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id(v, i){
if (i > 0)
return id(y, i-1);}
return v;}

main(){
i = input();
vl =id(l,i);//A
v2 =id(2,i);//B

Oj| 5| = = 124
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id | 2| id | 2] id |2
B e
/l
main

g\
4 20 2] id |2
assert (vl = v2);//query —> 8,2] —> 8,2,2]|— -
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id(v, i){
if (i > 0){
return id(v, i-1);}
return v;}

main(){
i = input();
vl =id(l,i);//A
v2 =id(2,i);//B
assert (vl !=v2);//query

]

Oj| 5| = = 124




8: =1id(2,i);
assert (vl '=v2);//query

'5} E=h =n
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id(v, i){
if (i > 0){
return id(v, i-1);}
return v;}

main(){
i = input();
vl =id(l,i);//A
v2 =id(2,i);//B
assert (vl !=v2);//query

o hWPN—O

o O N

10: }
Of|A| == 124



O 0ONOUTRAWN—O

]

K7h Q4 7|

id(v, i){
if (i > 0){
return id(v, i-1);}
return v;}

main(){
i = input();
vl =id(l,i);//A
v2 =id(2,i);//B
assert (vl !=v2);//query

Oj| 5| = = 124




Call-Site Sensitivity 5&,&5’&
 The best-known flavor of context sensitivity, which uses call-

sites as contexts.

* A method is analyzed under the context that is a sequence
of the last k call sites

Partial Context-sensitivity

» The mosteemmon way: keep only the'lop-miost k contnuations isa-called k- thn)

KAIST

 k =0:ignore all contexts, i.e., context-insensitive

K = oo: keep all contexts, i.e., fully context-sensitive

® The most common way: .'/.. nly
strings (called k-CFA)

* Approach: set an upper bound for length of
contexts, denoted by k

* For call-site sensitivity, each context consists of the last k

e In p“ac'tic,k is a small number (usually <3)
 Method contexts and heap contexts may use different k
e e.g., k=2 for method contexts, k=1 for heap contexts

(B 7|9 E : Context Sensitivity Static Analysis Lecture)



“A key part of the appeal of last k-based context abstraction is its
simplicity and universal applicability.”

- A reviewer [expert]
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id(v, i){
if (i > 0){
return id(v, i-1);}
return v;}

main(){
i = input();
vl =id(l,i);
v2 =id(2, i);
assert (vl !=v2);//query

]

Oj| 5| = = 124
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Exercise

class S {
Object id(0Object a) { return a; }
Object id2(0Object a) { return id(); }
Iy

class C extends S {
void fun1() {
Object al = new A1();
Object bl = id2(al);
+H}

class D extends S {
void fun2() {
Object a2 = new A2(Q);
Object b2 = id2(a2);
+H}

@ What is the result of 1-call-site-sensitive analysis? -?'-735_.*3.:.*

Hakjoo Oh AAA616 2022 Fall, Lecture 8 October 18, 2022 28 /31
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Exercise

class S {
Object id(0Object a) { return a; }
Object id2(0Object a) { return id(); }

Al A

} ~
class C extends S { p N =
void fun1() { = L.
Object al = new A1(Q);
Object bl = id2(al); 151
}} _ _ ° o o ° I §
I | -call-site sensitivity= 3=

void fun2() { )
Object a2 = new A2();
Object b2 = id2(a2);

F}

@ What is the result of 1-call-site-sensitive analysis?

Hakjoo Oh

October 18, 2022

28 /31
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id(v, i){
if (i > 0){
return id(v, i-1);}
return v;}

main(){
i = input();
vl =id(l,i);
v2 =id(2, i);
assert (vl !=v2);//query

o hWPN—O

o O N

10: }

Oj| 5| = = 124
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..it covers more than two-thirds of the precision advantage of 2objH"
-Smaragdakis et al. [PLDI’ 14] |

. 98.8% of the precision of 2obj can be preserved...” |
Li et al. [OOPSLA’ 18] |

“Scaler still attains most of the precision gains of 20bj ...”

f%oo 1460 1500 {
# A Li et al. [FSE’ 18]
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Parameterized Object Sensitivity for Points-to
Analysis for Java

ANA MILANOVA

Rensselaer Polytechnic Institute
ATANAS ROUNTEV

Ohio State University

and

BARBARA G. RYDER

Rutgers University

The goal of points-to analysis for Java is to determine the set of objects pointed to by a reference
variable or a mferenw object field. We present object sensitivity, a new form of context sensitivity
for flow-1 ts-t lysis for Java. The key idea of our approach is to analyze a method

separately for each of the object names that represent run-time objects on which this method may
be invoked. To ensure flexibility and practicality, we propose a parameterization framework that

allows lysis desi s to control the deoffs b cost and pr in the object-sensitive

analysis.
Side-effect analysis determines the memnry locations that may be modified by the execution of a
Def-use 1 ifies pairs of stat ts that set the value of a memory

locahun and subsequently use that value. The information computed by such analyses has a wide
variety of uses in compilers and software tools. This work proposes new versions of these analyses
that are based on object-sensitive pointe-to analysis,

We have implemented two instantiations of our parameterized object-sensitive points-to analy-
aia. On a set of 23 Jsvn pmgrams our ex'penments show that these analyses have comparable cost
to a context-1 1 for Java which is based on Andersen’s analysis for C. Qur
results also show that ubject sensitivity sxgmﬁeantly improves the precision of side-effect unnlysls
and call graph construction, compared to (1) cont; itive lysis, and (2) context
‘points-to analysis that models context using the invoking call site. These experimenta demonstrate
that cbject-sensitive analyses can achieve sub ial precision imp: , while at the same
time remaining efficient and practical.

1S

A preliminary version of this article appeared in Procesdings of the Inter on
Software Testing and Analysis (July), 2002, pp, 1-11.
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Context-sensitive points-to analysis: is it worth it?*
Ondfej Lhotdk ' and Laurie Hendren®
olhotak@uwaterloo.ca hendren@sable.megill.ca

1 School of Computer Science, University of Waterloo, Waterloo, ON, Canada
? School of Computer Science, McGill University, Montreal, QC, Canada

Abstract. We present the results of an irical study evaluating the p
of subset-based peints-to analysis with several variations of context sensitivity on
Java benchmarks of significant size. We compare the use of call site strings as the
context abstraction, object sensitivity, and the BDD-based context-sensitive algo-
rithm proposed by Zhu and (nlman. and by Whaley and Lam. Our study includes
that context itively specialize only pointer variables, as well as ones
that also specialize the heap al ion. We both ch istics of the
points-to sets themselves, as well as effects on the precision of client analyses. To
guide development of efficient analysis implementations, we measure the number
of contexts, the number of distinet contexts, and the number of distinet pcmls-lu
sets that arise with each context ivity To eval , we
measure the size of the call graph in terms of methods and edges, the number of
devirtualizable call sitcs, and the number of casts statically provable to be safe.
The results of our study indicate that object-sensitive analysis implementations are
likely to scale better and more predictably than the other approaches; that object-
sensitive analyses ane more precise than comparable variations of the other ap-
proaches; that speci g the heap ab ision more than ex-
tending the length of contex! strings; and that the proﬁmon of cycles in Java call
graphs severely reduces precision of analyses that forsake context sensitivity in
cyclic regions.

1 Introduction

Docs context sensitivity significantly improve precision of interprocedural analysis of
object-oriented programs? It is often suggested that it could, but lack of scalable imple-
mentations has hindered thorough empirical verification of this intuition.

Of the many context sensitive points-to analyscs that have been proposed (c.g. [1,4,
8,11,17-19,25,28-31}), which improve precision the most? Which are most effective for
specific client analyses, and for specific code patterns? For which variations are we likely
to find scalable implementations? Before devoting resources to finding efficient imple-
mentations of specific analyses, we should have empirical answers to these questions.

This study aims to provide these answers, Recent advances in the use of Binary De-
cision Diag (BDDs) in program analysis [3, 12,29, 31] have made context sensitive
analysis efficient enough to perform an empirical study on benchmarks of significant size.
Using the JEDD system [14], we have implemented three different families of context-

Evaluating the Benefits of Context-Sensitive
Points-to Analysis Using a BDD-Based
Implementation

ONDREJ LHOTAK
University of Waterloo
and

LAURIE HENDREN
McGill University

We present Pannig, a framework of BDD-based context-sensitive points-to and call graph analyses
for Java, as well as client analyses that use their results, PAvoLe supports several variations of
context-sensitive analyses, including eall site strings and object sensitivity, and context-sensitively
specializes hoth pointer variables and the heap abstraction. We empirically evaluate the preci-

ificant Java programs. We find that that object-

sensitive analyses are more precise Qhan comparable variations of the other approaches, and that
apecializing the heap abstraction improves precision more than extending the length of context
strings.

sion of these context-sensiti on si

Categories and Subject Descri D.3.4 [Progr 1
Constructs and Features

Processors; D.3.3 [Pro.

gr ) 1
General Terms: Languages, Design, Experimentation, Measurement
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decision diagrams, Java, points-to analysis, call graph construction, cast safety analysis
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Strictly Declarative Specification of Sophisticated Points-to Analyses

Martin Bravenboer

Department of Computer Science
University of Massachusetts, Amherst
Ambherst, MA 01003, USA
martin.bravenboer@acm.org

Abstract

We present the Door framework for pomts-to analysis of
Java programs. Door builds on the idea of specifying pointer
analysis algorithms declaratively, using Datalog: a logic-
based language for defining (recursive) relations, We carry
the declarative approach further than past work by describ-
ing the ful’ end-to-end analysis in Dau]og nnd upun-uzmg
ly using & novel technigue sp geting

hlghlv recursive Datalog programs.
As a result, Duur uducvcs several benefits, including full
rder-of- in runtime. We compare
Door with Lhotak md Hendren's Pavoie, which defines the
state of the art for context-sensitive analyses. For the exact
same logical po ini (and, 7 identi-

cal precision} Door is more than 15x faster than Paboie for

Doop pk a range of al . including context
call-site itive, and object analyses,
hrmark all tfied moduhrl) as ona code base.

Yannis Smaragdakis

yannis@cs.umass.edu

analyses, Tt is, thus, not surprising that a weslth of research
has been devoted to efficient and precise pointer analysis
technigues. Context-sensitive analyses are the most common
class of precise points-to analyses. Context sensitive analysis
approaches qualify the analysis facts with a context abstrac-
tion, which captures a static notion of the dynamic context
of amethod. Typical contexts include abstractions of method
call-sites (for a call-site sensitive analysis—the traditional
meaning of “context-sensitive™) or recerver objects (for an
object-sensitive analysis),

In this work we present Door: a general and versatile
p(-inu-w analysis framework that makes feasible the most
precise context-sensitive amalyses rcponcd in the literature.

a 1-call-site sensitive analysis of the DaCapo b
with fower but still sub | speedups for other imp

analyses, Additionally, Door scales 10 very precise analyses
that are impossible with PappLe and Whaley et al.’s bddbddb,

directly addressing open probl in past li Finally,

peedups of an order-of- de for several imy
analyses.
The main clements of our approach arc the usc of the Dat-
" alog 1 for specifying the program analyses, and the

Cnmpared to the prior state of the art, Door often achieves

our implementation is modular and can be easily config
to analyses with a wide range of charactenstics, largely due
to its declarativeness.

Categories and Subject Descriptors F3.2 [Logrct aud
Meanings of Programs]. S of

aggressive optimization of the Datalog program. The use of
Datalog for program analysis (both low-level [13,23,29] and
high-level [6,9]) is far from new. Our novel optimization ap-

pro:u h, hm\e\cr accounts for several orders of magnitude of

Languages—Program  Analysis; D.1.6 [I’mgrammmg
Technigues): Logic Programming

d analyses typically
run over 1000 lunca more sluwly Generally our optimiza-
tions fit well the appmch of handling program facts as a

General Terms  Algorithms, | Perfc

1. [Introduction

Points-to (or pointer) analysis intends to answer the question
*“what objects can a program variable point to?” This ques-
tion forms the basis for practically all higher-level program

databasc, by sy y the indexing scheme and
the ] cval of Datalog impl i Fur-
thermore, our approach is entirely Datalog based, encoding
declaratively the logic required both for call graph construc-
tion as well as for handling the full semantic complexity
of the Java language (e.g., static initialization, finalization,
reference objects, threads, exceptions, reflection, etc.). This
makes our pointer analysis specifications clegant, modular,
bul alw efficient and  easy to tune. (.xcmtally. cur work is a

<
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\ Object-Sensitivity

| @ The dominant flavor of context-sensitivity for obje

£ languages.

@ It uses object abstractions (i.e. allocation sites) as
qualifying a method'’s local variables with the alloc
receiver object of the method call.

A class A { void m() { return; } }

b = new B(Q);
b.m();

£ The context of m is the allocation site of b.

Hakjoo Oh AAA616 2019 Fall, Lecture 8

Lecture Notes:
Pointer Analysis

Obiject-Sensitivity | Object-sensitive pointeJ

(vs. call-site sensitivity)

15-8190: Program Analysis

Jonathan Aldrich
. - jonathan.aldrichRes.cmu.edu
(iearam e Milanova, Rountev, and Ryder. Parameteriz -
class S { sensitivity for points-to analysis for Java. AC

Object id(Object a) { return a; }
Object id2(Object a) { return id(a)

1 Motivation for Pointer Analysis

Eng. Methodol., 2005.
In programs with pointers, program analysis can become more

» Context-sensitive interprocedural pointer analysis| — Consider constant-propagation analysis of the following progry

class C extends S { 15§y
void funl() { * For context, use stack of receiver objects 2: pi=&s
Object al = new Al(); T syiz
: - : . ? R rint z
} Ob'] ect bl id2 ( al) 4 1-cq = (More next Week.) In order to analyze this program correctly we must be ay
" : i ion 3 p points to =. I this information is available we
} ful e Lhotak and Hendren. Context-sensitive poif| = fowtmaonaion
class D extends S { fun .
void fun2() { id2 WOfth It? CC 06 feplspi=yl(a) = [z~ oly)]le where must-point-to(}
Object a2 = new A2(); id2 . ... . . . - T ——
Ob_] ect b2 = id2(a2); id: ° ObJeCt'SenSItlve pOlnter analYSIS more preC|Se tha must-pf)?n‘:foin(;(‘;vnnxaatic;r)\,,:,ndat:egnapeifof; ;‘;St::n;\:pdaa)!’z
} S for Java variable z, because we know with confidence that assigning tg
id2 to z. A technicality in the rule is quantifying over all z such

point to z. How is this possible? It is not possible in C or Java;
a language with pass-by-reference, for example C++, it is possilf
names for the same location are in scope.

Of course, it is also possible that we are uncertain to whic
distinct locations p points. For example:

furl e Likely to scale better
fun

Yannis Smaragdakis
University of Athens

: KOREA

UNIVERSITY

1981

Pointer Analysis

Yannis Smaragdakis
University of Athens
smaragd@di.uoa.gr

George Balatsouras
University of Athens
gbalats@di.uoa.gr
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Making k-Object-Sensitive Pointer An

! Pick Your Contexts Well: Underst More Precise with Still k-Limitin

12 The Making of a Precise and Scald

b Yannis Smaragdakis Martin Bravenbog Tian Tan!, Yue Li', and Jingling Xue'? Data-Driven ConteXt-senSitiVity for Points-to Analyﬁs

1981

Precision-Guided Context Sensitivity for Pointer Ana]

X Deparment of Computs Scics  JogicBlx . e e e L p—— Precision-Preserving Yet Fast Object-Sensitive Pointer y
v C! ol < iibe 3 orea University, Kepubhd
. Amberst, MA 01003, 2 ion O\ bdist 2 . . . EPLa
S e ] id C Advanced Innovation C YUE L1, Anthos University, Demmark MINSEOK JEON’, Korea University, Repul Analysis with Partial Context Sensitivity '
X University of Athens, 1578 Hyb"d onte] TIAN TAN, Aarhus University, Denmark SUNGDEOK CHA, Korea University, Repul D
yannis@cs.umass.edu—sma ANDERS M@LLER, Aarhus University, HAKJOO OHT, Karea University, Republic L . G h b d H s g - 9
) a Abstract. Object-sensitiv Efficient 4 YANNIS SMARAGDAKIS, University q earning urapn-base euristig JINGBO LU, UNSW Sydney, Australi )
'y abstraction for pointer analj - . i X e & s ~ INGLING XUE, UNSW Sydney, Au: '
k-object-sensitive pointer a) Modeling the He  Context sensitivity is an essential technique Scalability-First Welresik o new data diver appitiach Lo dehi without Handcrafting Applicatic J ' ydney, 4
[ 4 ; SR . for Java. While context-sensitivity has greater i . ata . E ls
N Abstract S:;f {serk c?jntext ellement.b :b;eWEdb"h“ appl)"mlg Liontext vs?nsmv(llry P Self-Tunlng other precision-improving techniques, it is difficy Obje.c!--s‘im;uv“by. 15 w“l.dy u:';d asac ( |
Object-sensitivity has emerged call, may end up using sor] Tia alance between analysis precision and sp most from context-sensitivity and decide how nf sensitively for object-oriented languagg z
Tor piiinte:t0 sralysis do object ducing a finer partition of t do not provide much insight into what chal Yue Li Tian Tan designing such rules is a nontrivial and lahorio MINSEOK JEON, MYUNGHO LEE, and HAK){ programs, k-object-sensitive pointer af . . i . .
\ :m},s:ﬁ“;,: :ﬁ,ﬁx‘ ‘:‘bc'::}:" method call. In this paper, School of C4  principled approach for identifying precisio Aarhus University Aarhus Universit] overcome these challenges, we propose an autom: X X values of k, where k < 2 typically. A fd Maki ng Pointer AnalyS|s More Precise by Unleashi ng the
4 mentations deviate significant] Abstract improving the precision of a explain where most of the imprecision arises yueli@es.au.dk tiantan@cs.av.d context-sensitivity from codebases. In our approd We present GRAPHICK, a new technique for automatically K-obj t an;l 26 only thods i f 1 . sge e '
object-sensitive analysis. The : still usi imiti A : P . heuristic rules, in disjunctive form of properties o Striking a balance between precision and scalability of oy YRS LAY SOME RICOUS-A1 Power (o] Se ective Context senSItIVl .
i y y " . by still using a k-limiting c an efficient algorithm to recognize these fl Prop g P ty ; B i
dogrees of freedom, relating (o COMEXt-scasitive poins-to analysis is valuabl ) g B Abstract : o ABSTRACT context-sensitivity. We present a greedy algorith} R : analysis. While already effective, these H g A
S st every method call and objeq]  Precision with good performance, The standa allocation sites that are re tradeoffs between analysis precision and spd . e sensitivity is important in pointer analysis to ensure We hiplemenitad curaphecach in ths Doog frar heuristics. For example, because applying context sensf = o limited in the efficien
; for the analysis design space, aff  SCOSivity are call-site-sensitivity (KCEA) ag Object, Allocation Graph (| Mai points-to analysis techniques fo Our experimental results on standard bend| precision, but existing teck i fier flams it Aditabis o TR Al 3 smpractical. pointer analviis tyoically uses a Hieusistic to o seq ¥ .1“’"‘ st 1 TIAN TAN, Nanjing University, China R
. deestanding of object s Cy both flavors of context-sensitivityl p: A Tandusets wely pecdoninantly oo @ sllocal b ) % pee Uspngu s nmpreciciahe analyses: conventional object-sensitivity, selecti p) , poO. y P y that makes k~0b_{ run mg‘mﬁcantly fastd S
H s 8 0" 0b) S but at an infeasibly high cost, We show thaf (e.g., a context-insensitive anguag Y pr : Y applies context sensitivity partially, only on || bility. Many variants of context-sensitivity exist, and it is diff : tal results show that ch & Pas search has shi th: loiti th (7 2 3 YUE LI Nanjing University, China .
sensitive analyscs. The result 5o of call.site- and object-scnsitivity for roeram and then avoid thd 10D 10 model heap objects. We present M £t ision of a highl . to choose one that leads to reasonable analysis time and obf SPnn I s s oncepproacL ey ast research has shown that exploiting the program’s EAGLE is to enable k-obj to analyze a md g ’ !
5 diaxt ”’:“ P‘“" ""‘_P‘f.’“fa‘f’“‘*‘f ysis is bighly profitable. Namely, by kecping P 3 _gf the T Besai heap abstraction that is specifically devel (9.8‘8%) ORUIEretsion o 4 gy precac o high precision. without running the analysis multiple times. CCS Concepts: « Theory of computation — cost-effective analysis heuristics, promoting the recent t] some of its selected variables/allocation XIAOXING MA, Nanjing University, China 14
& :,"g‘c,‘ \‘;“G";;‘?‘;“ ‘_"".mk,,' only when analyzing sclected language featy b pr!?graul. EAR the needs of an important class of type- with a context-sensitive heap), with a substg We present the Scarer framework that addresses this protf chine learning approaches; h representations of programs obtained from a pre-al 5 S : y CHANG XU. Nanijing U ity, CI q
b hicg,nf,a[,m;m:,n“dnd“‘:}i:'; approximate the precision of an analysis that precision that is guaranteed]  guch as call graph construction, devirtual CCS Concents: « Theory of computation J 562 ¢ficicntly estimates the amount of points-to informa . W ) . grap P.es' n . Of Progr 080 s pre by reasoning about (,ontex!.-fn.:?-ldngua , Nanjing University, China b
: text depth. We also introduce | & all tmes. In tems of specd. the welective have implemented BEAN as  fail casting. By merging equivalent autor pls: ry P that would be needed to analyze each method with different va Additional Key Words and Phrases: Data-driven such heuristics remains challenging, requiring a great del}  based on a new CFL-reachability form} YANNIS SMARAGDAKIS, University of Athens, Greece 4
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1 INTRODUCTION

say § = S1,..., S Unity-Relay first provides a mechanism (called Unity) to combine and maximize the
precision of all components of S. When Unity fails to scale, Unity-Relay offers a scheme (called Relay) to
pass and accumulate the precision from one approach S; in S to the next, Sy, leading to an analysis that is
more precise than all approaches in §.

As a proof-of-concept, we instantiate Unity-Relay into a tool called BATON and extensively evaluate it on
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Abstract, Object-sensitivity is regarded as argul
abstraction for pointer analysis in object-oriented

k-object-sensitive pointer analysis, which uses a sef
sites (as k context elements) to represent a calling
call, may end up using some context. elements req
ducing a finer partition of the space of (concrete)
method call. In this paper, we introdnce BEAN, af
improving the precision of any k-object-sensitive 2

by still using a k-limiting context abstraction, The
allocation sites that are redundant context elemd
Object Allocation Graph (OAG), which is built b
(e.g., a context-insensitive Andersen’s analysis) pd
program and then avoid them in the subsequent k
ysis for the program. BEAN is generally more prec|
precision that is guaranteed to be as good as k-obj
have implemented BEAN as an open-source tool a
two state-of-the-art whole-program pointer analy:
representative clients (may-ehas and may-fou-cast
nine large Java programs from the DaCapo bench
succeeded in making both analyses more precise fo
under each client at only small increases in analys|

Introduction

sis, as an enabling technology, plays a

client applications, im'ludmg bug detection [3, 25,35, 1

compiler optimisation [6,

3], and program understal

mensions of pointer analysis precision are flow-sensitiy
For C/C++ programs, flow-sensitivity is needed by r
For object-oriented programs, e.g., Java programs, hj
is known to deliver trackable and useful precision [17]

There are two general approaches to achieving col

oriented programs, call-site-sensitivity (k-CFA) [27]

24,29] (among others). A k-CFA anal

s represents a

call by using a sequence of & call sites (i.e., k label
site). In contrast, a k-object-sensitive analysis uses k
F labels with each denoting a new statement) as conf]
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“We do not consider call-site sensitive analyses as they are

typically both less precise and scalable...

1

Pointer anal
client applications, im'ludmg bug detection [3, 25,35, 1
compiler optimisation [6,
mensions of pointer analysis precision are flow-sensitiy
For C/C++ programs, flow-sensitivity is needed by r
For object-oriented programs, e.g., Java programs, hj
is known to deliver trackable and useful precision [17]

oriented programs, call-site-sensitivity (k-CFA) [27]
24,29] (among others). A k-CFA anal
call by using a sequence of & call sites (i.e., k label
site). In contrast, a k-object-sensitive analysis uses k
F labels with each denoting a new statement) as conf]

Making k-Object-Sensitive Po|
More Precise with Still k

Tian Tan', Yue Li*, and Jingling

! School of Computer Science and Engineering

? Advanced Innovation Center for Imaging Tech

Abstract, Object-sensitivity is regarded as argul
abstraction for pointer analysis in object-oriented

k-object-sensitive pointer analysis, which uses a sef
sites (as k context elements) to represent a calling
call, may end up using some context. elements req
ducing a finer partition of the space of (concrete)
method call. In this paper, we introdnce BEAN, af
improving the precision of any k-object-sensitive 2

by still using a k-limiting context abstraction, The
allocation sites that are redundant context elemd
Object Allocation Graph (OAG), which is built b
(e.g., a context-insensitive Andersen’s analysis) pd
program and then avoid them in the subsequent k
ysis for the program. BEAN is generally more prec|
precision that is guaranteed to be as good as k-obj
have implemented BEAN as an open-source tool a
two state-of-the-art whole-program pointer analy:
representative clients (may-ehas and may-fou-cast
nine large Java programs from the DaCapo bench
succeeded in making both analyses more precise fo
under each client at only small increases in analys|

Introduction

sis, as an enabling technology, plays a

3], and program understal

There are two general approaches to achieving col

s represents a

9

Scalability-First Pointer Analys}|
Self-Tuning Context-Sensi
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Precision-Guided Context Sensitivity fq

Introspective Analysis: Context-Sensitivity, Across the lI A Machine-Learning Algorithm with Disjunctive Model for

Yannis Smaragdakis

Abstract

Context-sensitivity is the primary approach for adding more preci-
sion 10 a points-to analysis, while hopefully also maintaining scal-
ubility. An oft-reported problem with context-sensitive analy
however, is that they are bi-modal: cither the analysis is precise
enough that it manipalaies only manageable scts of data, and thus
scales impressively well, or the analysis gets quickly desailed at the
first sign of imprecision and becomes arders-of-magnitude more
expensive than would be expected given the program's size, There

George Kastrinis
Department of Informatics
University of Athens
{smaragd.gkastrinis,gbalats }@di voa.gr

George Balatsouras

of points-1o analysis is to yield usefully precise infod
sacrificing scalability: the unalysis inputs are large
algorithms are typically quadratic or cubic, but
near-lincar behavior in practice, by exploiting proj
and maintaining precision. Indeed precision and per
g0 hand-in-hand in a good points-to analysis al
algonthms are often found 1o be both more prel
because smaller points-to sets lead 10 less work [ 14)
Context-senstiiviry is a common way of pursuin)
ility in points-to analysis. It consists of quali

is currently no approach that makes precise analy-
ses (of any flavor: call-site-, object-, or type-sensitive) scale across.
the board at a level 1o that o a ive anil-
ysis. To address this issue, we propose introspective analysis: a
technigue for uniformly scaling context-sensitive analysis by efim-
inating its performance-detrimental behavior, at a small precision
expense. Introspective analysis consists of a common adaptivity
patern: first perform a context-insensitive analysis, then use the

nles

ables and objects with context information: the any
formaticn (e.g., “what objects this method argumer]
over all possible executions that map to the samg
while separating executions that map to different
way, context-sensitivity attempts 1o avoid precisi
ing the behavior of different dynamic program
sensitivity comes in many Asvors. depending on they
i such as call-stie-sensiriviry (22, 23). of

results to selectively refine (ie., analyze ly) pro-
gram clements that will not cause explosion in the running time
or space. The technical challenge is to appropriately identify such
program elements. We show that a simple but principled approach
can be remarkably effective, achieving scalability (often with dra-
matic speedup) for b ks p I letely out-of-reach
for deep context-seasitive analyses.

Categories and Subject Descriptors  F3.2 | Logics and Meanings

of Programs) i of Languag Program
Analysis; D34 [F g L s
Compilers

General Terms  Algorithms, Languages, Performance

Keywords points-to  analysis;  context-sensitivity,  object-

sensitivity; lype-sensitivity

1. Introduction

Points-to analysis is probably the most common whole-program
static analysis, and often serves as a substrate for a variety of high-
level program analysis tasks. Points-1o analysis computes the set of
objects (abstracted as their allocation sites) that a program variable
may point to during runtime. The promise, as well as the challenge,
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[19. 201, and type-sensifivity [24]

I d fact about context-sensitivity,
even the best algorithms have a common failure of
cannot maintain precision. Past literature repors tf
mance of a [...] deep-context analysts is bimodal”|
sensitive analyses have been associated with very |
contexls™ [15]; “algorithms completely hit a wall
ations, with the number of tuples exploding expo
Recent published resulis [12] fail to ran a 2-object-]
sis in under 90mins for 2 of 10 DaCapo benchmark]
benchmarks take moee than 1.000sec, although md
marks of similar or larger size get analyzed in undd]

Thus, when contexi-sensitivity works, it worky
terms of both precision and performance. When it}
it fails misersbly, quickly exploding in complexy
context-insensitive analyses uniformly scale well,
puts. Figure | vividly demonstrates this phenomey
Capo benchmarks, analyzed wilh the Doop framew
context-insensitive (insens) analysis and a 2-objec
ysis with 2 context-sensitive heap (20bjH). (The chy
analysis ume of the longest-runaing benchmarks)
hsqldb and jython, timed oot after 90mins on a
and would not serminate even for much longer ting
be seen, context-insensitive analyses vary relativel
formance, while context-sensitivity often canses mf
memory use) 10 explode.

Faced with this unpredictability of context-seny
mon reaction is to avosd it, favoring context-ing
ses, and, consequently, missing siguificant precis
well-behaved programs. Even worse, for some af
chewing expensive context-sensitivity is not an opf
insensitive analysis is just nol good enough. Repa
try [4] and scademic researchers [3] alike reiter:
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Data-Driven Program Analysis

MINSEOK JEON, SEHUN JEONG', SUNGDEOK CHA, and HAKJOO OHf, Korea University,
Republic of Korea

We present a new machine-learning algorithm with disjunctive model for data-driven program analysis.
One major challenge in static program analysis is a substantial amount of manual effort required for tuning
the analysis performance. Recently, data-driven program analysis has emerged to address this challenge
by automatically adjusting the analysis based on data through a learning algorithm. Although this new
approach has proven promising for various program analysis tasks, its effectiveness has been limited due
to simple-minded learning models and algorithms that are unable to capture sophisticated, in particular
disjunctive, program properties. To overcome this shortcoming, this article presents a new disjunctive model
for data-driven program analysis as well as a learning algorithm to find the model parameters. Our model uses
boolean formulas over atomic features and therefore is able to express nonlinear combinations of program
properties. Key technical challenge is efficiently determine a set of good boolean formulas as brute-force
search would simply be impractical. We present a stepwise and greedy algorithm that efficiently learns
boolean formulas. We show the effectiveness and generality of our algorithm with two static analyzers:
context-sensitive points-to analysis for Java and flow-sensitive interval analysis for C. Experimental results
show that our automated technique significantly improves the performance of the state-of-the-art techniques
including ones hand-crafted by human experts.

CCS Concepts: « Theory of computation — Program analysis; « Computing methodologies — Ma-
chine learning approaches.

Additional Key Words and Phrases: Data-driven program analysis, Static analysis, Context-sensitivity, Flow-
sensitivity
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1 INTRODUCTION

One major challenge in static program analysis is a substantial amount of manual effort required
for tuning the analysis performance for real-world applications. Practical static analysis tools use a
variety of heuristics to optimize their performance. For example, context-sensitivity is essential
for analyzing object-oriented programs, as it distinguishes method’s local variables and objects in
different calling-contexts. However, applying context-sensitivity to all methods in the program
does not scale and therefore real-world static analyzers apply context-sensitivity only to profitable
methods determined by some heuristic rules [Smaragdakis et al. 2014]. Another example is a
relational analysis such as ones with Octagons [Miné 2006]. Because it is impractical to keep track
of all variable relationships in the program, static analyzers employ variable-clustering heuristics
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“We do not discuss the performance of our approach for call-site-

sensitivity since call-site-sensitivity is less important than others
- Jeon et al. [201 9]
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Abstract

Context-sensitivity is the primary approach for adding more preci-
sion 10 a points-to analysis, while hopefully also maimtaining scal-
ubility. An oft-reported problem with context-sensitive analy
however, is that they are bi-modal: cither the analysis is precise
enough that it manipalaies only manageable scts of data, and thus
scales impressively well, or the analysis gets quickly decailed at the
first sign of imprecision and becomes arders-of-magnitude more
expensive than would be expected given the program's size, There

s, gbalats }0di.uoa.gr

of points-1o analysis is to yield usefully precise infod
sacrificing scalability: the unalysis inputs are large
algorithms are typically quadratic or cubic, but
near-lincar behavior in practice, by exploiting proj
and maintaining precision. Indeed precision and per
g0 hand-in-hand in a good points-to analysis al
algonthms are often found 1o be both more prel
because smaller points-to sets lead 10 less work [ 14)
Context-senstiiviry is a common way of pursuin)
ility in points-to analysis. It consists of quali

is currently no approach that makes precise analy-
ses (of any flavor: call-site-, object-, or type-sensitive) scale across
the board at a level 1o that of a conte i il
ysis. To address this issue, we propose introspective analysis: a
technigue for uniformly scaling context-sensitive analysis by efim-
inating its performance-detrimental behavior, at a small precision
expense. Introspective analysis consists of a common adaptivity
patern: first perform a context-insensitive analysis, then use the

ables and objects with context information; the aniy
formaticn (e.g., “what objects this method argumer]
over all possible executions that map to the samg
while separating executions that map to different
way, context-sensitivity attempts 1o avoi i
ing the behavior of different dynamic progrem
sensitivity comes in many fAsvors. depending on they
i such as call-stie-sensiriviry (22, 23). of

i precision

results to selectively refine (ie., analyze 1y) pro-
gram elements that will not canse cxplosion in the running time
or space. The technical challenge is to approprintely identify such
program elements. We show that a simple but principled approach
can be remarkably effective, achieving scalability (often with dra-
matic speedup) for b ks previousl letely out-of-reach
for deep context-seasitive analyses.

Categories and Subject Descriptors  F3.2 [Logics and Meanings
of Programs] antics of ing Languages—Program
Anulysis; D34 [Programming Languages|:  Processors
Compilers

General Terms  Algorithms, Languages, Performance

Keywords  points-to  analysis;
sensitivity; lype-sensitivity

context-sensitivity,  object-

1. Introduction

Points-to analysis is probably the most common whole-program
static analysis, and often serves as a substrate for a variety of high
level program analysis tasks. Points-1o analysis computes the set of
objects (abstracted as their allocation sites) that a program variable
may point to during runtime. The promise, as well as the challenge,
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[19. 201, and type-sensifivity [24]

An oft-remarked fact about ¢ sensitivity,
even the best algorithms have a common failure of
cannot maintain precision. Past literature repors tf
mance of a [...] deep-context analysts is bimodal”|
sensitive analyses have been associated with very I
contexts™ [15]; “algonrithms completely hit a wall
ations, with the number of tuples exploding expo
Recent published resulis [12] fail to ran a 2-object-]
sis in under 90mins for 2 of 10 DaCapo benchmark]
benchmarks take moee than 1.000sec, although m
marks of similar or larger size get analyzed in unde]

Thus, when context-sensitivity works, it work
teems of both precision and performance. When il
it fails misersbly, quickly exploding in complexy
context-insensitive analyses uniformly scale well,
pats. Figure | vividly demonstrates this phenomey
Capo benchmarks, analyzed wilh the Doop framew
context-insensitive (insens) analysis and a 2-objec
ysis with 2 context-sensitive heap (2o0bjH). (The ch
analysis ume of the longest-runaing benchmarks)
hsqgldb and jython, timed oot after 90mins on a
and would not serminate even for much longer ting
be seen, context-insensitive analyses vary relativel
formance, while context-sensitivity often canses mf
memory use) 1o explode.

Faced with this unpredictability of context-seny
mon reaction is to avosd it, favoring context-ing
ses, and, consequently, missing siguificant precis
well-behaved programs. Even worse, for some af
chewing expensive context-sensitivity is not an opy
insensitive analysis is just ool good enough. Repo
try [4] and scademic researchers [3] alike reiter:
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Data-Driven Program Analysis

MINSEOK JEON, SEHUN JEONG', SUNGDEOK CHA, and HAKJOO OHf, Korea University,
Republic of Korea

We present a new machine-learning algorithm with disjunctive model for data-driven program analysis.
One major challenge in static program analysis is a substantial amount of manual effort required for tuning
the analysis performance. Recently, data-driven program analysis has emerged to address this challenge
by automatically adjusting the analysis based on data through a learning algorithm. Although this new
approach has proven promising for various program analysis tasks, its effectiveness has been limited due
to simple-minded learning models and algorithms that are unable to capture sophisticated, in particular
disjunctive, program properties. To overcome this shortcoming, this article presents a new disjunctive model
for data-driven program analysis as well as a learning algorithm to find the model parameters. Our model uses
boolean formulas over atomic features and therefore is able to express nonlinear combinations of program
properties. Key technical challenge is efficiently determine a set of good boolean formulas as brute-force
search would simply be impractical. We present a stepwise and greedy algorithm that efficiently learns
boolean formulas. We show the effectiveness and generality of our algorithm with two static analyzers:
context-sensitive points-to analysis for Java and flow-sensitive interval analysis for C. Experimental results
show that our automated technique significantly improves the performance of the state-of-the-art techniques
including ones hand-crafted by human experts.

CCS Concepts: « Theory of computation — Program analysis; « Computing methodologies — Ma-
chine learning approaches.

Additional Key Words and Phrases: Data-driven program analysis, Static analysis, Context-sensitivity, Flow-
sensitivity

ACM Reference Format:

Minseok Jeon, Sehun Jeong, Sungdeok Cha, and Hakjoo Oh. 2017. A Machine-Learning Algorithm with
Disjunctive Model for Data-Driven Program Analysis. ACM Trans. Program. Lang. Syst. 9, 4, Article 39
(December 2017), 42 pages. hitps://doiorg/0000001.0000001

1 INTRODUCTION

One major challenge in static program analysis is a substantial amount of manual effort required
for tuning the analysis performance for real-world applications. Practical static analysis tools use a
variety of heuristics to optimize their performance. For example, context-sensitivity is essential
for analyzing object-oriented programs, as it distinguishes method’s local variables and objects in
different calling-contexts. However, applying context-sensitivity to all methods in the program
does not scale and therefore real-world static analyzers apply context-sensitivity only to profitable
methods determined by some heuristic rules [Smaragdakis et al. 2014]. Another example is a
relational analysis such as ones with Octagons [Miné 2006]. Because it is impractical to keep track
of all variable relationships in the program, static analyzers employ variable-clustering heuristics
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“We do not discuss the performance of our approach for call-site-

sensitivity since call-site-sensitivity is less important than others
- Jeon et al. [2019] | |

I

1

Pointer anal
client applications, including bug detection [3, 25,35,
compiler optimisation [6,33], and program understal
mensions of pointer analysis precision are flow-sensi
For C/C++ programs, flow-sensitivity is needed by r
For object-oriented programs, e.g., Java programs, hj
is known to deliver trackable and useful precision [17]

oriented programs, call-site-sensitivity
24,29] (among others). A k-CFA analysis represents a
call by using a sequence of & call sites (i.e., k label
site). In contrast, a k-object-sensitive analysis uses k

F labels with each denoting a new statement) as conf]

Making k-Object-Sensitive Po|
More Precise with Still k

Tian Tan', Yue Li*, and Jingling

! School of Computer Science and Engineering

? Advanced Innovation Center for Imaging Tech

Abstract, Object-sensitivity is regarded as argul
abstraction for pointer analysis in object-oriented
k-object-sej ve pointer analysis, which uses a sef
sites (as k context elements) to represent a calling
call, may end up using some context elements req
ducing a finer partition of the space of (concrete) ¢
method call. In this paper, we introdnce BEAN, af
improving the precision of any k-object-sensitive
by still using a k-limiting context abstraction, The
allocation sites that are redundant context elemd
Object. Allocation Graph (OAG), which is built b
(e.g., a context-insensitive Andersen’s analysis) pd
program and then avoid them in the subsequent k
ysis for the program. BEAN is generally more prec]
precision that is guaranteed to be as good as k-obj
have implemented BEAN as an open-source tool a
two state-of-the-art whole-program pointer analy:
ative clients (may-alias and maoy-fou-cast
nine large Java programs from the DaCapo bench
succeeded in making both analyses more precise fo
under each client at only small increases in analys]

Introduction

sis, as an enabling technology, plays a

1

There are two general approaches to achieving col
(k-CFA) [27]

Scalability-First Pointer Analys}|
Self-Tuning Context-Sensi

Pick Your Contexts Well: Understal

The Making of a Precise and Scala
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Hybrid Context-Sensitivity for PI
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Precision-Guided Context Sensitivity fq

Introspective Analysis: Context-Sensitivity, Across the

Yannis Smaragdakis

Abstract

Context-sensitivity is the primary approach for adding more preci-
sion 10 a points-to analysis, while hopefully also maintaining scal-
ubility. An oft-reported problem with context-sensitive analy
however, is that they are bi-modal: cither the analysis is precise
enough that it manipalaies only manageable scts of data, and thus
scales impressively well, or the analysis gets quickly derailed at the
first sign of imprecision and becames arders-of-magnitude more

han would be expected given the program's size. There

George Kastrinis
Department of Informatics
University of Athens
{smaragd.gkastrinis,gbalats }@di voa.gr

George Balatsouras

of points-1o analysis is to yield usefully precise info
sacrificing scalability: the unalysis inputs are large
algorithms are typically quadratic or cubic, but
near-lincar behavior in practice, by exploiting proj
and maintaining precision. Indeed precision and per
20 hand-in-hand in a good points-to analysis al
algonthms are often found 1o be both mare p
because smaller points-to sets lead 10 less work |1
Contex-senstiiviry is a common way of pursuin
ility in points-to analysis. It consists of quali

is currently no approach that makes precise analy-
ses (of any flavor: call-site-, object-, or type-sensitive) scale across
the board at a level 1o that o a ive anil-
ysis. To address this issue. we propose introspective analysis:
technigue for uniformly scaling context-sensitive analysis by efim-
inating its performance-detrimental behavior, at a small precision
expense. Introspective analysis consists of a common adaptivity
patiern: first perform a comtext-insensitive analysis, then use the

ables and objects with context information; the
formation (e.g.. “what objects this method argu:
over all possible executions that map to the samg
while separating exceutions that map to different
way, context ivity attempts 1o avoid precisi
ing the behavior of different dynamic progrem
sensitivity comes in many fsvors. depending on th
such as call-stie-sensiriviry (22, 23). of

results to selectively refine (i.e.. analyze ly) pro-
gram clements that will not cause explosion in the running time
or space. The technical challenge is to appropriately identify such
program elements. We show that a simple but principled approach
can be remarkably effective, achieving scalability (often with dra-
matic speedup) for benchmarks previously completely out-of-reach
for deep context-seasitive analyses.

Categories and Subject Descriptors  F3.2 [Logics and Meanings
of Programs]: of ing Languag: Program
Analysis, D34 [Py b L .
Compilers

General Terms  Algorithms, Languages, Performance

Keywords  points-to  analysis;
sensitivity; lype-sensitivity

contexi-sensitivity;

objest-

1. Introduction

Points-to analysis is probably the most common whole-program
static analysis, and often serves us a substrate for a variety of high-
level program analysis tasks. Points-to analysis computes the set of
objects (abstracted as their allocation sites) that a program variable
may point to during runtime. The promise, as well as the challenge,

Permission tn suike digial ar bard copies of sdl or part of this wock for pessonal or
chassroom wee is gramod without fos provided that copios are nse made o distribwted
fee prufit e commmercial advantage wnd thal copics bear this notice sl ihe ull cititio
an the firs: page. Copynghits fur compeazats of this wark owsed by others than the
smthoris) st be honeend. Ahstracting with creditis permittad, To copy otherise. or
sepubiish, 55 post o sevvers o o te distribule 10 ists. requires pelor speci e pemissin
madion 0 feo. Roquest permissions from pereissons® som orz

PLOPIA,  Jue 9-11, 2014, Edintergh, United Kirgrdom

Copyright is heid by the ownerfausborts ). Pablicarion rights lisesed 19 ACM.

ACM 97314503 2764-8/1406. . $15.00

hiip/ix ot org/10.1 142994291 2554520

[19, 201, and type-sensitivity [24]
Anoft ked fact about co S Y.
even the best algorithms have a common failure of
cannot maintain precision. Past literature reports
mance of a [...] deep-context analysts is bimodal” ,
sensitive analyses have been associated with very I8 3
contexts”™ [15]; “algorithms completely hit a wall
ations, with the number of tuples exploding expo
Recent published resulis [12] fail to run a 2-object-
sis in under 90mins for 2 of 10 DaCapo benchmar
benchmarks take moee than 1.000sec, although my
marks of similar or larger size get analyzed in undd

Thus, when contexi-sensilivity works, it worky
terms of both precision and performance. When il
it fails misersbly, quickly exploding in complexi
context-insensitive analyses uniformly scale well,
puts. Figure | vividly demonstrates this phenome
Capo benchmarks, analyzed wilh the Doop fram
context-insensitive (insens) analysis and a 2-objecl’
ysis with 2 context-sensitive heap (20bjH). (The ch
analysis ume of the longest-running benchmark:
hsqldb and jython, timed oot after 90mins on a
and would not serminate even for much longer ti
be seen, context-insensitive analyses vary relativel
formance, while context-sensitivity often canses
memory use) 10 explode.

Faced with this unpredictability of context-se
mon reaction is to avosd it, favoring context-ing
ses, and, consequently, missing siguificant precis
well-behaved programs. Even worse, for some
chewing expensive context-sensitivity is not an opf
insensitive analysis is just nol good enough. Rep
try [4] and scademic researchers [3] alike rei
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1 Context Tunneling %

Precise and Scalable Points-to Analysis via Data-Driven g

\ MINSEOK JEON, Korea University, Republic of Korea %
SEHUN JEONG, Korea University, Republic of Korea
HAKJOO OH?", Korea University, Republic of Korea

35 We present context tunneling, a new approach for making k-limited context-sensitive points-to analysis AN - pian i - e ; i g - ; o " e e ; e . | g ; - - S
, precise and scalable. As context-sensitivity holds the key to the development of precise and scalable points-to i

b " analysis, a variety of techniques for context-sensitivity have been proposed. However, existing approaches ¥ % d
such as k-call-site-sensitivity or k-object-sensitivity have a significant weakness that they unconditionally K. i

| update the context of a method at every call-site, allowing important context elements to be overwritten k3 |
I‘ by more recent, but not necessarily more important, context elements. In this paper, we show that this is a B
0 key limiting factor of existing context-sensitive analyses, and demonstrate that remarkable increase in both B ¢
3 precision and scalability can be gained by maintaining important context elements only. Our approach, called
’ context tunneling, updates contexts selectively and decides when to propagate the same context without . n I

modification.

We attain context tunneling via a data-driven approach. The effectiveness of context tunneling is very
| sensitive to the choice of important context elements. Even worse, precision is not monotonically increasing
with respect to the ordering of the choices. As a result, manually coming up with a good heuristic rule for 3
context tunneling is extremely challenging and likely fails to maximize its potential. We address this challenge >
\ by developing a specialized data-driven algorithm, which is able to automatically search for high-quality -
b | heuristics over the non-monotonic space of context tunneling.

We implemented our approach in the Doop framework and applied it to four major flavors of context-
sensitivity: call-site-sensitivity, object-sensitivity, type-sensitivity, and hybrid context-sensitivity. In all cases,
1-context-sensitive analysis with context tunneling far outperformed deeper context-sensitivity with k = 2 in
both precision and scalability.

\ CCS Concepts: «» Theory of computation — Program analysis; « Computing methodologies — Ma- 5
N chine learning approaches; L,

=
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=
A

14 Additional Key Words and Phrases: Points-to analysis, Context-sensitive analysis, Data-driven program . o i
‘S analysis X 0
ACM Reference Format: '. K ,
» Minseok Jeon, Sehun Jeong, and Hakjoo Oh. 2018. Precise and Scalable Points-to Analysis via Data-Driven 9 s
Context Tunneling. Proc. ACM Program. Lang. 2, OOPSLA, Article 140 (November 2018), 50 pages. hilps b L - - N RN FRACMRRSE INIPSRNPC S N N o > N SN s ~ AR NRASNNRSE IS A 3 "N A
//dot.org/10.1145/3276510 ; s i i s TR e ; o " " = < o N ’ < % . g . " h PEMET . h o j

*Corresponding author

Authors” addresses: Minseok Jeon, minseok_jeon@korea.ac.kr, Department of Computer Science and Engineering, Korea
University, 145, Anam-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea; Sehun Jeong, gifaranga@korea.ac.kr, Department /
\ of Computer Science and Engineering, Korea University, 145, Anam-ro, Sungbuk-gu. Seoul, 02841, Republic of Korea; 1
Hakjoo Oh, hakjoo_ch@korea.ac kr, Department of Comp Science and Engincering, Korea University, 145, Anam-ro,
Sungbuk-gu, Seoul, 02841, Republic of Korea.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
M the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. N

b Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires |

prior specific permission and/or a fee. Request permissions from permissions@acm.org. i

© 2018 Association for Computing Machinery.

2475-1421/2018/11-ART140

hittps://doi.org/10.1145/3276510 (b

— E—-I! AE = O

1981 2002 2010 2018



Return of CFA: Call-Site Sensitivity Can Be Superior to I “ L= T = }V
Object Sensitivity Even for Object-Oriented Programs Ll K4 BTl \ 9

MINSEOK JEON and HAKJOO OH?", Korea University, Republic of Korea i

In this paper, we challenge the commonly-accepted wisdom in static analysis that object sensitivity is superior
to call-site sensitivity for object-oriented programs. In static analysis of object-oriented programs, object
sensitivity has been established as the dominant flavor of context sensitivity thanks to its outstanding precision. : ‘
On the other hand, call-site sensitivity has been regarded as unsuitable and its use in practice has been 3 . /3
constantly discouraged for object-oriented programs. In this paper, however, we claim that call-site sensitivity 3 ' L 5 4
is generally a superior context abstraction because it is practically possible to transform object sensitivity into ‘ ittt

more precise call-site sensitivity. Our key insight is that the previously known superiority of object sensitivity b & ‘
holds only in the traditional k-limited setting, where the analysis is enforced to keep the most recent k context ; | | h
elements. However, it no longer holds in a recently-proposed, more general setting with context tunneling. | 3
With context tunneling, where the analysis is free to choose an arbitrary k-length subsequence of context gl

strings, we show that call-site sensitivity can simulate object sensitivity almost completely, but not vice versa. . 7 F H O O t H O t
To support the claim, we present a technique, called OBj2CFa, for transforming arbitrary context-tunneled - 7 l 7
object sensitivity into more precise, context-tunneled call-site-sensitivity. We implemented OBj2CFA in Doop ) - H A I I I _I

and used it to derive a new call-site-sensitive analysis from a state-of-the-art object-sensitive pointer analysis. S h
Experimental results confirm that the resulting call-site sensitivity outperforms object sensitivity in precision v s 3

and scalability for real-world Java programs. Remarkably, our results show that even 1-call-site sensitivity can

| (Object sensitivity) (Call-site Sensitivity)

“Since its introduction, object sensitivity has emerged as the dominant flavor of context
sensitivity for object-oriented languages.”

—Smaragdakis and Balatsouras [2015] Ty £
Context sensitivity is critically important for static program analysis of object-oriented programs. R S i e AR S il PG TR it s e i L eSS i SR ]
A context-sensitive analysis associates local variables and heap objects with context information
of method calls, computing analysis results separately for different contexts. This way, context
sens1t1v1ty prevents analys1s mformatlon from bemg merged along dlfferent call chams For object-

sensitive analys1s [Milanova et al. 2002, 2005 Smaragdakls et al. 2011] mamtams a sequence of
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36



= AotA| & A7

Exercise

class S {
Object id(0Object a) { return a; }
Object id2(0Object a) { return id(); }
Iy

class C extends S A
void funi1() {
Object al = new A1();
Object bl = id2(al);
Tr

class D extends S {
void fun2() {
Object a2 = new A2();
Object b2 = id2(a2);
+H}

- . . . =PSk=igely
@ What is the result of 1-call-site-sensitive analysis?q T © ™ &5
@ What is the result of 1-object-sensitive analysis? < & <=tot

@ Explain the strength of object-sensitivity over call-site-sensitivity. obj > call

Hakjoo Oh October 18, 2022 28 / 31
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In this paper, we challenge the commonly-accepted wisdom in static analysis that object sensitivity is superior
to call-site sensitivity for object-oriented programs. In static analysis of object-oriented programs, object
sensitivity has been established as the dominant flavor of context sensitivity thanks to its outstanding precision. : ‘
On the other hand, call-site sensitivity has been regarded as unsuitable and its use in practice has been 3 . /3
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Experimental results confirm that the resulting call-site sensitivity outperforms object sensitivity in precision v s 3

and scalability for real-world Java programs. Remarkably, our results show that even 1-call-site sensitivity can
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Call-Site vs. Object Sensitivity

* In theory, their precision is incomparable

* In practice, object sensitivity generally outperforms
call-site sensitivity for OO languages (like Java)
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Call-site vs. Object Sensitivity

* Typical example that benefits from object sensitivity:

class A:

def g(self):
return

def f (self):
return self.g()

def main () :

a

b
a .
b.f()

= A()
= A()
£ ()

//
//
//
//

11
12
13
14

// 15

f
[13]
main/ \ |9
[15]
2 T~ f /////’
[14]
1-call-site sensitivity
f J 9
P 1]
main
I U
[12] [12]

1-object sensitivity
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“We generated | call+T by applying context tunneling tol call...”
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id(v, i){
if (i > 0){
return id(y, i-1);}
return v;}

main(){
i = input();
vl =id(l,i);//A
v2 =id(2,i);//B
assert (vl !=v2);//query

]

Oj| 5| = = 124
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Marriage of Context Tunneling and Selective Context
Sensitivity in Pointer Analysis

ANONYMOUS AUTHOR(S)

In this paper, we identify a fundamental issue in the current trend of developing context sensitivity tech-
niques in pointer analysis and present a way to efficiently address it. Context sensitivity is a key factor that
significantly affects the performance of pointer analysis in object-oriented programs. In the literature, two
major refinements—context tunneling and selective context sensitivity—have been developed, where context
tunneling improves precision and selective context sensitivity enhances scalability. Though the two techniques
can be used together to maximize both precision and scalability, they have been developed independently
without considering whether individually optimized techniques will remain effective when combined. In this
work, however, we demonstrate that combining independently developed context tunneling and selective
context sensitivity techniques leads to suboptimal performance. To be an effective combination, the two
techniques must be developed together, considering their interdependencies. Developing a pair of techniques,
however, while accounting for all possible interactions is extremely challenging. To address this challenge,
we present a framework that significantly reduces the complexity of developing an effective combination
of the two techniques. Our evaluation results show that following our approach leads to the development
of an effective combination, achieving a state-of-the-art performance, that outperforms combinations of
independently developed context tunneling and selective context sensitivity techniques.

ACM Reference Format:
Anonymous Author(s). 2018. Marriage of Context Tunneling and Selective Context Sensitivity in Pointer
Analysis. . ACM 37, 4, Article 111 (August 2018), 28 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Context sensitivity plays a pivotal role in pointer analysis of object-oriented programs. It enhances
precision by distinguishing between multiple invocations of the same method based on their calling
contexts. However, tracking every possible context is impractical, leading to the widespread use
of k-limited context sensitivity. This approach retains only the k most recent context elements—
typically call sites in call-site sensitivity [Sharir and Pnueli 1981] or allocation sites in object
sensitivity [Milanova et al. 2002]. Despite its adoption, this conventional technique frequently falls
short in balancing precision and scalability in real-world applications.

Over the past decade, numerous techniques have been proposed to enhance the k-limited
approach in context-sensitive pointer analysis [He et al. 2024; Jeon et al. 2018; Jeon and Oh 2022;
Kastrinis and Smaragdakis 2013; Li et al. 2018a,b, 2020; Liang et al. 2011; Lu et al. 2021a,b; Milanova
et al. 2002; Oh et al. 2015; Smaragdakis et al. 2011, 2014; Tan et al. 2021, 2017; Zhang et al. 2014].
Two prominent approaches that excel in maximizing precision or scalability are:

o Context tunneling [Jeon et al. 2018; Jeon and Oh 2022] seeks to maximize precision while
adhering to a k-context limit. Instead of relying solely on the k most recent context elements,
it adopts a more flexible strategy by prioritizing the k most significant context elements.
Jeon and Oh [2022] demonstrated that context tunneling can markedly improve analysis

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

0004-5411/2018/8-ART111 $15.00
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* We identify a fundamental issue in the current trend of developing context
sensitivity techniques in pointer analysis and present a way to efficiently address it.
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* We present a framework that significantly reduces the complexity of
developing an effective combination of the two techniques
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Definition 7.1 (Superiority of Call-Site Sensitivity). Let P be a set of target programs. Let S be a
context-tunneling space for the target programs. We say call-site sensitivity is superior to object
sensitivity with respect to S if is always possible to simulate object sensitivity via call-site sensitivity:

VP € PNTyp € S. AT qy € S.Vk € [0, o0]. ﬁxF Leat, Ucal (more precise than) ﬁngolbcj’ Vo (5)
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Exercise

class S {
Object id(Object a) { return a; }
Object id2(0bject a) { return id(); }
}
class C extends S {
void funi() {
Object al = new A1(Q);
Object bl = id2(al);
T}
class D extends S {
void fun2() {
Object a2 = new A2();
Object b2 = id2(a2);
1}

@ What is the result of 1-call-site-sensitive analysis?%

=
L

| -call-site sensitivi
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id(v, i)
if (i > 0){
return id(v, i-1);}
return v;}

main(){
i = input();
vl =id(l,i);
v2 =id(2, i);
assert (vl !=v2);//query
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2: return id(v, i-1);}
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id(v, i){
if (i > 0){
return id(v, i-1);}
return v;}

main(){
i = input();
vl =id(l,i);
v2 =id(2, i);
assert (vl !=v2);//query
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10: }
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