Context sensitivity is critically important for static program analysis of object-oriented programs. R S i e AR S il PG TR it s e i L eSS i SR]
A context-sensitive analysis associates local variables and heap objects with context information
of method calls, computing analysis results separately for different contexts. This way, context
sens1t1v1ty prevents analys1s mformatlon from bemg merged along dlfferent call chams For object-

sensitive analys1s [Milanova et al. 2002, 2005 Smaragdakls et al. 2011] mamtams a sequence of

1981 2002 2010 2018

36

= AotA| & A7

Exercise

class S {
Object id(0Object a) { return a; }
Object id2(0Object a) { return id(); }
Iy

class C extends S A
void funi1() {
Object al = new A1();
Object bl = id2(al);
Tr

class D extends S {
void fun2() {
Object a2 = new A2();
Object b2 = id2(a2);
+H}

- . . . =PSk=igely
@ What is the result of 1-call-site-sensitive analysis?q T © ™ &5
@ What is the result of 1-object-sensitive analysis? < & <=tot

@ Explain the strength of object-sensitivity over call-site-sensitivity. obj > call

Hakjoo Oh October 18, 2022 28 / 31

= AotA| & A7

Exercise

class S {
Object id(0Object a) { return a; }
Object id2(0Object a) { return id(); }
Iy

class C extends S A
void fun1() {
Object al = new A1();
Object bl = id2(al);
Tr

class D extends S {
void fun2() {
Object a2 = new A2();
Object b2 = id2(a2);
+H}

@ What is the result of 1-call-site-sensitive analysis?

Q What IS the resuIt of 1- obJect senS|t|ve anaIyS|s7

o Explam the strength of object senS|t|V|ty over caII S|te senS|t|V|ty f<cobi-=2-cat

Hakjoo Oh October 18, 2022 28 / 31

| @ Explain the strength of object-sensitivity over call-site-sensitivity. ',

Hakjoo Oh

October 18, 2022

28 /31

| @ Explain the strength of object-sensitivity over call-site-sensitivity. ',

Hakjoo Oh October 18, 2022

28 /31

Return of CFA: Call-Site Sensitivity Can Be Superior to I “ L= T = }V
Object Sensitivity Even for Object-Oriented Programs Ll K4 BTl \ 9

MINSEOK JEON and HAKJOO OH?", Korea University, Republic of Korea i

In this paper, we challenge the commonly-accepted wisdom in static analysis that object sensitivity is superior
to call-site sensitivity for object-oriented programs. In static analysis of object-oriented programs, object
sensitivity has been established as the dominant flavor of context sensitivity thanks to its outstanding precision. : ‘
On the other hand, call-site sensitivity has been regarded as unsuitable and its use in practice has been 3 . /3
constantly discouraged for object-oriented programs. In this paper, however, we claim that call-site sensitivity 3 ' L 5 4
is generally a superior context abstraction because it is practically possible to transform object sensitivity into ‘ ittt

more precise call-site sensitivity. Our key insight is that the previously known superiority of object sensitivity b & ‘
holds only in the traditional k-limited setting, where the analysis is enforced to keep the most recent k context ; | | h
elements. However, it no longer holds in a recently-proposed, more general setting with context tunneling. | 3
With context tunneling, where the analysis is free to choose an arbitrary k-length subsequence of context gl

strings, we show that call-site sensitivity can simulate object sensitivity almost completely, but not vice versa. . 7 F H O O t H O t
To support the claim, we present a technique, called OBj2CFa, for transforming arbitrary context-tunneled - 7 l 7
object sensitivity into more precise, context-tunneled call-site-sensitivity. We implemented OBj2CFA in Doop) - H A I I I _I

and used it to derive a new call-site-sensitive analysis from a state-of-the-art object-sensitive pointer analysis. S h
Experimental results confirm that the resulting call-site sensitivity outperforms object sensitivity in precision v s 3

and scalability for real-world Java programs. Remarkably, our results show that even 1-call-site sensitivity can

| (Object sensitivity) (Call-site Sensitivity)

“Since its introduction, object sensitivity has emerged as the dominant flavor of context
sensitivity for object-oriented languages.”

—Smaragdakis and Balatsouras [2015] Ty £
Context sensitivity is critically important for static program analysis of object-oriented programs. R S i e AR S il PG TR it s e i L eSS i SR]
A context-sensitive analysis associates local variables and heap objects with context information
of method calls, computing analysis results separately for different contexts. This way, context
sens1t1v1ty prevents analys1s mformatlon from bemg merged along dlfferent call chams For object-

sensitive analys1s [Milanova et al. 2002, 2005 Smaragdakls et al. 2011] mamtams a sequence of

1981 2002 2010 2018

41

xalan

1obj7t 1call2LCt

351434'Eéf f

| |obj | call |}
700 800 900 1000 1100 1200

alarms

0

2000 -

1750 A

= = =
o N Ul
o Ul o
o o o

analysis time(s)

500 -

250 -

750 -

=9 |k 7|9k

A B20|| Wt A50] B

xalan

700

800 900 1000 1100

H# alarms

1200

analysis time(s)
= = =

~ o N U

Ul o Ul o

o o o o

U
o
o

250 -

xalan

700

800 900 1000 1100

alarms

1200

2000 - 2000 -

1750 - 1750 -
“n 1500 - “n 1500
QO .]
£ 1250 . £ 1250 :
-|: : I b. -|: °
n . n ¢
9 000] OD]J 9 o000] | call
> . > .
Q750 . O 750 :
© . © :

500 X 500 .

250 : 250 .

700 Y 800 900 1000 1100 1200 700 h 800 900 1000 1100 1200

H# alarms H# alarms

4|2

110
0

k 7|8r0{[2]

=2

xalan

o
| O
@
—
o
- O
—
—
o W
O
S s
U Ke
S 3
@)}
............... Yb
o
- O
00
o
- O
| | N~
o o o o o
o) LN o LN
LN o M~ LN N
— —
(S)awl] sIsAjeue
o
O
N
—
o
- O
—
—
o W
O
.J nlU m
b
®) o
| a
g H
@)}
............... Y a
o
- O
00
o
- O
| | | | | N~
o o o o o o o o
o LN o LN o LN o LN
o ™~ LN N o ™~ LN N
N — — — —

(S)awl] SISAjeue

|obj+T

xalan

750

700

650

600

T)

+ I3

Ir|5

= 2|7

Yo

o

: (&)

o o o o o Oown
o o o o o
LN () LN o LN

N N — —

 ElmlokE

(S) swn sisAjeue

800

e Obj2CFA = =

e

2500
- : bloat
2000 20b] 2500 . fv |
_ 2 obj4 Last k l
2000}
§ L
A~ $d QO
N 1500} % ‘ §1500-]
v ® . . |
E S| —%1000 Important k Last k
b nicg : | -obj
v 1000} < |-obj+T
%y ‘ 500} .4: - - -
> Y
< Apply the heuristic
g 500 B 10300 14:(:)0 15100 161(.)0 1';00 léOO 1§00 2000
may-fail cast alarms
Precise

500 550 600 650 700 750 800

49

1 HA L —1
= Ol = O =] xX=|LL_ = o = D=
o HHSHEI QX[7|8 QU2 SESIH= 4f 7|8 QLUSHL =2 FeIE 2 55 HE
jython
700 8000
[1obj+T : timeout (> 10,800) |
600y 7000y ' 20bj : timeout (> 10,800) ;
| , 1
.| 50001 -] timeout (> IOSOS) |
D ¥ 5000
@ 400 v
g g aoool | call+SL
))
1 300 “ (ours)
(%) » 3000
2 2
& 200} 20Dbj & “
& | lcall+T >0l @ 2000
o B | call
100} 1000} T
_
| | O_ I I I I I -
700 720 740 760 780 800 820 840 860 800 900 1000 1100 1200 1300 1400
Halarms #Halarms

Some parts of the paper is too strong; this paper should be rejected. |

- A reviewer [Expert]

POPL should accept this paper to encourage discussions.

- A reviewer [Expert] ,

OOPSLA2019 PLDI 2020 |CSE 2020 OOPSLA 2021 POPL 2022
(Rejected) (Rejected) (Rejected) (Rejected) (Accepted)

50

L= B
L L

Call-Site vs. Object Sensitivity

* In theory, their precision is incomparable

* In practice, object sensitivity generally outperforms
call-site sensitivity for OO languages (like Java)

166

>
=

I}

-

[<)
T

Call-site vs. Object Sensitivity

* Typical example that benefits from object sensitivity:

class A:

def g(self):
return

def f (self):
return self.g()

def main () :

a

b
a .
b.f()

= A()
= A()
£ ()

//
//
//
//

11
12
13
14

// 15

f
[13]
main/ \ |9
[15]
2 T~ f /////’
[14]
1-call-site sensitivity
f J 9
P 1]
main
I U
[12] [12]

1-object sensitivity

T15}7 |

ol &=

]
-
KO

J

Future work

Tunneling |=»| ODbj2CFA —>-—>

IIIIIIIIII

IIIIIIIIII

VR P R TNy g 3o R TN e 44
A ~ = L~ - 3 < N

o1=7| 3

L
-

<k

4l

52

HIESH|: S & R =S S8 /s
= 2= 24M (selective ctx sensitivity): A2t E FX|2H
2500
2000
v |call+T call
GE) 1500f Ca
i =
=] 2
>N 1000
(qv]
-
<
500}
|call + S
féOO 1400 1500 1600 1%00 1éOO 1§OO

Jpalarms

2000

“We generated | call+T by applying context tunneling tol call...”

b

Analysis time (s)

2000

| call+T

=

Ul

o

o
T

[
o
o
o

500

«— '

| call

|call + S

O |
1300 1400

1500

1600 1700

1800

1900

2000

b

ST E QXS S E 2T =7

Analysis time (s)

" “Our selective context sensitivity preserves 98% of the precision

of conventional context sensitive analysis”

2000F

| call+T
| call

=

Ul

o

o
T

[
o
o
o

500

V

|call + S

O | | | | | |
1300 1400 1500 1600 1700 1800 1900 2000

Analysis time (s)

2500
2000}
| call+T call
1500} Ca
L 4
‘0
‘0
1000
0"
‘0
0“
lcall + T + S |call + S
féOO 1400 1500 1600 1%00 1éOO 1§OO

2000

BATET S N | i S IR AR

}EMWHBgé

212} J|HrSE VA EL = 23
—|I-—|I- 7H Eon_l' 7‘EE = oA‘O'” A|'OO
2500 |
lcall + T + S
2000}
N 01
K | call+T
GE) 1500} \Ica” .
=
(Vy)
¥
>~ 1000}
(Q°]
C
<
500}
|call + S
10300 14IOO 15|OO 16IOO 17IOO 18IOO 19IOO 2000
~ #alarms

50| Lt

-IO ,
O |
OF |
o

bl
;
|

O 0ONOUTRAWN—O

id(v, i){
if (i > 0){
return id(y, i-1);}
return v;}

main(){
i = input();
vl =id(l,i);//A
v2 =id(2,i);//B
assert (vl !=v2);//query

]

Oj| 5| = = 124

O 0ONOUTRAWN—O

id(v, i){
if (i > 0){
return id(y, i-1);}
return v;}

main(){
i = input();
vl =id(l,i);//A
v2 =id(2,i);//B
assert (vl !=v2);//query

]

Oj| 5| = = 124

O 0ONOUTRAWN—O

id(v, i){
if (i > 0){
return id(y, i-1);}
return v;}

main(){
i = input();
vl =id(l,i);//A
v2 =id(2,i);//B
assert (vl !=v2);//query

]

Oj| 5| = = 124

O 0ONOUTRAWN—O

id(v, i){
if (i > 0){
return id(y, i-1);}
return v;}

main(){
i = input();
vl =id(l,i);//A
v2 =id(2,i);//B
assert (vl '=v2);//query

]

Oj| 5| = = 124

O 0ONOUTRAWN—O

id(v, i){
if (i > 0){
return id(y, i-1);}
return v;}

main(){
i = input();
vl =id(l,i);//A
v2 =id(2,i);//B
assert (vl !=v2);//query

]

Oj| 5| = = 124

CE e SEHHLE A4 /MET V|52 SA0| ArE5tH 850] 20|58 Lt

2500 | |
lcall + T + S
2000}
AN 01
Q) |call+T eall
o call .*°
E 1500 \ o*
'S
(Vy)
't
>~ 1000}
(°]
C
<
500}
|call + S

O | | | | | |
1300 1400 1500 1600 1700 1800 1900 2000

o =2/ da= W7 flohid Mz27101E E

Analysis time (s)

L OO =L | —
oF=S 11245l sA|0f BH=
2500
2000}
|call+T
1500} \kall
1000} ‘.*’
500} k
call + (T, S) call +S
1300 1400 1500 1600 1700 1800 1900 2000

O{OF

ol
]

o 22O M58 U7] IsHM MZ7t0|E Faks 12dsl S Ao 2HS0{of &t

Marriage of Context Tunneling and Selective Context
Sensitivity in Pointer Analysis

ANONYMOUS AUTHOR(S)

In this paper, we identify a fundamental issue in the current trend of developing context sensitivity tech-
niques in pointer analysis and present a way to efficiently address it. Context sensitivity is a key factor that
significantly affects the performance of pointer analysis in object-oriented programs. In the literature, two
major refinements—context tunneling and selective context sensitivity—have been developed, where context
tunneling improves precision and selective context sensitivity enhances scalability. Though the two techniques
can be used together to maximize both precision and scalability, they have been developed independently
without considering whether individually optimized techniques will remain effective when combined. In this
work, however, we demonstrate that combining independently developed context tunneling and selective
context sensitivity techniques leads to suboptimal performance. To be an effective combination, the two
techniques must be developed together, considering their interdependencies. Developing a pair of techniques,
however, while accounting for all possible interactions is extremely challenging. To address this challenge,
we present a framework that significantly reduces the complexity of developing an effective combination
of the two techniques. Our evaluation results show that following our approach leads to the development
of an effective combination, achieving a state-of-the-art performance, that outperforms combinations of
independently developed context tunneling and selective context sensitivity techniques.

ACM Reference Format:
Anonymous Author(s). 2018. Marriage of Context Tunneling and Selective Context Sensitivity in Pointer
Analysis. . ACM 37, 4, Article 111 (August 2018), 28 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Context sensitivity plays a pivotal role in pointer analysis of object-oriented programs. It enhances
precision by distinguishing between multiple invocations of the same method based on their calling
contexts. However, tracking every possible context is impractical, leading to the widespread use
of k-limited context sensitivity. This approach retains only the k most recent context elements—
typically call sites in call-site sensitivity [Sharir and Pnueli 1981] or allocation sites in object
sensitivity [Milanova et al. 2002]. Despite its adoption, this conventional technique frequently falls
short in balancing precision and scalability in real-world applications.

Over the past decade, numerous techniques have been proposed to enhance the k-limited
approach in context-sensitive pointer analysis [He et al. 2024; Jeon et al. 2018; Jeon and Oh 2022;
Kastrinis and Smaragdakis 2013; Li et al. 2018a,b, 2020; Liang et al. 2011; Lu et al. 2021a,b; Milanova
et al. 2002; Oh et al. 2015; Smaragdakis et al. 2011, 2014; Tan et al. 2021, 2017; Zhang et al. 2014].
Two prominent approaches that excel in maximizing precision or scalability are:

o Context tunneling [Jeon et al. 2018; Jeon and Oh 2022] seeks to maximize precision while
adhering to a k-context limit. Instead of relying solely on the k most recent context elements,
it adopts a more flexible strategy by prioritizing the k most significant context elements.
Jeon and Oh [2022] demonstrated that context tunneling can markedly improve analysis

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

0004-5411/2018/8-ART111 $15.00

https://doi.org/XXXX XXX XXXXXXX

4SS 22 oY

* We identify a fundamental issue in the current trend of developing context
sensitivity techniques in pointer analysis and present a way to efficiently address it.

24 7S5 SO NS

* We present a framework that significantly reduces the complexity of
developing an effective combination of the two techniques

submitted

—>» | Combination | =>

IIIIIIIIII

IIIIIIIIII

Obj2CFA

—

Tunneling

« CFA2| Obj Cht| O|2F 244 H0|7|

006

_ iR
m = C
% S 5
S 3
...................... Y IDA
o7 mvm.m_u,m_lmzmcm)
N
) uF
1} = I
~
= 4
QS e:
Ko > O
hT) KH
G \ .ﬂ__ ol
| ’ R
i 1K
4

A|Fo| 2R) YT

2000

—~ N)

™ _._.__u Q
|l]= Ik |5 8
i|d 75 5
04 - g ®
K1 N +
T R =
OF H D
=) %

< 3 S

e ® -

O

) S

(s) sawn sisAjeuy

classifier(e):

else:

return false //

o}
b
9
— |
w
)
™
10
O
.
I
o
_|
abe
0X
1]
©
Hil
HT
©
N

V

Definition 7.1 (Superiority of Call-Site Sensitivity). Let P be a set of target programs. Let S be a
context-tunneling space for the target programs. We say call-site sensitivity is superior to object
sensitivity with respect to S if is always possible to simulate object sensitivity via call-site sensitivity:

VP € PNTyp € S. AT qy € S.Vk € [0, o0]. ﬁxF Leat, Ucal (more precise than) ﬁngolbcj’ Vo (5)

£ & @+ 4: Ef 210{0] HE5}7)

Java JaaScrip ;’ Python ‘ C %

OOPSLA’ I 8
POPL’> 22 .

160 -

140 -

120 A

100 -

Scalable '

80 A

Analysis time

60_3caII+T
__

3 4
~ Precise |

Exercise

class S {
Object id(Object a) { return a; }
Object id2(0bject a) { return id(); }
}
class C extends S {
void funi() {
Object al = new A1(Q);
Object bl = id2(al);
T}
class D extends S {
void fun2() {
Object a2 = new A2();
Object b2 = id2(a2);
1}

@ What is the result of 1-call-site-sensitive analysis?%

=
L

| -call-site sensitivi

ty=

=1

i

X551 & 2 Qb

submitted Future work

—>» | Obj2CFA |=>|Combination —>

Tunneling

OlX|2tk —> Fk |

2 72— SA0f 7H

Back up

1-call : {} | 1-call : {id}
... 0-call : {main}

O 0ONOUTRAWN—O

ZHEIAE E

— 1

id(v, i)
if (i > 0){
return id(v, i-1);}
return v;}

main(){
i = input();
vl =id(l,i);
v2 =id(2, i);
assert (vl !=v2);//query

]

Of|X| ===

| 7e€{78}77 |

8 € [7.812?

lgs

LU =S

1 p— pa—

—.7 1.
-_— N
> >

5
8:

/0

S
—~
-
>
—"
RS
-
|
-
=)
Q
|

2:

’r’

2: return id(v, i-1);}

TR @A710td A&
22k AFE X

FHE| A E F

L— 1

id(v, i){
if (i > 0){
return id(v, i-1);}
return v;}

main(){
i = input();
vl =id(l,i);
v2 =id(2, i);
assert (vl !=v2);//query

o hWPN—O

o O N

10: }

Oj| 5| = = 124

