
Four Forms of Polymorphism
SIGPL Summer School 2019

Giuseppe Castagna

CNRS

G. Castagna (CNRS) Four Forms of Polymorphism 1 / 192

Outline of the course

Background and Motivations
Polymorphism - Motivating Examples - A Refresher Course on Operational Semantics

Subtyping polymorphism
Simple Types - Recursive Types - Bibliography

Parametric polymorphism
Introduction - Hindley-Milner System - Inference algorithm

Ad-Hoc polymorphism
Set-theoretic types - Semantic Subtyping - Application to a language. - Adding Parametric

Polymorphism: the Types - Adding Parametric Polymorphism: the Language

Gradual Typing (dynamic type polymorphism)
Main ideas - Formal system - Algorithmic Aspects - Criteria for Gradual Typing -

Implementation issues - References

G. Castagna (CNRS) Four Forms of Polymorphism 2 / 192

Background and Motivations

G. Castagna (CNRS) Four Forms of Polymorphism 3 / 192

Outline

1 Polymorphism

2 Motivating Examples

3 A Refresher Course on Operational Semantics

G. Castagna (CNRS) Four Forms of Polymorphism 4 / 192

Outline

1 Polymorphism

2 Motivating Examples

3 A Refresher Course on Operational Semantics

G. Castagna (CNRS) Four Forms of Polymorphism 5 / 192

What is polymorphism?

Merriam-Webster Dictionary
The quality or state of existing in or assuming different forms

In computing: the capability of a programming entity to act as of being of
different types.
There exists several polymorphic programming entities:

polymorphic functions (e.g., a function of type int→int and of type
bool→bool)
polymophic data structures (e.g., a list whose elements are of any
possible type)
polymorphic classes (e.g. a class whose instances are stack of int and
stacks of bool
polymorphic operators (e.g., the symbol + to denote arithmetic sum and
string concatenation
...

In this course I focus on functions.

G. Castagna (CNRS) Four Forms of Polymorphism 6 / 192

What is polymorphism?

Merriam-Webster Dictionary
The quality or state of existing in or assuming different forms

In computing: the capability of a programming entity to act as of being of
different types.

There exists several polymorphic programming entities:
polymorphic functions (e.g., a function of type int→int and of type
bool→bool)
polymophic data structures (e.g., a list whose elements are of any
possible type)
polymorphic classes (e.g. a class whose instances are stack of int and
stacks of bool
polymorphic operators (e.g., the symbol + to denote arithmetic sum and
string concatenation
...

In this course I focus on functions.

G. Castagna (CNRS) Four Forms of Polymorphism 6 / 192

What is polymorphism?

Merriam-Webster Dictionary
The quality or state of existing in or assuming different forms

In computing: the capability of a programming entity to act as of being of
different types.
There exists several polymorphic programming entities:

polymorphic functions (e.g., a function of type int→int and of type
bool→bool)
polymophic data structures (e.g., a list whose elements are of any
possible type)
polymorphic classes (e.g. a class whose instances are stack of int and
stacks of bool
polymorphic operators (e.g., the symbol + to denote arithmetic sum and
string concatenation
...

In this course I focus on functions.

G. Castagna (CNRS) Four Forms of Polymorphism 6 / 192

What is polymorphism?

Merriam-Webster Dictionary
The quality or state of existing in or assuming different forms

In computing: the capability of a programming entity to act as of being of
different types.
There exists several polymorphic programming entities:

polymorphic functions (e.g., a function of type int→int and of type
bool→bool)
polymophic data structures (e.g., a list whose elements are of any
possible type)
polymorphic classes (e.g. a class whose instances are stack of int and
stacks of bool
polymorphic operators (e.g., the symbol + to denote arithmetic sum and
string concatenation
...

In this course I focus on functions.

G. Castagna (CNRS) Four Forms of Polymorphism 6 / 192

Polymorphic functions

Polymorphic functions
Functions that can be applied to arguments of different types

GOAL
How to define sound type system for polymorphic functions

Sound = all expressions that pass type-checking will never reduce to stuck
terms such as 3(true)

Four forms of polymorphism:
1 parametric,
2 subtyping,
3 ad-hoc,
4 dynamic

G. Castagna (CNRS) Four Forms of Polymorphism 7 / 192

Polymorphic functions

Polymorphic functions
Functions that can be applied to arguments of different types

GOAL
How to define sound type system for polymorphic functions

Sound = all expressions that pass type-checking will never reduce to stuck
terms such as 3(true)

Four forms of polymorphism:
1 parametric,
2 subtyping,
3 ad-hoc,
4 dynamic

G. Castagna (CNRS) Four Forms of Polymorphism 7 / 192

Polymorphic functions

Polymorphic functions
Functions that can be applied to arguments of different types

GOAL
How to define sound type system for polymorphic functions

Sound = all expressions that pass type-checking will never reduce to stuck
terms such as 3(true)

Four forms of polymorphism:
1 parametric,
2 subtyping,
3 ad-hoc,
4 dynamic

G. Castagna (CNRS) Four Forms of Polymorphism 7 / 192

Four kinds of polymorphism

1 Parametric polymorphism:
Functions that work with arguments of any type.

They do not inspect “parametric” arguments, they just:
either ignore them
or pass them to other polymophic functions
or return them in the result

2 Subtyping polymorphism:
Functions that work with arguments having certain properties:
They use the known properties of the arguments

3 Ad-hoc polymorphism (a.k.a. overloading):
Functions that work with arguments belonging to a specific (finite) set of
different types
They execute different code for each type of the argument

4 Dynamic/Unknow type:
Functions that make no assumption about the type of some specific
arguments
They delay the check to the type of these arguments at run-time

G. Castagna (CNRS) Four Forms of Polymorphism 8 / 192

Four kinds of polymorphism

1 Parametric polymorphism:
Functions that work with arguments of any type.
They do not inspect “parametric” arguments, they just:

either ignore them
or pass them to other polymophic functions
or return them in the result

2 Subtyping polymorphism:
Functions that work with arguments having certain properties:
They use the known properties of the arguments

3 Ad-hoc polymorphism (a.k.a. overloading):
Functions that work with arguments belonging to a specific (finite) set of
different types
They execute different code for each type of the argument

4 Dynamic/Unknow type:
Functions that make no assumption about the type of some specific
arguments
They delay the check to the type of these arguments at run-time

G. Castagna (CNRS) Four Forms of Polymorphism 8 / 192

Four kinds of polymorphism

1 Parametric polymorphism:
Functions that work with arguments of any type.
They do not inspect “parametric” arguments, they just:

either ignore them
or pass them to other polymophic functions
or return them in the result

2 Subtyping polymorphism:
Functions that work with arguments having certain properties:

They use the known properties of the arguments
3 Ad-hoc polymorphism (a.k.a. overloading):

Functions that work with arguments belonging to a specific (finite) set of
different types
They execute different code for each type of the argument

4 Dynamic/Unknow type:
Functions that make no assumption about the type of some specific
arguments
They delay the check to the type of these arguments at run-time

G. Castagna (CNRS) Four Forms of Polymorphism 8 / 192

Four kinds of polymorphism

1 Parametric polymorphism:
Functions that work with arguments of any type.
They do not inspect “parametric” arguments, they just:

either ignore them
or pass them to other polymophic functions
or return them in the result

2 Subtyping polymorphism:
Functions that work with arguments having certain properties:
They use the known properties of the arguments

3 Ad-hoc polymorphism (a.k.a. overloading):
Functions that work with arguments belonging to a specific (finite) set of
different types
They execute different code for each type of the argument

4 Dynamic/Unknow type:
Functions that make no assumption about the type of some specific
arguments
They delay the check to the type of these arguments at run-time

G. Castagna (CNRS) Four Forms of Polymorphism 8 / 192

Four kinds of polymorphism

1 Parametric polymorphism:
Functions that work with arguments of any type.
They do not inspect “parametric” arguments, they just:

either ignore them
or pass them to other polymophic functions
or return them in the result

2 Subtyping polymorphism:
Functions that work with arguments having certain properties:
They use the known properties of the arguments

3 Ad-hoc polymorphism (a.k.a. overloading):
Functions that work with arguments belonging to a specific (finite) set of
different types

They execute different code for each type of the argument
4 Dynamic/Unknow type:

Functions that make no assumption about the type of some specific
arguments
They delay the check to the type of these arguments at run-time

G. Castagna (CNRS) Four Forms of Polymorphism 8 / 192

Four kinds of polymorphism

1 Parametric polymorphism:
Functions that work with arguments of any type.
They do not inspect “parametric” arguments, they just:

either ignore them
or pass them to other polymophic functions
or return them in the result

2 Subtyping polymorphism:
Functions that work with arguments having certain properties:
They use the known properties of the arguments

3 Ad-hoc polymorphism (a.k.a. overloading):
Functions that work with arguments belonging to a specific (finite) set of
different types
They execute different code for each type of the argument

4 Dynamic/Unknow type:
Functions that make no assumption about the type of some specific
arguments
They delay the check to the type of these arguments at run-time

G. Castagna (CNRS) Four Forms of Polymorphism 8 / 192

Four kinds of polymorphism

1 Parametric polymorphism:
Functions that work with arguments of any type.
They do not inspect “parametric” arguments, they just:

either ignore them
or pass them to other polymophic functions
or return them in the result

2 Subtyping polymorphism:
Functions that work with arguments having certain properties:
They use the known properties of the arguments

3 Ad-hoc polymorphism (a.k.a. overloading):
Functions that work with arguments belonging to a specific (finite) set of
different types
They execute different code for each type of the argument

4 Dynamic/Unknow type:
Functions that make no assumption about the type of some specific
arguments

They delay the check to the type of these arguments at run-time

G. Castagna (CNRS) Four Forms of Polymorphism 8 / 192

Four kinds of polymorphism

1 Parametric polymorphism:
Functions that work with arguments of any type.
They do not inspect “parametric” arguments, they just:

either ignore them
or pass them to other polymophic functions
or return them in the result

2 Subtyping polymorphism:
Functions that work with arguments having certain properties:
They use the known properties of the arguments

3 Ad-hoc polymorphism (a.k.a. overloading):
Functions that work with arguments belonging to a specific (finite) set of
different types
They execute different code for each type of the argument

4 Dynamic/Unknow type:
Functions that make no assumption about the type of some specific
arguments
They delay the check to the type of these arguments at run-time
G. Castagna (CNRS) Four Forms of Polymorphism 8 / 192

Outline

1 Polymorphism

2 Motivating Examples

3 A Refresher Course on Operational Semantics

G. Castagna (CNRS) Four Forms of Polymorphism 9 / 192

1. Parametric polymophism

Functions that work with arguments of any type.
They do not inspect “parametric” arguments, they just:

either ignore them
or pass them to other polymophic functions
or return them in the result

function first (x , y) {
return x;

}

It can be applied to pairs of type S×T→ S and returns a result of type S,
whatever types S and T are.

Intuition
Add type variables and quantify them universally:

∀α,β . α×β→ α

G. Castagna (CNRS) Four Forms of Polymorphism 10 / 192

1. Parametric polymophism

Functions that work with arguments of any type.
They do not inspect “parametric” arguments, they just:

either ignore them
or pass them to other polymophic functions
or return them in the result

function first (x , y) {
return x;

}

It can be applied to pairs of type S×T→ S and returns a result of type S,
whatever types S and T are.

Intuition
Add type variables and quantify them universally:

∀α,β . α×β→ α

G. Castagna (CNRS) Four Forms of Polymorphism 10 / 192

2. Subtyping polymorphism

Functions that work with arguments of with certain properties: They use
the known properties of the arguments

function size (x) {
return x.length;

}

It can be applied to objects with the property lenght and return (in general) an
integer.

Intuition
Define an order relation on types and accept arguments of any subtype

{ length: number } → number

Accepts arguments of any type T≤{ length: number }
(e.g. { length: number, concat: string→string})

G. Castagna (CNRS) Four Forms of Polymorphism 11 / 192

2. Subtyping polymorphism

Functions that work with arguments of with certain properties: They use
the known properties of the arguments

function size (x) {
return x.length;

}

It can be applied to objects with the property lenght and return (in general) an
integer.

Intuition
Define an order relation on types and accept arguments of any subtype

{ length: number } → number

Accepts arguments of any type T≤{ length: number }
(e.g. { length: number, concat: string→string})

G. Castagna (CNRS) Four Forms of Polymorphism 11 / 192

Combined usage

function size (x) {
return x.length;

}

Subtyping + Parametric
Possibility two combine the two form of polymophism

∀α .{ length : α } → α

function size (x) {
if (x.length > 4) { x = setCharAt(str,4,’a’) }
return x

}

Bounded parametric
∀α≤{ length : number } . α→ α

G. Castagna (CNRS) Four Forms of Polymorphism 12 / 192

Combined usage

function size (x) {
return x.length;

}

Subtyping + Parametric
Possibility two combine the two form of polymophism

∀α .{ length : α } → α

function size (x) {
if (x.length > 4) { x = setCharAt(str,4,’a’) }
return x

}

Bounded parametric
∀α≤{ length : number } . α→ α

G. Castagna (CNRS) Four Forms of Polymorphism 12 / 192

3. Ad hoc polymorphism

Functions for arguments in a specific (finite) set of different types
They execute different code for each type of the argument

function double (x) {
(typeof(x) === "number") ? 2*x : x.concat(x)

}

If applied to an integer returns an integer, if applied to a string returns a string

Use set-theoretic types
Naive solution: union types

(number|string)→(number|string)

Better solution: intersection types
(number→number) & (string→string)

needs some form of occurrence typing

G. Castagna (CNRS) Four Forms of Polymorphism 13 / 192

3. Ad hoc polymorphism

Functions for arguments in a specific (finite) set of different types
They execute different code for each type of the argument

function double (x) {
(typeof(x) === "number") ? 2*x : x.concat(x)

}

If applied to an integer returns an integer, if applied to a string returns a string

Use set-theoretic types

Naive solution: union types
(number|string)→(number|string)

Better solution: intersection types
(number→number) & (string→string)

needs some form of occurrence typing

G. Castagna (CNRS) Four Forms of Polymorphism 13 / 192

3. Ad hoc polymorphism

Functions for arguments in a specific (finite) set of different types
They execute different code for each type of the argument

function double (x) {
(typeof(x) === "number") ? 2*x : x.concat(x)

}

If applied to an integer returns an integer, if applied to a string returns a string

Use set-theoretic types
Naive solution: union types

(number|string)→(number|string)

Better solution: intersection types
(number→number) & (string→string)

needs some form of occurrence typing

G. Castagna (CNRS) Four Forms of Polymorphism 13 / 192

3. Ad hoc polymorphism

Functions for arguments in a specific (finite) set of different types
They execute different code for each type of the argument

function double (x) {
(typeof(x) === "number") ? 2*x : x.concat(x)

}

If applied to an integer returns an integer, if applied to a string returns a string

Use set-theoretic types
Naive solution: union types

(number|string)→(number|string)

Better solution: intersection types
(number→number) & (string→string)

needs some form of occurrence typing

G. Castagna (CNRS) Four Forms of Polymorphism 13 / 192

3. Ad hoc polymorphism

Functions for arguments in a specific (finite) set of different types
They execute different code for each type of the argument

function double (x) {
(typeof(x) === "number") ? 2*x : x.concat(x)

}

If applied to an integer returns an integer, if applied to a string returns a string

Use set-theoretic types
Naive solution: union types

(number|string)→(number|string)

Better solution: intersection types
(number→number) & (string→string)

needs some form of occurrence typing

G. Castagna (CNRS) Four Forms of Polymorphism 13 / 192

3. Ad hoc polymorphism

Functions for arguments in a specific (finite) set of different types
They execute different code for each type of the argument

function double (x) {
(typeof(x) === "number") ? 2*x : x.concat(x)

}

If applied to an integer returns an integer, if applied to a string returns a string

Use set-theoretic types
Naive solution: union types

(number|string)→(number|string)

Better solution: intersection types
(number→number) & (string→string)

needs some form of occurrence typing

G. Castagna (CNRS) Four Forms of Polymorphism 13 / 192

Combined usage

function double (x) {
(typeof(x) === "number") ? 2*x : x.concat(x)

}

Set-theoretic + Subtyping

(number→number) &
((not(number) & {concat: string→string}) → string)

Actually, set-theoretic types are defined by subtyping

Set-theoretic + Parametric

∀α,β. (number→number) &
((α & not(number) & {concat: α→ β}) → β)

a sophisticated way to write bounded polymorphism and recursive types:
∀β,∀(γ≤ not(number) & µX .{concat: X → β}).

(number→number) & (γ→ β)

G. Castagna (CNRS) Four Forms of Polymorphism 14 / 192

Combined usage

function double (x) {
(typeof(x) === "number") ? 2*x : x.concat(x)

}

Set-theoretic + Subtyping

(number→number) &
((not(number) & {concat: string→string}) → string)

Actually, set-theoretic types are defined by subtyping

Set-theoretic + Parametric

∀α,β. (number→number) &
((α & not(number) & {concat: α→ β}) → β)

a sophisticated way to write bounded polymorphism and recursive types:
∀β,∀(γ≤ not(number) & µX .{concat: X → β}).

(number→number) & (γ→ β)

G. Castagna (CNRS) Four Forms of Polymorphism 14 / 192

Combined usage

function double (x) {
(typeof(x) === "number") ? 2*x : x.concat(x)

}

Set-theoretic + Subtyping

(number→number) &
((not(number) & {concat: string→string}) → string)

Actually, set-theoretic types are defined by subtyping

Set-theoretic + Parametric

∀α,β. (number→number) &
((α & not(number) & {concat: α→ β}) → β)

a sophisticated way to write bounded polymorphism and recursive types:
∀β,∀(γ≤ not(number) & µX .{concat: X → β}).

(number→number) & (γ→ β)

G. Castagna (CNRS) Four Forms of Polymorphism 14 / 192

4. Dynamic types

Functions that for some specific arguments delay the check of types at
run-time

function double (x) {
(typeof(x) === "number") ? 2*x : x.concat(x)

}

Cannot give a type to x that works with both 2*x and x.concat(x)

Solution
Add an unknown/type “???”

Develop a type theory for “???” such that:

No solution for ??? for some execution⇒ statically reject

No problem for any solution for ???⇒ statically accept, do nothing

For each possible execution there exists some solution for ???⇒ statically
accept and add run-time checks

G. Castagna (CNRS) Four Forms of Polymorphism 15 / 192

4. Dynamic types

Functions that for some specific arguments delay the check of types at
run-time

function double (x) {
(<some twisted condition >) ? 2*x : x.concat(x)

}

Cannot give a type to x that works with both 2*x and x.concat(x)

Solution
Add an unknown/type “???”

Develop a type theory for “???” such that:

No solution for ??? for some execution⇒ statically reject

No problem for any solution for ???⇒ statically accept, do nothing

For each possible execution there exists some solution for ???⇒ statically
accept and add run-time checks

G. Castagna (CNRS) Four Forms of Polymorphism 15 / 192

4. Dynamic types

Functions that for some specific arguments delay the check of types at
run-time

function double (x) {
(<some twisted condition >) ? 2*x : x.concat(x)

}

Cannot give a type to x that works with both 2*x and x.concat(x)

Solution
Add an unknown/type “???”

Develop a type theory for “???” such that:

No solution for ??? for some execution⇒ statically reject

No problem for any solution for ???⇒ statically accept, do nothing

For each possible execution there exists some solution for ???⇒ statically
accept and add run-time checks

G. Castagna (CNRS) Four Forms of Polymorphism 15 / 192

4. Dynamic types

Functions that for some specific arguments delay the check of types at
run-time

function double (x : ???) {
(<some twisted condition >) ? 2*x : x.concat(x)

}

Cannot give a type to x that works with both 2*x and x.concat(x)

Solution
Add an unknown/type “???”

Develop a type theory for “???” such that:

No solution for ??? for some execution⇒ statically reject

No problem for any solution for ???⇒ statically accept, do nothing

For each possible execution there exists some solution for ???⇒ statically
accept and add run-time checks

G. Castagna (CNRS) Four Forms of Polymorphism 15 / 192

4. Dynamic types

Functions that for some specific arguments delay the check of types at
run-time

function double (x : ???) {
(<some twisted condition >) ? 2*x : x.concat(x)

}

Cannot give a type to x that works with both 2*x and x.concat(x)

Solution
Add an unknown/type “???”

Develop a type theory for “???” such that:

No solution for ??? for some execution⇒ statically reject

No problem for any solution for ???⇒ statically accept, do nothing

For each possible execution there exists some solution for ???⇒ statically
accept and add run-time checks

G. Castagna (CNRS) Four Forms of Polymorphism 15 / 192

Reject at compile time:

function wrong (x : ???) {
return (2*x + x(2)); //cannot be a number and a function

}

Accept as is:

function ok (x : ???) {
if (typeof(x) === "number"){ return 42 } else { return x }

}

Intuitively the function has type: ??? → (number |???)

Accept and insert checks:

function double (x : ???) {
(<condition>) ? 2*x : x.concat(x)

}

Compile as

function double (x : ???) {
(<condition>) ? 2*(x〈number〉) : (x〈string〉).concat(x〈string〉)

}

G. Castagna (CNRS) Four Forms of Polymorphism 16 / 192

Reject at compile time:

function wrong (x : ???) {
return (2*x + x(2)); //cannot be a number and a function

}

Accept as is:

function ok (x : ???) {
if (typeof(x) === "number"){ return 42 } else { return x }

}

Intuitively the function has type: ??? → (number |???)

Accept and insert checks:

function double (x : ???) {
(<condition>) ? 2*x : x.concat(x)

}

Compile as

function double (x : ???) {
(<condition>) ? 2*(x〈number〉) : (x〈string〉).concat(x〈string〉)

}

G. Castagna (CNRS) Four Forms of Polymorphism 16 / 192

Reject at compile time:

function wrong (x : ???) {
return (2*x + x(2)); //cannot be a number and a function

}

Accept as is:

function ok (x : ???) {
if (typeof(x) === "number"){ return 42 } else { return x }

}

Intuitively the function has type: ??? → (number |???)

Accept and insert checks:

function double (x : ???) {
(<condition>) ? 2*x : x.concat(x)

}

Compile as

function double (x : ???) {
(<condition>) ? 2*(x〈number〉) : (x〈string〉).concat(x〈string〉)

}
G. Castagna (CNRS) Four Forms of Polymorphism 16 / 192

Combined usage: all 4 together! (OCaml style)

let mymap (condition) (f) (x : ???) =
if condition then Array.map f x else List.map f x

Type: bool→ (α→ β)→???→ ???

x can be bound to anything (though only αlist or αarray work)
no information on the type of the result (though only βlist or βarray
are possible)

let mymap (condition) (f) (x : (α array | α list) & ?) =
if condition then Array.map f x else List.map f x

Type: bool→ (α→ β)→((α array|α list) & ???)→ (β array|β list)
Compiled as:

let mymap (condition) (f) (x : (α array | α list) & ?) =
if condition then Array.map f (x〈αarray〉)
else List.map f (x〈αlist〉)

Cutting edge research: Gradual typing, a new perspective, POPL 19

G. Castagna (CNRS) Four Forms of Polymorphism 17 / 192

Combined usage: all 4 together! (OCaml style)

let mymap (condition) (f) (x : ???) =
if condition then Array.map f x else List.map f x

Type: bool→ (α→ β)→???→ ???

x can be bound to anything (though only αlist or αarray work)
no information on the type of the result (though only βlist or βarray
are possible)

let mymap (condition) (f) (x : (α array | α list) & ?) =
if condition then Array.map f x else List.map f x

Type: bool→ (α→ β)→((α array|α list) & ???)→ (β array|β list)
Compiled as:

let mymap (condition) (f) (x : (α array | α list) & ?) =
if condition then Array.map f (x〈αarray〉)
else List.map f (x〈αlist〉)

Cutting edge research: Gradual typing, a new perspective, POPL 19

G. Castagna (CNRS) Four Forms of Polymorphism 17 / 192

Combined usage: all 4 together! (OCaml style)

let mymap (condition) (f) (x : ???) =
if condition then Array.map f x else List.map f x

Type: bool→ (α→ β)→???→ ???

x can be bound to anything (though only αlist or αarray work)
no information on the type of the result (though only βlist or βarray
are possible)

let mymap (condition) (f) (x : (α array | α list) & ?) =
if condition then Array.map f x else List.map f x

Type: bool→ (α→ β)→((α array|α list) & ???)→ (β array|β list)

Compiled as:

let mymap (condition) (f) (x : (α array | α list) & ?) =
if condition then Array.map f (x〈αarray〉)
else List.map f (x〈αlist〉)

Cutting edge research: Gradual typing, a new perspective, POPL 19

G. Castagna (CNRS) Four Forms of Polymorphism 17 / 192

Combined usage: all 4 together! (OCaml style)

let mymap (condition) (f) (x : ???) =
if condition then Array.map f x else List.map f x

Type: bool→ (α→ β)→???→ ???

x can be bound to anything (though only αlist or αarray work)
no information on the type of the result (though only βlist or βarray
are possible)

let mymap (condition) (f) (x : (α array | α list) & ?) =
if condition then Array.map f x else List.map f x

Type: bool→ (α→ β)→((α array|α list) & ???)→ (β array|β list)
Compiled as:

let mymap (condition) (f) (x : (α array | α list) & ?) =
if condition then Array.map f (x〈αarray〉)
else List.map f (x〈αlist〉)

Cutting edge research: Gradual typing, a new perspective, POPL 19

G. Castagna (CNRS) Four Forms of Polymorphism 17 / 192

Combined usage: all 4 together! (OCaml style)

let mymap (condition) (f) (x : ???) =
if condition then Array.map f x else List.map f x

Type: bool→ (α→ β)→???→ ???

x can be bound to anything (though only αlist or αarray work)
no information on the type of the result (though only βlist or βarray
are possible)

let mymap (condition) (f) (x : (α array | α list) & ?) =
if condition then Array.map f x else List.map f x

Type: bool→ (α→ β)→((α array|α list) & ???)→ (β array|β list)
Compiled as:

let mymap (condition) (f) (x : (α array | α list) & ?) =
if condition then Array.map f (x〈αarray〉)
else List.map f (x〈αlist〉)

Cutting edge research: Gradual typing, a new perspective, POPL 19

G. Castagna (CNRS) Four Forms of Polymorphism 17 / 192

Outline

1 Polymorphism

2 Motivating Examples

3 A Refresher Course on Operational Semantics

G. Castagna (CNRS) Four Forms of Polymorphism 18 / 192

Syntax and small-step semantics

Syntax

Terms a,b ::= N Numeric constant
| x Variable
| ab Application
| λx .a Abstraction

Values v ::= λx .a | N

Small step semantics for strict functional languages

Evaluation Contexts E ::= [] | E a | v E

BETAv

(λx .a)v → a[v/x]

CONTEXT

a→ b

E[a]→ E[b]

G. Castagna (CNRS) Four Forms of Polymorphism 19 / 192

Syntax and small-step semantics

Syntax

Terms a,b ::= N Numeric constant
| x Variable
| ab Application
| λx .a Abstraction

Values v ::= λx .a | N

Small step semantics for strict functional languages

Evaluation Contexts E ::= [] | E a | v E

BETAv

(λx .a)v → a[v/x]

CONTEXT

a→ b

E[a]→ E[b]

G. Castagna (CNRS) Four Forms of Polymorphism 19 / 192

Strategy and big-step semantics

Characteristics of the reduction strategy

Weak reduction: We cannot reduce under λ-abstractions;

Call-by-value: In an application (λx .a)b, the argument b must be fully reduced
to a value before β-reduction can take place.

Left-most reduction: In an application ab, we must reduce a to a value first
before we can start reducing b.

Deterministic: For every term a, there is at most one b such that a→ b .

Big step semantics for strict functional languages

N⇒ N λx .a⇒ λx .a
a⇒ λx .c b⇒ v◦ c[v◦/x]⇒ v

ab⇒ v

G. Castagna (CNRS) Four Forms of Polymorphism 20 / 192

Strategy and big-step semantics

Characteristics of the reduction strategy

Weak reduction: We cannot reduce under λ-abstractions;

Call-by-value: In an application (λx .a)b, the argument b must be fully reduced
to a value before β-reduction can take place.

Left-most reduction: In an application ab, we must reduce a to a value first
before we can start reducing b.

Deterministic: For every term a, there is at most one b such that a→ b .

Big step semantics for strict functional languages

N⇒ N λx .a⇒ λx .a
a⇒ λx .c b⇒ v◦ c[v◦/x]⇒ v

ab⇒ v

G. Castagna (CNRS) Four Forms of Polymorphism 20 / 192

Interpreter

The big step semantics induces an efficient implementation
type term =

Const of int | Var of string | Lam of string * term | App of term * term

exception Error

let rec subst x v = function (* assumes v is closed *)
| Const n -> Const n
| Var y -> if x = y then v else Var y
| Lam(y, b) -> if x = y then Lam(y, b) else Lam(y, subst x v b)
| App(b, c) -> App(subst x v b, subst x v c)

let rec eval = function
| Const n -> Const n
| Var x -> raise Error
| Lam(x, a) -> Lam(x, a)
| App(a, b) ->

match eval a with
| Lam(x, c) -> let v = eval b in eval (subst x v c)
| _ -> raise Error

G. Castagna (CNRS) Four Forms of Polymorphism 21 / 192

Exercises
1 Define the small-step and big-step semantics for the call-by-name
2 Deduce from the latter the interpreter
3 Use the technique introduced for the type ’a delayed earlier in the

course to implement an interpreter with lazy evaluation.

G. Castagna (CNRS) Four Forms of Polymorphism 22 / 192

Improving implementation

Environments
Implementing textual substitution a[x/v] is inefficient. This is why
compilers and interpreters do not implement it.
Alternative: record the binding x 7→ v in an environment e

e(x) = v

e ` x ⇒ v
e ` N⇒ N e ` λx .a⇒ λx .a

e ` a⇒ λx .c e ` b⇒ v◦ e;x 7→ v◦ ` c⇒ v

e ` ab⇒ v

Giving up substitutions in favor of environments does not come for free

Lexical scoping requires careful handling of environments
let x = 1 in
let f = λy.(x+1) in
let x = "foo" in
f 2

In the environment used to evaluate f 2 the variable x is bound to 1.

G. Castagna (CNRS) Four Forms of Polymorphism 23 / 192

Improving implementation

Environments
Implementing textual substitution a[x/v] is inefficient. This is why
compilers and interpreters do not implement it.
Alternative: record the binding x 7→ v in an environment e

e(x) = v

e ` x ⇒ v
e ` N⇒ N e ` λx .a⇒ λx .a

e ` a⇒ λx .c e ` b⇒ v◦ e;x 7→ v◦ ` c⇒ v

e ` ab⇒ v

Giving up substitutions in favor of environments does not come for free

Lexical scoping requires careful handling of environments
let x = 1 in
let f = λy.(x+1) in
let x = "foo" in
f 2

In the environment used to evaluate f 2 the variable x is bound to 1.

G. Castagna (CNRS) Four Forms of Polymorphism 23 / 192

Improving implementation

Environments
Implementing textual substitution a[x/v] is inefficient. This is why
compilers and interpreters do not implement it.
Alternative: record the binding x 7→ v in an environment e

e(x) = v

e ` x ⇒ v
e ` N⇒ N e ` λx .a⇒ λx .a

e ` a⇒ λx .c e ` b⇒ v◦ e;x 7→ v◦ ` c⇒ v

e ` ab⇒ v

Giving up substitutions in favor of environments does not come for free

Lexical scoping requires careful handling of environments
let x = 1 in
let f = λy.(x+1) in
let x = "foo" in
f 2

In the environment used to evaluate f 2 the variable x is bound to 1.
G. Castagna (CNRS) Four Forms of Polymorphism 23 / 192

Exercise

Try to evaluate
let x = 1 in
let f = λy.(x+1) in
let x = "foo" in
f 2

by the big-step semantics in the previous slide,
where let x = a in b is syntactic sugar for (λx .b)a

let us outline it together

G. Castagna (CNRS) Four Forms of Polymorphism 24 / 192

Function closures

To implement lexical scoping in the presence of environments, function
abstractions λx .a must not evaluate to themselves, but to a function closure: a
pair (λx .a)[e] (ie, the function and the environment of its definition)

Big step semantics with environments and closures

Values v ::= N | (λx .a)[e]

Environments e ::= x1 7→ v1; ...;xn 7→ vn

e(x) = v

e ` x ⇒ v
e ` N⇒ N e ` λx .a⇒ (λx .a)[e]

e ` a⇒ (λx .c)[e◦] e ` b⇒ v◦ e◦;x 7→ v◦ ` c⇒ v

e ` ab⇒ v

G. Castagna (CNRS) Four Forms of Polymorphism 25 / 192

De Bruijn indexes

Identify variable not by names but by the number n of λ’s that separate the
variable from its binder in the syntax tree.

λx .(λy .y x)x is λ.(λ.01)0

n is the variable bound by the n-th enclosing λ. Environments become sequen-
ces of values, the n-th value of the sequence being the value of variable n−1.

Terms a,b ::= N | n | λ.a | ab
Values v ::= N | (λ.a)[e]
Environments e ::= v0;v1; ...;vn

e = v0; ...;vn; ...;vm

e ` n⇒ vn
e ` N⇒ N e ` λ.a⇒ (λ.a)[e]

e ` a⇒ (λ.c)[e◦] e ` b⇒ v◦ v◦;e◦ ` c⇒ v

e ` ab⇒ v

G. Castagna (CNRS) Four Forms of Polymorphism 26 / 192

The canonical, efficient interpreter

type term = Const of int | Var of int | Lam of term | App of term * term
and value = Vint of int | Vclos of term * environment
and environment = value list (* use Vec instead *)

exception Error

let rec eval e a =
match a with
| Const n -> Vint n
| Var n -> List.nth e n (* will fail for open terms *)
| Lam a -> Vclos(Lam a, e)
| App(a, b) ->

match eval e a with
| Vclos(Lam c, e’) ->

let v = eval e b in
eval (v :: e’) c

| _ -> raise Error

eval [] (App (Lam (Var 0), Const (2)));; (* (λx.x)2 → 2 *)
- : value = Vint 2

Note:To obtain improved performance one should implement environments by
persistent extensible arrays: for instance by the Vec library by Luca de Alfaro.

G. Castagna (CNRS) Four Forms of Polymorphism 27 / 192

Subtyping

G. Castagna (CNRS) Four Forms of Polymorphism 28 / 192

Outline

4 Simple Types

5 Recursive Types

6 Bibliography

G. Castagna (CNRS) Four Forms of Polymorphism 29 / 192

Outline

4 Simple Types

5 Recursive Types

6 Bibliography

G. Castagna (CNRS) Four Forms of Polymorphism 30 / 192

Simply Typed λ-calculus

Syntax

Types T ::= T → T function types
Bool | Int | Real | ... basic types

Terms a,b ::= true | false | 1 | 2 | ... constants
| x variable
| ab application
| λx :T .a abstraction

Reduction

Contexts C[] ::= [] | a[] | []a | λx :T .[]

BETA

(λx :T .a)b −→ a[b/x]

CONTEXT

a−→ b

C[a]−→ C[b]

G. Castagna (CNRS) Four Forms of Polymorphism 31 / 192

Type system

Typing

VAR

Γ ` x : Γ(x)

→INTRO

Γ,x : S ` a : T

Γ ` λx :S.a : S→ T

→ELIM

Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

(plus the typing rules for constants).

Theorem (Subject Reduction)
If Γ ` a : T and a−→∗ b, then Γ ` b : T .

We will essentially focus on the subject reduction property (a.k.a. type
preservation), though well-typed programs must also satisfy progress:

Theorem (Progress)
If ∅ ` a : T and a 6−→, then a is a value

where a value is either a constant or a lambda abstraction

v ::= λx :T .a | true | false | 1 | 2 | ...

G. Castagna (CNRS) Four Forms of Polymorphism 32 / 192

Type system

Typing

VAR

Γ ` x : Γ(x)

→INTRO

Γ,x : S ` a : T

Γ ` λx :S.a : S→ T

→ELIM

Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

(plus the typing rules for constants).

Theorem (Subject Reduction)
If Γ ` a : T and a−→∗ b, then Γ ` b : T .

We will essentially focus on the subject reduction property (a.k.a. type
preservation), though well-typed programs must also satisfy progress:

Theorem (Progress)
If ∅ ` a : T and a 6−→, then a is a value

where a value is either a constant or a lambda abstraction

v ::= λx :T .a | true | false | 1 | 2 | ...

G. Castagna (CNRS) Four Forms of Polymorphism 32 / 192

Type system

Typing

VAR

Γ ` x : Γ(x)

→INTRO

Γ,x : S ` a : T

Γ ` λx :S.a : S→ T

→ELIM

Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

(plus the typing rules for constants).

Theorem (Subject Reduction)
If Γ ` a : T and a−→∗ b, then Γ ` b : T .

We will essentially focus on the subject reduction property (a.k.a. type
preservation), though well-typed programs must also satisfy progress:

Theorem (Progress)
If ∅ ` a : T and a 6−→, then a is a value

where a value is either a constant or a lambda abstraction

v ::= λx :T .a | true | false | 1 | 2 | ...
G. Castagna (CNRS) Four Forms of Polymorphism 32 / 192

Subject Reduction + Progress = Soundness

Soundness [Wright & Felleisen 1994]
A type system is sound if every well-typed expression either diverges or
reduces to a value of type

Soundness is a corollary of subject reduction and progress

G. Castagna (CNRS) Four Forms of Polymorphism 33 / 192

Type checking algorithm

The deduction system is syntax directed and satisfies the subformula property.
As such it describes a deterministic algorithm.

let rec typecheck gamma = function
| x -> gamma(x) (* Var rule *)
| λx :T .a -> T → (typecheck (gamma, x : T) a) (* Intro rule *)
| ab -> let T1→T2 = typecheck gamma a in (* Elim rule *)

let T3 = typecheck gamma b in
if T1==T3 then T2 else fail

Exercise. Write the typecheck function for the following definitions:
type stype = Int | Bool | Arrow of stype * stype

type term =
Num of int | BVal of bool | Var of string

| Lam of string * stype * term | App of term * term

exception Error

Use List.assoc for environments.

G. Castagna (CNRS) Four Forms of Polymorphism 34 / 192

Type checking algorithm

The deduction system is syntax directed and satisfies the subformula property.
As such it describes a deterministic algorithm.

let rec typecheck gamma = function
| x -> gamma(x) (* Var rule *)
| λx :T .a -> T → (typecheck (gamma, x : T) a) (* Intro rule *)
| ab -> let T1→T2 = typecheck gamma a in (* Elim rule *)

let T3 = typecheck gamma b in
if T1==T3 then T2 else fail

Exercise. Write the typecheck function for the following definitions:
type stype = Int | Bool | Arrow of stype * stype

type term =
Num of int | BVal of bool | Var of string

| Lam of string * stype * term | App of term * term

exception Error

Use List.assoc for environments.

G. Castagna (CNRS) Four Forms of Polymorphism 34 / 192

Type checking algorithm

The deduction system is syntax directed and satisfies the subformula property.
As such it describes a deterministic algorithm.

let rec typecheck gamma = function
| x -> gamma(x) (* Var rule *)
| λx :T .a -> T → (typecheck (gamma, x : T) a) (* Intro rule *)
| ab -> let T1→T2 = typecheck gamma a in (* Elim rule *)

let T3 = typecheck gamma b in
if T1==T3 then T2 else fail

Exercise. Write the typecheck function for the following definitions:
type stype = Int | Bool | Arrow of stype * stype

type term =
Num of int | BVal of bool | Var of string

| Lam of string * stype * term | App of term * term

exception Error

Use List.assoc for environments.
G. Castagna (CNRS) Four Forms of Polymorphism 34 / 192

Subtyping

The rule for application requires the argument of the function to be exactly of
the same type as the domain of the function:

→ELIM

Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

So, for instance, we cannot:

Apply a function of type Int→ Int to an argument of type Odd even
though every odd number is an integer number, too.
If we have records, apply the function λx :{` : Int}.(3 + x .`) to a record of
type {` : Int, `′ : Bool}
If we are in OOP, send a message defined for objects of the class
Persons to an instance of the subclass Students.

Subtyping polymorphism
We need a kind of polymorphism different from the ML one (parametric
polymorphism).

G. Castagna (CNRS) Four Forms of Polymorphism 35 / 192

Subtyping

The rule for application requires the argument of the function to be exactly of
the same type as the domain of the function:

→ELIM

Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

So, for instance, we cannot:
Apply a function of type Int→ Int to an argument of type Odd even
though every odd number is an integer number, too.

If we have records, apply the function λx :{` : Int}.(3 + x .`) to a record of
type {` : Int, `′ : Bool}
If we are in OOP, send a message defined for objects of the class
Persons to an instance of the subclass Students.

Subtyping polymorphism
We need a kind of polymorphism different from the ML one (parametric
polymorphism).

G. Castagna (CNRS) Four Forms of Polymorphism 35 / 192

Subtyping

The rule for application requires the argument of the function to be exactly of
the same type as the domain of the function:

→ELIM

Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

So, for instance, we cannot:
Apply a function of type Int→ Int to an argument of type Odd even
though every odd number is an integer number, too.
If we have records, apply the function λx :{` : Int}.(3 + x .`) to a record of
type {` : Int, `′ : Bool}

If we are in OOP, send a message defined for objects of the class
Persons to an instance of the subclass Students.

Subtyping polymorphism
We need a kind of polymorphism different from the ML one (parametric
polymorphism).

G. Castagna (CNRS) Four Forms of Polymorphism 35 / 192

Subtyping

The rule for application requires the argument of the function to be exactly of
the same type as the domain of the function:

→ELIM

Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

So, for instance, we cannot:
Apply a function of type Int→ Int to an argument of type Odd even
though every odd number is an integer number, too.
If we have records, apply the function λx :{` : Int}.(3 + x .`) to a record of
type {` : Int, `′ : Bool}
If we are in OOP, send a message defined for objects of the class
Persons to an instance of the subclass Students.

Subtyping polymorphism
We need a kind of polymorphism different from the ML one (parametric
polymorphism).

G. Castagna (CNRS) Four Forms of Polymorphism 35 / 192

Subtyping

The rule for application requires the argument of the function to be exactly of
the same type as the domain of the function:

→ELIM

Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

So, for instance, we cannot:
Apply a function of type Int→ Int to an argument of type Odd even
though every odd number is an integer number, too.
If we have records, apply the function λx :{` : Int}.(3 + x .`) to a record of
type {` : Int, `′ : Bool}
If we are in OOP, send a message defined for objects of the class
Persons to an instance of the subclass Students.

Subtyping polymorphism
We need a kind of polymorphism different from the ML one (parametric
polymorphism).

G. Castagna (CNRS) Four Forms of Polymorphism 35 / 192

Subtyping relation

Define a pre-order (ie, a reflexive and transitive binary relation) ≤ on
types: ≤⊂ Types×Types (some literature uses the notation <:)

This subtyping relation has two possible interpretations:

Containment: If S ≤ T , then every value of type S is also of type T .
For instance an odd number is also an integer, a student is also a
person.
Sometimes called a “is_a” relation.

Substitutability: If S ≤ T , then every value of type S can be safely used
where a value of type T is expected.
Where “safely” means, without disrupting type preservation and
progress.

We’ll see how each interpretation has a formal counterpart.

G. Castagna (CNRS) Four Forms of Polymorphism 36 / 192

Subtyping relation

Define a pre-order (ie, a reflexive and transitive binary relation) ≤ on
types: ≤⊂ Types×Types (some literature uses the notation <:)

This subtyping relation has two possible interpretations:

Containment: If S ≤ T , then every value of type S is also of type T .
For instance an odd number is also an integer, a student is also a
person.
Sometimes called a “is_a” relation.

Substitutability: If S ≤ T , then every value of type S can be safely used
where a value of type T is expected.
Where “safely” means, without disrupting type preservation and
progress.

We’ll see how each interpretation has a formal counterpart.

G. Castagna (CNRS) Four Forms of Polymorphism 36 / 192

Subtyping relation

Define a pre-order (ie, a reflexive and transitive binary relation) ≤ on
types: ≤⊂ Types×Types (some literature uses the notation <:)

This subtyping relation has two possible interpretations:

Containment: If S ≤ T , then every value of type S is also of type T .
For instance an odd number is also an integer, a student is also a
person.
Sometimes called a “is_a” relation.

Substitutability: If S ≤ T , then every value of type S can be safely used
where a value of type T is expected.
Where “safely” means, without disrupting type preservation and
progress.

We’ll see how each interpretation has a formal counterpart.

G. Castagna (CNRS) Four Forms of Polymorphism 36 / 192

Subtyping relation

Define a pre-order (ie, a reflexive and transitive binary relation) ≤ on
types: ≤⊂ Types×Types (some literature uses the notation <:)

This subtyping relation has two possible interpretations:

Containment: If S ≤ T , then every value of type S is also of type T .
For instance an odd number is also an integer, a student is also a
person.
Sometimes called a “is_a” relation.

Substitutability: If S ≤ T , then every value of type S can be safely used
where a value of type T is expected.
Where “safely” means, without disrupting type preservation and
progress.

We’ll see how each interpretation has a formal counterpart.

G. Castagna (CNRS) Four Forms of Polymorphism 36 / 192

Subtyping relation

Define a pre-order (ie, a reflexive and transitive binary relation) ≤ on
types: ≤⊂ Types×Types (some literature uses the notation <:)

This subtyping relation has two possible interpretations:

Containment: If S ≤ T , then every value of type S is also of type T .
For instance an odd number is also an integer, a student is also a
person.
Sometimes called a “is_a” relation.

Substitutability: If S ≤ T , then every value of type S can be safely used
where a value of type T is expected.
Where “safely” means, without disrupting type preservation and
progress.

We’ll see how each interpretation has a formal counterpart.

G. Castagna (CNRS) Four Forms of Polymorphism 36 / 192

Subtyping for simply typed λ-calculus

We suppose to have a predefined preorder B ⊂ Basic×Basic for basic
types (given by the language designer).

For instance take the reflexive and transitive closure of
{(Odd,Int),(Even,Int),(Int,Real)}

To extend it to function types, we resort to the sustitutability interpretation.
We will try to deduce when we can safely replace a function of some type
by a term of a different type

G. Castagna (CNRS) Four Forms of Polymorphism 37 / 192

Subtyping for simply typed λ-calculus

We suppose to have a predefined preorder B ⊂ Basic×Basic for basic
types (given by the language designer).

For instance take the reflexive and transitive closure of
{(Odd,Int),(Even,Int),(Int,Real)}
To extend it to function types, we resort to the sustitutability interpretation.
We will try to deduce when we can safely replace a function of some type
by a term of a different type

G. Castagna (CNRS) Four Forms of Polymorphism 37 / 192

Subtyping of arrows: intuition

Problem
Determine for which type S we have S ≤ T1→ T2

Let g : S and f : T1→ T2. Let us follow the substitutability interpretation:

1 If a : T1, then we can apply f to a. If S ≤ T1→ T2, then we can apply g to
a, as well.
⇒ g is a function, therefore S = S1→ S2

2 If a : T1, then f (a) is well typed. If S1→ S2 ≤ T1→ T2, then also g(a) is
well-typed. g expects arguments of type S1 but a is of type T1

⇒ we can safely use T1 where S1 is expected, ie T1 ≤ S1
3 f (a) : T2, but since g returns results in S2, then g(a) : S2. If I use g where

f is expected, then it must be safe to use S2 results where T2 results are
expected
⇒ S2 ≤ T2 must hold.

Solution
S1→ S2 ≤ T1→ T2 ⇔ T1 ≤ S1 and S2 ≤ T2

G. Castagna (CNRS) Four Forms of Polymorphism 38 / 192

Subtyping of arrows: intuition

Problem
Determine for which type S we have S ≤ T1→ T2

Let g : S and f : T1→ T2. Let us follow the substitutability interpretation:
1 If a : T1, then we can apply f to a. If S ≤ T1→ T2, then we can apply g to

a, as well.
⇒ g is a function, therefore S = S1→ S2

2 If a : T1, then f (a) is well typed. If S1→ S2 ≤ T1→ T2, then also g(a) is
well-typed. g expects arguments of type S1 but a is of type T1

⇒ we can safely use T1 where S1 is expected, ie T1 ≤ S1
3 f (a) : T2, but since g returns results in S2, then g(a) : S2. If I use g where

f is expected, then it must be safe to use S2 results where T2 results are
expected
⇒ S2 ≤ T2 must hold.

Solution
S1→ S2 ≤ T1→ T2 ⇔ T1 ≤ S1 and S2 ≤ T2

G. Castagna (CNRS) Four Forms of Polymorphism 38 / 192

Subtyping of arrows: intuition

Problem
Determine for which type S we have S ≤ T1→ T2

Let g : S and f : T1→ T2. Let us follow the substitutability interpretation:
1 If a : T1, then we can apply f to a. If S ≤ T1→ T2, then we can apply g to

a, as well.
⇒ g is a function, therefore S = S1→ S2

2 If a : T1, then f (a) is well typed. If S1→ S2 ≤ T1→ T2, then also g(a) is
well-typed. g expects arguments of type S1 but a is of type T1

⇒ we can safely use T1 where S1 is expected, ie T1 ≤ S1

3 f (a) : T2, but since g returns results in S2, then g(a) : S2. If I use g where
f is expected, then it must be safe to use S2 results where T2 results are
expected
⇒ S2 ≤ T2 must hold.

Solution
S1→ S2 ≤ T1→ T2 ⇔ T1 ≤ S1 and S2 ≤ T2

G. Castagna (CNRS) Four Forms of Polymorphism 38 / 192

Subtyping of arrows: intuition

Problem
Determine for which type S we have S ≤ T1→ T2

Let g : S and f : T1→ T2. Let us follow the substitutability interpretation:
1 If a : T1, then we can apply f to a. If S ≤ T1→ T2, then we can apply g to

a, as well.
⇒ g is a function, therefore S = S1→ S2

2 If a : T1, then f (a) is well typed. If S1→ S2 ≤ T1→ T2, then also g(a) is
well-typed. g expects arguments of type S1 but a is of type T1

⇒ we can safely use T1 where S1 is expected, ie T1 ≤ S1
3 f (a) : T2, but since g returns results in S2, then g(a) : S2. If I use g where

f is expected, then it must be safe to use S2 results where T2 results are
expected
⇒ S2 ≤ T2 must hold.

Solution
S1→ S2 ≤ T1→ T2 ⇔ T1 ≤ S1 and S2 ≤ T2

G. Castagna (CNRS) Four Forms of Polymorphism 38 / 192

Subtyping of arrows: intuition

Problem
Determine for which type S we have S ≤ T1→ T2

Let g : S and f : T1→ T2. Let us follow the substitutability interpretation:
1 If a : T1, then we can apply f to a. If S ≤ T1→ T2, then we can apply g to

a, as well.
⇒ g is a function, therefore S = S1→ S2

2 If a : T1, then f (a) is well typed. If S1→ S2 ≤ T1→ T2, then also g(a) is
well-typed. g expects arguments of type S1 but a is of type T1

⇒ we can safely use T1 where S1 is expected, ie T1 ≤ S1
3 f (a) : T2, but since g returns results in S2, then g(a) : S2. If I use g where

f is expected, then it must be safe to use S2 results where T2 results are
expected
⇒ S2 ≤ T2 must hold.

Solution
S1→ S2 ≤ T1→ T2 ⇔ T1 ≤ S1 and S2 ≤ T2

G. Castagna (CNRS) Four Forms of Polymorphism 38 / 192

Covariance and contravariance

S1→ S2 ≤ T1→ T2 ⇔ T1 ≤ S1 and S2 ≤ T2

Notice the different orientation of containment on domains and co-domains.
We say that the type constructor→ is

covariant on codomains, since it preserves the direction of the relation;
contravariant on domains, since it reverses the direction of the relation.

Containment interpretation:
The containment interpretation yields exactly the same relation as obtained by
the substitutability interpretation. For instance a function that maps integers to
integers ...

is also a function that maps integers to reals: it returns results in Int so
they will be also in Real.
Int→Int≤ Int→Real (covariance of the codomains)
is also a function that maps odds to integers: when fed with integers it
returns integers, so will do the same when fed with odd numbers.
Int→Int≤ Odd→Int (contravariance of the codomains)

G. Castagna (CNRS) Four Forms of Polymorphism 39 / 192

Covariance and contravariance

S1→ S2 ≤ T1→ T2 ⇔ T1 ≤ S1 and S2 ≤ T2

Notice the different orientation of containment on domains and co-domains.
We say that the type constructor→ is

covariant on codomains, since it preserves the direction of the relation;
contravariant on domains, since it reverses the direction of the relation.

Containment interpretation:
The containment interpretation yields exactly the same relation as obtained by
the substitutability interpretation. For instance a function that maps integers to
integers ...

is also a function that maps integers to reals: it returns results in Int so
they will be also in Real.
Int→Int≤ Int→Real (covariance of the codomains)
is also a function that maps odds to integers: when fed with integers it
returns integers, so will do the same when fed with odd numbers.
Int→Int≤ Odd→Int (contravariance of the codomains)

G. Castagna (CNRS) Four Forms of Polymorphism 39 / 192

Covariance and contravariance

S1→ S2 ≤ T1→ T2 ⇔ T1 ≤ S1 and S2 ≤ T2

Notice the different orientation of containment on domains and co-domains.
We say that the type constructor→ is

covariant on codomains, since it preserves the direction of the relation;
contravariant on domains, since it reverses the direction of the relation.

Containment interpretation:
The containment interpretation yields exactly the same relation as obtained by
the substitutability interpretation. For instance a function that maps integers to
integers ...

is also a function that maps integers to reals: it returns results in Int so
they will be also in Real.
Int→Int≤ Int→Real (covariance of the codomains)

is also a function that maps odds to integers: when fed with integers it
returns integers, so will do the same when fed with odd numbers.
Int→Int≤ Odd→Int (contravariance of the codomains)

G. Castagna (CNRS) Four Forms of Polymorphism 39 / 192

Covariance and contravariance

S1→ S2 ≤ T1→ T2 ⇔ T1 ≤ S1 and S2 ≤ T2

Notice the different orientation of containment on domains and co-domains.
We say that the type constructor→ is

covariant on codomains, since it preserves the direction of the relation;
contravariant on domains, since it reverses the direction of the relation.

Containment interpretation:
The containment interpretation yields exactly the same relation as obtained by
the substitutability interpretation. For instance a function that maps integers to
integers ...

is also a function that maps integers to reals: it returns results in Int so
they will be also in Real.
Int→Int≤ Int→Real (covariance of the codomains)
is also a function that maps odds to integers: when fed with integers it
returns integers, so will do the same when fed with odd numbers.
Int→Int≤ Odd→Int (contravariance of the codomains)
G. Castagna (CNRS) Four Forms of Polymorphism 39 / 192

Subtyping deduction system

BASIC
(B1,B2) ∈ B

B1 ≤ B2
ARROW

T1 ≤ S1 S2 ≤ T2

S1→ S2 ≤ T1→ T2

REFL
T ≤ T

TRANS
T1 ≤ T2 T2 ≤ T3

T1 ≤ T3

How do we define an algorithm to check the subtyping relation?

Theorem (Admissibility of Refl and Trans)
In the system composed just by the rules Arrow and Basic:
1) T ≤ T is provable for all types T
2) If T1 ≤ T2 and T2 ≤ T3 are provable, so is T1 ≤ T3.

The rules Refl and Trans are admissible

G. Castagna (CNRS) Four Forms of Polymorphism 40 / 192

Subtyping deduction system

BASIC
(B1,B2) ∈ B

B1 ≤ B2
ARROW

T1 ≤ S1 S2 ≤ T2

S1→ S2 ≤ T1→ T2

REFL
T ≤ T

TRANS
T1 ≤ T2 T2 ≤ T3

T1 ≤ T3

This system is neither syntax directed nor satisfies the subformula property

How do we define an algorithm to check the subtyping relation?

Theorem (Admissibility of Refl and Trans)
In the system composed just by the rules Arrow and Basic:
1) T ≤ T is provable for all types T
2) If T1 ≤ T2 and T2 ≤ T3 are provable, so is T1 ≤ T3.

The rules Refl and Trans are admissible

G. Castagna (CNRS) Four Forms of Polymorphism 40 / 192

Subtyping deduction system

BASIC
(B1,B2) ∈ B

B1 ≤ B2
ARROW

T1 ≤ S1 S2 ≤ T2

S1→ S2 ≤ T1→ T2

REFL
T ≤ T

TRANS
T1 ≤ T2 T2 ≤ T3

T1 ≤ T3

This system is neither syntax directed nor satisfies the subformula property

How do we define an algorithm to check the subtyping relation?

Theorem (Admissibility of Refl and Trans)
In the system composed just by the rules Arrow and Basic:
1) T ≤ T is provable for all types T
2) If T1 ≤ T2 and T2 ≤ T3 are provable, so is T1 ≤ T3.

The rules Refl and Trans are admissible

G. Castagna (CNRS) Four Forms of Polymorphism 40 / 192

Subtyping deduction system

BASIC
(B1,B2) ∈ B

B1 ≤ B2
ARROW

T1 ≤ S1 S2 ≤ T2

S1→ S2 ≤ T1→ T2

How do we define an algorithm to check the subtyping relation?

Theorem (Admissibility of Refl and Trans)
In the system composed just by the rules Arrow and Basic:
1) T ≤ T is provable for all types T
2) If T1 ≤ T2 and T2 ≤ T3 are provable, so is T1 ≤ T3.

The rules Refl and Trans are admissible

G. Castagna (CNRS) Four Forms of Polymorphism 40 / 192

Subtyping deduction system

BASIC
(B1,B2) ∈ B

B1 ≤ B2
ARROW

T1 ≤ S1 S2 ≤ T2

S1→ S2 ≤ T1→ T2

These rules describe a deterministic and terminating algorithm (we say that the
system is algorithmic).

How do we define an algorithm to check the subtyping relation?

Theorem (Admissibility of Refl and Trans)
In the system composed just by the rules Arrow and Basic:
1) T ≤ T is provable for all types T
2) If T1 ≤ T2 and T2 ≤ T3 are provable, so is T1 ≤ T3.

The rules Refl and Trans are admissible

G. Castagna (CNRS) Four Forms of Polymorphism 40 / 192

Subtyping deduction system

BASIC
(B1,B2) ∈ B

B1 ≤ B2
ARROW

T1 ≤ S1 S2 ≤ T2

S1→ S2 ≤ T1→ T2

These rules describe a deterministic and terminating algorithm (we say that the
system is algorithmic).

How do we define an algorithm to check the subtyping relation?

Theorem (Admissibility of Refl and Trans)
In the system composed just by the rules Arrow and Basic:
1) T ≤ T is provable for all types T
2) If T1 ≤ T2 and T2 ≤ T3 are provable, so is T1 ≤ T3.

The rules Refl and Trans are admissible
G. Castagna (CNRS) Four Forms of Polymorphism 40 / 192

Type system

We defined the subtyping relation and we know how to decide it. How do we
use it for typing our programs?

VAR

Γ ` x : Γ(x)

→INTRO

Γ,x : S ` a : T

Γ ` λx :S.a : S→ T

→ELIM

Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

SUBSUMPTION

Γ ` a : S S ≤ T

Γ ` a : T

This corresponds to the containment relation:

if S ≤ T and a is of type S then a is also of type T

Subject reduction: If Γ ` a : T and a−→∗ b, then Γ ` b : T .
Progress property: If ∅ ` a : T and a 6−→, then a is a value

G. Castagna (CNRS) Four Forms of Polymorphism 41 / 192

Type system

We defined the subtyping relation and we know how to decide it. How do we
use it for typing our programs?

VAR

Γ ` x : Γ(x)

→INTRO

Γ,x : S ` a : T

Γ ` λx :S.a : S→ T

→ELIM

Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

SUBSUMPTION

Γ ` a : S S ≤ T

Γ ` a : T

This corresponds to the containment relation:

if S ≤ T and a is of type S then a is also of type T

Subject reduction: If Γ ` a : T and a−→∗ b, then Γ ` b : T .
Progress property: If ∅ ` a : T and a 6−→, then a is a value

G. Castagna (CNRS) Four Forms of Polymorphism 41 / 192

Type system

We defined the subtyping relation and we know how to decide it. How do we
use it for typing our programs?

VAR

Γ ` x : Γ(x)

→INTRO

Γ,x : S ` a : T

Γ ` λx :S.a : S→ T

→ELIM

Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

SUBSUMPTION

Γ ` a : S S ≤ T

Γ ` a : T

This corresponds to the containment relation:

if S ≤ T and a is of type S then a is also of type T

Subject reduction: If Γ ` a : T and a−→∗ b, then Γ ` b : T .
Progress property: If ∅ ` a : T and a 6−→, then a is a value

G. Castagna (CNRS) Four Forms of Polymorphism 41 / 192

Type system

We defined the subtyping relation and we know how to decide it. How do we
use it for typing our programs?

VAR

Γ ` x : Γ(x)

→INTRO

Γ,x : S ` a : T

Γ ` λx :S.a : S→ T

→ELIM

Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

SUBSUMPTION

Γ ` a : S S ≤ T

Γ ` a : T

This corresponds to the containment relation:

if S ≤ T and a is of type S then a is also of type T

Subject reduction: If Γ ` a : T and a−→∗ b, then Γ ` b : T .
Progress property: If ∅ ` a : T and a 6−→, then a is a value

G. Castagna (CNRS) Four Forms of Polymorphism 41 / 192

Type system

We defined the subtyping relation and we know how to decide it. How do we
use it for typing our programs?

VAR

Γ ` x : Γ(x)

→INTRO

Γ,x : S ` a : T

Γ ` λx :S.a : S→ T

→ELIM

Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

SUBSUMPTION

Γ ` a : S S ≤ T

Γ ` a : T

This corresponds to the containment relation:

if S ≤ T and a is of type S then a is also of type T

Subject reduction: If Γ ` a : T and a−→∗ b, then Γ ` b : T .
Progress property: If ∅ ` a : T and a 6−→, then a is a value

G. Castagna (CNRS) Four Forms of Polymorphism 41 / 192

Typing algorithm

VAR

Γ `A x : Γ(x)

→INTRO

Γ,x : S `A a : T

Γ `A λx :S.a : S→ T

→ELIM≤
Γ `A a : S→T Γ `A b : U U≤S

Γ `A ab : T

→ELIM

Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

SUBSUMPTION

Γ ` a : S S ≤ T

Γ ` a : T

Subsumption makes the type system non-algorithmic:

it is not syntax directed: subsumption can be applied whatever the term.

it does not satisfy the subformula property: even if we know that we have
to apply subsumption which T shall we choose?

How do we define the typechecking algorithm?

G. Castagna (CNRS) Four Forms of Polymorphism 42 / 192

Typing algorithm

VAR

Γ `A x : Γ(x)

→INTRO

Γ,x : S `A a : T

Γ `A λx :S.a : S→ T

→ELIM≤
Γ `A a : S→T Γ `A b : U U≤S

Γ `A ab : T

→ELIM

Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

SUBSUMPTION

Γ ` a : S S ≤ T

Γ ` a : T

Subsumption makes the type system non-algorithmic:

it is not syntax directed: subsumption can be applied whatever the term.

it does not satisfy the subformula property: even if we know that we have
to apply subsumption which T shall we choose?

How do we define the typechecking algorithm?

G. Castagna (CNRS) Four Forms of Polymorphism 42 / 192

Typing algorithm

VAR

Γ `A x : Γ(x)

→INTRO

Γ,x : S `A a : T

Γ `A λx :S.a : S→ T

→ELIM≤
Γ `A a : S→T Γ `A b : U U≤S

Γ `A ab : T

→ELIM

Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

SUBSUMPTION

Γ ` a : S S ≤ T

Γ ` a : T

Subsumption makes the type system non-algorithmic:

it is not syntax directed: subsumption can be applied whatever the term.

it does not satisfy the subformula property: even if we know that we have
to apply subsumption which T shall we choose?

How do we define the typechecking algorithm?

G. Castagna (CNRS) Four Forms of Polymorphism 42 / 192

Typing algorithm

VAR

Γ `A x : Γ(x)

→INTRO

Γ,x : S `A a : T

Γ `A λx :S.a : S→ T

→ELIM≤
Γ `A a : S→T Γ `A b : U U≤S

Γ `A ab : T

→ELIM

Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

SUBSUMPTION

Γ ` a : S S ≤ T

Γ ` a : T

Subsumption makes the type system non-algorithmic:

it is not syntax directed: subsumption can be applied whatever the term.

it does not satisfy the subformula property: even if we know that we have
to apply subsumption which T shall we choose?

How do we define the typechecking algorithm?

G. Castagna (CNRS) Four Forms of Polymorphism 42 / 192

Typing algorithm

VAR

Γ `A x : Γ(x)

→INTRO

Γ,x : S `A a : T

Γ `A λx :S.a : S→T

→ELIM≤
Γ `A a : S→T Γ `A b : U U≤S

Γ `A ab : T

1 The system is algorithmic: it describes a typing algorithm (exercise:
program typecheck and subtype by using the previous structures)

2 The system conforms the substitutability interpretation: we use an
expression of a subtype U where a supertype S is expected
(note “use” = elimination rule).

How do we relate the two systems?

For subtyping, admissibility ensured that the system and the algorithm prove
the same judgements. Here it is no longer true. For instance:

∅ ` λx :Int.x : Odd→ Real but ∅ 6`A λx :Int.x : Odd→ Real.
This is expected: Algorithm = one type returned for each typable term.

G. Castagna (CNRS) Four Forms of Polymorphism 43 / 192

Typing algorithm

VAR

Γ `A x : Γ(x)

→INTRO

Γ,x : S `A a : T

Γ `A λx :S.a : S→T

→ELIM≤
Γ `A a : S→T Γ `A b : U U≤S

Γ `A ab : T

1 The system is algorithmic: it describes a typing algorithm (exercise:
program typecheck and subtype by using the previous structures)

2 The system conforms the substitutability interpretation: we use an
expression of a subtype U where a supertype S is expected
(note “use” = elimination rule).

How do we relate the two systems?

For subtyping, admissibility ensured that the system and the algorithm prove
the same judgements. Here it is no longer true. For instance:

∅ ` λx :Int.x : Odd→ Real but ∅ 6`A λx :Int.x : Odd→ Real.
This is expected: Algorithm = one type returned for each typable term.

G. Castagna (CNRS) Four Forms of Polymorphism 43 / 192

Typing algorithm

VAR

Γ `A x : Γ(x)

→INTRO

Γ,x : S `A a : T

Γ `A λx :S.a : S→T

→ELIM≤
Γ `A a : S→T Γ `A b : U U≤S

Γ `A ab : T

1 The system is algorithmic: it describes a typing algorithm (exercise:
program typecheck and subtype by using the previous structures)

2 The system conforms the substitutability interpretation: we use an
expression of a subtype U where a supertype S is expected
(note “use” = elimination rule).

How do we relate the two systems?

For subtyping, admissibility ensured that the system and the algorithm prove
the same judgements. Here it is no longer true. For instance:

∅ ` λx :Int.x : Odd→ Real but ∅ 6`A λx :Int.x : Odd→ Real.

This is expected: Algorithm = one type returned for each typable term.

G. Castagna (CNRS) Four Forms of Polymorphism 43 / 192

Typing algorithm

VAR

Γ `A x : Γ(x)

→INTRO

Γ,x : S `A a : T

Γ `A λx :S.a : S→T

→ELIM≤
Γ `A a : S→T Γ `A b : U U≤S

Γ `A ab : T

1 The system is algorithmic: it describes a typing algorithm (exercise:
program typecheck and subtype by using the previous structures)

2 The system conforms the substitutability interpretation: we use an
expression of a subtype U where a supertype S is expected
(note “use” = elimination rule).

How do we relate the two systems?

For subtyping, admissibility ensured that the system and the algorithm prove
the same judgements. Here it is no longer true. For instance:

∅ ` λx :Int.x : Odd→ Real but ∅ 6`A λx :Int.x : Odd→ Real.
This is expected: Algorithm = one type returned for each typable term.

G. Castagna (CNRS) Four Forms of Polymorphism 43 / 192

Soundness and completeness of the typing algorithm

a is typable by ` ⇔ a is typable by `A

⇐ = soundness
⇒ = completeness

Theorem (Soundness)
If Γ `A a : T , then Γ ` a : T

Theorem (Completeness)
If Γ ` a : T , then Γ `A a : S with S ≤ T

G. Castagna (CNRS) Four Forms of Polymorphism 44 / 192

Soundness and completeness of the typing algorithm

a is typable by ` ⇔ a is typable by `A

⇐ = soundness
⇒ = completeness

Theorem (Soundness)
If Γ `A a : T , then Γ ` a : T

Theorem (Completeness)
If Γ ` a : T , then Γ `A a : S with S ≤ T

G. Castagna (CNRS) Four Forms of Polymorphism 44 / 192

Minimum type and soundness

Corollary (Minimum type)

If Γ `A a : T then T = min{S | Γ ` a : S}

Proof. Let S = {S | Γ ` a : S}. Soundness ensures that S is not empty.
Completeness states that T is a lower bound of S . Minimality follows by using
soundness once more.

The corollary above explains that the typing algorithm works with the minimum
types of the terms. It keeps track of the best type information available

Theorem (Algorithmic subject reduction)
If Γ `A a : T and a−→∗ b, then Γ `A b : S with S ≤ T .

The theorem above explains that the computation reduces the minimum type of
a program. As such it increases the type information about it.

G. Castagna (CNRS) Four Forms of Polymorphism 45 / 192

Minimum type and soundness

Corollary (Minimum type)

If Γ `A a : T then T = min{S | Γ ` a : S}

Proof. Let S = {S | Γ ` a : S}. Soundness ensures that S is not empty.
Completeness states that T is a lower bound of S . Minimality follows by using
soundness once more.

The corollary above explains that the typing algorithm works with the minimum
types of the terms. It keeps track of the best type information available

Theorem (Algorithmic subject reduction)
If Γ `A a : T and a−→∗ b, then Γ `A b : S with S ≤ T .

The theorem above explains that the computation reduces the minimum type of
a program. As such it increases the type information about it.

G. Castagna (CNRS) Four Forms of Polymorphism 45 / 192

Minimum type and soundness

Corollary (Minimum type)

If Γ `A a : T then T = min{S | Γ ` a : S}

Proof. Let S = {S | Γ ` a : S}. Soundness ensures that S is not empty.
Completeness states that T is a lower bound of S . Minimality follows by using
soundness once more.

The corollary above explains that the typing algorithm works with the minimum
types of the terms. It keeps track of the best type information available

Theorem (Algorithmic subject reduction)
If Γ `A a : T and a−→∗ b, then Γ `A b : S with S ≤ T .

The theorem above explains that the computation reduces the minimum type of
a program. As such it increases the type information about it.

G. Castagna (CNRS) Four Forms of Polymorphism 45 / 192

Summary for simply-typed λ-calculs + ≤
The containment interpretation of the subtyping relation corresponds to
the “logical” view of the type system embodied by subsumption.
The substitutability interpretation of the subtyping relation corresponds to
the “algorithmic” view of the type system.

To define the type system one usually starts from the “logical” system,
which is simpler since subtyping is concentrated in the subsumption rule
To implement the type system one passes to the substitutability view.
Subsumption is eliminated and the check of the subtyping relation is
distributed in the places where values are used/consumed. This in
general corresponds to embed subtype checking into elimination rules.
The obtained algorithm works on the minimum types of the logical system
Computation reduces the (algorithmic) type thus increasing type
information (the result of a computation represents the best possible type
information: it is the singleton type containing the result).
The last point makes dynamic dispatch (aka, dynamic binding)
meaningful.

G. Castagna (CNRS) Four Forms of Polymorphism 46 / 192

Summary for simply-typed λ-calculs + ≤
The containment interpretation of the subtyping relation corresponds to
the “logical” view of the type system embodied by subsumption.
The substitutability interpretation of the subtyping relation corresponds to
the “algorithmic” view of the type system.
To define the type system one usually starts from the “logical” system,
which is simpler since subtyping is concentrated in the subsumption rule
To implement the type system one passes to the substitutability view.
Subsumption is eliminated and the check of the subtyping relation is
distributed in the places where values are used/consumed. This in
general corresponds to embed subtype checking into elimination rules.

The obtained algorithm works on the minimum types of the logical system
Computation reduces the (algorithmic) type thus increasing type
information (the result of a computation represents the best possible type
information: it is the singleton type containing the result).
The last point makes dynamic dispatch (aka, dynamic binding)
meaningful.

G. Castagna (CNRS) Four Forms of Polymorphism 46 / 192

Summary for simply-typed λ-calculs + ≤
The containment interpretation of the subtyping relation corresponds to
the “logical” view of the type system embodied by subsumption.
The substitutability interpretation of the subtyping relation corresponds to
the “algorithmic” view of the type system.
To define the type system one usually starts from the “logical” system,
which is simpler since subtyping is concentrated in the subsumption rule
To implement the type system one passes to the substitutability view.
Subsumption is eliminated and the check of the subtyping relation is
distributed in the places where values are used/consumed. This in
general corresponds to embed subtype checking into elimination rules.
The obtained algorithm works on the minimum types of the logical system
Computation reduces the (algorithmic) type thus increasing type
information (the result of a computation represents the best possible type
information: it is the singleton type containing the result).
The last point makes dynamic dispatch (aka, dynamic binding)
meaningful.

G. Castagna (CNRS) Four Forms of Polymorphism 46 / 192

Products I

Syntax
Types T ::= ... | T ×T product types

Terms a,b ::= ...
| (a,a) pair
| πi(a) (i=1,2) projection

Reduction
πi((a1,a2))−→ ai (i=1,2)

Typing
×INTRO

Γ ` a1 : T1 Γ ` a2 : T2

Γ ` (a1,a2) : T1×T2

×ELIMi

Γ ` a : T1×T2

Γ ` πi(a) : Ti
(i=1,2)

G. Castagna (CNRS) Four Forms of Polymorphism 47 / 192

Products II

Subtyping
PROD

S1 ≤ T1 S2 ≤ T2

S1×S2 ≤ T1×T2

Exercise: Check whether the above rule is compatible with the containement
and/or the substitutability interpretation of the subtyping relation.

The subtyping rule above is also algorithmic. Similarly, for the typing rules there
is no need to embed subtyping in the elimination rules since πi is an operator
that works on all products, not a particular one (cf. with the application of a
function, which requires a particular domain).

Of course subject reduction and progress still hold.

Exercise: Define values and reduction contexts for this extension.

G. Castagna (CNRS) Four Forms of Polymorphism 48 / 192

Records

Up to now subtyping rules « lift » the subtyping relation B on basic types to
constructed types. But if B is the identity relation, so is the whole subtyping
relation. Record subtyping is non-trivial even when B is the identity relation.
Syntax

Types T ::= ... | {` : T , ..., ` : T} record types

Terms a,b ::= ...
| {` = a, ..., ` = a} record
| a.` field selection

Reduction
{..., ` = a, ...}.`−→ a

Typing

{}INTRO

Γ ` a1 : T1 ... Γ ` an : Tn

Γ ` {`1 = a1, ..., `n = an} : {`1 : T1, ..., `n : Tn}

{}ELIM

Γ ` a : {..., ` : T , ...}
Γ ` a.` : T

G. Castagna (CNRS) Four Forms of Polymorphism 49 / 192

Record Subtyping

To define subtyping we resort once more on the substitutability relation. A
record is “used” by selecting one of its labels.

We can replace some record by a record of different type if in the latter we can
select the same fields as in the former and their contents can substitute the
respective contents in the former.

Subtyping

RECORD

S1 ≤ T1 ... Sn ≤ Tn

{`1:S1, ..., `n:Sn, ..., `n+k :Sn+k} ≤ {`1:T1, ..., `n:Tn}

Exercise. Which are the algorithmic typing rules?

G. Castagna (CNRS) Four Forms of Polymorphism 50 / 192

Record Subtyping

To define subtyping we resort once more on the substitutability relation. A
record is “used” by selecting one of its labels.

We can replace some record by a record of different type if in the latter we can
select the same fields as in the former and their contents can substitute the
respective contents in the former.

Subtyping

RECORD

S1 ≤ T1 ... Sn ≤ Tn

{`1:S1, ..., `n:Sn, ..., `n+k :Sn+k} ≤ {`1:T1, ..., `n:Tn}

Exercise. Which are the algorithmic typing rules?

G. Castagna (CNRS) Four Forms of Polymorphism 50 / 192

Outline

4 Simple Types

5 Recursive Types

6 Bibliography

G. Castagna (CNRS) Four Forms of Polymorphism 51 / 192

Iso-recursive and Equi-recursive types

Lists are a classic example of recursive types:
X ≈ (Int×X)∨Nil

also written as µX .((Int×X)∨Nil)

Two different approaches according to whether ≈ is interpreted as an
isomorphism or an equality:
Iso-recursive types: µX .((Int×X)∨Nil) is considered isomorphic to its

one-step unfolding (Int×µX .((Int×X)∨Nil))∨Nil). Terms include a
pair of built-in coercion functions for each recursive type µX .T :

unfold :µX .T → T [µX .T/X] fold :T [µX .T/X]→ µX .T
Equi-recursive types: µX .((Int×X)∨Nil) is considered equal to its

one-step unfolding (Int×µX .((Int×X)∨Nil))∨Nil). The two types
are completely interchangeable. No support needed from terms.

Subtyping for recursive types generalizes the equi-recursive approach.
The ≈ relation corresponds to subtyping in both directions:

µX .T ≤ T [µX .T/X] T [µX .T/X]≤ µX .T

G. Castagna (CNRS) Four Forms of Polymorphism 52 / 192

Iso-recursive and Equi-recursive types

Lists are a classic example of recursive types:
X ≈ (Int×X)∨Nil

also written as µX .((Int×X)∨Nil)

Two different approaches according to whether ≈ is interpreted as an
isomorphism or an equality:
Iso-recursive types: µX .((Int×X)∨Nil) is considered isomorphic to its

one-step unfolding (Int×µX .((Int×X)∨Nil))∨Nil). Terms include a
pair of built-in coercion functions for each recursive type µX .T :

unfold :µX .T → T [µX .T/X] fold :T [µX .T/X]→ µX .T
Equi-recursive types: µX .((Int×X)∨Nil) is considered equal to its

one-step unfolding (Int×µX .((Int×X)∨Nil))∨Nil). The two types
are completely interchangeable. No support needed from terms.

Subtyping for recursive types generalizes the equi-recursive approach.
The ≈ relation corresponds to subtyping in both directions:

µX .T ≤ T [µX .T/X] T [µX .T/X]≤ µX .T

G. Castagna (CNRS) Four Forms of Polymorphism 52 / 192

Recursive types are weird

To add (equi-)recursive types you do not need to add any new term

You don’t even need to have recursion on terms:

µX .((Int×X)∨Nil)

interpret the type above as the finite lists of integers.

Then µX .(Int×X) is the empty type.

Actually if you have recursive terms and allow infinite values you can
easily jeopardize decidability of the subtyping relation (which resorts to
checking type emptiness)

This contrasts with their intuition which looks simple: we always informally
applied a rule such as:

A,X ≤ Y ` S ≤ T

A ` µX .S ≤ µY .T

G. Castagna (CNRS) Four Forms of Polymorphism 53 / 192

Recursive types are weird

To add (equi-)recursive types you do not need to add any new term

You don’t even need to have recursion on terms:

µX .((Int×X)∨Nil)

interpret the type above as the finite lists of integers.

Then µX .(Int×X) is the empty type.

Actually if you have recursive terms and allow infinite values you can
easily jeopardize decidability of the subtyping relation (which resorts to
checking type emptiness)

This contrasts with their intuition which looks simple: we always informally
applied a rule such as:

A,X ≤ Y ` S ≤ T

A ` µX .S ≤ µY .T

G. Castagna (CNRS) Four Forms of Polymorphism 53 / 192

Recursive types are weird

To add (equi-)recursive types you do not need to add any new term

You don’t even need to have recursion on terms:

µX .((Int×X)∨Nil)

interpret the type above as the finite lists of integers.

Then µX .(Int×X) is the empty type.

Actually if you have recursive terms and allow infinite values you can
easily jeopardize decidability of the subtyping relation (which resorts to
checking type emptiness)

This contrasts with their intuition which looks simple: we always informally
applied a rule such as:

A,X ≤ Y ` S ≤ T

A ` µX .S ≤ µY .T

G. Castagna (CNRS) Four Forms of Polymorphism 53 / 192

Subtyping recursive types

Syntax
Types T ::= Any top type

| T → T function types
| T ×T product types
| X type variables
| µX .T recursive types

where T is contractive, that is (two equivalent definitions):
1 T is contractive iff for every subexpression µX .µX1....µXn.S it holds

S 6= X .
2 T is contractive iff every type variable X occurring in it is separated from

its binder by a→ or a ×.

G. Castagna (CNRS) Four Forms of Polymorphism 54 / 192

Subtyping recursive types

The subtyping relation is defined COINDUCTIVELY by the rules

TOP
T ≤ Any

PROD
S1 ≤ T1 S2 ≤ T2

S1×S2 ≤ T1×T2
ARROW

T1 ≤ S1 S2 ≤ T2

S1→ S2 ≤ T1→ T2

UNFOLD LEFT
S[µX .S/X]≤ T

µX .S ≤ T
UNFOLD RIGHT

S ≤ T [µX .T/X]

S ≤ µX .T

Coinductive definition
1 Why coinduction?
2 Why no reflexivity/transitivity rules?
3 Why no rule to compare two µ-types?

Short answers (more detailed answers to come):
1 Because we compare infinite expansions
2 Because it would be unsound
3 Useless since obtained by coinduction and unfold

G. Castagna (CNRS) Four Forms of Polymorphism 55 / 192

Subtyping recursive types

The subtyping relation is defined COINDUCTIVELY by the rules

TOP
T ≤ Any

PROD
S1 ≤ T1 S2 ≤ T2

S1×S2 ≤ T1×T2
ARROW

T1 ≤ S1 S2 ≤ T2

S1→ S2 ≤ T1→ T2

UNFOLD LEFT
S[µX .S/X]≤ T

µX .S ≤ T
UNFOLD RIGHT

S ≤ T [µX .T/X]

S ≤ µX .T

Coinductive definition
1 Why coinduction?
2 Why no reflexivity/transitivity rules?
3 Why no rule to compare two µ-types?

Short answers (more detailed answers to come):
1 Because we compare infinite expansions
2 Because it would be unsound
3 Useless since obtained by coinduction and unfold

G. Castagna (CNRS) Four Forms of Polymorphism 55 / 192

Subtyping recursive types

The subtyping relation is defined COINDUCTIVELY by the rules

TOP
T ≤ Any

PROD
S1 ≤ T1 S2 ≤ T2

S1×S2 ≤ T1×T2
ARROW

T1 ≤ S1 S2 ≤ T2

S1→ S2 ≤ T1→ T2

UNFOLD LEFT
S[µX .S/X]≤ T

µX .S ≤ T
UNFOLD RIGHT

S ≤ T [µX .T/X]

S ≤ µX .T

Coinductive definition
1 Why coinduction?
2 Why no reflexivity/transitivity rules?
3 Why no rule to compare two µ-types?

Short answers (more detailed answers to come):
1 Because we compare infinite expansions
2 Because it would be unsound
3 Useless since obtained by coinduction and unfold

G. Castagna (CNRS) Four Forms of Polymorphism 55 / 192

Example of coinductive derivation

ARROW
Even≤ Int µX .Int→ X ≤ µY .Even→ Y

UNFOLD RIGHT
Int→ (µX .Int→ X)≤ Even→ (µY .Even→ Y)

UNFOLD LEFT
Int→ (µX .Int→ X)≤ µY .Even→ Y

µX .Int→ X ≤ µY .Even→ Y

Notice the use of coinduction

G. Castagna (CNRS) Four Forms of Polymorphism 56 / 192

Example of coinductive derivation

ARROW
Even≤ Int µX .Int→ X ≤ µY .Even→ Y

UNFOLD RIGHT
Int→ (µX .Int→ X)≤ Even→ (µY .Even→ Y)

UNFOLD LEFT
Int→ (µX .Int→ X)≤ µY .Even→ Y

µX .Int→ X ≤ µY .Even→ Y

Notice the use of coinduction

G. Castagna (CNRS) Four Forms of Polymorphism 56 / 192

Amadio and Cardelli’s subtyping algorithm

Let A⊂ Types×Types

A ` S ≤ T
(S,T) ∈ A

A ` S ≤ Any
(S,Any) 6∈ A

A′ ` S1 ≤ T1 A′ ` S2 ≤ T2

A ` S1×S2 ≤ T1×T2
A′ = A∪ (S1×S2,T1×T2);A 6= A′

A′ ` T1 ≤ S1 A′ ` S2 ≤ T2

A ` S1→ S2 ≤ T1→ T2
A′ = A∪ (S1→ S2,T1→ T2);A 6= A′

A′ ` S[µX .S/X]≤ T

A ` µX .S ≤ T
A′ = A∪ (µX .S,T);A 6= A′;T 6= Any

A′ ` S ≤ T [µX .T/X]

A ` S ≤ µX .T
A′ = A∪ (S,µX .T);A 6= A′;S 6= µY .U

G. Castagna (CNRS) Four Forms of Polymorphism 57 / 192

Amadio and Cardelli’s subtyping algorithm

Determinization of the rules

A ` S ≤ T
(S,T) ∈ A

A ` S ≤ Any
(S,Any) 6∈ A

A′ ` S1 ≤ T1 A′ ` S2 ≤ T2

A ` S1×S2 ≤ T1×T2
A′ = A∪ (S1×S2,T1×T2);A 6= A′

A′ ` T1 ≤ S1 A′ ` S2 ≤ T2

A ` S1→ S2 ≤ T1→ T2
A′ = A∪ (S1→ S2,T1→ T2);A 6= A′

A′ ` S[µX .S/X]≤ T

A ` µX .S ≤ T
A′ = A∪ (µX .S,T);A 6= A′;T 6= Any

A′ ` S ≤ T [µX .T/X]

A ` S ≤ µX .T
A′ = A∪ (S,µX .T);A 6= A′;S 6= µY .U

G. Castagna (CNRS) Four Forms of Polymorphism 57 / 192

Amadio and Cardelli’s subtyping algorithm

Record type to implement coinduction

A ` S ≤ T
(S,T) ∈ A

A ` S ≤ Any
(S,Any) 6∈ A

A′ ` S1 ≤ T1 A′ ` S2 ≤ T2

A ` S1×S2 ≤ T1×T2
A′ = A∪ (S1×S2,T1×T2);A 6= A′

A′ ` T1 ≤ S1 A′ ` S2 ≤ T2

A ` S1→ S2 ≤ T1→ T2
A′ = A∪ (S1→ S2,T1→ T2);A 6= A′

A′ ` S[µX .S/X]≤ T

A ` µX .S ≤ T
A′ = A∪ (µX .S,T);A 6= A′;T 6= Any

A′ ` S ≤ T [µX .T/X]

A ` S ≤ µX .T
A′ = A∪ (S,µX .T);A 6= A′;S 6= µY .U

G. Castagna (CNRS) Four Forms of Polymorphism 57 / 192

Amadio and Cardelli’s subtyping algorithm

Determinization of the rules

A ` S ≤ T
(S,T) ∈ A

A ` S ≤ Any
(S,Any) 6∈ A

A′ ` S1 ≤ T1 A′ ` S2 ≤ T2

A ` S1×S2 ≤ T1×T2
A′ = A∪ (S1×S2,T1×T2);A 6= A′

A′ ` T1 ≤ S1 A′ ` S2 ≤ T2

A ` S1→ S2 ≤ T1→ T2
A′ = A∪ (S1→ S2,T1→ T2);A 6= A′

A′ ` S[µX .S/X]≤ T

A ` µX .S ≤ T
A′ = A∪ (µX .S,T);A 6= A′;T 6= Any

A′ ` S ≤ T [µX .T/X]

A ` S ≤ µX .T
A′ = A∪ (S,µX .T);A 6= A′;S 6= µY .U

G. Castagna (CNRS) Four Forms of Polymorphism 57 / 192

Amadio and Cardelli’s subtyping algorithm

Record type to implement coinduction

A ` S ≤ T
(S,T) ∈ A

A ` S ≤ Any
(S,Any) 6∈ A

A′ ` S1 ≤ T1 A′ ` S2 ≤ T2

A ` S1×S2 ≤ T1×T2
A′ = A∪ (S1×S2,T1×T2);A 6= A′

A′ ` T1 ≤ S1 A′ ` S2 ≤ T2

A ` S1→ S2 ≤ T1→ T2
A′ = A∪ (S1→ S2,T1→ T2);A 6= A′

A′ ` S[µX .S/X]≤ T

A ` µX .S ≤ T
A′ = A∪ (µX .S,T);A 6= A′;T 6= Any

A′ ` S ≤ T [µX .T/X]

A ` S ≤ µX .T
A′ = A∪ (S,µX .T);A 6= A′;S 6= µY .U

G. Castagna (CNRS) Four Forms of Polymorphism 57 / 192

Amadio and Cardelli’s subtyping algorithm

The rest is similar

A ` S ≤ T
(S,T) ∈ A

A ` S ≤ Any
(S,Any) 6∈ A

A′ ` S1 ≤ T1 A′ ` S2 ≤ T2

A ` S1×S2 ≤ T1×T2
A′ = A∪ (S1×S2,T1×T2);A 6= A′

A′ ` T1 ≤ S1 A′ ` S2 ≤ T2

A ` S1→ S2 ≤ T1→ T2
A′ = A∪ (S1→ S2,T1→ T2);A 6= A′

A′ ` S[µX .S/X]≤ T

A ` µX .S ≤ T
A′ = A∪ (µX .S,T);A 6= A′;T 6= Any

A′ ` S ≤ T [µX .T/X]

A ` S ≤ µX .T
A′ = A∪ (S,µX .T);A 6= A′;S 6= µY .U

G. Castagna (CNRS) Four Forms of Polymorphism 57 / 192

Amadio and Cardelli’s subtyping algorithm

Let A⊂ Types×Types

A ` S ≤ T
(S,T) ∈ A

A ` S ≤ Any
(S,Any) 6∈ A

A′ ` S1 ≤ T1 A′ ` S2 ≤ T2

A ` S1×S2 ≤ T1×T2
A′ = A∪ (S1×S2,T1×T2);A 6= A′

A′ ` T1 ≤ S1 A′ ` S2 ≤ T2

A ` S1→ S2 ≤ T1→ T2
A′ = A∪ (S1→ S2,T1→ T2);A 6= A′

A′ ` S[µX .S/X]≤ T

A ` µX .S ≤ T
A′ = A∪ (µX .S,T);A 6= A′;T 6= Any

A′ ` S ≤ T [µX .T/X]

A ` S ≤ µX .T
A′ = A∪ (S,µX .T);A 6= A′;S 6= µY .U

G. Castagna (CNRS) Four Forms of Polymorphism 57 / 192

Properties

Theorem (Soundness and Completeness)
Let S and T be closed types. S ≤ T belongs the relation coinductively defined
by the rules on slide 55 if and only if ∅ ` S ≤ T is provable

To see the proof of the above theorem you can refer to the following reference
Pierce et al. Recursive types revealed, Journal of Functional Programming,
12(6):511-548, 2002.

Notice that the algorithm above is exponential. We will show how to define an
O(n2) algorithm to decide S ≤ T , where n is the total number of different
subexpressions of S ≤ T .

G. Castagna (CNRS) Four Forms of Polymorphism 58 / 192

Properties

Theorem (Soundness and Completeness)
Let S and T be closed types. S ≤ T belongs the relation coinductively defined
by the rules on slide 55 if and only if ∅ ` S ≤ T is provable

To see the proof of the above theorem you can refer to the following reference
Pierce et al. Recursive types revealed, Journal of Functional Programming,
12(6):511-548, 2002.

Notice that the algorithm above is exponential. We will show how to define an
O(n2) algorithm to decide S ≤ T , where n is the total number of different
subexpressions of S ≤ T .

G. Castagna (CNRS) Four Forms of Polymorphism 58 / 192

Properties

Theorem (Soundness and Completeness)
Let S and T be closed types. S ≤ T belongs the relation coinductively defined
by the rules on slide 55 if and only if ∅ ` S ≤ T is provable

To see the proof of the above theorem you can refer to the following reference
Pierce et al. Recursive types revealed, Journal of Functional Programming,
12(6):511-548, 2002.

Notice that the algorithm above is exponential. We will show how to define an
O(n2) algorithm to decide S ≤ T , where n is the total number of different
subexpressions of S ≤ T .

G. Castagna (CNRS) Four Forms of Polymorphism 58 / 192

Induction and coinduction

Intuition
Given a deduction system, it characterizes two possible distinct sets (of
provable judgements) according to whether an inductive or a coinductive
approach is used.

Let F be a deduction system on a universe U (i.e. a monotone function from
P (U) to P (U)). A set X ∈ P (U) is:
F -closed if it contains all the elements that can be deduced by F with

hypothesis in X .
F -consistent if every element of X can be deduced by F from other elements

in X .

Induction and coinduction
A deduction system

inductively defines the least F -closed set

coinductively defines the greatest F -consistent set

G. Castagna (CNRS) Four Forms of Polymorphism 59 / 192

Induction and coinduction

Intuition
Given a deduction system, it characterizes two possible distinct sets (of
provable judgements) according to whether an inductive or a coinductive
approach is used.

Let F be a deduction system on a universe U (i.e. a monotone function from
P (U) to P (U)). A set X ∈ P (U) is:
F -closed if it contains all the elements that can be deduced by F with

hypothesis in X .
F -consistent if every element of X can be deduced by F from other elements

in X .

Induction and coinduction
A deduction system

inductively defines the least F -closed set

coinductively defines the greatest F -consistent set

G. Castagna (CNRS) Four Forms of Polymorphism 59 / 192

Induction and coinduction

Intuition
Given a deduction system, it characterizes two possible distinct sets (of
provable judgements) according to whether an inductive or a coinductive
approach is used.

Let F be a deduction system on a universe U (i.e. a monotone function from
P (U) to P (U)). A set X ∈ P (U) is:
F -closed if it contains all the elements that can be deduced by F with

hypothesis in X .
F -consistent if every element of X can be deduced by F from other elements

in X .

Induction and coinduction
A deduction system

inductively defines the least F -closed set

coinductively defines the greatest F -consistent set

G. Castagna (CNRS) Four Forms of Polymorphism 59 / 192

Induction and coinduction

induction: start from ∅, add all the consequences of the deduction system,
and iterate.

coinduction: start from U, remove all elements that are not consequence of
other elements, and iterate.

Observation
In all the (algorithimic, ie without refl and trans) subtyping system met so far, the
two coincide. This is not true in general, due to the presence of self-justifying
sets, that is sets in which the deductions do not start just by axioms.

Example:

U = {a,b,c,d ,e, f ,g} a

b

b

c

c

a d

d

e

f

g

G. Castagna (CNRS) Four Forms of Polymorphism 60 / 192

Induction and coinduction

induction: start from ∅, add all the consequences of the deduction system,
and iterate.

coinduction: start from U, remove all elements that are not consequence of
other elements, and iterate.

Observation
In all the (algorithimic, ie without refl and trans) subtyping system met so far, the
two coincide. This is not true in general, due to the presence of self-justifying
sets, that is sets in which the deductions do not start just by axioms.

Example:

U = {a,b,c,d ,e, f ,g} a

b

b

c

c

a d

d

e

f

g

G. Castagna (CNRS) Four Forms of Polymorphism 60 / 192

Induction and coinduction

induction: start from ∅, add all the consequences of the deduction system,
and iterate.

coinduction: start from U, remove all elements that are not consequence of
other elements, and iterate.

Observation
In all the (algorithimic, ie without refl and trans) subtyping system met so far, the
two coincide. This is not true in general, due to the presence of self-justifying
sets, that is sets in which the deductions do not start just by axioms.

Example:

U = {a,b,c,d ,e, f ,g} a

b

b

c

c

a d

d

e

f

g

G. Castagna (CNRS) Four Forms of Polymorphism 60 / 192

Induction and coinduction

induction: start from ∅, add all the consequences of the deduction system,
and iterate.

coinduction: start from U, remove all elements that are not consequence of
other elements, and iterate.

Observation
In all the (algorithimic, ie without refl and trans) subtyping system met so far, the
two coincide. This is not true in general, due to the presence of self-justifying
sets, that is sets in which the deductions do not start just by axioms.

Example:

U = {a,b,c,d ,e, f ,g} a

b

b

c

c

a d

d

e

f

g

Inductively:
{}

G. Castagna (CNRS) Four Forms of Polymorphism 60 / 192

Induction and coinduction

induction: start from ∅, add all the consequences of the deduction system,
and iterate.

coinduction: start from U, remove all elements that are not consequence of
other elements, and iterate.

Observation
In all the (algorithimic, ie without refl and trans) subtyping system met so far, the
two coincide. This is not true in general, due to the presence of self-justifying
sets, that is sets in which the deductions do not start just by axioms.

Example:

U = {a,b,c,d ,e, f ,g} a

b

b

c

c

a d

d

e

f

g

Inductively:
{d}

G. Castagna (CNRS) Four Forms of Polymorphism 60 / 192

Induction and coinduction

induction: start from ∅, add all the consequences of the deduction system,
and iterate.

coinduction: start from U, remove all elements that are not consequence of
other elements, and iterate.

Observation
In all the (algorithimic, ie without refl and trans) subtyping system met so far, the
two coincide. This is not true in general, due to the presence of self-justifying
sets, that is sets in which the deductions do not start just by axioms.

Example:

U = {a,b,c,d ,e, f ,g} a

b

b

c

c

a d

d

e

f

g

Inductively:
{d ,e}

G. Castagna (CNRS) Four Forms of Polymorphism 60 / 192

Induction and coinduction

induction: start from ∅, add all the consequences of the deduction system,
and iterate.

coinduction: start from U, remove all elements that are not consequence of
other elements, and iterate.

Observation
In all the (algorithimic, ie without refl and trans) subtyping system met so far, the
two coincide. This is not true in general, due to the presence of self-justifying
sets, that is sets in which the deductions do not start just by axioms.

Example:

U = {a,b,c,d ,e, f ,g} a

b

b

c

c

a d

d

e

f

g

Inductively:
{d ,e}

G. Castagna (CNRS) Four Forms of Polymorphism 60 / 192

Induction and coinduction

induction: start from ∅, add all the consequences of the deduction system,
and iterate.

coinduction: start from U, remove all elements that are not consequence of
other elements, and iterate.

Observation
In all the (algorithimic, ie without refl and trans) subtyping system met so far, the
two coincide. This is not true in general, due to the presence of self-justifying
sets, that is sets in which the deductions do not start just by axioms.

Example:

U = {a,b,c,d ,e, f ,g} a

b

b

c

c

a d

d

e

f

g

Inductively: Coinductively:
{d ,e} {a,b,c,d ,e, f ,g}= U

G. Castagna (CNRS) Four Forms of Polymorphism 60 / 192

Induction and coinduction

induction: start from ∅, add all the consequences of the deduction system,
and iterate.

coinduction: start from U, remove all elements that are not consequence of
other elements, and iterate.

Observation
In all the (algorithimic, ie without refl and trans) subtyping system met so far, the
two coincide. This is not true in general, due to the presence of self-justifying
sets, that is sets in which the deductions do not start just by axioms.

Example:

U = {a,b,c,d ,e, f ,g} a

b

b

c

c

a d

d

e

f

g

Inductively: Coinductively:
{d ,e} {a,b,c,d ,e, f ,g}

G. Castagna (CNRS) Four Forms of Polymorphism 60 / 192

Induction and coinduction

induction: start from ∅, add all the consequences of the deduction system,
and iterate.

coinduction: start from U, remove all elements that are not consequence of
other elements, and iterate.

Observation
In all the (algorithimic, ie without refl and trans) subtyping system met so far, the
two coincide. This is not true in general, due to the presence of self-justifying
sets, that is sets in which the deductions do not start just by axioms.

Example:

U = {a,b,c,d ,e, f ,g} a

b

b

c

c

a d

d

e

f

g

Inductively: Coinductively:
{d ,e} {a,b,c,d ,e,g}

G. Castagna (CNRS) Four Forms of Polymorphism 60 / 192

Induction and coinduction

induction: start from ∅, add all the consequences of the deduction system,
and iterate.

coinduction: start from U, remove all elements that are not consequence of
other elements, and iterate.

Observation
In all the (algorithimic, ie without refl and trans) subtyping system met so far, the
two coincide. This is not true in general, due to the presence of self-justifying
sets, that is sets in which the deductions do not start just by axioms.

Example:

U = {a,b,c,d ,e, f ,g} a

b

b

c

c

a d

d

e

f

g

Inductively: Coinductively:
{d ,e} {a,b,c,d ,e,g}

G. Castagna (CNRS) Four Forms of Polymorphism 60 / 192

Induction and coinduction

induction: start from ∅, add all the consequences of the deduction system,
and iterate.

coinduction: start from U, remove all elements that are not consequence of
other elements, and iterate.

Observation
In all the (algorithimic, ie without refl and trans) subtyping system met so far, the
two coincide. This is not true in general, due to the presence of self-justifying
sets, that is sets in which the deductions do not start just by axioms.

Example:

U = {a,b,c,d ,e, f ,g} a

b

b

c

c

a d

d

e

f

g

Inductively: Coinductively:
{d ,e} {a,b,c,d ,e}

G. Castagna (CNRS) Four Forms of Polymorphism 60 / 192

Induction and coinduction

induction: start from ∅, add all the consequences of the deduction system,
and iterate.

coinduction: start from U, remove all elements that are not consequence of
other elements, and iterate.

Observation
In all the (algorithimic, ie without refl and trans) subtyping system met so far, the
two coincide. This is not true in general, due to the presence of self-justifying
sets, that is sets in which the deductions do not start just by axioms.

Example:

U = {a,b,c,d ,e, f ,g} a

b

b

c

c

a d

d

e

f

g

Inductively: Coinductively: Self-justifying set:
{d ,e} {a,b,c,d ,e} {a,b,c}

G. Castagna (CNRS) Four Forms of Polymorphism 60 / 192

Exercises

1 Let U = Z and take as deduction system all the instances of the rule

n

n + 1

for n ∈ Z. Which are the sets inductively and coinductively defined by it?
2 Same question but with U = N.
3 Same question but with U = N2 and as deduction system all the rules

instance of
(m,n) (n,o)

(m,o)

for m,n,o ∈ N

G. Castagna (CNRS) Four Forms of Polymorphism 61 / 192

Why Coinduction for Recursive types?

We want to use S = µX .Int→ X where T = µY .Even→ Y is expected.

Use the substitutability interpretation.
Let e : T then e:

1 waits for an Even number,
2 fed by an Even number returns a function that behaves similarly: (1) wait

for an Even ...
Now consider f : S, then f :

1 waits for an Int number,
2 fed by an Int (or a Even) number returns a function that behaves

similarly: (1) wait for ...

S and T are in subtyping relation because
their infinite expansions are in subtyping relation.

S ≤ T =⇒ Int→ S ≤ Even→ T =⇒ S ≤ T ∧Even≤ Int

G. Castagna (CNRS) Four Forms of Polymorphism 62 / 192

Why Coinduction for Recursive types?

We want to use S = µX .Int→ X where T = µY .Even→ Y is expected.

Use the substitutability interpretation.
Let e : T then e:

1 waits for an Even number,
2 fed by an Even number returns a function that behaves similarly: (1) wait

for an Even ...

Now consider f : S, then f :
1 waits for an Int number,
2 fed by an Int (or a Even) number returns a function that behaves

similarly: (1) wait for ...

S and T are in subtyping relation because
their infinite expansions are in subtyping relation.

S ≤ T =⇒ Int→ S ≤ Even→ T =⇒ S ≤ T ∧Even≤ Int

G. Castagna (CNRS) Four Forms of Polymorphism 62 / 192

Why Coinduction for Recursive types?

We want to use S = µX .Int→ X where T = µY .Even→ Y is expected.

Use the substitutability interpretation.
Let e : T then e:

1 waits for an Even number,
2 fed by an Even number returns a function that behaves similarly: (1) wait

for an Even ...
Now consider f : S, then f :

1 waits for an Int number,
2 fed by an Int (or a Even) number returns a function that behaves

similarly: (1) wait for ...

S and T are in subtyping relation because
their infinite expansions are in subtyping relation.

S ≤ T =⇒ Int→ S ≤ Even→ T =⇒ S ≤ T ∧Even≤ Int

G. Castagna (CNRS) Four Forms of Polymorphism 62 / 192

Why Coinduction for Recursive types?

We want to use S = µX .Int→ X where T = µY .Even→ Y is expected.

Use the substitutability interpretation.
Let e : T then e:

1 waits for an Even number,
2 fed by an Even number returns a function that behaves similarly: (1) wait

for an Even ...
Now consider f : S, then f :

1 waits for an Int number,
2 fed by an Int (or a Even) number returns a function that behaves

similarly: (1) wait for ...

S and T are in subtyping relation because
their infinite expansions are in subtyping relation.

S ≤ T =⇒ Int→ S ≤ Even→ T =⇒ S ≤ T ∧Even≤ Int

G. Castagna (CNRS) Four Forms of Polymorphism 62 / 192

This is exactly the proof we saw at the beginning:

ARROW
Even≤ Int

S︷ ︸︸ ︷
µX .Int→ X ≤

T︷ ︸︸ ︷
µY .Even→ Y

UNFOLD RIGHT
Int→ (µX .Int→ X)≤ Even→ (µY .Even→ Y)

UNFOLD LEFT
Int→ (µX .Int→ X)≤ µY .Even→ Y

µX .Int→ X︸ ︷︷ ︸
S

≤ µY .Even→ Y︸ ︷︷ ︸
T

Coinduction
S ≤ T is not an axiom but {S ≤ T , Even≤ Int} is a self-justifying set.

Observation:
1 The deduction above shows why a specific rule for µ is useless (apply

consecutively the two unfold rules).
2 If we added reflexivity and/or transitivity rules, then U would be

F -consistent (cf. the third exercise on slide 61).

G. Castagna (CNRS) Four Forms of Polymorphism 63 / 192

This is exactly the proof we saw at the beginning:

ARROW
Even≤ Int

S︷ ︸︸ ︷
µX .Int→ X ≤

T︷ ︸︸ ︷
µY .Even→ Y

UNFOLD RIGHT
Int→ (µX .Int→ X)≤ Even→ (µY .Even→ Y)

UNFOLD LEFT
Int→ (µX .Int→ X)≤ µY .Even→ Y

µX .Int→ X︸ ︷︷ ︸
S

≤ µY .Even→ Y︸ ︷︷ ︸
T

Coinduction
S ≤ T is not an axiom but {S ≤ T , Even≤ Int} is a self-justifying set.

Observation:
1 The deduction above shows why a specific rule for µ is useless (apply

consecutively the two unfold rules).
2 If we added reflexivity and/or transitivity rules, then U would be

F -consistent (cf. the third exercise on slide 61).

G. Castagna (CNRS) Four Forms of Polymorphism 63 / 192

This is exactly the proof we saw at the beginning:

ARROW
Even≤ Int

S︷ ︸︸ ︷
µX .Int→ X ≤

T︷ ︸︸ ︷
µY .Even→ Y

UNFOLD RIGHT
Int→ (µX .Int→ X)≤ Even→ (µY .Even→ Y)

UNFOLD LEFT
Int→ (µX .Int→ X)≤ µY .Even→ Y

µX .Int→ X︸ ︷︷ ︸
S

≤ µY .Even→ Y︸ ︷︷ ︸
T

Coinduction
S ≤ T is not an axiom but {S ≤ T , Even≤ Int} is a self-justifying set.

Observation:
1 The deduction above shows why a specific rule for µ is useless (apply

consecutively the two unfold rules).
2 If we added reflexivity and/or transitivity rules, then U would be

F -consistent (cf. the third exercise on slide 61).

G. Castagna (CNRS) Four Forms of Polymorphism 63 / 192

A naive implementation of the Amadio-Cardelli algorithm is exponential (why?).
If we “thread” the computation of the memoization environments we obtain a
quadratic complexity. This is done as follows:

subtype(A,S,T) = if (S,T) ∈ A then A else

let A0 = A∪{(S,T)} in

if T = Any then A0

else if S = S1×S2 and T = T1×T2 then

subtype(subtype(A0,S1,T1),S2,T2)

else if S = S1→ S2 and T = T1→ T2 then

subtype(subtype(A0,T1,S1),S2,T2)

else if T = µX .T1 then

subtype(A0,S,T1[µX .T1/X])

else if S = µX .S1 then

subtype(A0,S1[µX .S1/X],T)

else fail

G. Castagna (CNRS) Four Forms of Polymorphism 64 / 192

A naive implementation of the Amadio-Cardelli algorithm is exponential (why?).
If we “thread” the computation of the memoization environments we obtain a
quadratic complexity. This is done as follows:

subtype(A,S,T) = if (S,T) ∈ A then A else

let A0 = A∪{(S,T)} in

if T = Any then A0

else if S = S1×S2 and T = T1×T2 then

subtype(subtype(A0,S1,T1),S2,T2)

else if S = S1→ S2 and T = T1→ T2 then

subtype(subtype(A0,T1,S1),S2,T2)

else if T = µX .T1 then

subtype(A0,S,T1[µX .T1/X])

else if S = µX .S1 then

subtype(A0,S1[µX .S1/X],T)

else fail

G. Castagna (CNRS) Four Forms of Polymorphism 64 / 192

A naive implementation of the Amadio-Cardelli algorithm is exponential (why?).
If we “thread” the computation of the memoization environments we obtain a
quadratic complexity. This is done as follows:

subtype(A,S,T) = if (S,T) ∈ A then A else

let A0 = A∪{(S,T)} in

if T = Any then A0

else if S = S1×S2 and T = T1×T2 then

subtype(subtype(A0,S1,T1),S2,T2)

else if S = S1→ S2 and T = T1→ T2 then

subtype(subtype(A0,T1,S1),S2,T2)

else if T = µX .T1 then

subtype(A0,S,T1[µX .T1/X])

else if S = µX .S1 then

subtype(A0,S1[µX .S1/X],T)

else fail

G. Castagna (CNRS) Four Forms of Polymorphism 64 / 192

A naive implementation of the Amadio-Cardelli algorithm is exponential (why?).
If we “thread” the computation of the memoization environments we obtain a
quadratic complexity. This is done as follows:

subtype(A,S,T) = if (S,T) ∈ A then A else

let A0 = A∪{(S,T)} in

if T = Any then A0

else if S = S1×S2 and T = T1×T2 then

subtype(subtype(A0,S1,T1),S2,T2)

else if S = S1→ S2 and T = T1→ T2 then

subtype(subtype(A0,T1,S1),S2,T2)

else if T = µX .T1 then

subtype(A0,S,T1[µX .T1/X])

else if S = µX .S1 then

subtype(A0,S1[µX .S1/X],T)

else fail

G. Castagna (CNRS) Four Forms of Polymorphism 64 / 192

A naive implementation of the Amadio-Cardelli algorithm is exponential (why?).
If we “thread” the computation of the memoization environments we obtain a
quadratic complexity. This is done as follows:

subtype(A,S,T) = if (S,T) ∈ A then A else

let A0 = A∪{(S,T)} in

if T = Any then A0

else if S = S1×S2 and T = T1×T2 then

subtype(subtype(A0,S1,T1),S2,T2)

else if S = S1→ S2 and T = T1→ T2 then

subtype(subtype(A0,T1,S1),S2,T2)

else if T = µX .T1 then

subtype(A0,S,T1[µX .T1/X])

else if S = µX .S1 then

subtype(A0,S1[µX .S1/X],T)

else fail

G. Castagna (CNRS) Four Forms of Polymorphism 64 / 192

A naive implementation of the Amadio-Cardelli algorithm is exponential (why?).
If we “thread” the computation of the memoization environments we obtain a
quadratic complexity. This is done as follows:

subtype(A,S,T) = if (S,T) ∈ A then A else

let A0 = A∪{(S,T)} in

if T = Any then A0

else if S = S1×S2 and T = T1×T2 then

subtype(subtype(A0,S1,T1),S2,T2)

else if S = S1→ S2 and T = T1→ T2 then

subtype(subtype(A0,T1,S1),S2,T2)

else if T = µX .T1 then

subtype(A0,S,T1[µX .T1/X])

else if S = µX .S1 then

subtype(A0,S1[µX .S1/X],T)

else fail

G. Castagna (CNRS) Four Forms of Polymorphism 64 / 192

A naive implementation of the Amadio-Cardelli algorithm is exponential (why?).
If we “thread” the computation of the memoization environments we obtain a
quadratic complexity. This is done as follows:

subtype(A,S,T) = if (S,T) ∈ A then A else

let A0 = A∪{(S,T)} in

if T = Any then A0

else if S = S1×S2 and T = T1×T2 then

subtype(subtype(A0,S1,T1),S2,T2)

else if S = S1→ S2 and T = T1→ T2 then

subtype(subtype(A0,T1,S1),S2,T2)

else if T = µX .T1 then

subtype(A0,S,T1[µX .T1/X])

else if S = µX .S1 then

subtype(A0,S1[µX .S1/X],T)

else fail

G. Castagna (CNRS) Four Forms of Polymorphism 64 / 192

A naive implementation of the Amadio-Cardelli algorithm is exponential (why?).
If we “thread” the computation of the memoization environments we obtain a
quadratic complexity. This is done as follows:

subtype(A,S,T) = if (S,T) ∈ A then A else

let A0 = A∪{(S,T)} in

if T = Any then A0

else if S = S1×S2 and T = T1×T2 then

subtype(subtype(A0,S1,T1),S2,T2)

else if S = S1→ S2 and T = T1→ T2 then

subtype(subtype(A0,T1,S1),S2,T2)

else if T = µX .T1 then

subtype(A0,S,T1[µX .T1/X])

else if S = µX .S1 then

subtype(A0,S1[µX .S1/X],T)

else fail
G. Castagna (CNRS) Four Forms of Polymorphism 64 / 192

Compare the previous algorithm with the Amadio-Cardelli algorithm:

A ` S ≤ T
(S,T) ∈ A

A ` S ≤ Any
(S,Any) 6∈ A

A′ ` S1 ≤ T1 A′ ` S2 ≤ T2

A ` S1×S2 ≤ T1×T2
A′ = A∪ (S1×S2,T1×T2);A 6= A′

A′ ` T1 ≤ S1 A′ ` S2 ≤ T2

A ` S1→ S2 ≤ T1→ T2
A′ = A∪ (S1→ S2,T1→ T2);A 6= A′

A′ ` S[µX .S/X]≤ T

A ` µX .S ≤ T
A′ = A∪ (µX .S,T);A 6= A′;T 6= Any

A′ ` S ≤ T [µX .T/X]

A ` S ≤ µX .T
A′ = A∪ (S,µX .T);A 6= A′;S 6= µY .U

G. Castagna (CNRS) Four Forms of Polymorphism 65 / 192

They both check containment in the relation coinductively defined by:

TOP
T ≤ Any

PROD
S1 ≤ T1 S2 ≤ T2

S1×S2 ≤ T1×T2
ARROW

T1 ≤ S1 S2 ≤ T2

S1→ S2 ≤ T1→ T2

UNFOLD LEFT
S[µX .S/X]≤ T

µX .S ≤ T
UNFOLD RIGHT

S ≤ T [µX .T/X]

S ≤ µX .T

But the former is far more efficient.

G. Castagna (CNRS) Four Forms of Polymorphism 66 / 192

Outline

4 Simple Types

5 Recursive Types

6 Bibliography

G. Castagna (CNRS) Four Forms of Polymorphism 67 / 192

References

R. Amadio and L. Cardelli. Subtyping recursive types. ACM Transactions
on Programming Languages and Systems, 14(4):575-631, 1993.

Pierce et al. Recursive types revealed, Journal of Functional
Programming, 12(6):511-548, 2002.

G. Castagna (CNRS) Four Forms of Polymorphism 68 / 192

Parametric polymorphism

G. Castagna (CNRS) Four Forms of Polymorphism 69 / 192

Outline

7 Introduction

8 Hindley-Milner System

9 Inference algorithm

G. Castagna (CNRS) Four Forms of Polymorphism 70 / 192

Outline

7 Introduction

8 Hindley-Milner System

9 Inference algorithm

G. Castagna (CNRS) Four Forms of Polymorphism 71 / 192

Monomorphic calculus

Types T ::= Bool | Int | Real | ... basic types
| T → T function types

Terms a,b ::= true | false | 1 | 2 | ... constants
| x variable
| ab application
| λx :T .a abstraction
| let x : T = a in b let

Γ ` x : Γ(x)

Γ,x : S ` a : T

Γ ` λx :S.a : S→ T

Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

Γ ` a : S Γ,x : S ` b : T

Γ ` let x : S = a in b : T

G. Castagna (CNRS) Four Forms of Polymorphism 72 / 192

Parametric polymorphism

It is a pity to use the identity function just with a single type.

let f : Int→ Int = λx :Int.x in b

In particular, if we get rid of type annotations we see that the identity function
can be given several different types.

Γ ` x : Γ(x)

Γ,x : S ` a : T

Γ ` λx .a : S→ T

Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

Γ ` a : S Γ,x : S ` b : T

Γ ` let x = a in b : T

In particular, λx .x can be given all the types of the form T → T for every T .

G. Castagna (CNRS) Four Forms of Polymorphism 73 / 192

Parametric polymorphism

We extend the syntax of types

Types T ::= Bool | Int | Real | ... basic types
| T → T function types
| α type variables
| ∀α.T polymorphic types

We add to the previous rules these two rules

Γ ` a : T α 6∈ fv(Γ)

Γ ` a : ∀α.T
Γ ` a : ∀α.T

Γ ` a : T [S/α]

The resulting system is called System F (Girard/Reynolds)

G. Castagna (CNRS) Four Forms of Polymorphism 74 / 192

We can for instance derive

λx .xx : (∀α.α→ α)→ (∀α.α→ α)

and supposing we have pairs:

let f = λx .x in (f 3, f true) : Int×Bool

G. Castagna (CNRS) Four Forms of Polymorphism 75 / 192

Remark

The condition α 6∈ fv(Γ) in the rule

Γ ` a : T α 6∈ fv(Γ)

Γ ` a : ∀α.T

is crucial ... without it we can derive

x : α ` x : α
x : α ` ∀α.α

` λx .x : α→ (∀α.α)

and therefore type, for instance, (λx .x)12 with any type we wish

G. Castagna (CNRS) Four Forms of Polymorphism 76 / 192

Bad news

For terms without type anotations the problems:

type inference: given an expression a find if there exists a type T such
that a : T

type checking: given and expression a and a type T check whether a : T
holds

are both undecidable

(J. B. Wells. Typability and type checking in the second-order lambda-calculus
are equivalent and undecidable, 1994.)

Solution 1: use explicit type abstractions and instantiations (e.g., generics)
Solution 2: restrict the power of the system (e.g., Hindley-Milner)

Hindley-Milner
We restrict the power of System F to have decidable type inference and type
checking

(used in OCaml, SML, Haskell, etc ...)

G. Castagna (CNRS) Four Forms of Polymorphism 77 / 192

Bad news

For terms without type anotations the problems:

type inference: given an expression a find if there exists a type T such
that a : T

type checking: given and expression a and a type T check whether a : T
holds

are both undecidable

(J. B. Wells. Typability and type checking in the second-order lambda-calculus
are equivalent and undecidable, 1994.)

Solution 1: use explicit type abstractions and instantiations (e.g., generics)
Solution 2: restrict the power of the system (e.g., Hindley-Milner)

Hindley-Milner
We restrict the power of System F to have decidable type inference and type
checking

(used in OCaml, SML, Haskell, etc ...)

G. Castagna (CNRS) Four Forms of Polymorphism 77 / 192

Bad news

For terms without type anotations the problems:

type inference: given an expression a find if there exists a type T such
that a : T

type checking: given and expression a and a type T check whether a : T
holds

are both undecidable

(J. B. Wells. Typability and type checking in the second-order lambda-calculus
are equivalent and undecidable, 1994.)

Solution 1: use explicit type abstractions and instantiations (e.g., generics)
Solution 2: restrict the power of the system (e.g., Hindley-Milner)

Hindley-Milner
We restrict the power of System F to have decidable type inference and type
checking

(used in OCaml, SML, Haskell, etc ...)

G. Castagna (CNRS) Four Forms of Polymorphism 77 / 192

Outline

7 Introduction

8 Hindley-Milner System

9 Inference algorithm

G. Castagna (CNRS) Four Forms of Polymorphism 78 / 192

Hindley-Milner System

The quantification can only be prenex:

Types T ::= Bool | Int | Real | ... basic types
| T → T function types
| α type variables

Schemas σ ::= T type
| ∀α.σ schema

A type environment Γ now maps variable to schemas, and typing judgement
have the form Γ ` a : σ

G. Castagna (CNRS) Four Forms of Polymorphism 79 / 192

The following types (schemas) are ok:

∀α.α→ α
∀α.∀β.(α×β)→ α
∀α.Bool→ α→ α→ α
∀α.(α→ α)→ α

but the following type is not longer allowed:

(∀α.α→ α)→ (∀α.α→ α)

G. Castagna (CNRS) Four Forms of Polymorphism 80 / 192

Hindley-Milner System

Γ ` x : Γ(x)

Γ,x : S ` a : T

Γ ` λx .a : S→ T

Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

Γ ` a : σ1 Γ,x : σ1 ` b : σ2

Γ ` let x = a in b : σ2

Γ ` a : T α 6∈ fv(Γ)

Γ ` a : ∀α.T
Γ ` a : ∀α.T

Γ ` a : T [S/α]

G. Castagna (CNRS) Four Forms of Polymorphism 81 / 192

Hindley-Milner System

Notice that the rule for let is the (only) rule that introduce a polymorphic type in
the type environment.

Γ ` a : σ1 Γ,x : σ1 ` b : σ2

Γ ` let x = a in b : σ2

Thanks to this we can for instance type

let f = λx .x in (f f)(f 1)

with f : ∀α.α→ α in the context to type (f f)(f 1) in order to use three times the
instantiation rule for the type schema:

f : ∀α.α→ α ` f : ∀α.α→ α
f : ∀α.α→ α ` f : (α→ α)[T/α]

where T is respectively for each occurrence of f , (Int→ Int)→ Int→ Int,
Int→ Int, and Int.

G. Castagna (CNRS) Four Forms of Polymorphism 82 / 192

Hindley-Milner System

On the contrary the rule for abstractions does not introduce in the environment
a schema, but just a type

Γ,x : S ` a : T

Γ ` λx .a : S→ T

otherwise S→ T would not be well formed.

In particular,
λx .xx

is no longer typeable, while

let f = λx .x in f f

is still typeable.

G. Castagna (CNRS) Four Forms of Polymorphism 83 / 192

Outline

7 Introduction

8 Hindley-Milner System

9 Inference algorithm

G. Castagna (CNRS) Four Forms of Polymorphism 84 / 192

Hindley-Milner Algorithm

The system is not syntax directed because of the following two rules apply to
any expression:

Γ ` a : T α 6∈ fv(Γ)

Γ ` a : ∀α.T
Γ ` a : ∀α.T

Γ ` a : T [S/α]

G. Castagna (CNRS) Four Forms of Polymorphism 85 / 192

Hindley-Milner syntax-directed system

Γ,x : S ` a : T

Γ ` λx .a : S→ T

Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

T v Γ(x)

Γ ` x : T

Γ ` a : S Γ,x : Gen(S,Γ) ` b : T

Γ ` let x = a in b : T

Where

T v ∀α1....∀αn.S ⇐⇒ ∃S1, ...,Sn such that T = S[S1/α1....Sn/αn]

and
Gen(S,Γ) = ∀α1....∀αn.S where {α1, ...,αn}= fv(S)\ fv(Γ)

Syntax directed but Not an algorithm yet!

G. Castagna (CNRS) Four Forms of Polymorphism 86 / 192

Hindley-Milner syntax-directed system

Γ,x : S ` a : T

Γ ` λx .a : S→ T

Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

T v Γ(x)

Γ ` x : T

Γ ` a : S Γ,x : Gen(S,Γ) ` b : T

Γ ` let x = a in b : T

Where

T v ∀α1....∀αn.S ⇐⇒ ∃S1, ...,Sn such that T = S[S1/α1....Sn/αn]

and
Gen(S,Γ) = ∀α1....∀αn.S where {α1, ...,αn}= fv(S)\ fv(Γ)

Syntax directed but Not an algorithm yet!

G. Castagna (CNRS) Four Forms of Polymorphism 86 / 192

Hindley-Milner syntax-directed system

Γ,x : S ` a : T

Γ ` λx .a : S→ T

Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

T v Γ(x)

Γ ` x : T

Γ ` a : S Γ,x : Gen(S,Γ) ` b : T

Γ ` let x = a in b : T

Where

T v ∀α1....∀αn.S ⇐⇒ ∃S1, ...,Sn such that T = S[S1/α1....Sn/αn]

and
Gen(S,Γ) = ∀α1....∀αn.S where {α1, ...,αn}= fv(S)\ fv(Γ)

Syntax directed but Not an algorithm yet!

G. Castagna (CNRS) Four Forms of Polymorphism 86 / 192

State: a current substitution φ and an infinite set of fresh variables V
fresh = do α ∈ V

do V:=V \{α}
return α

W (Γ ` x) = let ∀α1....αn.T ← Γ(x)
do β1, ...,βn← fresh,...,fresh
return T [β1/α1, ...,βn/αn]

W (Γ ` λx .a) = do α←fresh
do T ←W (Γ,x : α ` a)
return α→ T

W (Γ ` ab) = do T ←W (Γ ` a)
do S←W (Γ ` b)
do α←fresh
do φ := mgu(φ(T),φ(S→ α))◦φ
return α

W (Γ ` let x = a in b) = do S←W (Γ ` a)
do σ← Gen(φ(S),φ(Γ))
return W (Γ,x : σ ` b)

G. Castagna (CNRS) Four Forms of Polymorphism 87 / 192

Most General Unifier

mgu(∅) = id

mgu({(α,α)}∪C) = mgu(C)

mgu({(α,T)}∪C) = mgu(C[T/α])◦[T/α] if α not free in T

mgu({(T ,α)}∪C) = mgu(C[T/α])◦[T/α] if α not free in T

mgu({(S1→ S2,T1→ T2)}∪C) = mgu({(S1,T1),(S2,T2)}∪C)

In all the other cases mgu fails

G. Castagna (CNRS) Four Forms of Polymorphism 88 / 192

Ad-Hoc Polymorphism

G. Castagna (CNRS) Four Forms of Polymorphism 89 / 192

Outline

10 Set-theoretic types

11 Semantic Subtyping

12 Application to a language.

13 Adding Parametric Polymorphism: the Types

14 Adding Parametric Polymorphism: the Language

G. Castagna (CNRS) Four Forms of Polymorphism 90 / 192

Outline

10 Set-theoretic types

11 Semantic Subtyping

12 Application to a language.

13 Adding Parametric Polymorphism: the Types

14 Adding Parametric Polymorphism: the Language

G. Castagna (CNRS) Four Forms of Polymorphism 91 / 192

Set-theoretic types

We consider the following possibly recursive types:

T ::= Bool | Int | Any | (T,T) | T∨T | T & T | not(T) | T-->T

Useful for:
1 XML types
2 Precise typing of pattern matching
3 Overloaded functions
4 Mixins
5 General programming paradigms

Let us see each point more in detail

Note: henceforward I will sometimes use T1|T2 to denote T1∨T2

G. Castagna (CNRS) Four Forms of Polymorphism 92 / 192

1. XML types

<?xml version="1.0"?>
<!DOCTYPE biblio [
<!ELEMENT biblio (book*)>
<!ELEMENT book (title, (author+)|(editor+), price?)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT editor (#PCDATA)>
<!ELEMENT price (#PCDATA)>

]>

Can be encoded with union and recursive types
type Biblio = (‘biblio,X)
type X = (Book,X)∨‘nil

type Book = (‘book,(Title, Y∨Z))
type Y = (Author,Y∨(Price,‘nil)∨‘nil)
type Z = (Editor,Z∨(Price,‘nil)∨‘nil)

type Title = (‘title,String)
type Author = (‘author,String)
type Editor = (‘editor,String)
type Price = (‘price,String)

G. Castagna (CNRS) Four Forms of Polymorphism 93 / 192

2. Precise typing of pattern matching (I)

Consider the following pattern matching expression

match e with p1 -> e1 | p2 -> e2

where patterns are defined as follows:

p ::= x | (p,p) | p |||p | p&&&p

If we interpret types as set of values

t = {v | v is a value of type t}
then the set of all values that match a pattern is a type

***p+++ = {v | v is a value that matches p}
***x+++ = Any

(p1 ,p2)+++ = (p1 +++ , ***p2 +++)
p1 |||p2+++ = ***p1+++∨p2+++
***p1&&&p2+++ = ***p1+++ & ***p2+++

Let us see how to type pattern matching.

G. Castagna (CNRS) Four Forms of Polymorphism 94 / 192

2. Precise typing of pattern matching (I)

Consider the following pattern matching expression

match e with p1 -> e1 | p2 -> e2

where patterns are defined as follows:

p ::= x | (p,p) | p |||p | p&&&p

If we interpret types as set of values

t = {v | v is a value of type t}
then the set of all values that match a pattern is a type

***p+++ = {v | v is a value that matches p}
***x+++ = Any

(p1 ,p2)+++ = (p1 +++ , ***p2 +++)
p1 |||p2+++ = ***p1+++∨p2+++
***p1&&&p2+++ = ***p1+++ & ***p2+++

Let us see how to type pattern matching.G. Castagna (CNRS) Four Forms of Polymorphism 94 / 192

2. Precise typing of pattern matching (II)

Boolean type connectives are needed to type pattern matching:

match e with p1 -> e1 | p2 -> e2

Suppose that e : T and let us write T1 \T2 for T1 ¬(T2)

- To infer the type T1 of e1 we need T & ***p1+++;
- To infer the type T2 of e2 we need (T***p1+++) & ***p2+++;
- The type of the match expression is T1∨T2 .
- Pattern matching is exhaustive if T≤ ***p1 +++∨***p2+++;

Formally:

[MATCH]
Γ ` e : T Γ,T & ***p1+++/p1 ` e1 : T1 Γ,T***p1+++/p2 ` e2 : T2

Γ ` match e with p1->e1 | p1->e2 : T1∨T2
(T≤ ***p1+++∨***p2+++)

where T/p is the type environment for the capture variables in p when the
pattern is matched against values in T.
(e.g., ((Int,Int)∨(Bool,Char))/(x ,y) is x : Int∨Bool,y : Int∨Char)

G. Castagna (CNRS) Four Forms of Polymorphism 95 / 192

2. Precise typing of pattern matching (II)

Boolean type connectives are needed to type pattern matching:

match e with p1 -> e1 | p2 -> e2

Suppose that e : T and let us write T1 \T2 for T1 ¬(T2)

- To infer the type T1 of e1 we need T & ***p1+++;
- To infer the type T2 of e2 we need (T***p1+++) & ***p2+++;
- The type of the match expression is T1∨T2 .
- Pattern matching is exhaustive if T≤ ***p1 +++∨***p2+++;

Formally:

[MATCH]
Γ ` e : T Γ,T & ***p1+++/p1 ` e1 : T1 Γ,T***p1+++/p2 ` e2 : T2

Γ ` match e with p1->e1 | p1->e2 : T1∨T2
(T≤ ***p1+++∨***p2+++)

where T/p is the type environment for the capture variables in p when the
pattern is matched against values in T.
(e.g., ((Int,Int)∨(Bool,Char))/(x ,y) is x : Int∨Bool,y : Int∨Char)

G. Castagna (CNRS) Four Forms of Polymorphism 95 / 192

2. Precise typing of pattern matching (II)

Boolean type connectives are needed to type pattern matching:

match e with p1 -> e1 | p2 -> e2

Suppose that e : T and let us write T1 \T2 for T1 ¬(T2)

- To infer the type T1 of e1 we need T & ***p1+++;
- To infer the type T2 of e2 we need (T***p1+++) & ***p2+++;
- The type of the match expression is T1∨T2 .
- Pattern matching is exhaustive if T≤ ***p1 +++∨***p2+++;

Formally:

[MATCH]
Γ ` e : T Γ,T & ***p1+++/p1 ` e1 : T1 Γ,T***p1+++/p2 ` e2 : T2

Γ ` match e with p1->e1 | p1->e2 : T1∨T2
(T≤ ***p1+++∨***p2+++)

where T/p is the type environment for the capture variables in p when the
pattern is matched against values in T.
(e.g., ((Int,Int)∨(Bool,Char))/(x ,y) is x : Int∨Bool,y : Int∨Char)

G. Castagna (CNRS) Four Forms of Polymorphism 95 / 192

2. Precise typing of pattern matching (II)

Boolean type connectives are needed to type pattern matching:

match e with p1 -> e1 | p2 -> e2

Suppose that e : T and let us write T1 \T2 for T1 ¬(T2)

- To infer the type T1 of e1 we need T & ***p1+++;

- To infer the type T2 of e2 we need (T***p1+++) & ***p2+++;
- The type of the match expression is T1∨T2 .
- Pattern matching is exhaustive if T≤ ***p1 +++∨***p2+++;

Formally:

[MATCH]
Γ ` e : T Γ,T & ***p1+++/p1 ` e1 : T1 Γ,T***p1+++/p2 ` e2 : T2

Γ ` match e with p1->e1 | p1->e2 : T1∨T2
(T≤ ***p1+++∨***p2+++)

where T/p is the type environment for the capture variables in p when the
pattern is matched against values in T.
(e.g., ((Int,Int)∨(Bool,Char))/(x ,y) is x : Int∨Bool,y : Int∨Char)

G. Castagna (CNRS) Four Forms of Polymorphism 95 / 192

2. Precise typing of pattern matching (II)

Boolean type connectives are needed to type pattern matching:

match e with p1 -> e1 | p2 -> e2

Suppose that e : T and let us write T1 \T2 for T1 ¬(T2)

- To infer the type T1 of e1 we need T & ***p1+++;
- To infer the type T2 of e2 we need (T***p1+++) & ***p2+++;

- The type of the match expression is T1∨T2 .
- Pattern matching is exhaustive if T≤ ***p1 +++∨***p2+++;

Formally:

[MATCH]
Γ ` e : T Γ,T & ***p1+++/p1 ` e1 : T1 Γ,T***p1+++/p2 ` e2 : T2

Γ ` match e with p1->e1 | p1->e2 : T1∨T2
(T≤ ***p1+++∨***p2+++)

where T/p is the type environment for the capture variables in p when the
pattern is matched against values in T.
(e.g., ((Int,Int)∨(Bool,Char))/(x ,y) is x : Int∨Bool,y : Int∨Char)

G. Castagna (CNRS) Four Forms of Polymorphism 95 / 192

2. Precise typing of pattern matching (II)

Boolean type connectives are needed to type pattern matching:

match e with p1 -> e1 | p2 -> e2

Suppose that e : T and let us write T1 \T2 for T1 ¬(T2)

- To infer the type T1 of e1 we need T & ***p1+++;
- To infer the type T2 of e2 we need (T***p1+++) & ***p2+++;
- The type of the match expression is T1∨T2 .

- Pattern matching is exhaustive if T≤ ***p1 +++∨***p2+++;

Formally:

[MATCH]
Γ ` e : T Γ,T & ***p1+++/p1 ` e1 : T1 Γ,T***p1+++/p2 ` e2 : T2

Γ ` match e with p1->e1 | p1->e2 : T1∨T2
(T≤ ***p1+++∨***p2+++)

where T/p is the type environment for the capture variables in p when the
pattern is matched against values in T.
(e.g., ((Int,Int)∨(Bool,Char))/(x ,y) is x : Int∨Bool,y : Int∨Char)

G. Castagna (CNRS) Four Forms of Polymorphism 95 / 192

2. Precise typing of pattern matching (II)

Boolean type connectives are needed to type pattern matching:

match e with p1 -> e1 | p2 -> e2

Suppose that e : T and let us write T1 \T2 for T1 ¬(T2)

- To infer the type T1 of e1 we need T & ***p1+++;
- To infer the type T2 of e2 we need (T***p1+++) & ***p2+++;
- The type of the match expression is T1∨T2 .
- Pattern matching is exhaustive if T≤ ***p1 +++∨***p2+++;

Formally:

[MATCH]
Γ ` e : T Γ,T & ***p1+++/p1 ` e1 : T1 Γ,T***p1+++/p2 ` e2 : T2

Γ ` match e with p1->e1 | p1->e2 : T1∨T2
(T≤ ***p1+++∨***p2+++)

where T/p is the type environment for the capture variables in p when the
pattern is matched against values in T.
(e.g., ((Int,Int)∨(Bool,Char))/(x ,y) is x : Int∨Bool,y : Int∨Char)

G. Castagna (CNRS) Four Forms of Polymorphism 95 / 192

2. Precise typing of pattern matching (II)

Boolean type connectives are needed to type pattern matching:

match e with p1 -> e1 | p2 -> e2

Suppose that e : T and let us write T1 \T2 for T1 ¬(T2)

- To infer the type T1 of e1 we need T&&& ***p1+++;
- To infer the type T2 of e2 we need (T***p1+++) &&& ***p2+++;
- The type of the match expression is T1∨∨∨T2 .
- Pattern matching is exhaustive if T≤ ***p1 +++∨∨∨***p2+++;

Formally:

[MATCH]
Γ ` e : T Γ,T & ***p1+++/p1 ` e1 : T1 Γ,T***p1+++/p2 ` e2 : T2

Γ ` match e with p1->e1 | p1->e2 : T1∨T2
(T≤ ***p1+++∨***p2+++)

where T/p is the type environment for the capture variables in p when the
pattern is matched against values in T.
(e.g., ((Int,Int)∨(Bool,Char))/(x ,y) is x : Int∨Bool,y : Int∨Char)

G. Castagna (CNRS) Four Forms of Polymorphism 95 / 192

2. Precise typing of pattern matching (II)

Boolean type connectives are needed to type pattern matching:

match e with p1 -> e1 | p2 -> e2

Suppose that e : T and let us write T1 \T2 for T1 ¬(T2)

- To infer the type T1 of e1 we need T&&& ***p1+++;
- To infer the type T2 of e2 we need (T***p1+++) &&& ***p2+++;
- The type of the match expression is T1∨∨∨T2 .
- Pattern matching is exhaustive if T≤ ***p1 +++∨∨∨***p2+++;

Formally:

[MATCH]
Γ ` e : T Γ,T & ***p1+++/p1 ` e1 : T1 Γ,T***p1+++/p2 ` e2 : T2

Γ ` match e with p1->e1 | p1->e2 : T1∨T2
(T≤ ***p1+++∨***p2+++)

where T/p is the type environment for the capture variables in p when the
pattern is matched against values in T.
(e.g., ((Int,Int)∨(Bool,Char))/(x ,y) is x : Int∨Bool,y : Int∨Char)

G. Castagna (CNRS) Four Forms of Polymorphism 95 / 192

3. Overloaded functions

Intersection types are useful to type overloaded functions (in the Go language):
package main
import "fmt"
func Opposite (x interface{}) interface{} {

var res interface{}
switch value := x.(type) {

case bool:
res = (!value) // x has type bool

case int:
res = (-value) // x has type int

}
return res

}

func main() { fmt.Println(Opposite(3) , Opposite(true)) }

In Go Opposite has type Any-->Any (every value has type interface{}).
Better type with intersections Opposite: (Int-->Int) & (Bool-->Bool)

Intersections can also to give a more refined description of standard functions:

func Successor(x int) { return(x+1) }
which could be typed as Successor:(Odd-->Even) & (Even-->Odd)

G. Castagna (CNRS) Four Forms of Polymorphism 96 / 192

3. Overloaded functions

Intersection types are useful to type overloaded functions (in the Go language):
package main
import "fmt"
func Opposite (x interface{}) interface{} {

var res interface{}
switch value := x.(type) {

case bool:
res = (!value) // x has type bool

case int:
res = (-value) // x has type int

}
return res

}

func main() { fmt.Println(Opposite(3) , Opposite(true)) }

In Go Opposite has type Any-->Any (every value has type interface{}).
Better type with intersections Opposite: (Int-->Int) & (Bool-->Bool)

Intersections can also to give a more refined description of standard functions:

func Successor(x int) { return(x+1) }
which could be typed as Successor:(Odd-->Even) & (Even-->Odd)

G. Castagna (CNRS) Four Forms of Polymorphism 96 / 192

2+3. Precise typing of OCaml

Exercise:

1 What is the type returned by

let foo = function
| (‘A,‘B) -> true
| (‘B,‘A) -> false

and what is the problem ?

[< ‘A | ‘B] * [< ‘A | ‘B] -> bool thus foo(‘A , ‘A) fails

2 Which type could we give if we had full-fledged union types?

(‘A * ‘B)| (‘B * ‘A) -> bool

3 Give an intersection type that refines the previous type

((‘A * ‘B) -> true) & ((‘B * ‘A) -> false)

You can try it on http://www.cduce.org/ocaml/bi

G. Castagna (CNRS) Four Forms of Polymorphism 97 / 192

http://www.cduce.org/ocaml/bi

2+3. Precise typing of OCaml

Exercise:

1 What is the type returned by

let foo = function
| (‘A,‘B) -> true
| (‘B,‘A) -> false

and what is the problem ?

[< ‘A | ‘B] * [< ‘A | ‘B] -> bool thus foo(‘A , ‘A) fails

2 Which type could we give if we had full-fledged union types?

(‘A * ‘B)| (‘B * ‘A) -> bool

3 Give an intersection type that refines the previous type

((‘A * ‘B) -> true) & ((‘B * ‘A) -> false)

You can try it on http://www.cduce.org/ocaml/bi

G. Castagna (CNRS) Four Forms of Polymorphism 97 / 192

http://www.cduce.org/ocaml/bi

2+3. Precise typing of OCaml

Exercise:

1 What is the type returned by

let foo = function
| (‘A,‘B) -> true
| (‘B,‘A) -> false

and what is the problem ?

[< ‘A | ‘B] * [< ‘A | ‘B] -> bool thus foo(‘A , ‘A) fails

2 Which type could we give if we had full-fledged union types?

(‘A * ‘B)| (‘B * ‘A) -> bool

3 Give an intersection type that refines the previous type

((‘A * ‘B) -> true) & ((‘B * ‘A) -> false)

You can try it on http://www.cduce.org/ocaml/bi

G. Castagna (CNRS) Four Forms of Polymorphism 97 / 192

http://www.cduce.org/ocaml/bi

2+3. Precise typing of OCaml

Exercise:

1 What is the type returned by

let foo = function
| (‘A,‘B) -> true
| (‘B,‘A) -> false

and what is the problem ?

[< ‘A | ‘B] * [< ‘A | ‘B] -> bool thus foo(‘A , ‘A) fails

2 Which type could we give if we had full-fledged union types?

(‘A * ‘B)| (‘B * ‘A) -> bool

3 Give an intersection type that refines the previous type

((‘A * ‘B) -> true) & ((‘B * ‘A) -> false)

You can try it on http://www.cduce.org/ocaml/bi

G. Castagna (CNRS) Four Forms of Polymorphism 97 / 192

http://www.cduce.org/ocaml/bi

4. Typing of Mixins

Intersection types are used in Microsoft’s Typescript to type mixins.
function extend<T, U>(first: T, second: U): T & U {

/* <T> exp is a type cast (equivalent: exp as T) */
let result = <T & U>{};
for (let id in first) {

(<any>result)[id] = (<any>first)[id]; }
for (let id in second) { if (!result.hasOwnProperty(id)) {

(<any>result)[id] = (<any>second)[id]; } }
return result;

}
class Person {

constructor(public name: string) { }
}
interface Loggable {

log(): void;
}
class ConsoleLogger implements Loggable {

log() { ... }
}

var jim = extend(new Person("Jim"), new ConsoleLogger());
var n = jim.name;
jim.log();

G. Castagna (CNRS) Four Forms of Polymorphism 98 / 192

5. General programming paradigms

Consider red-black trees. Recall that they must satisfy 4 invariants.

1 the root of the tree is black
2 the leaves of the tree are black
3 no red node has a red child
4 every path from root to a leaf contains the same number of black nodes

The key of Okasaki’s insertion is the function balance which transforms an
unbalanced tree, into a valid red-black tree (as long as a, b, c, and d are valid):

In ML we need GADTs to enforce the invariants.

G. Castagna (CNRS) Four Forms of Polymorphism 99 / 192

5. General programming paradigms

Consider red-black trees. Recall that they must satisfy 4 invariants.

1 the root of the tree is black
2 the leaves of the tree are black
3 no red node has a red child
4 every path from root to a leaf contains the same number of black nodes

The key of Okasaki’s insertion is the function balance which transforms an
unbalanced tree, into a valid red-black tree (as long as a, b, c, and d are valid):

In ML we need GADTs to enforce the invariants.

G. Castagna (CNRS) Four Forms of Polymorphism 99 / 192

5. General programming paradigms

Consider red-black trees. Recall that they must satisfy 4 invariants.

1 the root of the tree is black
2 the leaves of the tree are black
3 no red node has a red child
4 every path from root to a leaf contains the same number of black nodes

The key of Okasaki’s insertion is the function balance which transforms an
unbalanced tree, into a valid red-black tree (as long as a, b, c, and d are valid):

In ML we need GADTs to enforce the invariants.
G. Castagna (CNRS) Four Forms of Polymorphism 99 / 192

type α RBtree =
| Leaf
| Red(α , RBtree , RBtree)
| Blk(α , RBtree , RBtree)

let balance =
function
| Blk(z , Red(x, a, Red(y,b,c)) , d)
| Blk(z , Red(y, Red(x,a,b), c) , d)
| Blk(x , a , Red(z, Red(y,b,c), d))
| Blk(x , a , Red(y, b, Red(z,c,d)))

-> Red (y, Blk(x,a,b), Blk(z,c,d))
| x -> x

let insert =
function (x , t) ->
let ins =
function

| Leaf -> Red(x,Leaf,Leaf)
| c(y,a,b) as z ->

if x < y then balance c(y, (ins a), b) else
if x > y then balance c(y, a, (ins b)) else z

in let _(y,a,b) = ins t in Blk(y,a,b)

G. Castagna (CNRS) Four Forms of Polymorphism 100 / 192

G. Castagna (CNRS) Four Forms of Polymorphism 100 / 192

type α RBtree =
| Leaf
| Red(α , RBtree , RBtree)
| Blk(α , RBtree , RBtree)

let balance =
function
| Blk(z , Red(x, a, Red(y,b,c)) , d)
| Blk(z , Red(y, Red(x,a,b), c) , d)
| Blk(x , a , Red(z, Red(y,b,c), d))
| Blk(x , a , Red(y, b, Red(z,c,d)))

-> Red (y, Blk(x,a,b), Blk(z,c,d))
| x -> x

let insert =
function (x , t) ->
let ins =
function

| Leaf -> Red(x,Leaf,Leaf)
| c(y,a,b) as z ->

if x < y then balance c(y, (ins a), b) else
if x > y then balance c(y, a, (ins b)) else z

in let _(y,a,b) = ins t in Blk(y,a,b)

G. Castagna (CNRS) Four Forms of Polymorphism 100 / 192

type α RBtree =
| Leaf
| Red(α , RBtree , RBtree)
| Blk(α , RBtree , RBtree)

let balance =
function
| Blk(z , Red(x, a, Red(y,b,c)) , d)
| Blk(z , Red(y, Red(x,a,b), c) , d)
| Blk(x , a , Red(z, Red(y,b,c), d))
| Blk(x , a , Red(y, b, Red(z,c,d)))

-> Red (y, Blk(x,a,b), Blk(z,c,d))
| x -> x

let insert =
function (x , t) ->
let ins =
function

| Leaf -> Red(x,Leaf,Leaf)
| c(y,a,b) as z ->

if x < y then balance c(y, (ins a), b) else
if x > y then balance c(y, a, (ins b)) else z

in let _(y,a,b) = ins t in Blk(y,a,b)

G. Castagna (CNRS) Four Forms of Polymorphism 100 / 192

type α RBtree =
| Leaf
| Red(α , RBtree , RBtree)
| Blk(α , RBtree , RBtree)

let balance =
function
| Blk(z , Red(x, a, Red(y,b,c)) , d)
| Blk(z , Red(y, Red(x,a,b), c) , d)
| Blk(x , a , Red(z, Red(y,b,c), d))
| Blk(x , a , Red(y, b, Red(z,c,d)))

-> Red (y, Blk(x,a,b), Blk(z,c,d))
| x -> x

let insert =
function (x , t) ->
let ins =
function

| Leaf -> Red(x,Leaf,Leaf)
| c(y,a,b) as z ->

if x < y then balance c(y, (ins a), b) else
if x > y then balance c(y, a, (ins b)) else z

in let _(y,a,b) = ins t in Blk(y,a,b)

type RBtree = Btree | Rtree
type Rtree = Red(α, Btree , Btree)
type Btree = Blk(α, RBtree, RBtree) | Leaf

type Wrong = Red(α, (Rtree,RBtree) | (RBtree,Rtree))
type Unbal = Blk(α, (Wrong,RBtree) | (RBtree,Wrong))

let balance: (Unbal→Rtree) & ((βββ\\\Unbal)→(βββ\\\Unbal)) =
function
| Blk(z , Red(y, Red(x,a,b), c) , d)
| Blk(z , Red(x, a, Red(y,b,c)) , d)
| Blk(x , a , Red(z, Red(y,b,c), d))
| Blk(x , a , Red(y, b, Red(z,c,d)))

-> Red (y, Blk(x,a,b), Blk(z,c,d))
| x -> x

let insert: (ααα, Btree)→Btree =
function (x , t) ->
let ins: (Leaf→Rtree) & (Btree→RBtree\\\Leaf) & (Rtree→Rtree|Wrong) =
function

| Leaf -> Red(x,Leaf,Leaf)
| c(y,a,b) as z ->

if x < y then balance c(y, (ins a), b) else
if x > y then balance c(y, a, (ins b)) else z

in let _(y,a,b) = ins t in Blk(y,a,b)

G. Castagna (CNRS) Four Forms of Polymorphism 100 / 192

G. Castagna (CNRS) Four Forms of Polymorphism 100 / 192

type RBtree = Btree | Rtree
type Rtree = Red(α, Btree , Btree)
type Btree = Blk(α, RBtree, RBtree) | Leaf

type Wrong = Red(α, (Rtree,RBtree) | (RBtree,Rtree))
type Unbal = Blk(α, (Wrong,RBtree) | (RBtree,Wrong))

let balance: (Unbal→Rtree) & ((βββ\\\Unbal)→(βββ\\\Unbal)) =
function
| Blk(z , Red(y, Red(x,a,b), c) , d)
| Blk(z , Red(x, a, Red(y,b,c)) , d)
| Blk(x , a , Red(z, Red(y,b,c), d))
| Blk(x , a , Red(y, b, Red(z,c,d)))

-> Red (y, Blk(x,a,b), Blk(z,c,d))
| x -> x

let insert: (ααα, Btree)→Btree =
function (x , t) ->
let ins: (Leaf→Rtree) & (Btree→RBtree\\\Leaf) & (Rtree→Rtree|Wrong) =
function

| Leaf -> Red(x,Leaf,Leaf)
| c(y,a,b) as z ->

if x < y then balance c(y, (ins a), b) else
if x > y then balance c(y, a, (ins b)) else z

in let _(y,a,b) = ins t in Blk(y,a,b)

G. Castagna (CNRS) Four Forms of Polymorphism 100 / 182

G. Castagna (CNRS) Four Forms of Polymorphism 100 / 192

type RBtree = Btree | Rtree
type Rtree = Red(α, Btree , Btree)
type Btree = Blk(α, RBtree, RBtree) | Leaf

type Wrong = Red(α, (Rtree,RBtree) | (RBtree,Rtree))
type Unbal = Blk(α, (Wrong,RBtree) | (RBtree,Wrong))

let balance: (Unbal→Rtree) & ((βββ\\\Unbal)→(βββ\\\Unbal)) =
function
| Blk(z , Red(y, Red(x,a,b), c) , d)
| Blk(z , Red(x, a, Red(y,b,c)) , d)
| Blk(x , a , Red(z, Red(y,b,c), d))
| Blk(x , a , Red(y, b, Red(z,c,d)))

-> Red (y, Blk(x,a,b), Blk(z,c,d))
| x -> x

let insert: (ααα, Btree)→Btree =
function (x , t) ->
let ins: (Leaf→Rtree) & (Btree→RBtree\\\Leaf) & (Rtree→Rtree|Wrong) =
function

| Leaf -> Red(x,Leaf,Leaf)
| c(y,a,b) as z ->

if x < y then balance c(y, (ins a), b) else
if x > y then balance c(y, a, (ins b)) else z

in let _(y,a,b) = ins t in Blk(y,a,b)

G. Castagna (CNRS) Four Forms of Polymorphism 100 / 182

G. Castagna (CNRS) Four Forms of Polymorphism 100 / 192

type RBtree = Btree | Rtree
type Rtree = Red(α, Btree , Btree)
type Btree = Blk(α, RBtree, RBtree) | Leaf

type Wrong = Red(α, (Rtree,RBtree) | (RBtree,Rtree))
type Unbal = Blk(α, (Wrong,RBtree) | (RBtree,Wrong))

let balance: (Unbal→Rtree) & ((βββ\\\Unbal)→(βββ\\\Unbal)) =
function
| Blk(z , Red(y, Red(x,a,b), c) , d)
| Blk(z , Red(x, a, Red(y,b,c)) , d)
| Blk(x , a , Red(z, Red(y,b,c), d))
| Blk(x , a , Red(y, b, Red(z,c,d)))

-> Red (y, Blk(x,a,b), Blk(z,c,d))
| x -> x

let insert: (ααα, Btree)→Btree =
function (x , t) ->
let ins: (Leaf→Rtree) & (Btree→RBtree\\\Leaf) & (Rtree→Rtree|Wrong) =
function

| Leaf -> Red(x,Leaf,Leaf)
| c(y,a,b) as z ->

if x < y then balance c(y, (ins a), b) else
if x > y then balance c(y, a, (ins b)) else z

in let _(y,a,b) = ins t in Blk(y,a,b)

G. Castagna (CNRS) Four Forms of Polymorphism 100 / 182

G. Castagna (CNRS) Four Forms of Polymorphism 100 / 192

type RBtree = Btree | Rtree
type Rtree = Red(α, Btree , Btree)
type Btree = Blk(α, RBtree, RBtree) | Leaf

type Wrong = Red(α, (Rtree,RBtree) | (RBtree,Rtree))
type Unbal = Blk(α, (Wrong,RBtree) | (RBtree,Wrong))

let balance: (Unbal→Rtree) & ((βββ\\\Unbal)→(βββ\\\Unbal)) =
function
| Blk(z , Red(y, Red(x,a,b), c) , d)
| Blk(z , Red(x, a, Red(y,b,c)) , d)
| Blk(x , a , Red(z, Red(y,b,c), d))
| Blk(x , a , Red(y, b, Red(z,c,d)))

-> Red (y, Blk(x,a,b), Blk(z,c,d))
| x -> x

let insert: (ααα, Btree)→Btree =
function (x , t) ->
let ins: (Leaf→Rtree) & (Btree→RBtree\\\Leaf) & (Rtree→Rtree|Wrong) =
function

| Leaf -> Red(x,Leaf,Leaf)
| c(y,a,b) as z ->

if x < y then balance c(y, (ins a), b) else
if x > y then balance c(y, a, (ins b)) else z

in let _(y,a,b) = ins t in Blk(y,a,b)

G. Castagna (CNRS) Four Forms of Polymorphism 100 / 182

Cutting edge research

Type checking the previous definitions is not so difficult.
The hard part is to type partial applications:

map : (ααα→ βββ) → [ααα] → [βββ]

balance : (Unbal→Rtree) & ((βββ\\\Unbal)→(βββ\\\Unbal))

map balance : ([Unbal] → [Rtree])
& ([ααα\\\Unbal] → [ααα\\\Unbal])
& ([ααα|||Unbal] → [(ααα\\\Unbal)|||Rtree])

Fortunately, programmers (and you) are spared from these gory details.

G. Castagna (CNRS) Four Forms of Polymorphism 101 / 192

New languages use union and intersections

Facebook’s Flow:

// @flow
function toStringPrimitives(val: number | boolean | string) {

return String(val);
}

type One = { foo: number };
type Two = { bar: boolean };

type Both = One & Two;

var value: Both = {
foo: 1,
bar: true

};

G. Castagna (CNRS) Four Forms of Polymorphism 102 / 192

New languages use union and intersections

Typed-Racket

(let ([a-number 37])
(if (even? a-number)

’yes
’no))

- : Symbol [more precisely: (U ’no ’yes)]
’no

(: f : (case-> (-> True Integer Integer)
(-> False Boolean Boolean)))

(define (f condition x)
(if condition

(add1 x)
(not x)))

G. Castagna (CNRS) Four Forms of Polymorphism 103 / 192

New languages using negation

Typescript
Negation types are proposed in a merge request for TypeScript:

function asValid<T extends not null>
(value: T, isValid: (value: T) => boolean) : T | null

return isValid(value) ? value : null;

declare const x: number;
declare const y: number | null;
asValid(x, n => n >= 0); // OK
asValid(y, n => n >= 0); // Error

G. Castagna (CNRS) Four Forms of Polymorphism 104 / 192

Full-fledged connectives for novel type expressivity

The recursive flatten function:

The function flatten can be applied to any expression since Tree(’a)
unifies with every type.
It returns a list whose element type is the union of the types of all the leaves:

flatten [3 ’r’ [4 [‘true 5]] ["quo" [[‘false] "stop"]]];;
- : [(Bool | 3--5 | ’o’--’u’)*]

= [3 ’r’ 4 true 5 ’quo’ false ’stop’]

G. Castagna (CNRS) Four Forms of Polymorphism 105 / 192

Full-fledged connectives for novel type expressivity

The recursive flatten function:

let flatten
| [] -> []
| [h ; t] -> (flatten h)@(flatten t)
| x -> [x]

The function flatten can be applied to any expression since Tree(’a)
unifies with every type.
It returns a list whose element type is the union of the types of all the leaves:

flatten [3 ’r’ [4 [‘true 5]] ["quo" [[‘false] "stop"]]];;
- : [(Bool | 3--5 | ’o’--’u’)*]

= [3 ’r’ 4 true 5 ’quo’ false ’stop’]

G. Castagna (CNRS) Four Forms of Polymorphism 105 / 192

Full-fledged connectives for novel type expressivity

The recursive flatten function:

(* recursive type with union intersection and negation *)

type Tree(’a) = (’a\[Any*]) | [(Tree(’a))*]

let flatten ((Tree(’a)) -> [’a*])
| [] -> []
| [h ; t] -> (flatten h)@(flatten t)
| x -> [x]

The function flatten can be applied to any expression since Tree(’a)
unifies with every type.
It returns a list whose element type is the union of the types of all the leaves:

flatten [3 ’r’ [4 [‘true 5]] ["quo" [[‘false] "stop"]]];;
- : [(Bool | 3--5 | ’o’--’u’)*]

= [3 ’r’ 4 true 5 ’quo’ false ’stop’]

G. Castagna (CNRS) Four Forms of Polymorphism 105 / 192

Full-fledged connectives for novel type expressivity

The recursive flatten function:

(* recursive type with union intersection and negation *)

type Tree(’a) = (’a\[Any*]) | [(Tree(’a))*]

let flatten ((Tree(’a)) -> [’a*])
| [] -> []
| [h ; t] -> (flatten h)@(flatten t)
| x -> [x]

The function flatten can be applied to any expression since Tree(’a)
unifies with every type.
It returns a list whose element type is the union of the types of all the leaves:

flatten [3 ’r’ [4 [‘true 5]] ["quo" [[‘false] "stop"]]];;
- : [(Bool | 3--5 | ’o’--’u’)*]

= [3 ’r’ 4 true 5 ’quo’ false ’stop’]

G. Castagna (CNRS) Four Forms of Polymorphism 105 / 192

Encoding of bounded polymorphism

When combined with polymorphic types, set-theoretic types can encode a
limited form of bounded polymorphism:

∀(T1 ≤ α≤ T2).T

is encoded as

T{α := (α∨T1)∧T2}
For instance:

balance : (Unbal→ Rtree) & (β\Unbal→ β\Unbal)

can be read as:

balance :∀(β≤ not(Unbal)) . (Unbal→ Rtree) & (β→ β)

Limited form since you can compare just types with equal bounds

G. Castagna (CNRS) Four Forms of Polymorphism 106 / 192

How to understand/explain set-theoretic type connectives?

The type connectives union, intersection, and negation are completely
defined by the subtyping relation:

T1∨T2 is the least upper bound of T1 and T2

T1 & T2 is the greatest lower bound of T1 and T2

not(T) is the only type whose union and intersection with T yield the Any
and Empty types, respectively.

Defining (and deciding) subtyping for type connectives (i.e., ∨, & , not())
is far more difficult than for type constructors (i.e., -->,×,{...}, . . .).
[examples later on]

Understanding connectives in terms of subtyping is out of reach of simple
programmers

Give a set-theoretic semantics to types
define subtyping semantically

G. Castagna (CNRS) Four Forms of Polymorphism 107 / 192

How to understand/explain set-theoretic type connectives?

The type connectives union, intersection, and negation are completely
defined by the subtyping relation:

T1∨T2 is the least upper bound of T1 and T2

T1 & T2 is the greatest lower bound of T1 and T2

not(T) is the only type whose union and intersection with T yield the Any
and Empty types, respectively.

Defining (and deciding) subtyping for type connectives (i.e., ∨, & , not())
is far more difficult than for type constructors (i.e., -->,×,{...}, . . .).
[examples later on]

Understanding connectives in terms of subtyping is out of reach of simple
programmers

Give a set-theoretic semantics to types
define subtyping semantically

G. Castagna (CNRS) Four Forms of Polymorphism 107 / 192

Types as sets of values and semantic subtyping

T ::= Bool | Int | Any | (T,T) | T∨T | T & T | not(T) | T-->T

Each type denotes a set of values:
Bool is the set that contains just two values {true ,false}
Int is the set of all the numeric constants: {0, -1, 1, -2, 2, -3,...}.
Any is the set of all values.
(T1 ,T2) is the set of all the pairs (v1,v2) where v1 is a value in T1 and v2 a

value in T2, that is {(v1,v2) | v1 ∈ T1 , v2 ∈ T2}.
T1∨ T2 is the union of the sets T1 and T2, that is {v | v ∈ T1 or v ∈ T2}
T1 & T2 is the intersection of the sets T1 and T2, i.e. {v | v ∈ T1 and v ∈ T2}.
not(T) is the set of all the values not in T, that is {v | v 6∈ T}.

In particular not(Any)is the empty set (written Empty).
T1-->T2 is the set of all function values that when applied to a value in T1, if

they return a value, then this value is in T2.

Semantic subtyping

Subtyping is set-containment

G. Castagna (CNRS) Four Forms of Polymorphism 108 / 192

Types as sets of values and semantic subtyping

T ::= Bool | Int | Any | (T,T) | T∨T | T & T | not(T) | T-->T

Each type denotes a set of values:
Bool is the set that contains just two values {true ,false}
Int is the set of all the numeric constants: {0, -1, 1, -2, 2, -3,...}.
Any is the set of all values.
(T1 ,T2) is the set of all the pairs (v1,v2) where v1 is a value in T1 and v2 a

value in T2, that is {(v1,v2) | v1 ∈ T1 , v2 ∈ T2}.
T1∨ T2 is the union of the sets T1 and T2, that is {v | v ∈ T1 or v ∈ T2}
T1 & T2 is the intersection of the sets T1 and T2, i.e. {v | v ∈ T1 and v ∈ T2}.
not(T) is the set of all the values not in T, that is {v | v 6∈ T}.

In particular not(Any)is the empty set (written Empty).
T1-->T2 is the set of all function values that when applied to a value in T1, if

they return a value, then this value is in T2.

Semantic subtyping

Subtyping is set-containment

G. Castagna (CNRS) Four Forms of Polymorphism 108 / 192

Semantic Subtyping
in a nutshell

G. Castagna (CNRS) Four Forms of Polymorphism 109 / 192

Semantic subtyping

t ::= B | t×××t | t→→→t | t∨∨∨t | t∧∧∧t | ¬t | 0 | 1

Constructor subtyping is easy:
constructors do not mix, eg.:

s2 ≤ s1 t1 ≤ t2
s1→→→t1 ≤ s2→→→t2

Connective subtyping is harder:
connectives distribute over constructors, eg.

(s1∨∨∨s2)→→→t R (s1→→→t)∧∧∧(s2→→→t)

Define subtyping semantically: [Hosoya, Pierce]

1 Interpret types as sets (of values)
2 Define subtyping as set containment.

G. Castagna (CNRS) Four Forms of Polymorphism 110 / 192

Semantic subtyping

t ::= B | t×××t | t→→→t | t∨∨∨t | t∧∧∧t | ¬t | 0 | 1

Constructor subtyping is easy:
constructors do not mix, eg.:

s2 ≤ s1 t1 ≤ t2
s1→→→t1 ≤ s2→→→t2

Connective subtyping is harder:
connectives distribute over constructors, eg.

(s1∨∨∨s2)→→→t R (s1→→→t)∧∧∧(s2→→→t)

Define subtyping semantically: [Hosoya, Pierce]

1 Interpret types as sets (of values)
2 Define subtyping as set containment.

G. Castagna (CNRS) Four Forms of Polymorphism 110 / 192

Semantic subtyping

t ::= B | t×××t | t→→→t | t∨∨∨t | t∧∧∧t | ¬t | 0 | 1

Constructor subtyping is easy:
constructors do not mix, eg.:

s2 ≤ s1 t1 ≤ t2
s1→→→t1 ≤ s2→→→t2

Connective subtyping is harder:
connectives distribute over constructors, eg.

(s1∨∨∨s2)→→→t R (s1→→→t)∧∧∧(s2→→→t)

Define subtyping semantically: [Hosoya, Pierce]

1 Interpret types as sets (of values)
2 Define subtyping as set containment.

G. Castagna (CNRS) Four Forms of Polymorphism 110 / 192

Semantic subtyping

t ::= B | t×××t | t→→→t | t∨∨∨t | t∧∧∧t | ¬t | 0 | 1

Constructor subtyping is easy:
constructors do not mix, eg.:

s2 ≤ s1 t1 ≤ t2
s1→→→t1 ≤ s2→→→t2

Connective subtyping is harder:
connectives distribute over constructors, eg.

(s1∨∨∨s2)→→→t R (s1→→→t)∧∧∧(s2→→→t)

Define subtyping semantically: [Hosoya, Pierce]

1 Interpret types as sets (of values)
2 Define subtyping as set containment.

G. Castagna (CNRS) Four Forms of Polymorphism 110 / 192

Semantic subtyping: formalization

First, define an interpretation of types into sets.
[[]] : Types→ P (D)

such that

Connectives have their set-theoretic interpretation:
[[0]]=∅ [[t1∨∨∨t2]]=[[t1]]∪∪∪[[t2]]

[[¬¬¬t]]=D\\\[[t]] [[t1∧∧∧t2]]=[[t1]]∩∩∩[[t2]]
Constructors have their natural interpretation:
[[t1×××t2]] = [[t1]]×××[[t2]] D2 ⊆D
[[t1→→→t2]] = {f | f function from[[t1]] to [[t2]]} DD ⊆D

Then define the subtyping relation as set-containment.

s ≤ t
def⇐⇒ [[s]]⊆ [[t]]

G. Castagna (CNRS) Four Forms of Polymorphism 111 / 192

Semantic subtyping: formalization

First, define an interpretation of types into sets.
[[]] : Types→ P (D)

such that
Connectives have their set-theoretic interpretation:

[[0]]=∅ [[t1∨∨∨t2]]=[[t1]]∪∪∪[[t2]]
[[¬¬¬t]]=D\\\[[t]] [[t1∧∧∧t2]]=[[t1]]∩∩∩[[t2]]

Constructors have their natural interpretation:
[[t1×××t2]] = [[t1]]×××[[t2]] D2 ⊆D
[[t1→→→t2]] = {f | f function from[[t1]] to [[t2]]} DD ⊆D

Then define the subtyping relation as set-containment.

s ≤ t
def⇐⇒ [[s]]⊆ [[t]]

G. Castagna (CNRS) Four Forms of Polymorphism 111 / 192

Semantic subtyping: formalization

First, define an interpretation of types into sets.
[[]] : Types→ P (D)

such that
Connectives have their set-theoretic interpretation:

[[0]]=∅ [[t1∨∨∨t2]]=[[t1]]∪∪∪[[t2]]
[[¬¬¬t]]=D\\\[[t]] [[t1∧∧∧t2]]=[[t1]]∩∩∩[[t2]]

Constructors have their natural interpretation:
[[t1×××t2]] = [[t1]]×××[[t2]] D2 ⊆D
[[t1→→→t2]] = {f | f function from[[t1]] to [[t2]]} DD ⊆D

Then define the subtyping relation as set-containment.

s ≤ t
def⇐⇒ [[s]]⊆ [[t]]

G. Castagna (CNRS) Four Forms of Polymorphism 111 / 192

Semantic subtyping: formalization

First, define an interpretation of types into sets.
[[]] : Types→ P (D)

such that
Connectives have their set-theoretic interpretation:

[[0]]=∅ [[t1∨∨∨t2]]=[[t1]]∪∪∪[[t2]]
[[¬¬¬t]]=D\\\[[t]] [[t1∧∧∧t2]]=[[t1]]∩∩∩[[t2]]

Constructors have their natural interpretation:
[[t1×××t2]] = [[t1]]×××[[t2]] D2 ⊆D
[[t1→→→t2]] = {f | f function from[[t1]] to [[t2]]} DD ⊆D

Then define the subtyping relation as set-containment.

s ≤ t
def⇐⇒ [[s]]⊆ [[t]]

G. Castagna (CNRS) Four Forms of Polymorphism 111 / 192

Semantic subtyping: formalization

First, define an interpretation of types into sets.
[[]] : Types→ P (D)

such that
Connectives have their set-theoretic interpretation:

[[0]]=∅ [[t1∨∨∨t2]]=[[t1]]∪∪∪[[t2]]
[[¬¬¬t]]=D\\\[[t]] [[t1∧∧∧t2]]=[[t1]]∩∩∩[[t2]]

Constructors have their natural interpretation:
[[t1×××t2]] = [[t1]]×××[[t2]] D2 ⊆D
[[t1→→→t2]] = {f | f function from[[t1]] to [[t2]]} DD ⊆D

Then define the subtyping relation as set-containment.

s ≤ t
def⇐⇒ [[s]]⊆ [[t]]

G. Castagna (CNRS) Four Forms of Polymorphism 111 / 192

Semantic subtyping: formalization

First, define an interpretation of types into sets.
[[]] : Types→ P (D)

such that
Connectives have their set-theoretic interpretation:

[[0]]=∅ [[t1∨∨∨t2]]=[[t1]]∪∪∪[[t2]]
[[¬¬¬t]]=D\\\[[t]] [[t1∧∧∧t2]]=[[t1]]∩∩∩[[t2]]

Constructors have their natural interpretation:
[[t1×××t2]] = [[t1]]×××[[t2]] D2 ⊆D
[[t1→→→t2]] = {f | f function from[[t1]] to [[t2]]} DD ⊆D

Then define the subtyping relation as set-containment.

s ≤ t
def⇐⇒ [[s]]⊆ [[t]]

G. Castagna (CNRS) Four Forms of Polymorphism 111 / 192

Semantic subtyping: formalization

First, define an interpretation of types into sets.
[[]] : Types→ P (D)

such that
Connectives have their set-theoretic interpretation:

[[0]]=∅ [[t1∨∨∨t2]]=[[t1]]∪∪∪[[t2]]
[[¬¬¬t]]=D\\\[[t]] [[t1∧∧∧t2]]=[[t1]]∩∩∩[[t2]]

Constructors have their natural interpretation:
[[t1×××t2]] = [[t1]]×××[[t2]] D2 ⊆D
[[t1→→→t2]] = {f | f function from[[t1]] to [[t2]]} DD ⊆D

Then define the subtyping relation as set-containment.

s ≤ t
def⇐⇒ [[s]]⊆ [[t]]

Key idea

Do not define what types are
define how they are related

G. Castagna (CNRS) Four Forms of Polymorphism 111 / 192

Semantic subtyping: formalization

First, define an interpretation of types into sets.
[[]] : Types→ P (D)

such that
Connectives have their set-theoretic interpretation:

[[0]]=∅ [[t1∨∨∨t2]]=[[t1]]∪∪∪[[t2]]
[[¬¬¬t]]=D\\\[[t]] [[t1∧∧∧t2]]=[[t1]]∩∩∩[[t2]]

Constructors have their natural interpretation:
[[t1×××t2]] = [[t1]]×××[[t2]] D2 ⊆D
[[t1→→→t2]] = {f | f function from[[t1]] to [[t2]]} DD ⊆D

Then define the subtyping relation as set-containment.

s ≤ t
def⇐⇒ [[s]]⊆ [[t]]

Key idea

Do not define what types are
define how they are related

G. Castagna (CNRS) Four Forms of Polymorphism 111 / 192

Semantic subtyping: formalization

First, define an interpretation of types into sets.
[[]] : Types→ P (D)

such that
Connectives have their set-theoretic interpretation:

[[0]]=∅ [[t1∨∨∨t2]]=[[t1]]∪∪∪[[t2]]
[[¬¬¬t]]=D\\\[[t]] [[t1∧∧∧t2]]=[[t1]]∩∩∩[[t2]]

Constructors have their natural interpretation:
[[t1×××t2]] = [[t1]]×××[[t2]] D2 ⊆D
[[t1→→→t2]] = {f ⊆D2 | (d1,d2)∈f ,d1∈[[t1]]⇒ d2∈[[t2]]} DD ⊆D

Then define the subtyping relation as set-containment.

s ≤ t
def⇐⇒ [[s]]⊆ [[t]]

Key idea

Do not define what types are
define how they are related

G. Castagna (CNRS) Four Forms of Polymorphism 111 / 192

Semantic subtyping: formalization

First, define an interpretation of types into sets.
[[]] : Types→ P (D)

such that
Connectives have their set-theoretic interpretation:

[[0]]=∅ [[t1∨∨∨t2]]=[[t1]]∪∪∪[[t2]]
[[¬¬¬t]]=D\\\[[t]] [[t1∧∧∧t2]]=[[t1]]∩∩∩[[t2]]

Constructors have their natural interpretation:
[[t1×××t2]] = [[t1]]×××[[t2]] D2 ⊆D
[[t1→→→t2]] = P ([[t1]]× [[t2]]) DD ⊆D

Then define the subtyping relation as set-containment.

s ≤ t
def⇐⇒ [[s]]⊆ [[t]]

Key idea

Do not define what types are
define how they are related

G. Castagna (CNRS) Four Forms of Polymorphism 111 / 192

Semantic subtyping: formalization

First, define an interpretation of types into sets.
[[]] : Types→ P (D)

such that
Connectives have their set-theoretic interpretation:

[[0]]=∅ [[t1∨∨∨t2]]=[[t1]]∪∪∪[[t2]]
[[¬¬¬t]]=D\\\[[t]] [[t1∧∧∧t2]]=[[t1]]∩∩∩[[t2]]

Constructors have their natural interpretation:
[[t1×××t2]] = [[t1]]×××[[t2]] D2 ⊆D
[[t1→→→t2]] = P ([[t1]]× [[t2]]) DD ⊆D

Then define the subtyping relation as set-containment.

s ≤ t
def⇐⇒ [[s]]⊆ [[t]]

Key idea

Do not define what types are
define how they are related

G. Castagna (CNRS) Four Forms of Polymorphism 111 / 192

Semantic subtyping: formalization

First, define an interpretation of types into sets.
[[]] : Types→ P (D)

such that
Connectives have their set-theoretic interpretation:

[[0]]=∅ [[t1∨∨∨t2]]=[[t1]]∪∪∪[[t2]]
[[¬¬¬t]]=D\\\[[t]] [[t1∧∧∧t2]]=[[t1]]∩∩∩[[t2]]

Constructors have the same ⊆ as their natural interpretation:
[[t1×××t2]] = [[t1]]×××[[t2]] D2 ⊆D
[[t1→→→t2]] = P ([[t1]]× [[t2]]) DD ⊆D

Then define the subtyping relation as set-containment.

s ≤ t
def⇐⇒ [[s]]⊆ [[t]]

Key idea

Do not define what types are
define how they are related

G. Castagna (CNRS) Four Forms of Polymorphism 111 / 192

Semantic subtyping: formalization

First, define an interpretation of types into sets.
[[]] : Types→ P (D)

such that
Connectives have their set-theoretic interpretation:

[[0]]=∅ [[t1∨∨∨t2]]=[[t1]]∪∪∪[[t2]]
[[¬¬¬t]]=D\\\[[t]] [[t1∧∧∧t2]]=[[t1]]∩∩∩[[t2]]

Constructors have the same ⊆ as their natural interpretation:
[[s1×××s2]] ⊆ [[t1×××t2]] ⇐⇒ [[s1]]×××[[s2]] ⊆ [[t1]]×××[[t2]]

[[s1→→→s2]] ⊆ [[t1→→→t2]] ⇐⇒ P ([[s1]]× [[s2]]) ⊆ P ([[t1]]× [[t2]])

Then define the subtyping relation as set-containment.

s ≤ t
def⇐⇒ [[s]]⊆ [[t]]

Key idea

Do not define what types are
define how they are related

G. Castagna (CNRS) Four Forms of Polymorphism 111 / 192

Semantic subtyping: formalization

First, define an interpretation of types into sets.
[[]] : Types→ P (D)

such that
Connectives have their set-theoretic interpretation:

[[0]]=∅ [[t1∨∨∨t2]]=[[t1]]∪∪∪[[t2]]
[[¬¬¬t]]=D\\\[[t]] [[t1∧∧∧t2]]=[[t1]]∩∩∩[[t2]]

Constructors have the same ⊆ as their natural interpretation:
[[s1×××s2]] ⊆ [[t1×××t2]] ⇐⇒ [[s1]]×××[[s2]] ⊆ [[t1]]×××[[t2]]

[[s1→→→s2]] ⊆ [[t1→→→t2]] ⇐⇒ P ([[s1]]× [[s2]]) ⊆ P ([[t1]]× [[t2]])

Then define the subtyping relation as set-containment.

s ≤ t
def⇐⇒ [[s]]⊆ [[t]]

Semantic subtyping [Benzaken, Castagna, Frisch]

1 Gives an interpretation satisfying the above constraints;
2 Gives an algorithm to decide the induced subtyping relation.

G. Castagna (CNRS) Four Forms of Polymorphism 111 / 192

1: An interpretation that satisfies the previous constraints.

Looking for D and [[]] : Types→ P (D) such that:

[[s1→→→s2]]⊆ [[t1→→→t2]] ⇐⇒ P ([[s1]]× [[s2]])⊆ P ([[t1]]× [[t2]])

1 D least solution of X = X 2 + Pf (X 2)

2 [[]]D is defined as:

[[0]]D = ∅ [[1]]D = D [[¬¬¬t]]D = D\[[t]]D

[[s∨∨∨t]]D = [[s]]D∪ [[t]]D [[s∧∧∧t]]D = [[s]]D∩ [[t]]D

[[s×××t]]D = [[s]]D × [[t]]D [[t→→→s]]D = Pf ([[t]]D× [[s]]D)

It is a model:
Pf (X)⊆ Pf (Y) ⇐⇒ X ⊆ Y ⇐⇒ P (X)⊆ P (Y)

It is the best model: for any other model [[]]D ′

t1 ≤D ′ t2 ⇒ t1 ≤D t2

G. Castagna (CNRS) Four Forms of Polymorphism 112 / 192

1: An interpretation that satisfies the previous constraints.

Looking for D and [[]] : Types→ P (D) such that:

[[s1→→→s2]]⊆ [[t1→→→t2]] ⇐⇒ P ([[s1]]× [[s2]])⊆ P ([[t1]]× [[t2]])

1 D least solution of X = X 2 + Pf (X 2)

2 [[]]D is defined as:

[[0]]D = ∅ [[1]]D = D [[¬¬¬t]]D = D\[[t]]D

[[s∨∨∨t]]D = [[s]]D∪ [[t]]D [[s∧∧∧t]]D = [[s]]D∩ [[t]]D

[[s×××t]]D = [[s]]D × [[t]]D [[t→→→s]]D = Pf ([[t]]D× [[s]]D)

It is a model:
Pf (X)⊆ Pf (Y) ⇐⇒ X ⊆ Y ⇐⇒ P (X)⊆ P (Y)

It is the best model: for any other model [[]]D ′

t1 ≤D ′ t2 ⇒ t1 ≤D t2

G. Castagna (CNRS) Four Forms of Polymorphism 112 / 192

1: An interpretation that satisfies the previous constraints.

Looking for D and [[]] : Types→ P (D) such that:

[[s1→→→s2]]⊆ [[t1→→→t2]] ⇐⇒ P ([[s1]]× [[s2]])⊆ P ([[t1]]× [[t2]])

1 D least solution of X = X 2 + Pf (X 2)

2 [[]]D is defined as:

[[0]]D = ∅ [[1]]D = D [[¬¬¬t]]D = D\[[t]]D

[[s∨∨∨t]]D = [[s]]D∪ [[t]]D [[s∧∧∧t]]D = [[s]]D∩ [[t]]D

[[s×××t]]D = [[s]]D × [[t]]D [[t→→→s]]D = Pf ([[t]]D× [[s]]D)

It is a model:
Pf (X)⊆ Pf (Y) ⇐⇒ X ⊆ Y ⇐⇒ P (X)⊆ P (Y)

It is the best model: for any other model [[]]D ′

t1 ≤D ′ t2 ⇒ t1 ≤D t2

G. Castagna (CNRS) Four Forms of Polymorphism 112 / 192

1: An interpretation that satisfies the previous constraints.

Looking for D and [[]] : Types→ P (D) such that:

[[s1→→→s2]]⊆ [[t1→→→t2]] ⇐⇒ P ([[s1]]× [[s2]])⊆ P ([[t1]]× [[t2]])

1 D least solution of X = X 2 + Pf (X 2)

2 [[]]D is defined as:

[[0]]D = ∅ [[1]]D = D [[¬¬¬t]]D = D\[[t]]D

[[s∨∨∨t]]D = [[s]]D∪ [[t]]D [[s∧∧∧t]]D = [[s]]D∩ [[t]]D

[[s×××t]]D = [[s]]D × [[t]]D [[t→→→s]]D = Pf ([[t]]D× [[s]]D)

It is a model:
Pf (X)⊆ Pf (Y) ⇐⇒ X ⊆ Y ⇐⇒ P (X)⊆ P (Y)

It is the best model: for any other model [[]]D ′

t1 ≤D ′ t2 ⇒ t1 ≤D t2

G. Castagna (CNRS) Four Forms of Polymorphism 112 / 192

1: An interpretation that satisfies the previous constraints.

Looking for D and [[]] : Types→ P (D) such that:

[[s1→→→s2]]⊆ [[t1→→→t2]] ⇐⇒ P ([[s1]]× [[s2]])⊆ P ([[t1]]× [[t2]])

1 D least solution of X = X 2 + Pf (X 2)

2 [[]]D is defined as:

[[0]]D = ∅ [[1]]D = D [[¬¬¬t]]D = D\[[t]]D

[[s∨∨∨t]]D = [[s]]D∪ [[t]]D [[s∧∧∧t]]D = [[s]]D∩ [[t]]D

[[s×××t]]D = [[s]]D × [[t]]D [[t→→→s]]D = Pf ([[t]]D× [[s]]D)

It is a model:
Pf (X)⊆ Pf (Y) ⇐⇒ X ⊆ Y ⇐⇒ P (X)⊆ P (Y)

It is the best model: for any other model [[]]D ′

t1 ≤D ′ t2 ⇒ t1 ≤D t2

G. Castagna (CNRS) Four Forms of Polymorphism 112 / 192

1: An interpretation that satisfies the previous constraints.

Looking for D and [[]] : Types→ P (D) such that:

[[s1→→→s2]]⊆ [[t1→→→t2]] ⇐⇒ P ([[s1]]× [[s2]])⊆ P ([[t1]]× [[t2]])

1 D least solution of X = X 2 + Pf (X 2)

2 [[]]D is defined as:

[[0]]D = ∅ [[1]]D = D [[¬¬¬t]]D = D\[[t]]D

[[s∨∨∨t]]D = [[s]]D∪ [[t]]D [[s∧∧∧t]]D = [[s]]D∩ [[t]]D

[[s×××t]]D = [[s]]D × [[t]]D [[t→→→s]]D = Pf ([[t]]D× [[s]]D)

It is a model:
Pf (X)⊆ Pf (Y) ⇐⇒ X ⊆ Y ⇐⇒ P (X)⊆ P (Y)

It is the best model: for any other model [[]]D ′

t1 ≤D ′ t2 ⇒ t1 ≤D t2

G. Castagna (CNRS) Four Forms of Polymorphism 112 / 192

1: An interpretation that satisfies the previous constraints.

Looking for D and [[]] : Types→ P (D) such that:

[[s1→→→s2]]⊆ [[t1→→→t2]] ⇐⇒ P ([[s1]]× [[s2]])⊆ P ([[t1]]× [[t2]])

1 D least solution of X = X 2 + Pf (X 2)

2 [[]]D is defined as:

[[0]]D = ∅ [[1]]D = D [[¬¬¬t]]D = D\[[t]]D

[[s∨∨∨t]]D = [[s]]D∪ [[t]]D [[s∧∧∧t]]D = [[s]]D∩ [[t]]D

[[s×××t]]D = [[s]]D × [[t]]D [[t→→→s]]D = Pf ([[t]]D× [[s]]D)

It is a model:
Pf (X)⊆ Pf (Y) ⇐⇒ X ⊆ Y ⇐⇒ P (X)⊆ P (Y)

It is the best model: for any other model [[]]D ′

t1 ≤D ′ t2 ⇒ t1 ≤D t2

G. Castagna (CNRS) Four Forms of Polymorphism 112 / 192

1: An interpretation that satisfies the previous constraints.

Looking for D and [[]] : Types→ P (D) such that:

[[s1→→→s2]]⊆ [[t1→→→t2]] ⇐⇒ P ([[s1]]× [[s2]])⊆ P ([[t1]]× [[t2]])

1 D least solution of X = X 2 + Pf (X 2)

2 [[]]D is defined as:

[[0]]D = ∅ [[1]]D = D [[¬¬¬t]]D = D\[[t]]D

[[s∨∨∨t]]D = [[s]]D∪ [[t]]D [[s∧∧∧t]]D = [[s]]D∩ [[t]]D

[[s×××t]]D = [[s]]D × [[t]]D [[t→→→s]]D = Pf ([[t]]D× [[s]]D)

It is a model:
Pf (X)⊆ Pf (Y) ⇐⇒ X ⊆ Y ⇐⇒ P (X)⊆ P (Y)

It is the best model: for any other model [[]]D ′

t1 ≤D ′ t2 ⇒ t1 ≤D t2

G. Castagna (CNRS) Four Forms of Polymorphism 112 / 192

1: An interpretation that satisfies the previous constraints.

Looking for D and [[]] : Types→ P (D) such that:

[[s1→→→s2]]⊆ [[t1→→→t2]] ⇐⇒ P ([[s1]]× [[s2]])⊆ P ([[t1]]× [[t2]])

1 D least solution of X = X 2 + Pf (X 2)

2 [[]]D is defined as:

[[0]]D = ∅ [[1]]D = D [[¬¬¬t]]D = D\[[t]]D

[[s∨∨∨t]]D = [[s]]D∪ [[t]]D [[s∧∧∧t]]D = [[s]]D∩ [[t]]D

[[s×××t]]D = [[s]]D × [[t]]D [[t→→→s]]D = Pf ([[t]]D× [[s]]D)

It is a model:
Pf (X)⊆ Pf (Y) ⇐⇒ X ⊆ Y ⇐⇒ P (X)⊆ P (Y)

It is the best model: for any other model [[]]D ′

t1 ≤D ′ t2 ⇒ t1 ≤D t2

G. Castagna (CNRS) Four Forms of Polymorphism 112 / 192

1: An interpretation that satisfies the previous constraints.

Looking for D and [[]] : Types→ P (D) such that:

[[s1→→→s2]]⊆ [[t1→→→t2]] ⇐⇒ P ([[s1]]× [[s2]])⊆ P ([[t1]]× [[t2]])

1 D least solution of X = X 2 + Pf (X 2)

2 [[]]D is defined as:

[[0]]D = ∅ [[1]]D = D [[¬¬¬t]]D = D\[[t]]D

[[s∨∨∨t]]D = [[s]]D∪ [[t]]D [[s∧∧∧t]]D = [[s]]D∩ [[t]]D

[[s×××t]]D = [[s]]D × [[t]]D [[t→→→s]]D = Pf ([[t]]D× [[s]]D)

It is a model:
Pf (X)⊆ Pf (Y) ⇐⇒ X ⊆ Y ⇐⇒ P (X)⊆ P (Y)

It is the best model: for any other model [[]]D ′

t1 ≤D ′ t2 ⇒ t1 ≤D t2

G. Castagna (CNRS) Four Forms of Polymorphism 112 / 192

2: An algorithm to decide t1 ≤ t2.

Step 1: Transform the subtyping problem into an emptiness decision
problem:
t1 ≤ t2 ⇐⇒ [[t1]]⊆ [[t2]]⇔ [[t1∧¬t2]]=∅ ⇐⇒ t1∧¬t2 ≤ 0

Step 2: Put the type whose emptiness is to be decided in disjunctive
normal form. ∨

i∈I

∧
j∈J

`ij

where a ::= b | t× t | t → t | 0 | 1 and ` ::= a | ¬a

Step 3: Simplify mixed intersections:
Mixed summands of the union can be simplified. For instance:
• (t1×t2)∧ (t1→t2)≤ 0 is always true
• (t1×t2)∧¬(t1→t2)≤ 0 holds iff t1×t2 ≤ 0.
The problem is reduced to deciding:∧

i∈I

si×××ti
∧
j∈J

¬(sj×××tj)≤ 0 and
∧
i∈I

si→→→ti
∧
j∈J

¬(sj→→→tj)≤ 0

(similarly for basic types)

G. Castagna (CNRS) Four Forms of Polymorphism 113 / 192

2: An algorithm to decide t1 ≤ t2.

Step 1: Transform the subtyping problem into an emptiness decision
problem:
t1 ≤ t2 ⇐⇒ [[t1]]⊆ [[t2]]⇔ [[t1∧¬t2]]=∅ ⇐⇒ t1∧¬t2 ≤ 0

Step 2: Put the type whose emptiness is to be decided in disjunctive
normal form. ∨

i∈I

∧
j∈J

`ij

where a ::= b | t× t | t → t | 0 | 1 and ` ::= a | ¬a

Step 3: Simplify mixed intersections:
Mixed summands of the union can be simplified. For instance:
• (t1×t2)∧ (t1→t2)≤ 0 is always true
• (t1×t2)∧¬(t1→t2)≤ 0 holds iff t1×t2 ≤ 0.
The problem is reduced to deciding:∧

i∈I

si×××ti
∧
j∈J

¬(sj×××tj)≤ 0 and
∧
i∈I

si→→→ti
∧
j∈J

¬(sj→→→tj)≤ 0

(similarly for basic types)

G. Castagna (CNRS) Four Forms of Polymorphism 113 / 192

2: An algorithm to decide t1 ≤ t2.

Step 1: Transform the subtyping problem into an emptiness decision
problem:
t1 ≤ t2 ⇐⇒ [[t1]]⊆ [[t2]]⇔ [[t1∧¬t2]]=∅ ⇐⇒ t1∧¬t2 ≤ 0

Step 2: Put the type whose emptiness is to be decided in disjunctive
normal form. ∨

i∈I

∧
j∈J

`ij

where a ::= b | t× t | t → t | 0 | 1 and ` ::= a | ¬a

Step 3: Simplify mixed intersections:
Mixed summands of the union can be simplified. For instance:
• (t1×t2)∧ (t1→t2)≤ 0 is always true
• (t1×t2)∧¬(t1→t2)≤ 0 holds iff t1×t2 ≤ 0.

The problem is reduced to deciding:∧
i∈I

si×××ti
∧
j∈J

¬(sj×××tj)≤ 0 and
∧
i∈I

si→→→ti
∧
j∈J

¬(sj→→→tj)≤ 0

(similarly for basic types)

G. Castagna (CNRS) Four Forms of Polymorphism 113 / 192

2: An algorithm to decide t1 ≤ t2.

Step 1: Transform the subtyping problem into an emptiness decision
problem:
t1 ≤ t2 ⇐⇒ [[t1]]⊆ [[t2]]⇔ [[t1∧¬t2]]=∅ ⇐⇒ t1∧¬t2 ≤ 0

Step 2: Put the type whose emptiness is to be decided in disjunctive
normal form. ∨

i∈I

∧
j∈J

`ij

where a ::= b | t× t | t → t | 0 | 1 and ` ::= a | ¬a

Step 3: Simplify mixed intersections:
Mixed summands of the union can be simplified. For instance:
• (t1×t2)∧ (t1→t2)≤ 0 is always true
• (t1×t2)∧¬(t1→t2)≤ 0 holds iff t1×t2 ≤ 0.
The problem is reduced to deciding:∧

i∈I

si×××ti
∧
j∈J

¬(sj×××tj)≤ 0 and
∧
i∈I

si→→→ti
∧
j∈J

¬(sj→→→tj)≤ 0

(similarly for basic types)

G. Castagna (CNRS) Four Forms of Polymorphism 113 / 192

Step 4: Use the set-theoretic interpretation to simplify the
intersections:
Decomposition law for products:∧∧∧

i∈I

ti×××si ≤
∨∨∨
i∈J

ti×××si ⇐⇒

∀J ′ ⊂ J.

(∧∧∧
i∈I

ti ≤
∨∨∨
i∈J ′

ti

)
or

∧∧∧
i∈I

si ≤
∨∨∨

i∈J\J ′
si


Decomposition law for arrows:∧∧∧

i∈I

ti→→→si ≤
∨∨∨
i∈J

ti→→→si ⇐⇒

∃j ∈ J.∀I′ ⊂ I.

(
tj ≤

∨∨∨
i∈I′

ti

)
or

I′ 6= I et
∧∧∧

i∈I\I′
si ≤ sj


Step 5: Memoize (for recursive types) and recurse.

G. Castagna (CNRS) Four Forms of Polymorphism 114 / 192

Application to a language.

G. Castagna (CNRS) Four Forms of Polymorphism 115 / 192

Language

Syntax

Exprs e ::= x variables
| λ∧i∈Isi→ti x .e abstractions
| ee applications
| (e,e) pairs
| πie projections, i = 1,2
| (x = e∈∈∈ t)???e:e binding type case

Values v ::= (v ,v)
| λ∧i∈Isi→ti x .e

Semantics
(λ∧i∈Isi→ti x .e)v −→ e[v/x]

πi(v1,v2) −→ vi i = 1,2
(x = v ∈∈∈ t)???e1:e2 −→ e1[v/x] v ∈ t
(x = v ∈∈∈ t)???e1:e2 −→ e2[v/x] v 6∈ t

G. Castagna (CNRS) Four Forms of Polymorphism 116 / 192

Language

Syntax

Exprs e ::= x variables
| λ∧i∈Isi→ti x .e abstractions
| ee applications
| (e,e) pairs
| πie projections, i = 1,2
| (x = e∈∈∈ t)???e:e binding type case

Values v ::= (v ,v)
| λ∧i∈Isi→ti x .e

Semantics
(λ∧i∈Isi→ti x .e)v −→ e[v/x]

πi(v1,v2) −→ vi i = 1,2
(x = v ∈∈∈ t)???e1:e2 −→ e1[v/x] v ∈ t
(x = v ∈∈∈ t)???e1:e2 −→ e2[v/x] v 6∈ t

G. Castagna (CNRS) Four Forms of Polymorphism 116 / 192

Typing

[SUBSUMPTION]
Γ ` e : t t ≤ t ′

Γ ` e : t ′

[APP]
Γ ` e1 : t1→ t2 Γ ` e2 : t1

Γ ` e1e2 : t2
[ABS]

∀i∈I Γ,x : si ` e : ti
Γ ` λ∧i∈Isi→ti x .e :

∧
i∈I si → ti

[SEL]
Γ ` e : (t1 , t2)

Γ ` πie : ti
[PAIR]

Γ ` e1 : t1 Γ ` e2 : t2
Γ ` (e1,e2) : t1×××t2

[TYPECASE]
Γ ` e : t0 Γ,x : s1 ` e1 : t1 Γ,x : s2 ` e2 : t2

Γ ` (x = e∈∈∈ t)???e1:e2 :
∨∨∨

{i|si 6'0}
ti

s1 ≡ t0∧ t
s2 ≡ t0∧¬t

A form of occurrence typing

G. Castagna (CNRS) Four Forms of Polymorphism 117 / 192

Typing

[SUBSUMPTION]
Γ ` e : t t ≤ t ′

Γ ` e : t ′

[APP]
Γ ` e1 : t1→ t2 Γ ` e2 : t1

Γ ` e1e2 : t2
[ABS]

∀i∈I Γ,x : si ` e : ti
Γ ` λ∧i∈Isi→ti x .e :

∧
i∈I si → ti

[SEL]
Γ ` e : (t1 , t2)

Γ ` πie : ti
[PAIR]

Γ ` e1 : t1 Γ ` e2 : t2
Γ ` (e1,e2) : t1×××t2

[TYPECASE]
Γ ` e : t0 Γ,x : s1 ` e1 : t1 Γ,x : s2 ` e2 : t2

Γ ` (x = e∈∈∈ t)???e1:e2 :
∨∨∨

{i|si 6'0}
ti

s1 ≡ t0∧ t
s2 ≡ t0∧¬t

A form of occurrence typing

G. Castagna (CNRS) Four Forms of Polymorphism 117 / 192

Typing

[SUBSUMPTION]
Γ ` e : t t ≤ t ′

Γ ` e : t ′

[APP]
Γ ` e1 : t1→ t2 Γ ` e2 : t1

Γ ` e1e2 : t2
[ABS]

∀i∈I Γ,x : si ` e : ti
Γ ` λ∧i∈Isi→ti x .e :

∧
i∈I si → ti

[SEL]
Γ ` e : (t1 , t2)

Γ ` πie : ti
[PAIR]

Γ ` e1 : t1 Γ ` e2 : t2
Γ ` (e1,e2) : t1×××t2

[TYPECASE]
Γ ` e : t0 Γ,x : s1 ` e1 : t1 Γ,x : s2 ` e2 : t2

Γ ` (x = e∈∈∈ t)???e1:e2 :
∨∨∨

{i|si 6'0}
ti

s1 ≡ t0∧ t
s2 ≡ t0∧¬t

A form of occurrence typing

G. Castagna (CNRS) Four Forms of Polymorphism 117 / 192

Typing

[SUBSUMPTION]
Γ ` e : t t ≤ t ′

Γ ` e : t ′

[APP]
Γ ` e1 : t1→ t2 Γ ` e2 : t1

Γ ` e1e2 : t2
[ABS]

∀i∈I Γ,x : si ` e : ti
Γ ` λ∧i∈Isi→ti x .e :

∧
i∈I si → ti

[SEL]
Γ ` e : (t1 , t2)

Γ ` πie : ti
[PAIR]

Γ ` e1 : t1 Γ ` e2 : t2
Γ ` (e1,e2) : t1×××t2

[TYPECASE]
Γ ` e : t0 Γ,x : s1 ` e1 : t1 Γ,x : s2 ` e2 : t2

Γ ` (x = e∈∈∈ t)???e1:e2 :
∨∨∨

{i|si 6'0}
ti

s1 ≡ t0∧ t
s2 ≡ t0∧¬t

A form of occurrence typing

G. Castagna (CNRS) Four Forms of Polymorphism 117 / 192

Typing

[SUBSUMPTION]
Γ ` e : t t ≤ t ′

Γ ` e : t ′

[APP]
Γ ` e1 : t1→ t2 Γ ` e2 : t1

Γ ` e1e2 : t2
[ABS]

∀i∈I Γ,x : si ` e : ti
Γ ` λ∧i∈Isi→ti x .e :

∧
i∈I si → ti

[SEL]
Γ ` e : (t1 , t2)

Γ ` πie : ti
[PAIR]

Γ ` e1 : t1 Γ ` e2 : t2
Γ ` (e1,e2) : t1×××t2

[TYPECASE]
Γ ` e : t0 Γ,x : s1 ` e1 : t1 Γ,x : s2 ` e2 : t2

Γ ` (x = e∈∈∈ t)???e1:e2 :
∨∨∨

{i|si 6'0}
ti

s1 ≡ t0∧ t
s2 ≡ t0∧¬t

A form of occurrence typing

G. Castagna (CNRS) Four Forms of Polymorphism 117 / 192

Typing

[SUBSUMPTION]
Γ ` e : t t ≤ t ′

Γ ` e : t ′

[APP]
Γ ` e1 : t1→ t2 Γ ` e2 : t1

Γ ` e1e2 : t2
[ABS]

∀i∈I Γ,x : si ` e : ti
Γ ` λ∧i∈Isi→ti x .e :

∧
i∈I si → ti

[SEL]
Γ ` e : (t1 , t2)

Γ ` πie : ti
[PAIR]

Γ ` e1 : t1 Γ ` e2 : t2
Γ ` (e1,e2) : t1×××t2

[TYPECASE]
Γ ` e : t0 Γ,x : s1 ` e1 : t1 Γ,x : s2 ` e2 : t2

Γ ` (x = e∈∈∈ t)???e1:e2 :
∨∨∨

{i|si 6'0}
ti

s1 ≡ t0∧ t
s2 ≡ t0∧¬t

A form of occurrence typing

Necessary for typing overloaded functions:

λ(Int→→→Int)∧(Bool→→→Bool)x .(y = x ∈∈∈ Int)???(y + 1):not(y)

G. Castagna (CNRS) Four Forms of Polymorphism 117 / 192

Typing

[SUBSUMPTION]
Γ ` e : t t ≤ t ′

Γ ` e : t ′

[APP]
Γ ` e1 : t1→ t2 Γ ` e2 : t1

Γ ` e1e2 : t2
[ABS]

∀i∈I Γ,x : si ` e : ti
Γ ` λ∧i∈Isi→ti x .e :

∧
i∈I si → ti

[SEL]
Γ ` e : (t1 , t2)

Γ ` πie : ti
[PAIR]

Γ ` e1 : t1 Γ ` e2 : t2
Γ ` (e1,e2) : t1×××t2

[TYPECASE]
Γ ` e : t0 Γ,x : s1 ` e1 : t1 Γ,x : s2 ` e2 : t2

Γ ` (x = e∈∈∈ t)???e1:e2 :
∨∨∨

{i|si 6'0}
ti

s1 ≡ t0∧ t
s2 ≡ t0∧¬t

A form of occurrence typing

Necessary for typing overloaded functions:

λ(Int→→→Int)∧(Bool→→→Bool)x .(y = x ∈∈∈ Int)???(y + 1):not(y)

G. Castagna (CNRS) Four Forms of Polymorphism 117 / 192

Typing

[SUBSUMPTION]
Γ ` e : t t ≤ t ′

Γ ` e : t ′

[APP]
Γ ` e1 : t1→ t2 Γ ` e2 : t1

Γ ` e1e2 : t2
[ABS]

∀i∈I Γ,x : si ` e : ti
Γ ` λ∧i∈Isi→ti x .e :

∧
i∈I si → ti

[SEL]
Γ ` e : (t1 , t2)

Γ ` πie : ti
[PAIR]

Γ ` e1 : t1 Γ ` e2 : t2
Γ ` (e1,e2) : t1×××t2

[TYPECASE]
Γ ` e : t0 Γ,x : s1 ` e1 : t1 Γ,x : s2 ` e2 : t2

Γ ` (x = e∈∈∈ t)???e1:e2 :
∨∨∨

{i|si 6'0}
ti

s1 ≡ t0∧ t
s2 ≡ t0∧¬t

A form of occurrence typing

Necessary for typing overloaded functions:

λ(Int→→→Int)∧(Bool→→→Bool)x .(y = x ∈∈∈ Int)???(y + 1):not(y)

G. Castagna (CNRS) Four Forms of Polymorphism 117 / 192

Typing

[SUBSUMPTION]
Γ ` e : t t ≤ t ′

Γ ` e : t ′

[APP]
Γ ` e1 : t1→ t2 Γ ` e2 : t1

Γ ` e1e2 : t2
[ABS]

∀i∈I Γ,x : si ` e : ti
Γ ` λ∧i∈Isi→ti x .e :

∧
i∈I si → ti

[SEL]
Γ ` e : (t1 , t2)

Γ ` πie : ti
[PAIR]

Γ ` e1 : t1 Γ ` e2 : t2
Γ ` (e1,e2) : t1×××t2

[TYPECASE]
Γ ` e : t0 Γ,x : s1 ` e1 : t1 Γ,x : s2 ` e2 : t2

Γ ` (x = e∈∈∈ t)???e1:e2 :
∨∨∨

{i|si 6'0}
ti

s1 ≡ t0∧ t
s2 ≡ t0∧¬t

A form of occurrence typing

Necessary for typing overloaded functions:

λ(Int→→→Int)∧(Bool→→→Bool)x .(y = x ∈∈∈ Int)???(y + 1):not(y)
G. Castagna (CNRS) Four Forms of Polymorphism 117 / 192

Typing

[SUBSUMPTION]
Γ ` e : t t ≤ t ′

Γ ` e : t ′

[APP]
Γ ` e1 : t1→ t2 Γ ` e2 : t1

Γ ` e1e2 : t2
[ABS]

∀i∈I Γ,x : si ` e : ti
Γ ` λ∧i∈Isi→ti x .e :

∧
i∈I si → ti

[SEL]
Γ ` e : (t1 , t2)

Γ ` πie : ti
[PAIR]

Γ ` e1 : t1 Γ ` e2 : t2
Γ ` (e1,e2) : t1×××t2

[TYPECASE]
Γ ` e : t0 Γ,x : s1 ` e1 : t1 Γ,x : s2 ` e2 : t2

Γ ` (x = e∈∈∈ t)???e1:e2 :
∨∨∨

{i|si 6'0}
ti

s1 ≡ t0∧ t
s2 ≡ t0∧¬t

A form of occurrence typing

The type system is sound

G. Castagna (CNRS) Four Forms of Polymorphism 117 / 192

Back to the initial example

function double (x) {
(typeof(x) === "number") ? 2*x : x.concat(x)

}

λtx .(y = x ∈∈∈ Int)???(2∗ y):(y .concat(y)) (1)

Exercise
Use the previous rules to check that (1) is well-typed for:

t = (Int∨String)→ (Int∨String)

t = (Int→ Int)∧ (String→ String)

where String = µX .{concat : X → X}

G. Castagna (CNRS) Four Forms of Polymorphism 118 / 192

Back to the initial example

function double (x) {
(typeof(x) === "number") ? 2*x : x.concat(x)

}

λtx .(y = x ∈∈∈ Int)???(2∗ y):(y .concat(y)) (1)

Exercise
Use the previous rules to check that (1) is well-typed for:

t = (Int∨String)→ (Int∨String)

t = (Int→ Int)∧ (String→ String)

where String = µX .{concat : X → X}

G. Castagna (CNRS) Four Forms of Polymorphism 118 / 192

Back to the initial example

function double (x) {
(typeof(x) === "number") ? 2*x : x.concat(x)

}

λtx .(y = x ∈∈∈ Int)???(2∗ y):(y .concat(y)) (1)

Exercise
Use the previous rules to check that (1) is well-typed for:

t = (Int∨String)→ (Int∨String)

t = (Int→ Int)∧ (String→ String)

where String = µX .{concat : X → X}

G. Castagna (CNRS) Four Forms of Polymorphism 118 / 192

Closing the circle

What about the interpretation of types as set of “values”?

I interpreted types into subsets of D rather than into sets of:

Values v ::= (v ,v) | λ∧i∈Isi→ti x .e

Define a new interpretation of types:

[[t]]V = {v | ` v : t}

This induces a new subtyping relation:

t ≤V s
def⇐⇒ [[t]]V ⊂ [[s]]V

Actually, it is not a new one ... it is the old one:

Theorem [Frisch, Castagna, Benzaken 2002&2008]
t ≤V s ⇐⇒ t ≤D s

where ≤D is the subtyping via D and used to define ` v : t

G. Castagna (CNRS) Four Forms of Polymorphism 119 / 192

Closing the circle

What about the interpretation of types as set of “values”?
I interpreted types into subsets of D rather than into sets of:

Values v ::= (v ,v) | λ∧i∈Isi→ti x .e

Define a new interpretation of types:

[[t]]V = {v | ` v : t}

This induces a new subtyping relation:

t ≤V s
def⇐⇒ [[t]]V ⊂ [[s]]V

Actually, it is not a new one ... it is the old one:

Theorem [Frisch, Castagna, Benzaken 2002&2008]
t ≤V s ⇐⇒ t ≤D s

where ≤D is the subtyping via D and used to define ` v : t

G. Castagna (CNRS) Four Forms of Polymorphism 119 / 192

Closing the circle

What about the interpretation of types as set of “values”?
I interpreted types into subsets of D rather than into sets of:

Values v ::= (v ,v) | λ∧i∈Isi→ti x .e

Define a new interpretation of types:

[[t]]V = {v | ` v : t}

This induces a new subtyping relation:

t ≤V s
def⇐⇒ [[t]]V ⊂ [[s]]V

Actually, it is not a new one ... it is the old one:

Theorem [Frisch, Castagna, Benzaken 2002&2008]
t ≤V s ⇐⇒ t ≤D s

where ≤D is the subtyping via D and used to define ` v : t

G. Castagna (CNRS) Four Forms of Polymorphism 119 / 192

Closing the circle

What about the interpretation of types as set of “values”?
I interpreted types into subsets of D rather than into sets of:

Values v ::= (v ,v) | λ∧i∈Isi→ti x .e

Define a new interpretation of types:

[[t]]V = {v | ` v : t}

This induces a new subtyping relation:

t ≤V s
def⇐⇒ [[t]]V ⊂ [[s]]V

Actually, it is not a new one ... it is the old one:

Theorem [Frisch, Castagna, Benzaken 2002&2008]
t ≤V s ⇐⇒ t ≤D s

where ≤D is the subtyping via D and used to define ` v : t

G. Castagna (CNRS) Four Forms of Polymorphism 119 / 192

Closing the circle

What about the interpretation of types as set of “values”?
I interpreted types into subsets of D rather than into sets of:

Values v ::= (v ,v) | λ∧i∈Isi→ti x .e

Define a new interpretation of types:

[[t]]V = {v | ` v : t}

This induces a new subtyping relation:

t ≤V s
def⇐⇒ [[t]]V ⊂ [[s]]V

Actually, it is not a new one ... it is the old one:

Theorem [Frisch, Castagna, Benzaken 2002&2008]
t ≤V s ⇐⇒ t ≤D s

where ≤D is the subtyping via D and used to define ` v : t
G. Castagna (CNRS) Four Forms of Polymorphism 119 / 192

Closing the circle

Was then D really necessary?

YES!

λ-abstractions are values and need (sub)typing to be defined.
We are in a circular definition

[[t]]D

t ≤ t [[t]]V

` e : t ` v : t

G. Castagna (CNRS) Four Forms of Polymorphism 120 / 192

Closing the circle

Was then D really necessary?

YES!

λ-abstractions are values and need (sub)typing to be defined.
We are in a circular definition

[[t]]D

t ≤ t [[t]]V

` e : t ` v : t

G. Castagna (CNRS) Four Forms of Polymorphism 120 / 192

Closing the circle

Was then D really necessary?

YES!

λ-abstractions are values and need (sub)typing to be defined.
We are in a circular definition

[[t]]D

t ≤ t [[t]]V

` e : t ` v : t

G. Castagna (CNRS) Four Forms of Polymorphism 120 / 192

Closing the circle

Was then D really necessary?

YES!

λ-abstractions are values and need (sub)typing to be defined.
We are in a circular definition

[[t]]D

t ≤ t [[t]]V

��
` e : t ` v : t

G. Castagna (CNRS) Four Forms of Polymorphism 120 / 192

Closing the circle

Was then D really necessary?

YES!

λ-abstractions are values and need (sub)typing to be defined.
We are in a circular definition

[[t]]D

t ≤ t [[t]]V

��
` e : t ` v : tee

G. Castagna (CNRS) Four Forms of Polymorphism 120 / 192

Closing the circle

Was then D really necessary?

YES!

λ-abstractions are values and need (sub)typing to be defined.
We are in a circular definition

[[t]]D

t ≤ t [[t]]V

��
` e : t

CC

` v : tee

G. Castagna (CNRS) Four Forms of Polymorphism 120 / 192

Closing the circle

Was then D really necessary?

YES!

λ-abstractions are values and need (sub)typing to be defined.
We are in a circular definition

[[t]]D

t ≤ t
((
[[t]]V

��
` e : t

CC

` v : tee

G. Castagna (CNRS) Four Forms of Polymorphism 120 / 192

Closing the circle

Was then D really necessary?

YES!

λ-abstractions are values and need (sub)typing to be defined.
We are in a circular definition

[[t]]D

t ≤ t
((
[[t]]V

��
` e : t

CC

` v : tee

G. Castagna (CNRS) Four Forms of Polymorphism 120 / 192

Closing the circle

Was then D really necessary?

YES!

λ-abstractions are values and need (sub)typing to be defined.
We are in a circular definition

[[t]]D

t ≤ t [[t]]V

` e : t ` v : t

G. Castagna (CNRS) Four Forms of Polymorphism 120 / 192

Closing the circle

Was then D really necessary?

YES!

λ-abstractions are values and need (sub)typing to be defined.
We are in a circular definition

[[t]]D

t ≤ t [[t]]V

` e : t ` v : t

G. Castagna (CNRS) Four Forms of Polymorphism 120 / 192

Closing the circle

Was then D really necessary?

YES!

λ-abstractions are values and need (sub)typing to be defined.
We are in a circular definition

[[t]]D

t ≤ t

,,

[[t]]V

` e : t ` v : t

G. Castagna (CNRS) Four Forms of Polymorphism 120 / 192

Closing the circle

Was then D really necessary?

YES!

λ-abstractions are values and need (sub)typing to be defined.
We are in a circular definition

[[t]]D

t ≤ t

,,

[[t]]V

` e : t

CC

` v : t

G. Castagna (CNRS) Four Forms of Polymorphism 120 / 192

Closing the circle

Was then D really necessary?

YES!

λ-abstractions are values and need (sub)typing to be defined.
We are in a circular definition

[[t]]D

t ≤ t

,,

[[t]]V

` e : t

CC

` v : tee

G. Castagna (CNRS) Four Forms of Polymorphism 120 / 192

Closing the circle

Was then D really necessary?

YES!

λ-abstractions are values and need (sub)typing to be defined.
We are in a circular definition

[[t]]D

t ≤ t

,,

[[t]]V

��
` e : t

CC

` v : tee

G. Castagna (CNRS) Four Forms of Polymorphism 120 / 192

Closing the circle

Was then D really necessary?

YES!

λ-abstractions are values and need (sub)typing to be defined.
We are in a circular definition

[[t]]D

t ≤ t

,,

???
((
[[t]]V

��
` e : t

CC

` v : tee

G. Castagna (CNRS) Four Forms of Polymorphism 120 / 192

Closing the circle

Was then D really necessary?

YES!

λ-abstractions are values and need (sub)typing to be defined.
We are in a circular definition

[[t]]D

t ≤ t

,,

???
((
[[t]]V

��
` e : t

CC

` v : tee

G. Castagna (CNRS) Four Forms of Polymorphism 120 / 192

Closing the circle

Was then D really necessary?

YES!

λ-abstractions are values and need (sub)typing to be defined.
We are in a circular definition

[[t]]D

t ≤ t

,,

???
((
[[t]]V

��
` e : t

CC

` v : tee

G. Castagna (CNRS) Four Forms of Polymorphism 120 / 192

Theorem 5.5 [Frisch,
Castagna, Benzaken
JACM 2008]

Outline

10 Set-theoretic types

11 Semantic Subtyping

12 Application to a language.

13 Adding Parametric Polymorphism: the Types

14 Adding Parametric Polymorphism: the Language

G. Castagna (CNRS) Four Forms of Polymorphism 121 / 192

Motivating examples: reminder 1

The recursive flatten function:

(* recursive type with union intersection and negation *)

type Tree(α) = (α\[Any*]) | [(Tree(α))*]

(* recursive flatten written in polymorphic CDuce *)

let flatten ((Tree(α)) -> [α*])
| [] -> []
| [h ; t] -> (flatten h)@(flatten t)
| x -> [x]

Rationale
The language does not changes apart from the fact that type variables such as
α may occur in type annontations.

G. Castagna (CNRS) Four Forms of Polymorphism 122 / 192

Motivating examples: reminder 1

The recursive flatten function:

(* recursive type with union intersection and negation *)

type Tree(α) = (α\[Any*]) | [(Tree(α))*]

(* recursive flatten written in polymorphic CDuce *)

let flatten ((Tree(α)) -> [α*])
| [] -> []
| [h ; t] -> (flatten h)@(flatten t)
| x -> [x]

Rationale
The language does not changes apart from the fact that type variables such as
α may occur in type annontations.

G. Castagna (CNRS) Four Forms of Polymorphism 122 / 192

Motivating examples: reminder 1

The recursive flatten function:

(* recursive type with union intersection and negation *)

type Tree(α) = (α\[Any*]) | [(Tree(α))*]

(* recursive flatten written in polymorphic CDuce *)

let flatten ((Tree(α)) -> [α*])
| [] -> []
| [h ; t] -> (flatten h)@(flatten t)
| x -> [x]

Rationale
The language does not changes apart from the fact that type variables such as
α may occur in type annontations.

G. Castagna (CNRS) Four Forms of Polymorphism 122 / 192

Motivating examples: reminder 2

Type refinement of balance for red-black trees

let balance: (Unbal→Rtree) & ((βββ\\\Unbal)→(βββ\\\Unbal)) =
function
| Blk(z , Red(x, a, Red(y,b,c)) , d)
| Blk(z , Red(y, Red(x,a,b), c) , d)
| Blk(x , a , Red(z, Red(y,b,c), d))
| Blk(x , a , Red(y, b, Red(z,c,d)))

-> Red (y, Blk(x,a,b), Blk(z,c,d))
| x -> x

G. Castagna (CNRS) Four Forms of Polymorphism 123 / 192

Motivating examples: reminder 2

Type refinement of balance for red-black trees

let balance: (Unbal→Rtree) & ((βββ\\\Unbal)→(βββ\\\Unbal)) =
function
| Blk(z , Red(x, a, Red(y,b,c)) , d)
| Blk(z , Red(y, Red(x,a,b), c) , d)
| Blk(x , a , Red(z, Red(y,b,c), d))
| Blk(x , a , Red(y, b, Red(z,c,d)))

-> Red (y, Blk(x,a,b), Blk(z,c,d))
| x -> x

G. Castagna (CNRS) Four Forms of Polymorphism 123 / 192

Naive solution

t ::= B | t×××t | t→→→t | t∨∨∨t | t∧∧∧t | ¬t | 0 | 1

| ααα

Idea: Use the previous relation since is defined for “ground types”

Let σ : Vars→ ClosedTypes denote ground substitutions. Define:

s ≤ t
def⇐⇒ ∀σ . sσ≤ tσ

or equivalently

s ≤ t
def⇐⇒ ∀σ.[[sσ]]⊆ [[tσ]]

THIS IS A WRONG WAY:
TOO MANY PROBLEMS

G. Castagna (CNRS) Four Forms of Polymorphism 124 / 192

Naive solution

t ::= B | t×××t | t→→→t | t∨∨∨t | t∧∧∧t | ¬t | 0 | 1 | ααα

Idea: Use the previous relation since is defined for “ground types”

Let σ : Vars→ ClosedTypes denote ground substitutions. Define:

s ≤ t
def⇐⇒ ∀σ . sσ≤ tσ

or equivalently

s ≤ t
def⇐⇒ ∀σ.[[sσ]]⊆ [[tσ]]

THIS IS A WRONG WAY:
TOO MANY PROBLEMS

G. Castagna (CNRS) Four Forms of Polymorphism 124 / 192

Naive solution

t ::= B | t×××t | t→→→t | t∨∨∨t | t∧∧∧t | ¬t | 0 | 1 | ααα

Idea: Use the previous relation since is defined for “ground types”

Let σ : Vars→ ClosedTypes denote ground substitutions. Define:

s ≤ t
def⇐⇒ ∀σ . sσ≤ tσ

or equivalently

s ≤ t
def⇐⇒ ∀σ.[[sσ]]⊆ [[tσ]]

THIS IS A WRONG WAY:
TOO MANY PROBLEMS

G. Castagna (CNRS) Four Forms of Polymorphism 124 / 192

Naive solution

t ::= B | t×××t | t→→→t | t∨∨∨t | t∧∧∧t | ¬t | 0 | 1 | ααα

Idea: Use the previous relation since is defined for “ground types”

Let σ : Vars→ ClosedTypes denote ground substitutions. Define:

s ≤ t
def⇐⇒ ∀σ . sσ≤ tσ

or equivalently

s ≤ t
def⇐⇒ ∀σ.[[sσ]]⊆ [[tσ]]

THIS IS A WRONG WAY:
TOO MANY PROBLEMS

G. Castagna (CNRS) Four Forms of Polymorphism 124 / 192

Naive solution

t ::= B | t×××t | t→→→t | t∨∨∨t | t∧∧∧t | ¬t | 0 | 1 | ααα

Idea: Use the previous relation since is defined for “ground types”

Let σ : Vars→ ClosedTypes denote ground substitutions. Define:

s ≤ t
def⇐⇒ ∀σ . sσ≤ tσ

or equivalently

s ≤ t
def⇐⇒ ∀σ.[[sσ]]⊆ [[tσ]]

THIS IS A WRONG WAY:
TOO MANY PROBLEMS

G. Castagna (CNRS) Four Forms of Polymorphism 124 / 192

Problems with the naive solution

1 Haruo Hosoya conjectured that deciding ∀σ . sσ≤ tσ is at least as hard
as solving Diophantine equations

2 It breaks parametricity:

(t×××ααα) ≤ (t×××¬¬¬t)∨∨∨(ααα×××t) (2)

This inclusion holds if and only if t is an indivisible type
(eg., a singleton or a basic type):

Property of indivisible types

If t is an indivisible type, then for all
possible interpretations of ααα

t ≤ααα or ααα≤¬¬¬t
holds.

If ααα≤¬¬¬t then the left element of the union in (2) suffices;
If t ≤ααα, then ααα = (ααα\t)∨∨∨t . Thus (t×××ααα) = (t×××(ααα\t))∨∨∨(t×××t). This union is
contained component-wise in the one in (2).

G. Castagna (CNRS) Four Forms of Polymorphism 125 / 192

Problems with the naive solution

1 Haruo Hosoya conjectured that deciding ∀σ . sσ≤ tσ is at least as hard
as solving Diophantine equations

2 It breaks parametricity:

(t×××ααα) ≤ (t×××¬¬¬t)∨∨∨(ααα×××t) (2)

This inclusion holds if and only if t is an indivisible type
(eg., a singleton or a basic type):

Property of indivisible types

If t is an indivisible type, then for all
possible interpretations of ααα

t ≤ααα or ααα≤¬¬¬t
holds.

If ααα≤¬¬¬t then the left element of the union in (2) suffices;
If t ≤ααα, then ααα = (ααα\t)∨∨∨t . Thus (t×××ααα) = (t×××(ααα\t))∨∨∨(t×××t). This union is
contained component-wise in the one in (2).

G. Castagna (CNRS) Four Forms of Polymorphism 125 / 192

Problems with the naive solution

1 Haruo Hosoya conjectured that deciding ∀σ . sσ≤ tσ is at least as hard
as solving Diophantine equations

2 It breaks parametricity:

(t×××ααα) ≤ (t×××¬¬¬t)∨∨∨(ααα×××t) (2)

This inclusion holds if and only if t is an indivisible type
(eg., a singleton or a basic type):

Property of indivisible types

If t is an indivisible type, then for all
possible interpretations of ααα

t ≤ααα or ααα≤¬¬¬t
holds.

If ααα≤¬¬¬t then the left element of the union in (2) suffices;
If t ≤ααα, then ααα = (ααα\t)∨∨∨t . Thus (t×××ααα) = (t×××(ααα\t))∨∨∨(t×××t). This union is
contained component-wise in the one in (2).

G. Castagna (CNRS) Four Forms of Polymorphism 125 / 192

Problems with the naive solution

1 Haruo Hosoya conjectured that deciding ∀σ . sσ≤ tσ is at least as hard
as solving Diophantine equations

2 It breaks parametricity:

(t×××ααα) ≤ (t×××¬¬¬t)∨∨∨(ααα×××t) (2)

This inclusion holds if and only if t is an indivisible type
(eg., a singleton or a basic type):

Property of indivisible types

If t is an indivisible type, then for all
possible interpretations of ααα

t ≤ααα or ααα≤¬¬¬t
holds.

If ααα≤¬¬¬t then the left element of the union in (2) suffices;
If t ≤ααα, then ααα = (ααα\t)∨∨∨t . Thus (t×××ααα) = (t×××(ααα\t))∨∨∨(t×××t). This union is
contained component-wise in the one in (2).

G. Castagna (CNRS) Four Forms of Polymorphism 125 / 192

Problems with the naive solution

1 Haruo Hosoya conjectured that deciding ∀σ . sσ≤ tσ is at least as hard
as solving Diophantine equations

2 It breaks parametricity:

(t×××ααα) ≤ (t×××¬¬¬t)∨∨∨(ααα×××t) (2)

This inclusion holds if and only if t is an indivisible type
(eg., a singleton or a basic type):

Property of indivisible types

If t is an indivisible type, then for all
possible interpretations of ααα

t ≤ααα or ααα≤¬¬¬t
holds.

If ααα≤¬¬¬t then the left element of the union in (2) suffices;
If t ≤ααα, then ααα = (ααα\t)∨∨∨t . Thus (t×××ααα) = (t×××(ααα\t))∨∨∨(t×××t). This union is
contained component-wise in the one in (2).

G. Castagna (CNRS) Four Forms of Polymorphism 125 / 192

Problems with the naive solution

1 Haruo Hosoya conjectured that deciding ∀σ . sσ≤ tσ is at least as hard
as solving Diophantine equations

2 It breaks parametricity:

(t×××ααα) ≤ (t×××¬¬¬t)∨∨∨(ααα×××t) (2)

This inclusion holds if and only if t is an indivisible type
(eg., a singleton or a basic type):

Property of indivisible types

If t is an indivisible type, then for all
possible interpretations of ααα

t ≤ααα or ααα≤¬¬¬t
holds.

If ααα≤¬¬¬t then the left element of the union in (2) suffices;
If t ≤ααα, then ααα = (ααα\t)∨∨∨t . Thus (t×××ααα) = (t×××(ααα\t))∨∨∨(t×××t). This union is
contained component-wise in the one in (2).

G. Castagna (CNRS) Four Forms of Polymorphism 125 / 192

Problems with the naive solution

The fact that
(t×××ααα) ≤ (t×××¬¬¬t)∨∨∨(ααα×××t)

holds if and only if t is indivisible is really catastrophic:

Deciding subtyping needs deciding indivisibility ... which is very hard.

This subtyping relation breaks parametricity:
by subsumption a function generic in its first argument,
becomes generic on its second argument.

A semantic solution was deemed unfeasible (even w/o arrows)

Problem eschewed by resorting to syntactic solutions: [Hosoya, Frisch,
Castagna: POPL 05], [Vouillon: POPL 06].

A SEMANTIC SOLUTION IS POSSIBLE

G. Castagna (CNRS) Four Forms of Polymorphism 126 / 192

Problems with the naive solution

The fact that
(t×××ααα) ≤ (t×××¬¬¬t)∨∨∨(ααα×××t)

holds if and only if t is indivisible is really catastrophic:

Deciding subtyping needs deciding indivisibility ... which is very hard.

This subtyping relation breaks parametricity:
by subsumption a function generic in its first argument,
becomes generic on its second argument.

A semantic solution was deemed unfeasible (even w/o arrows)

Problem eschewed by resorting to syntactic solutions: [Hosoya, Frisch,
Castagna: POPL 05], [Vouillon: POPL 06].

A SEMANTIC SOLUTION IS POSSIBLE

G. Castagna (CNRS) Four Forms of Polymorphism 126 / 192

Problems with the naive solution

The fact that
(t×××ααα) ≤ (t×××¬¬¬t)∨∨∨(ααα×××t)

holds if and only if t is indivisible is really catastrophic:

Deciding subtyping needs deciding indivisibility ... which is very hard.

This subtyping relation breaks parametricity:
by subsumption a function generic in its first argument,
becomes generic on its second argument.

A semantic solution was deemed unfeasible (even w/o arrows)

Problem eschewed by resorting to syntactic solutions: [Hosoya, Frisch,
Castagna: POPL 05], [Vouillon: POPL 06].

A SEMANTIC SOLUTION IS POSSIBLE

G. Castagna (CNRS) Four Forms of Polymorphism 126 / 192

Problems with the naive solution

The fact that
(t×××ααα) ≤ (t×××¬¬¬t)∨∨∨(ααα×××t)

holds if and only if t is indivisible is really catastrophic:

Deciding subtyping needs deciding indivisibility ... which is very hard.

This subtyping relation breaks parametricity:
by subsumption a function generic in its first argument,
becomes generic on its second argument.

A semantic solution was deemed unfeasible (even w/o arrows)

Problem eschewed by resorting to syntactic solutions: [Hosoya, Frisch,
Castagna: POPL 05], [Vouillon: POPL 06].

A SEMANTIC SOLUTION IS POSSIBLE

G. Castagna (CNRS) Four Forms of Polymorphism 126 / 192

Problems with the naive solution

The fact that
(t×××ααα) ≤ (t×××¬¬¬t)∨∨∨(ααα×××t)

holds if and only if t is indivisible is really catastrophic:

Deciding subtyping needs deciding indivisibility ... which is very hard.

This subtyping relation breaks parametricity:
by subsumption a function generic in its first argument,
becomes generic on its second argument.

A semantic solution was deemed unfeasible (even w/o arrows)

Problem eschewed by resorting to syntactic solutions: [Hosoya, Frisch,
Castagna: POPL 05], [Vouillon: POPL 06].

A SEMANTIC SOLUTION IS POSSIBLE

G. Castagna (CNRS) Four Forms of Polymorphism 126 / 192

A semantic solution

A faint intuition
The loss of parametricity is only due to the interpretation of indivisible types, all
the rest works (more or less) smoothly

The crux of the problem is that for an indivisible type iii

iii ≤ααα or ααα≤¬¬¬iii

validity can stutter from one formula to another, missing in this way the
uniformity typical of parametricity

The leitmotiv of this work
A semantic characterization of models where stuttering is absent, should yield
a subtyping relation that is:

1 Semantic
2 Intuitive for the programmer
3 Decidable

G. Castagna (CNRS) Four Forms of Polymorphism 127 / 192

A semantic solution

A faint intuition
The loss of parametricity is only due to the interpretation of indivisible types, all
the rest works (more or less) smoothly

The crux of the problem is that for an indivisible type iii

iii ≤ααα or ααα≤¬¬¬iii

validity can stutter from one formula to another, missing in this way the
uniformity typical of parametricity

The leitmotiv of this work
A semantic characterization of models where stuttering is absent, should yield
a subtyping relation that is:

1 Semantic
2 Intuitive for the programmer
3 Decidable

G. Castagna (CNRS) Four Forms of Polymorphism 127 / 192

A semantic solution

A faint intuition
The loss of parametricity is only due to the interpretation of indivisible types, all
the rest works (more or less) smoothly

The crux of the problem is that for an indivisible type iii

iii ≤ααα or ααα≤¬¬¬iii

validity can stutter from one formula to another, missing in this way the
uniformity typical of parametricity

The leitmotiv of this work
A semantic characterization of models where stuttering is absent, should yield
a subtyping relation that is:

1 Semantic
2 Intuitive for the programmer
3 Decidable

G. Castagna (CNRS) Four Forms of Polymorphism 127 / 192

A semantic solution

Rough idea
Make indivisible types “splittable” so that type variables can range over
strict subsets of every type, indivisible types included.

[intuition: interpret all non-empty types into infinite sets]

Since this cannot be done at syntactic level, move to the semantic one and
replace ground substitutions by semantic assignments:

η : Vars→ P (D)
and now the interpretation function takes an extra parameter

[[]] : Types→ P (D)Vars→ P (D)

with
[[ααα]]η = η(ααα) [[¬¬¬t]]η = D\[[t]]η
[[t1∨∨∨t2]]η = [[t1]]η∪ [[t2]]η [[t1∧∧∧t2]]η = [[t1]]η∩ [[t2]]η
[[0]]η = ∅ [[1]]η = D

and such that it satisfies:

[[t1→→→s1]]η⊆ [[t2→→→s2]]η ⇐⇒ P ([[t1]]η× [[s1]]η)⊆ P ([[t2]]η× [[s2]]η)

G. Castagna (CNRS) Four Forms of Polymorphism 128 / 192

A semantic solution

Rough idea
Make indivisible types “splittable” so that type variables can range over
strict subsets of every type, indivisible types included.

[intuition: interpret all non-empty types into infinite sets]

Since this cannot be done at syntactic level, move to the semantic one and
replace ground substitutions by semantic assignments:

η : Vars→ P (D)

and now the interpretation function takes an extra parameter
[[]] : Types→ P (D)Vars→ P (D)

with
[[ααα]]η = η(ααα) [[¬¬¬t]]η = D\[[t]]η
[[t1∨∨∨t2]]η = [[t1]]η∪ [[t2]]η [[t1∧∧∧t2]]η = [[t1]]η∩ [[t2]]η
[[0]]η = ∅ [[1]]η = D

and such that it satisfies:

[[t1→→→s1]]η⊆ [[t2→→→s2]]η ⇐⇒ P ([[t1]]η× [[s1]]η)⊆ P ([[t2]]η× [[s2]]η)

G. Castagna (CNRS) Four Forms of Polymorphism 128 / 192

A semantic solution

Rough idea
Make indivisible types “splittable” so that type variables can range over
strict subsets of every type, indivisible types included.

[intuition: interpret all non-empty types into infinite sets]

Since this cannot be done at syntactic level, move to the semantic one and
replace ground substitutions by semantic assignments:

η : Vars→ P (D)
and now the interpretation function takes an extra parameter

[[]] : Types→ P (D)Vars→ P (D)

with
[[ααα]]η = η(ααα) [[¬¬¬t]]η = D\[[t]]η
[[t1∨∨∨t2]]η = [[t1]]η∪ [[t2]]η [[t1∧∧∧t2]]η = [[t1]]η∩ [[t2]]η
[[0]]η = ∅ [[1]]η = D

and such that it satisfies:

[[t1→→→s1]]η⊆ [[t2→→→s2]]η ⇐⇒ P ([[t1]]η× [[s1]]η)⊆ P ([[t2]]η× [[s2]]η)

G. Castagna (CNRS) Four Forms of Polymorphism 128 / 192

A semantic solution

Rough idea
Make indivisible types “splittable” so that type variables can range over
strict subsets of every type, indivisible types included.

[intuition: interpret all non-empty types into infinite sets]

Since this cannot be done at syntactic level, move to the semantic one and
replace ground substitutions by semantic assignments:

η : Vars→ P (D)
and now the interpretation function takes an extra parameter

[[]] : Types→ P (D)Vars→ P (D)

with
[[ααα]]η = η(ααα) [[¬¬¬t]]η = D\[[t]]η
[[t1∨∨∨t2]]η = [[t1]]η∪ [[t2]]η [[t1∧∧∧t2]]η = [[t1]]η∩ [[t2]]η
[[0]]η = ∅ [[1]]η = D

and such that it satisfies:

[[t1→→→s1]]η⊆ [[t2→→→s2]]η ⇐⇒ P ([[t1]]η× [[s1]]η)⊆ P ([[t2]]η× [[s2]]η)

G. Castagna (CNRS) Four Forms of Polymorphism 128 / 192

A semantic solution

Rough idea
Make indivisible types “splittable” so that type variables can range over
strict subsets of every type, indivisible types included.

[intuition: interpret all non-empty types into infinite sets]

Since this cannot be done at syntactic level, move to the semantic one and
replace ground substitutions by semantic assignments:

η : Vars→ P (D)
and now the interpretation function takes an extra parameter

[[]] : Types→ P (D)Vars→ P (D)

with
[[ααα]]η = η(ααα) [[¬¬¬t]]η = D\[[t]]η
[[t1∨∨∨t2]]η = [[t1]]η∪ [[t2]]η [[t1∧∧∧t2]]η = [[t1]]η∩ [[t2]]η
[[0]]η = ∅ [[1]]η = D

and such that it satisfies:

[[t1→→→s1]]η⊆ [[t2→→→s2]]η ⇐⇒ P ([[t1]]η× [[s1]]η)⊆ P ([[t2]]η× [[s2]]η)

G. Castagna (CNRS) Four Forms of Polymorphism 128 / 192

Subtyping relation

In this framework the natural definition of subtyping is

s ≤ t
def⇐⇒ ∀η . [[s]]η⊆ [[t]]η

It “just” remains to find the uniformity condition to
avoid stuttering and recover parametricity.

G. Castagna (CNRS) Four Forms of Polymorphism 129 / 192

The magic property: convexity

Consider only models of semantic subtyping in which the following convexity
property holds

∀η.([[t1]]η=∅ or [[t2]]η=∅) ⇐⇒ (∀η.[[t1]]η=∅) or (∀η.[[t2]]η=∅)

It avoids stuttering: ∀η.([[t∧∧∧¬¬¬ααα]]η=∅ or [[t∧∧∧ααα]]η=∅) —that is,
(t ≤ααα or ααα≤¬¬¬t)— holds if and only if t is empty.

There are natural models:all models that map all non-empty types into
infinite sets satisfy it [our initial intuition].

A sound, complete, and terminating decision algorithm: the condition
gives us exactly the right conditions needed to reuse the subtyping
algorithm devised for ground types.

An intuitive relation: the algorithm returns intuitive results (actually, it helps
to better understand twisted examples)

G. Castagna (CNRS) Four Forms of Polymorphism 130 / 192

The magic property: convexity

Consider only models of semantic subtyping in which the following convexity
property holds

∀η.([[t1]]η=∅ or [[t2]]η=∅) ⇐⇒ (∀η.[[t1]]η=∅) or (∀η.[[t2]]η=∅)

It avoids stuttering: ∀η.([[t∧∧∧¬¬¬ααα]]η=∅ or [[t∧∧∧ααα]]η=∅) —that is,
(t ≤ααα or ααα≤¬¬¬t)— holds if and only if t is empty.

There are natural models:all models that map all non-empty types into
infinite sets satisfy it [our initial intuition].

A sound, complete, and terminating decision algorithm: the condition
gives us exactly the right conditions needed to reuse the subtyping
algorithm devised for ground types.

An intuitive relation: the algorithm returns intuitive results (actually, it helps
to better understand twisted examples)

G. Castagna (CNRS) Four Forms of Polymorphism 130 / 192

The magic property: convexity

Consider only models of semantic subtyping in which the following convexity
property holds

∀η.([[t1]]η=∅ or [[t2]]η=∅) ⇐⇒ (∀η.[[t1]]η=∅) or (∀η.[[t2]]η=∅)

It avoids stuttering: ∀η.([[t∧∧∧¬¬¬ααα]]η=∅ or [[t∧∧∧ααα]]η=∅) —that is,
(t ≤ααα or ααα≤¬¬¬t)— holds if and only if t is empty.

There are natural models:all models that map all non-empty types into
infinite sets satisfy it [our initial intuition].

A sound, complete, and terminating decision algorithm: the condition
gives us exactly the right conditions needed to reuse the subtyping
algorithm devised for ground types.

An intuitive relation: the algorithm returns intuitive results (actually, it helps
to better understand twisted examples)

G. Castagna (CNRS) Four Forms of Polymorphism 130 / 192

The magic property: convexity

Consider only models of semantic subtyping in which the following convexity
property holds

∀η.([[t1]]η=∅ or [[t2]]η=∅) ⇐⇒ (∀η.[[t1]]η=∅) or (∀η.[[t2]]η=∅)

It avoids stuttering: ∀η.([[t∧∧∧¬¬¬ααα]]η=∅ or [[t∧∧∧ααα]]η=∅) —that is,
(t ≤ααα or ααα≤¬¬¬t)— holds if and only if t is empty.

There are natural models:all models that map all non-empty types into
infinite sets satisfy it [our initial intuition].

A sound, complete, and terminating decision algorithm: the condition
gives us exactly the right conditions needed to reuse the subtyping
algorithm devised for ground types.

An intuitive relation: the algorithm returns intuitive results (actually, it helps
to better understand twisted examples)

G. Castagna (CNRS) Four Forms of Polymorphism 130 / 192

The magic property: convexity

Consider only models of semantic subtyping in which the following convexity
property holds

∀η.([[t1]]η=∅ or [[t2]]η=∅) ⇐⇒ (∀η.[[t1]]η=∅) or (∀η.[[t2]]η=∅)

It avoids stuttering: ∀η.([[t∧∧∧¬¬¬ααα]]η=∅ or [[t∧∧∧ααα]]η=∅) —that is,
(t ≤ααα or ααα≤¬¬¬t)— holds if and only if t is empty.

There are natural models:all models that map all non-empty types into
infinite sets satisfy it [our initial intuition].

A sound, complete, and terminating decision algorithm: the condition
gives us exactly the right conditions needed to reuse the subtyping
algorithm devised for ground types.

An intuitive relation: the algorithm returns intuitive results (actually, it helps
to better understand twisted examples)

G. Castagna (CNRS) Four Forms of Polymorphism 130 / 192

The magic property: convexity

Consider only models of semantic subtyping in which the following convexity
property holds

∀η.([[t1]]η=∅ or [[t2]]η=∅) ⇐⇒ (∀η.[[t1]]η=∅) or (∀η.[[t2]]η=∅)

It avoids stuttering: ∀η.([[t∧∧∧¬¬¬ααα]]η=∅ or [[t∧∧∧ααα]]η=∅) —that is,
(t ≤ααα or ααα≤¬¬¬t)— holds if and only if t is empty.

There are natural models:all models that map all non-empty types into
infinite sets satisfy it [our initial intuition].

A sound, complete, and terminating decision algorithm: the condition
gives us exactly the right conditions needed to reuse the subtyping
algorithm devised for ground types.

An intuitive relation: the algorithm returns intuitive results (actually, it helps
to better understand twisted examples)

G. Castagna (CNRS) Four Forms of Polymorphism 130 / 192

Examples of subtyping relations

G. Castagna (CNRS) Four Forms of Polymorphism 131 / 192

Examples

We can internalize properties such as:

(α→ γ)∧ (β→ γ) ∼ α∨β→ γ

or distributivity laws:

(α∨β× γ) ∼ (α×γ)∨ (β×γ)

and combining them deduce:

(α×γ→ δ1)∧ (β×γ→ δ2) ≤ (α∨β× γ)→ δ1∨δ2

Of course the problematic relation never holds, whatever the t :

(t×××ααα) 6≤ (t×××¬¬¬t)∨∨∨(ααα×××t)

G. Castagna (CNRS) Four Forms of Polymorphism 132 / 192

Examples

We can internalize properties such as:

(α→ γ)∧ (β→ γ) ∼ α∨β→ γ

or distributivity laws:

(α∨β× γ) ∼ (α×γ)∨ (β×γ)

and combining them deduce:

(α×γ→ δ1)∧ (β×γ→ δ2) ≤ (α∨β× γ)→ δ1∨δ2

Of course the problematic relation never holds, whatever the t :

(t×××ααα) 6≤ (t×××¬¬¬t)∨∨∨(ααα×××t)

G. Castagna (CNRS) Four Forms of Polymorphism 132 / 192

Examples

We can internalize properties such as:

(α→ γ)∧ (β→ γ) ∼ α∨β→ γ

or distributivity laws:

(α∨β× γ) ∼ (α×γ)∨ (β×γ)

and combining them deduce:

(α×γ→ δ1)∧ (β×γ→ δ2) ≤ (α∨β× γ)→ δ1∨δ2

Of course the problematic relation never holds, whatever the t :

(t×××ααα) 6≤ (t×××¬¬¬t)∨∨∨(ααα×××t)

G. Castagna (CNRS) Four Forms of Polymorphism 132 / 192

Examples

We can internalize properties such as:

(α→ γ)∧ (β→ γ) ∼ α∨β→ γ

or distributivity laws:

(α∨β× γ) ∼ (α×γ)∨ (β×γ)

and combining them deduce:

(α×γ→ δ1)∧ (β×γ→ δ2) ≤ (α∨β× γ)→ δ1∨δ2

Of course the problematic relation never holds, whatever the t :

(t×××ααα) 6≤ (t×××¬¬¬t)∨∨∨(ααα×××t)

G. Castagna (CNRS) Four Forms of Polymorphism 132 / 192

We can prove relevant relations on infinite types, eg., for the type of generic
ααα-lists:

ααα-list = µz.(ααα×××z)∨∨∨nil

we can prove that it contains both the α-lists of even length

µz.(ααα×××(ααα×××z))∨∨∨nil︸ ︷︷ ︸
α-lists of even length

≤≤≤ µz.(ααα×××z)∨∨∨nil︸ ︷︷ ︸
α-lists

and the α-lists with of odd length

µz.(ααα×××(ααα×××z))∨∨∨(ααα×××nil)︸ ︷︷ ︸
α-lists of odd length

≤≤≤ µz.(ααα×××z)∨∨∨nil︸ ︷︷ ︸
α-lists

and that it is itself contained in the union of the two, that is:

ααα-list ∼∼∼ (µz.(ααα×××(ααα×××z))∨∨∨nil) ∨∨∨ (µz.(ααα×××(ααα×××z))∨∨∨(ααα×××nil))

And we can prove far more complicated relations (see paper).

G. Castagna (CNRS) Four Forms of Polymorphism 133 / 192

We can prove relevant relations on infinite types, eg., for the type of generic
ααα-lists:

ααα-list = µz.(ααα×××z)∨∨∨nil

we can prove that it contains both the α-lists of even length

µz.(ααα×××(ααα×××z))∨∨∨nil︸ ︷︷ ︸
α-lists of even length

≤≤≤ µz.(ααα×××z)∨∨∨nil︸ ︷︷ ︸
α-lists

and the α-lists with of odd length

µz.(ααα×××(ααα×××z))∨∨∨(ααα×××nil)︸ ︷︷ ︸
α-lists of odd length

≤≤≤ µz.(ααα×××z)∨∨∨nil︸ ︷︷ ︸
α-lists

and that it is itself contained in the union of the two, that is:

ααα-list ∼∼∼ (µz.(ααα×××(ααα×××z))∨∨∨nil) ∨∨∨ (µz.(ααα×××(ααα×××z))∨∨∨(ααα×××nil))

And we can prove far more complicated relations (see paper).

G. Castagna (CNRS) Four Forms of Polymorphism 133 / 192

We can prove relevant relations on infinite types, eg., for the type of generic
ααα-lists:

ααα-list = µz.(ααα×××z)∨∨∨nil

we can prove that it contains both the α-lists of even length

µz.(ααα×××(ααα×××z))∨∨∨nil︸ ︷︷ ︸
α-lists of even length

≤≤≤ µz.(ααα×××z)∨∨∨nil︸ ︷︷ ︸
α-lists

and the α-lists with of odd length

µz.(ααα×××(ααα×××z))∨∨∨(ααα×××nil)︸ ︷︷ ︸
α-lists of odd length

≤≤≤ µz.(ααα×××z)∨∨∨nil︸ ︷︷ ︸
α-lists

and that it is itself contained in the union of the two, that is:

ααα-list ∼∼∼ (µz.(ααα×××(ααα×××z))∨∨∨nil) ∨∨∨ (µz.(ααα×××(ααα×××z))∨∨∨(ααα×××nil))

And we can prove far more complicated relations (see paper).

G. Castagna (CNRS) Four Forms of Polymorphism 133 / 192

We can prove relevant relations on infinite types, eg., for the type of generic
ααα-lists:

ααα-list = µz.(ααα×××z)∨∨∨nil

we can prove that it contains both the α-lists of even length

µz.(ααα×××(ααα×××z))∨∨∨nil︸ ︷︷ ︸
α-lists of even length

≤≤≤ µz.(ααα×××z)∨∨∨nil︸ ︷︷ ︸
α-lists

and the α-lists with of odd length

µz.(ααα×××(ααα×××z))∨∨∨(ααα×××nil)︸ ︷︷ ︸
α-lists of odd length

≤≤≤ µz.(ααα×××z)∨∨∨nil︸ ︷︷ ︸
α-lists

and that it is itself contained in the union of the two, that is:

ααα-list ∼∼∼ (µz.(ααα×××(ααα×××z))∨∨∨nil) ∨∨∨ (µz.(ααα×××(ααα×××z))∨∨∨(ααα×××nil))

And we can prove far more complicated relations (see paper).

G. Castagna (CNRS) Four Forms of Polymorphism 133 / 192

Subtyping algorithm

G. Castagna (CNRS) Four Forms of Polymorphism 134 / 192

Subtyping Algorithm: t1 ≤ t2

Step 1: Transform the subtyping problem into an emptiness decision
problem:
t1 ≤ t2 ⇐⇒ ∀η.[[t1]]η⊆ [[t2]]η ⇐⇒ ∀η.[[t1∧¬t2]]η=∅ ⇐⇒ t1∧¬t2 ≤ 0

Step 2: Put the type whose emptiness is to be decided in disjunctive
normal form. ∨

i∈I

∧
j∈J

`ij

where a ::= b | t× t | t → t | 0 | 1|ααα and ` ::= a | ¬a

Step 3: Simplify mixed intersections:

Solve:
∧
i∈I

ai

∧
j∈J

¬a′j
∧
h∈H

αh

∧
k∈K

¬βk

where all a have the same toplevel constructor.

G. Castagna (CNRS) Four Forms of Polymorphism 135 / 192

Subtyping Algorithm: t1 ≤ t2

Step 1: Transform the subtyping problem into an emptiness decision
problem:
t1 ≤ t2 ⇐⇒ ∀η.[[t1]]η⊆ [[t2]]η ⇐⇒ ∀η.[[t1∧¬t2]]η=∅ ⇐⇒ t1∧¬t2 ≤ 0

Step 2: Put the type whose emptiness is to be decided in disjunctive
normal form. ∨

i∈I

∧
j∈J

`ij

where a ::= b | t× t | t → t | 0 | 1|ααα and ` ::= a | ¬a

Step 3: Simplify mixed intersections:

Solve:
∧
i∈I

ai

∧
j∈J

¬a′j
∧
h∈H

αh

∧
k∈K

¬βk

where all a have the same toplevel constructor.

G. Castagna (CNRS) Four Forms of Polymorphism 135 / 192

Subtyping Algorithm: t1 ≤ t2

Step 1: Transform the subtyping problem into an emptiness decision
problem:
t1 ≤ t2 ⇐⇒ ∀η.[[t1]]η⊆ [[t2]]η ⇐⇒ ∀η.[[t1∧¬t2]]η=∅ ⇐⇒ t1∧¬t2 ≤ 0

Step 2: Put the type whose emptiness is to be decided in disjunctive
normal form. ∨

i∈I

∧
j∈J

`ij

where a ::= b | t× t | t → t | 0 | 1|ααα and ` ::= a | ¬a

Step 3: Simplify mixed intersections:

Solve:
∧
i∈I

ai

∧
j∈J

¬a′j
∧
h∈H

αh

∧
k∈K

¬βk

where all a have the same toplevel constructor.

G. Castagna (CNRS) Four Forms of Polymorphism 135 / 192

Step 4: Eliminate toplevel negative variables.,

∀η.[[t]]η = ∅ ⇐⇒ ∀η.[[t[¬α/α]]]η = ∅
so replace ¬βk for βk (forall k ∈ K)

Solve:
∧
i∈I

ai

∧
j∈J

¬a′j
∧
h∈H

αh

Step 5: Eliminate toplevel variables.∧
t1×t2∈P

t1×t2
∧
h∈H

αh ≤
∨

t ′1×t ′2∈N

t ′1×t ′2

holds if and only if∧
t1×t2∈P

t1σ× t2σ
∧
h∈H

γ1
h× γ2

h ≤
∨

t ′1×t ′2∈N

t ′1σ× t ′2σ

where σ = [(γ1
h×γ2

h)∨αh /αh]h∈H (similarly for arrows)

G. Castagna (CNRS) Four Forms of Polymorphism 136 / 192

Step 4: Eliminate toplevel negative variables.,

∀η.[[t]]η = ∅ ⇐⇒ ∀η.[[t[¬α/α]]]η = ∅
so replace ¬βk for βk (forall k ∈ K)

Solve:
∧
i∈I

ai

∧
j∈J

¬a′j
∧
h∈H

αh

Step 5: Eliminate toplevel variables.∧
t1×t2∈P

t1×t2
∧
h∈H

αh ≤
∨

t ′1×t ′2∈N

t ′1×t ′2

holds if and only if∧
t1×t2∈P

t1σ× t2σ
∧
h∈H

γ1
h× γ2

h ≤
∨

t ′1×t ′2∈N

t ′1σ× t ′2σ

where σ = [(γ1
h×γ2

h)∨αh /αh]h∈H (similarly for arrows)

G. Castagna (CNRS) Four Forms of Polymorphism 136 / 192

Step 6: Eliminate toplevel constructors, memoize, and recurse.∧
t1×t2∈P

t1×t2 ≤
∨

t ′1×t ′2∈N

t ′1×t ′2 (3)

Equation (3) holds if and only if for all N ′⊆N,

∀η.

[[
∧

t1×t2∈P

t1∧
∧

t ′1×t ′2∈N ′
¬t ′1]]η=∅ or [[

∧
t1×t2∈P

t2∧
∧

t ′1×t ′2∈N\N ′
¬t ′2]]η=∅


Apply convexity to distribute the quantification over the or’s:

∀η.

[[
∧

t1×t2∈P

t1∧
∧

t ′1×t ′2∈N ′
¬t ′1]]η=∅

 or ∀η.

[[
∧

t1×t2∈P

t2∧
∧

t ′1×t ′2∈N\N ′
¬t ′2]]η=∅


Yielding the following simplification: (similarly for arrows)

∀N ′⊆N.

 ∧
t1×t2∈P

t1 ≤
∨

t ′1×t ′2∈N ′
t ′1

 or

 ∧
t1×t2∈P

t2 ≤
∨

t ′1×t ′2∈N\N ′
t ′2


G. Castagna (CNRS) Four Forms of Polymorphism 137 / 192

Outline

10 Set-theoretic types

11 Semantic Subtyping

12 Application to a language.

13 Adding Parametric Polymorphism: the Types

14 Adding Parametric Polymorphism: the Language

G. Castagna (CNRS) Four Forms of Polymorphism 138 / 192

A motivating example in Haskell

(almost)

[cf. typing of balance]

map :: (ααα→βββ)→ [ααα]→ [βββ]
map f l = case l of

| [] -> []
| (x : xs) -> (f x : map f xs)

even :: (Int→ Bool) ∧∧∧ ((ααα\\\Int)→ (ααα\\\Int))
even x = case x of

| Int -> (x ‘mod‘ 2) == 0
| _ -> x

G. Castagna (CNRS) Four Forms of Polymorphism 139 / 192

A motivating example in Haskell

(almost)

[cf. typing of balance]

map :: (ααα→βββ)→ [ααα]→ [βββ]
map f l = case l of

| [] -> []
| (x : xs) -> (f x : map f xs)

even :: (Int→ Bool) ∧∧∧ ((ααα\\\Int)→ (ααα\\\Int))
even x = case x of

| Int -> (x ‘mod‘ 2) == 0
| _ -> x

G. Castagna (CNRS) Four Forms of Polymorphism 139 / 192

A motivating example in Haskell (almost) [cf. typing of balance]

map :: (ααα→βββ)→ [ααα]→ [βββ]
map f l = case l of

| [] -> []
| (x : xs) -> (f x : map f xs)

even :: (Int→ Bool) ∧∧∧ ((ααα\\\Int)→ (ααα\\\Int))
even x = case x of

| Int -> (x ‘mod‘ 2) == 0
| _ -> x

G. Castagna (CNRS) Four Forms of Polymorphism 139 / 192

A motivating example in Haskell (almost) [cf. typing of balance]

map :: (ααα→βββ)→ [ααα]→ [βββ]
map f l = case l of

| [] -> []
| (x : xs) -> (f x : map f xs)

even :: (Int→ Bool) ∧∧∧ ((ααα\\\Int)→ (ααα\\\Int))
even x = case x of

| Int -> (x ‘mod‘ 2) == 0
| _ -> x

Expression: if the argument is an integer then return the Boolean
expression otherwise return the argument

G. Castagna (CNRS) Four Forms of Polymorphism 139 / 192

A motivating example in Haskell (almost) [cf. typing of balance]

map :: (ααα→βββ)→ [ααα]→ [βββ]
map f l = case l of

| [] -> []
| (x : xs) -> (f x : map f xs)

even :: (Int→ Bool) ∧∧∧ ((ααα\\\Int)→ (ααα\\\Int))
even x = case x of

| Int -> (x ‘mod‘ 2) == 0
| _ -> x

Expression: if the argument is an integer then return the Boolean
expression otherwise return the argument

Type: when applied to an Int it returns a Bool; when applied to an
argument that is not an Int it returns a result of the same type.

G. Castagna (CNRS) Four Forms of Polymorphism 139 / 192

A motivating example in Haskell (almost) [cf. typing of balance]

map :: (ααα→βββ)→ [ααα]→ [βββ]
map f l = case l of

| [] -> []
| (x : xs) -> (f x : map f xs)

even :: (Int→ Bool) ∧∧∧ ((ααα\\\Int)→ (ααα\\\Int))
even x = case x of

| Int -> (x ‘mod‘ 2) == 0
| _ -> x

Expression: if the argument is an integer then return the Boolean
expression otherwise return the argument

Type: when applied to an Int it returns a Bool; when applied to an
argument that is not an Int it returns a result of the same type.

G. Castagna (CNRS) Four Forms of Polymorphism 139 / 192

A motivating example in Haskell (almost) [cf. typing of balance]

map :: (ααα→βββ)→ [ααα]→ [βββ]
map f l = case l of

| [] -> []
| (x : xs) -> (f x : map f xs)

even :: (Int→ Bool) ∧∧∧ ((ααα\\\Int)→ (ααα\\\Int))
even x = case x of

| Int -> (x ‘mod‘ 2) == 0
| _ -> x

Expression: if the argument is an integer then return the Boolean
expression otherwise return the argument

Type: when applied to an Int it returns a Bool; when applied to an
argument that is not an Int it returns a result of the same type.

A motivating example in Haskell (almost) [cf. typing of balance]

map :: (ααα→βββ)→ [ααα]→ [βββ]
map f l = case l of

| [] -> []
| (x : xs) -> (f x : map f xs)

even :: (Int→ Bool) ∧∧∧ ((ααα\\\Int)→ (ααα\\\Int))
even x = case x of

| Int -> (x ‘mod‘ 2) == 0
| _ -> x

G. Castagna (CNRS) Four Forms of Polymorphism 139 / 192

A motivating example in Haskell (almost) [cf. typing of balance]

map :: (ααα→βββ)→ [ααα]→ [βββ]
map f l = case l of

| [] -> []
| (x : xs) -> (f x : map f xs)

even :: (Int→ Bool) ∧∧∧ ((ααα\\\Int)→ (ααα\\\Int))
even x = case x of

| Int -> (x ‘mod‘ 2) == 0
| _ -> x

Expression: if the argument is an integer then return the Boolean
expression otherwise return the argument

Type: when applied to an Int it returns a Bool; when applied to an
argument that is not an Int it returns a result of the same type.

A motivating example in Haskell (almost) [cf. typing of balance]

map :: (ααα→βββ)→ [ααα]→ [βββ]
map f l = case l of

| [] -> []
| (x : xs) -> (f x : map f xs)

even :: (Int→ Bool) ∧∧∧ ((ααα\\\Int)→ (ααα\\\Int))
even x = case x of

| Int -> (x ‘mod‘ 2) == 0
| _ -> x

G. Castagna (CNRS) Four Forms of Polymorphism 139 / 192

A motivating example in Haskell (almost) [cf. typing of balance]

map :: (ααα→βββ)→ [ααα]→ [βββ]
map f l = case l of

| [] -> []
| (x : xs) -> (f x : map f xs)

even :: (Int→ Bool) ∧∧∧ ((ααα\\\Int)→ (ααα\\\Int))
even x = case x of

| Int -> (x ‘mod‘ 2) == 0
| _ -> x

Expression: if the argument is an integer then return the Boolean
expression otherwise return the argument

Type: when applied to an Int it returns a Bool; when applied to an
argument that is not an Int it returns a result of the same type.

A motivating example in Haskell (almost) [cf. typing of balance]

map :: (ααα→βββ)→ [ααα]→ [βββ]
map f l = case l of

| [] -> []
| (x : xs) -> (f x : map f xs)

even :: (Int→ Bool) ∧∧∧ ((ααα\\\Int)→ (ααα\\\Int))
even x = case x of

| Int -> (x ‘mod‘ 2) == 0
| _ -> x

Expression: if the argument is an integer then return the Boolean
expression otherwise return the argument

Type: when applied to an Int it returns a Bool; when applied to an
argument that is not an Int it returns a result of the same type.

Common pattern for functional data structures: red-black trees
balancing; ZDD operations; XML nodes modification

G. Castagna (CNRS) Four Forms of Polymorphism 139 / 192

A motivating example in Haskell (almost) [cf. typing of balance]

map :: (ααα→βββ)→ [ααα]→ [βββ]
map f l = case l of

| [] -> []
| (x : xs) -> (f x : map f xs)

even :: (Int→ Bool) ∧∧∧ ((ααα\\\Int)→ (ααα\\\Int))
even x = case x of

| Int -> (x ‘mod‘ 2) == 0
| _ -> x

Expression: if the argument is an integer then return the Boolean
expression otherwise return the argument

Type: when applied to an Int it returns a Bool; when applied to an
argument that is not an Int it returns a result of the same type.

The combination of type-case and intersections
yields statically typed dynamic overloading.

G. Castagna (CNRS) Four Forms of Polymorphism 139 / 192

A motivating example in Haskell (almost) [cf. typing of balance]

map :: (ααα→βββ)→ [ααα]→ [βββ]
map f l = case l of

| [] -> []
| (x : xs) -> (f x : map f xs)

even :: (Int→ Bool) ∧∧∧ ((ααα\\\Int)→ (ααα\\\Int))
even x = case x of

| Int -> (x ‘mod‘ 2) == 0
| _ -> x

This example as a yardstick. I want to define a language that:
1 Can define both map and even

G. Castagna (CNRS) Four Forms of Polymorphism 139 / 192

A motivating example in Haskell (almost) [cf. typing of balance]

map :: (ααα→βββ)→ [ααα]→ [βββ]
map f l = case l of

| [] -> []
| (x : xs) -> (f x : map f xs)

even :: (Int→ Bool) ∧∧∧ ((ααα\\\Int)→ (ααα\\\Int))
even x = case x of

| Int -> (x ‘mod‘ 2) == 0
| _ -> x

This example as a yardstick. I want to define a language that:
1 Can define both map and even
2 Can check the types specified in the signature

G. Castagna (CNRS) Four Forms of Polymorphism 139 / 192

A motivating example in Haskell (almost) [cf. typing of balance]

map :: (ααα→βββ)→ [ααα]→ [βββ]
map f l = case l of

| [] -> []
| (x : xs) -> (f x : map f xs)

even :: (Int→ Bool) ∧∧∧ ((ααα\\\Int)→ (ααα\\\Int))
even x = case x of

| Int -> (x ‘mod‘ 2) == 0
| _ -> x

This example as a yardstick. I want to define a language that:
1 Can define both map and even
2 Can check the types specified in the signature
3 Can deduce the type of the partial application map even

G. Castagna (CNRS) Four Forms of Polymorphism 139 / 192

A motivating example in Haskell (almost) [cf. typing of balance]

map :: (ααα→βββ)→ [ααα]→ [βββ]
map f l = case l of

| [] -> []
| (x : xs) -> (f x : map f xs)

even :: (Int→ Bool) ∧∧∧ ((ααα\\\Int)→ (ααα\\\Int))
even x = case x of

| Int -> (x ‘mod‘ 2) == 0
| _ -> x

This example as a yardstick. I want to define a language that:
1 Can define both map and even
2 Can check the types specified in the signature
3 Can deduce the type of the partial application map even

G. Castagna (CNRS) Four Forms of Polymorphism 139 / 192

A motivating example in Haskell (almost) [cf. typing of balance]

map :: (ααα→βββ)→ [ααα]→ [βββ]
map f l = case l of

| [] -> []
| (x : xs) -> (f x : map f xs)

even :: (Int→ Bool) ∧∧∧ ((ααα\\\Int)→ (ααα\\\Int))
even x = case x of

| Int -> (x ‘mod‘ 2) == 0
| _ -> x

This example as a yardstick. I want to define a language that:
1 Can define both map and even
2 Can check the types specified in the signature
3 Can deduce the type of the partial application map even

G. Castagna (CNRS) Four Forms of Polymorphism 139 / 192

A motivating example in Haskell (almost) [cf. typing of balance]

map :: (ααα→βββ)→ [ααα]→ [βββ]
map f l = case l of

| [] -> []
| (x : xs) -> (f x : map f xs)

even :: (Int→ Bool) ∧∧∧ ((ααα\\\Int)→ (ααα\\\Int))
even x = case x of

| Int -> (x ‘mod‘ 2) == 0
| _ -> x

We expect map evenmap evenmap even to have the following type:

([Int]→ [Bool]) ∧∧∧ int lists are transformed into bool lists
([ααα\\\Int]→ [ααα\\\Int]) ∧∧∧ lists w/o ints return the same type
([ααα∨∨∨Int]→ [(ααα\\\Int)∨∨∨Bool]) ints in the arg. are replaced by bools

Difficult because of expansion: needs a set of type substitutions —rather than
just one— to unify the domain and the argument types.

G. Castagna (CNRS) Four Forms of Polymorphism 139 / 192

A motivating example in Haskell (almost) [cf. typing of balance]

map :: (ααα→βββ)→ [ααα]→ [βββ]
map f l = case l of

| [] -> []
| (x : xs) -> (f x : map f xs)

even :: (Int→ Bool) ∧∧∧ ((ααα\\\Int)→ (ααα\\\Int))
even x = case x of

| Int -> (x ‘mod‘ 2) == 0
| _ -> x

We expect map evenmap evenmap even to have the following type:

([Int]→ [Bool]) ∧∧∧ int lists are transformed into bool lists
([ααα\\\Int]→ [ααα\\\Int]) ∧∧∧ lists w/o ints return the same type
([ααα∨∨∨Int]→ [(ααα\\\Int)∨∨∨Bool]) ints in the arg. are replaced by bools

Difficult because of expansion: needs a set of type substitutions —rather than
just one— to unify the domain and the argument types.

G. Castagna (CNRS) Four Forms of Polymorphism 139 / 192

A motivating example in Haskell (almost) [cf. typing of balance]

map :: (ααα→βββ)→ [ααα]→ [βββ]
map f l = case l of

| [] -> []
| (x : xs) -> (f x : map f xs)

even :: (Int→ Bool) ∧∧∧ ((ααα\\\Int)→ (ααα\\\Int))
even x = case x of

| Int -> (x ‘mod‘ 2) == 0
| _ -> x

We expect map evenmap evenmap even to have the following type:

([Int]→ [Bool]) ∧∧∧ int lists are transformed into bool lists
([ααα\\\Int]→ [ααα\\\Int]) ∧∧∧ lists w/o ints return the same type
([ααα∨∨∨Int]→ [(ααα\\\Int)∨∨∨Bool]) ints in the arg. are replaced by bools

Difficult because of expansion: needs a set of type substitutions —rather than
just one— to unify the domain and the argument types.

G. Castagna (CNRS) Four Forms of Polymorphism 139 / 192

The rule for applications
1. In the type system:

(APPL)
Γ ` e1 : s→ u Γ ` e2 : s

Γ ` e1e2 : u

[The type of the function is subsumed to an arrow and the type of the
argument is subsumed to the domain of this arrow].

2. Subsumption elimination:

(APPL-ALGORITHM)
Γ `A e1 : t Γ `A e2 : s

Γ `A e1e2 : min{u | t ≤ s→ u}
t ≤ 0→ 1
s ≤ dom(t)

3. Inference of type substitutions [where t[σi]i∈I
def
=

∨
i∈I tσi]

(APPL-INFERENCE)
∃[σi]i∈I , [σ′j]j∈J Γ `I e1 : t Γ `I e2 : s

Γ `I e1e2 : min{u | t[σ′j]j∈J ≤ s[σi]i∈I → u}
t[σ′j]j∈J ≤ 0→ 1
s[σi]i∈I ≤ dom(t[σ′j]j∈J)

G. Castagna (CNRS) Four Forms of Polymorphism 140 / 192

The rule for applications
1. In the type system:

(APPL)
Γ ` e1 : s→ u Γ ` e2 : s

Γ ` e1e2 : u

[The type of the function is subsumed to an arrow and the type of the
argument is subsumed to the domain of this arrow].

2. Subsumption elimination:

(APPL-ALGORITHM)
Γ `A e1 : t Γ `A e2 : s

Γ `A e1e2 : min{u | t ≤ s→ u}
t ≤ 0→ 1
s ≤ dom(t)

3. Inference of type substitutions [where t[σi]i∈I
def
=

∨
i∈I tσi]

(APPL-INFERENCE)
∃[σi]i∈I , [σ′j]j∈J Γ `I e1 : t Γ `I e2 : s

Γ `I e1e2 : min{u | t[σ′j]j∈J ≤ s[σi]i∈I → u}
t[σ′j]j∈J ≤ 0→ 1
s[σi]i∈I ≤ dom(t[σ′j]j∈J)

G. Castagna (CNRS) Four Forms of Polymorphism 140 / 192

The rule for applications
1. In the type system:

(APPL)
Γ ` e1 : s→ u Γ ` e2 : s

Γ ` e1e2 : u

[The type of the function is subsumed to an arrow and the type of the
argument is subsumed to the domain of this arrow].

2. Subsumption elimination:

(APPL-ALGORITHM)
Γ `A e1 : t Γ `A e2 : s

Γ `A e1e2 : min{u | t ≤ s→ u}
t ≤ 0→ 1
s ≤ dom(t)

3. Inference of type substitutions [where t[σi]i∈I
def
=

∨
i∈I tσi]

(APPL-INFERENCE)
∃[σi]i∈I , [σ′j]j∈J Γ `I e1 : t Γ `I e2 : s

Γ `I e1e2 : min{u | t[σ′j]j∈J ≤ s[σi]i∈I → u}
t[σ′j]j∈J ≤ 0→ 1
s[σi]i∈I ≤ dom(t[σ′j]j∈J)

G. Castagna (CNRS) Four Forms of Polymorphism 140 / 192

The rule for applications
1. In the type system:

(APPL)
Γ ` e1 : s→ u Γ ` e2 : s

Γ ` e1e2 : u

[The type of the function is subsumed to an arrow and the type of the
argument is subsumed to the domain of this arrow].

2. Subsumption elimination:

(APPL-ALGORITHM)
Γ `A e1 : t Γ `A e2 : s

Γ `A e1e2 : min{u | t ≤ s→ u}
t ≤ 0→ 1
s ≤ dom(t)

3. Inference of type substitutions [where t[σi]i∈I
def
=

∨
i∈I tσi]

(APPL-INFERENCE)
∃[σi]i∈I , [σ′j]j∈J Γ `I e1 : t Γ `I e2 : s

Γ `I e1e2 : min{u | t[σ′j]j∈J ≤ s[σi]i∈I → u}
t[σ′j]j∈J ≤ 0→ 1
s[σi]i∈I ≤ dom(t[σ′j]j∈J)

G. Castagna (CNRS) Four Forms of Polymorphism 140 / 192

The rule for applications
1. In the type system:

(APPL)
Γ ` e1 : s→ u Γ ` e2 : s

Γ ` e1e2 : u

[The type of the function is subsumed to an arrow and the type of the
argument is subsumed to the domain of this arrow].

2. Subsumption elimination:

(APPL-ALGORITHM)
Γ `A e1 : t Γ `A e2 : s

Γ `A e1e2 : min{u | t ≤ s→ u}
t ≤ 0→ 1
s ≤ dom(t)

3. Inference of type substitutions [where t[σi]i∈I
def
=

∨
i∈I tσi]

(APPL-INFERENCE)
∃[σi]i∈I , [σ′j]j∈J Γ `I e1 : t Γ `I e2 : s

Γ `I e1e2 : min{u | t[σ′j]j∈J ≤ s[σi]i∈I → u}
t[σ′j]j∈J ≤ 0→ 1
s[σi]i∈I ≤ dom(t[σ′j]j∈J)

G. Castagna (CNRS) Four Forms of Polymorphism 140 / 192

The rule for applications
1. In the type system:

(APPL)
Γ ` e1 : s→ u Γ ` e2 : s

Γ ` e1e2 : u

[The type of the function is subsumed to an arrow and the type of the
argument is subsumed to the domain of this arrow].

2. Subsumption elimination:

(APPL-ALGORITHM)
Γ `A e1 : t Γ `A e2 : s

Γ `A e1e2 : min{u | t ≤ s→ u}
t ≤ 0→ 1
s ≤ dom(t)

3. Inference of type substitutions [where t[σi]i∈I
def
=

∨
i∈I tσi]

(APPL-INFERENCE)
∃[σi]i∈I , [σ′j]j∈J Γ `I e1 : t Γ `I e2 : s

Γ `I e1e2 : min{u | t[σ′j]j∈J ≤ s[σi]i∈I → u}
t[σ′j]j∈J ≤ 0→ 1
s[σi]i∈I ≤ dom(t[σ′j]j∈J)

G. Castagna (CNRS) Four Forms of Polymorphism 140 / 192

Tallying problem

The problem of inferring the type of an application is thus to find for s and t
given, two sets [σi]i∈I , [σ′j]j∈J such that:

t[σ′j]j∈J ≤ 0→ 1 and s[σi]i∈I ≤ dom(t[σ′j]j∈J)

This can be reduced to solving a suite of tallying problems:

Definition (Type tallying)
Let s and t be two types. A type-substitution σ is a solution for the tallying of
(s, t) iff sσ≤ tσ.

Generally: let C = {(s1 ≤ t1), ...,(sn ≤ tn)} a constraint set. A
type-substitution σ is a solution for the tallying of C iff sσ≤ tσ for all
(s ≤ t) ∈ C.

Type tallying is decidable and a sound and complete set of solutions for every
tallying problem can be effectively found in three simple steps.

G. Castagna (CNRS) Four Forms of Polymorphism 141 / 192

Tallying problem

The problem of inferring the type of an application is thus to find for s and t
given, two sets [σi]i∈I , [σ′j]j∈J such that:

t[σ′j]j∈J ≤ 0→ 1 and s[σi]i∈I ≤ dom(t[σ′j]j∈J)

This can be reduced to solving a suite of tallying problems:

Definition (Type tallying)
Let s and t be two types. A type-substitution σ is a solution for the tallying of
(s, t) iff sσ≤ tσ.

Generally: let C = {(s1 ≤ t1), ...,(sn ≤ tn)} a constraint set. A
type-substitution σ is a solution for the tallying of C iff sσ≤ tσ for all
(s ≤ t) ∈ C.

Type tallying is decidable and a sound and complete set of solutions for every
tallying problem can be effectively found in three simple steps.

G. Castagna (CNRS) Four Forms of Polymorphism 141 / 192

Tallying problem

The problem of inferring the type of an application is thus to find for s and t
given, two sets [σi]i∈I , [σ′j]j∈J such that:

t[σ′j]j∈J ≤ 0→ 1 and s[σi]i∈I ≤ dom(t[σ′j]j∈J)

This can be reduced to solving a suite of tallying problems:

Definition (Type tallying)
Let s and t be two types. A type-substitution σ is a solution for the tallying of
(s, t) iff sσ≤ tσ.

Generally: let C = {(s1 ≤ t1), ...,(sn ≤ tn)} a constraint set. A
type-substitution σ is a solution for the tallying of C iff sσ≤ tσ for all
(s ≤ t) ∈ C.

Type tallying is decidable and a sound and complete set of solutions for every
tallying problem can be effectively found in three simple steps.

G. Castagna (CNRS) Four Forms of Polymorphism 141 / 192

Tallying problem

The problem of inferring the type of an application is thus to find for s and t
given, two sets [σi]i∈I , [σ′j]j∈J such that:

t[σ′j]j∈J ≤ 0→ 1 and s[σi]i∈I ≤ dom(t[σ′j]j∈J)

This can be reduced to solving a suite of tallying problems:

Definition (Type tallying)
Let s and t be two types. A type-substitution σ is a solution for the tallying of
(s, t) iff sσ≤ tσ.

Generally: let C = {(s1 ≤ t1), ...,(sn ≤ tn)} a constraint set. A
type-substitution σ is a solution for the tallying of C iff sσ≤ tσ for all
(s ≤ t) ∈ C.

Type tallying is decidable and a sound and complete set of solutions for every
tallying problem can be effectively found in three simple steps.

G. Castagna (CNRS) Four Forms of Polymorphism 141 / 192

Step 1: Decompose constraints.
Use the set-theoretic decomposition rules to transform C into a set of
constraint sets whose constraints are of the form α≤ t or t ≤ α.

Step 2: Merge constraints on the same variable.

if α≤t1 and α≤t2 are in C, then replace them by α≤ t1∧∧∧t2;

if s1≤α and s2≤α are in C, then replace them by s1∨∨∨s2 ≤ α;

Possibly decompose the new constraints generated by transitivity.
Step 3: Transform into a set of equations.
After Step 2 we have constraint-sets of the form {si≤αi≤ti | i ∈ [1..n]} where
αi are pairwise distinct.

1 select s ≤ α≤ t and replace it by α = (s∨∨∨β)∧∧∧t with β fresh.
2 substitute (s∨∨∨β)∧∧∧t for all α in the other constraints of C
3 repeat with another constraint

At the end we have a sets of equations {αi = ui | i ∈ [1..n]} that (with some
care) are contractive. By Courcelle there exists a solution, ie, a substitution for
α1, ...,αn into (possibly recursive regular) types t1, ..., tn (in which the fresh β’s
are free variables).

G. Castagna (CNRS) Four Forms of Polymorphism 142 / 192

Step 1: Decompose constraints.
Use the set-theoretic decomposition rules to transform C into a set of
constraint sets whose constraints are of the form α≤ t or t ≤ α.

Step 2: Merge constraints on the same variable.

if α≤t1 and α≤t2 are in C, then replace them by α≤ t1∧∧∧t2;

if s1≤α and s2≤α are in C, then replace them by s1∨∨∨s2 ≤ α;

Possibly decompose the new constraints generated by transitivity.
Step 3: Transform into a set of equations.
After Step 2 we have constraint-sets of the form {si≤αi≤ti | i ∈ [1..n]} where
αi are pairwise distinct.

1 select s ≤ α≤ t and replace it by α = (s∨∨∨β)∧∧∧t with β fresh.
2 substitute (s∨∨∨β)∧∧∧t for all α in the other constraints of C
3 repeat with another constraint

At the end we have a sets of equations {αi = ui | i ∈ [1..n]} that (with some
care) are contractive. By Courcelle there exists a solution, ie, a substitution for
α1, ...,αn into (possibly recursive regular) types t1, ..., tn (in which the fresh β’s
are free variables).

G. Castagna (CNRS) Four Forms of Polymorphism 142 / 192

Example:
1. {(s1→ t1 ≤ s2→ t2)} {(s2 ≤ 0)} or {(s2 ≤ s1),(t1 ≤ t2)}

Step 1: Decompose constraints.
Use the set-theoretic decomposition rules to transform C into a set of
constraint sets whose constraints are of the form α≤ t or t ≤ α.
Step 2: Merge constraints on the same variable.

if α≤t1 and α≤t2 are in C, then replace them by α≤ t1∧∧∧t2;

if s1≤α and s2≤α are in C, then replace them by s1∨∨∨s2 ≤ α;

Possibly decompose the new constraints generated by transitivity.

Step 3: Transform into a set of equations.
After Step 2 we have constraint-sets of the form {si≤αi≤ti | i ∈ [1..n]} where
αi are pairwise distinct.

1 select s ≤ α≤ t and replace it by α = (s∨∨∨β)∧∧∧t with β fresh.
2 substitute (s∨∨∨β)∧∧∧t for all α in the other constraints of C
3 repeat with another constraint

At the end we have a sets of equations {αi = ui | i ∈ [1..n]} that (with some
care) are contractive. By Courcelle there exists a solution, ie, a substitution for
α1, ...,αn into (possibly recursive regular) types t1, ..., tn (in which the fresh β’s
are free variables).

G. Castagna (CNRS) Four Forms of Polymorphism 142 / 192

Example:
1. {(s1→ t1 ≤ s2→ t2)} {(s2 ≤ 0)} or {(s2 ≤ s1),(t1 ≤ t2)}

Step 1: Decompose constraints.
Use the set-theoretic decomposition rules to transform C into a set of
constraint sets whose constraints are of the form α≤ t or t ≤ α.
Step 2: Merge constraints on the same variable.

if α≤t1 and α≤t2 are in C, then replace them by α≤ t1∧∧∧t2;

if s1≤α and s2≤α are in C, then replace them by s1∨∨∨s2 ≤ α;

Possibly decompose the new constraints generated by transitivity.

Step 3: Transform into a set of equations.
After Step 2 we have constraint-sets of the form {si≤αi≤ti | i ∈ [1..n]} where
αi are pairwise distinct.

1 select s ≤ α≤ t and replace it by α = (s∨∨∨β)∧∧∧t with β fresh.
2 substitute (s∨∨∨β)∧∧∧t for all α in the other constraints of C
3 repeat with another constraint

At the end we have a sets of equations {αi = ui | i ∈ [1..n]} that (with some
care) are contractive. By Courcelle there exists a solution, ie, a substitution for
α1, ...,αn into (possibly recursive regular) types t1, ..., tn (in which the fresh β’s
are free variables).

G. Castagna (CNRS) Four Forms of Polymorphism 142 / 192

Example:
1. {(s1→ t1 ≤ s2→ t2)} {(s2 ≤ 0)} or {(s2 ≤ s1),(t1 ≤ t2)}
2. {(Int≤ α),(Bool≤ α)} {(Int∨Bool≤ α)}

Step 1: Decompose constraints.
Use the set-theoretic decomposition rules to transform C into a set of
constraint sets whose constraints are of the form α≤ t or t ≤ α.
Step 2: Merge constraints on the same variable.

if α≤t1 and α≤t2 are in C, then replace them by α≤ t1∧∧∧t2;

if s1≤α and s2≤α are in C, then replace them by s1∨∨∨s2 ≤ α;

Possibly decompose the new constraints generated by transitivity.
Step 3: Transform into a set of equations.
After Step 2 we have constraint-sets of the form {si≤αi≤ti | i ∈ [1..n]} where
αi are pairwise distinct.

1 select s ≤ α≤ t and replace it by α = (s∨∨∨β)∧∧∧t with β fresh.
2 substitute (s∨∨∨β)∧∧∧t for all α in the other constraints of C
3 repeat with another constraint

At the end we have a sets of equations {αi = ui | i ∈ [1..n]} that (with some
care) are contractive. By Courcelle there exists a solution, ie, a substitution for
α1, ...,αn into (possibly recursive regular) types t1, ..., tn (in which the fresh β’s
are free variables).

G. Castagna (CNRS) Four Forms of Polymorphism 142 / 192

Example:
1. {(s1→ t1 ≤ s2→ t2)} {(s2 ≤ 0)} or {(s2 ≤ s1),(t1 ≤ t2)}
2. {(Int≤ α),(Bool≤ α)} {(Int∨Bool≤ α)}

Step 1: Decompose constraints.
Use the set-theoretic decomposition rules to transform C into a set of
constraint sets whose constraints are of the form α≤ t or t ≤ α.
Step 2: Merge constraints on the same variable.

if α≤t1 and α≤t2 are in C, then replace them by α≤ t1∧∧∧t2;

if s1≤α and s2≤α are in C, then replace them by s1∨∨∨s2 ≤ α;

Possibly decompose the new constraints generated by transitivity.
Step 3: Transform into a set of equations.
After Step 2 we have constraint-sets of the form {si≤αi≤ti | i ∈ [1..n]} where
αi are pairwise distinct.

1 select s ≤ α≤ t and replace it by α = (s∨∨∨β)∧∧∧t with β fresh.
2 substitute (s∨∨∨β)∧∧∧t for all α in the other constraints of C
3 repeat with another constraint

At the end we have a sets of equations {αi = ui | i ∈ [1..n]} that (with some
care) are contractive. By Courcelle there exists a solution, ie, a substitution for
α1, ...,αn into (possibly recursive regular) types t1, ..., tn (in which the fresh β’s
are free variables).

G. Castagna (CNRS) Four Forms of Polymorphism 142 / 192

Example:
1. {(s1→ t1 ≤ s2→ t2)} {(s2 ≤ 0)} or {(s2 ≤ s1),(t1 ≤ t2)}
2. {(Int≤ α),(Bool≤ α)} {(Int∨Bool≤ α)}
3. {(Int≤ α1 ≤ Real),(α2 ≤ α1∧∧∧Int)}

 {α1 = (Int∨∨∨β)∧∧∧Real),(α2 = Int)}

Step 1: Decompose constraints.
Use the set-theoretic decomposition rules to transform C into a set of
constraint sets whose constraints are of the form α≤ t or t ≤ α.
Step 2: Merge constraints on the same variable.

if α≤t1 and α≤t2 are in C, then replace them by α≤ t1∧∧∧t2;

if s1≤α and s2≤α are in C, then replace them by s1∨∨∨s2 ≤ α;

Possibly decompose the new constraints generated by transitivity.
Step 3: Transform into a set of equations.
After Step 2 we have constraint-sets of the form {si≤αi≤ti | i ∈ [1..n]} where
αi are pairwise distinct.

1 select s ≤ α≤ t and replace it by α = (s∨∨∨β)∧∧∧t with β fresh.
2 substitute (s∨∨∨β)∧∧∧t for all α in the other constraints of C
3 repeat with another constraint

At the end we have a sets of equations {αi = ui | i ∈ [1..n]} that (with some
care) are contractive. By Courcelle there exists a solution, ie, a substitution for
α1, ...,αn into (possibly recursive regular) types t1, ..., tn (in which the fresh β’s
are free variables).

G. Castagna (CNRS) Four Forms of Polymorphism 142 / 192

Example: map even

Start with the following tallying problem:
(α1→ β1)→ [α1]→[β1]≤ s→ γγγ

where s = (Int→ Bool)∧∧∧(α\\\Int→ α\\\Int) is the type of even

The algorithm generates 9 constraint-sets: one is unsatisfiable (s ≤ 0);
four are implied by the others; remain
{γγγ≥ [α1]→[β1] , α1≤0} , {γγγ≥ [α1]→[β1] , α1≤Int , Bool≤β1},
{γγγ≥ [α1]→[β1] , α1≤α\\\Int , α\\\Int≤β1},
{γγγ≥ [α1]→[β1] , α1≤α∨∨∨Int , (α\\\Int)∨∨∨Bool≤β1};
Four solutions for γγγ:
{γγγ=[]→ []},
{γγγ = [Int]→[Bool]},
{γγγ = [α\\\Int]→ [α\\\Int]},
{γγγ = [α∨∨∨Int]→ [(α\\\Int)∨∨∨Bool]}.
The last two are minimal and we take their intersection:
{γγγ = ([α\\\Int]→ [α\\\Int])∧∧∧([α∨∨∨Int]→ [(α\\\Int)∨∨∨Bool])}

G. Castagna (CNRS) Four Forms of Polymorphism 143 / 192

Example: map even

Start with the following tallying problem:
(α1→ β1)→ [α1]→[β1]≤ s→ γγγ

where s = (Int→ Bool)∧∧∧(α\\\Int→ α\\\Int) is the type of even

The algorithm generates 9 constraint-sets: one is unsatisfiable (s ≤ 0);
four are implied by the others; remain
{γγγ≥ [α1]→[β1] , α1≤0} , {γγγ≥ [α1]→[β1] , α1≤Int , Bool≤β1},
{γγγ≥ [α1]→[β1] , α1≤α\\\Int , α\\\Int≤β1},
{γγγ≥ [α1]→[β1] , α1≤α∨∨∨Int , (α\\\Int)∨∨∨Bool≤β1};

Four solutions for γγγ:
{γγγ=[]→ []},
{γγγ = [Int]→[Bool]},
{γγγ = [α\\\Int]→ [α\\\Int]},
{γγγ = [α∨∨∨Int]→ [(α\\\Int)∨∨∨Bool]}.
The last two are minimal and we take their intersection:
{γγγ = ([α\\\Int]→ [α\\\Int])∧∧∧([α∨∨∨Int]→ [(α\\\Int)∨∨∨Bool])}

G. Castagna (CNRS) Four Forms of Polymorphism 143 / 192

Example: map even

Start with the following tallying problem:
(α1→ β1)→ [α1]→[β1]≤ s→ γγγ

where s = (Int→ Bool)∧∧∧(α\\\Int→ α\\\Int) is the type of even

The algorithm generates 9 constraint-sets: one is unsatisfiable (s ≤ 0);
four are implied by the others; remain
{γγγ≥ [α1]→[β1] , α1≤0} , {γγγ≥ [α1]→[β1] , α1≤Int , Bool≤β1},
{γγγ≥ [α1]→[β1] , α1≤α\\\Int , α\\\Int≤β1},
{γγγ≥ [α1]→[β1] , α1≤α∨∨∨Int , (α\\\Int)∨∨∨Bool≤β1};
Four solutions for γγγ:
{γγγ=[]→ []},
{γγγ = [Int]→[Bool]},
{γγγ = [α\\\Int]→ [α\\\Int]},
{γγγ = [α∨∨∨Int]→ [(α\\\Int)∨∨∨Bool]}.

The last two are minimal and we take their intersection:
{γγγ = ([α\\\Int]→ [α\\\Int])∧∧∧([α∨∨∨Int]→ [(α\\\Int)∨∨∨Bool])}

G. Castagna (CNRS) Four Forms of Polymorphism 143 / 192

Example: map even

Start with the following tallying problem:
(α1→ β1)→ [α1]→[β1]≤ s→ γγγ

where s = (Int→ Bool)∧∧∧(α\\\Int→ α\\\Int) is the type of even

The algorithm generates 9 constraint-sets: one is unsatisfiable (s ≤ 0);
four are implied by the others; remain
{γγγ≥ [α1]→[β1] , α1≤0} , {γγγ≥ [α1]→[β1] , α1≤Int , Bool≤β1},
{γγγ≥ [α1]→[β1] , α1≤α\\\Int , α\\\Int≤β1},
{γγγ≥ [α1]→[β1] , α1≤α∨∨∨Int , (α\\\Int)∨∨∨Bool≤β1};
Four solutions for γγγ:
{γγγ=[]→ []},
{γγγ = [Int]→[Bool]},
{γγγ = [α\\\Int]→ [α\\\Int]},
{γγγ = [α∨∨∨Int]→ [(α\\\Int)∨∨∨Bool]}.
The last two are minimal and we take their intersection:
{γγγ = ([α\\\Int]→ [α\\\Int])∧∧∧([α∨∨∨Int]→ [(α\\\Int)∨∨∨Bool])}

G. Castagna (CNRS) Four Forms of Polymorphism 143 / 192

On completeness and decidability

The algorithm produces a set of solutions that is sound (it finds only correct
solutions) and complete (any other solution can be derived from them).

Decidability: The algorithm is a semi-decision procedure. We conjecture
decidability (N.B.: the problem is unrelated to type- reconstruction for
intersection types since we have recursive types).

Completeness: For every solution of the inference problem, our algorithm finds
an equivalent or more general solution. However, this solution is not necessary
the first solution found.

In a dully execution of the algorithm on map even the good solution is the
second one.

Principality: This raises the problem of the existence of principal types: may an
infinite sequence of increasingly general solutions exist?

G. Castagna (CNRS) Four Forms of Polymorphism 144 / 192

On completeness and decidability

The algorithm produces a set of solutions that is sound (it finds only correct
solutions) and complete (any other solution can be derived from them).

Decidability: The algorithm is a semi-decision procedure. We conjecture
decidability (N.B.: the problem is unrelated to type- reconstruction for
intersection types since we have recursive types).

Completeness: For every solution of the inference problem, our algorithm finds
an equivalent or more general solution. However, this solution is not necessary
the first solution found.

In a dully execution of the algorithm on map even the good solution is the
second one.

Principality: This raises the problem of the existence of principal types: may an
infinite sequence of increasingly general solutions exist?

G. Castagna (CNRS) Four Forms of Polymorphism 144 / 192

On completeness and decidability

The algorithm produces a set of solutions that is sound (it finds only correct
solutions) and complete (any other solution can be derived from them).

Decidability: The algorithm is a semi-decision procedure. We conjecture
decidability (N.B.: the problem is unrelated to type- reconstruction for
intersection types since we have recursive types).

Completeness: For every solution of the inference problem, our algorithm finds
an equivalent or more general solution. However, this solution is not necessary
the first solution found.

In a dully execution of the algorithm on map even the good solution is the
second one.

Principality: This raises the problem of the existence of principal types: may an
infinite sequence of increasingly general solutions exist?

G. Castagna (CNRS) Four Forms of Polymorphism 144 / 192

On completeness and decidability

The algorithm produces a set of solutions that is sound (it finds only correct
solutions) and complete (any other solution can be derived from them).

Decidability: The algorithm is a semi-decision procedure. We conjecture
decidability (N.B.: the problem is unrelated to type- reconstruction for
intersection types since we have recursive types).

Completeness: For every solution of the inference problem, our algorithm finds
an equivalent or more general solution. However, this solution is not necessary
the first solution found.

In a dully execution of the algorithm on map even the good solution is the
second one.

Principality: This raises the problem of the existence of principal types: may an
infinite sequence of increasingly general solutions exist?

G. Castagna (CNRS) Four Forms of Polymorphism 144 / 192

References

Frisch et al: Semantic Subtyping: dealing set-theoretically with function,
union, intersection, and negation types. JACM, vol. 55, n. 4, 2008.
Reference publication for monomorphic semantic subtyping.
G. Castagna: Covariance and Contravariance: a fresh look at an old issue
(a primer in advanced type systems for learning functional programmers).
Logical Methods in Computer Science. 2019 (To appear).
A simple introduction to semantic subtyping and a detailed description of the
implementation of subtyping and type-checking algorithms.
G. Castagna and Z. Xu: Set-theoretic foundation of parametric
polymorphism and subtyping. In ICFP 11.
Subtyping for polymorphic set-theoretic types
Castagna et al.: Polymorphic Functions with Set-Theoretic Types.
Part 1 (POPL 14) and Part 2 (POPL 15).
Languages with polymorphic set-theoretic types
T. Petrucciani: Polymorphic Set-Theoretic Types for Functional
Languages. PhD thesis, March 2019.
Type reconstruction for polymorphic set-theoretic types
G. Castagna (CNRS) Four Forms of Polymorphism 145 / 192

To try it out

CDuce: http://www.cduce.org.

For polymorphism use the development branch available at
https://gitlab.math.univ-paris-diderot.fr/cduce)

For a flavor of type reconstruction try the interactive interpreter at
http://www.cduce.org/ocaml/bi

G. Castagna (CNRS) Four Forms of Polymorphism 146 / 192

http://www.cduce.org
https://gitlab.math.univ-paris-diderot.fr/cduce
http://www.cduce.org/ocaml/bi

Gradual Typing

G. Castagna (CNRS) Four Forms of Polymorphism 147 / 192

Outline

15 Main ideas

16 Formal system

17 Algorithmic Aspects

18 Criteria for Gradual Typing

19 Implementation issues

20 References

G. Castagna (CNRS) Four Forms of Polymorphism 148 / 192

Outline

15 Main ideas

16 Formal system

17 Algorithmic Aspects

18 Criteria for Gradual Typing

19 Implementation issues

20 References

G. Castagna (CNRS) Four Forms of Polymorphism 149 / 192

Motivating example: reminder

function double (x) {
(<condition>) ? 2*x : x.concat(x)

}

Cannot give a type to x that works with both 2*x and x.concat(x)

Solution
Add an unknown/type “???”

Develop a type theory for “???” such that:

No solution for ??? for some execution⇒ statically reject

No problem for any solution for ???⇒ statically accept, do nothing

For each possible execution there exists some solution for ???⇒ statically
accept and add run-time checks

G. Castagna (CNRS) Four Forms of Polymorphism 150 / 192

Motivating example: reminder

function double (x : ???) {
(<condition>) ? 2*x : x.concat(x)

}

Cannot give a type to x that works with both 2*x and x.concat(x)

Solution
Add an unknown/type “???”

Develop a type theory for “???” such that:

No solution for ??? for some execution⇒ statically reject

No problem for any solution for ???⇒ statically accept, do nothing

For each possible execution there exists some solution for ???⇒ statically
accept and add run-time checks

G. Castagna (CNRS) Four Forms of Polymorphism 150 / 192

Motivating example: reminder

function double (x : ???) {
(<condition>) ? 2*x : x.concat(x)

}

Cannot give a type to x that works with both 2*x and x.concat(x)

Solution
Add an unknown/type “???”

Develop a type theory for “???” such that:

No solution for ??? for some execution⇒ statically reject

No problem for any solution for ???⇒ statically accept, do nothing

For each possible execution there exists some solution for ???⇒ statically
accept and add run-time checks

G. Castagna (CNRS) Four Forms of Polymorphism 150 / 192

Reject at compile time:

function wrong (x : ???) {
return (2*x + x(2)); //cannot be a number and a function

}

Accept as is:

function ok (x : ???) {
if (typeof(x) === "number"){ return 42 } else { return x }

}

Intuitively the function has type: ??? → (number |???)

Accept and insert checks:

function double (x : ???) {
(<condition>) ? 2*x : x.concat(x)

}

Compile as

function double (x : ???) {
(<condition>) ? 2*(x〈number〉) : (x〈string〉).concat(x〈string〉)

}

G. Castagna (CNRS) Four Forms of Polymorphism 151 / 192

Reject at compile time:

function wrong (x : ???) {
return (2*x + x(2)); //cannot be a number and a function

}

Accept as is:

function ok (x : ???) {
if (typeof(x) === "number"){ return 42 } else { return x }

}

Intuitively the function has type: ??? → (number |???)

Accept and insert checks:

function double (x : ???) {
(<condition>) ? 2*x : x.concat(x)

}

Compile as

function double (x : ???) {
(<condition>) ? 2*(x〈number〉) : (x〈string〉).concat(x〈string〉)

}

G. Castagna (CNRS) Four Forms of Polymorphism 151 / 192

Reject at compile time:

function wrong (x : ???) {
return (2*x + x(2)); //cannot be a number and a function

}

Accept as is:

function ok (x : ???) {
if (typeof(x) === "number"){ return 42 } else { return x }

}

Intuitively the function has type: ??? → (number |???)

Accept and insert checks:

function double (x : ???) {
(<condition>) ? 2*x : x.concat(x)

}

Compile as

function double (x : ???) {
(<condition>) ? 2*(x〈number〉) : (x〈string〉).concat(x〈string〉)

}
G. Castagna (CNRS) Four Forms of Polymorphism 151 / 192

Rationale

Mix static and dynamic typing

Add checks at the boundaries:
apply (double , (double 42))

must be compiled as

apply (double〈number→number〉 , (double 42)〈number〉)

G. Castagna (CNRS) Four Forms of Polymorphism 152 / 192

Rationale

Mix static and dynamic typing

function double (x : ???) {
(<condition>) ? 2*x : x.concat(x)

function apply (f : number --> number, x : number) {
return (f x);

}

apply (double , (double 42))

Add checks at the boundaries:
apply (double , (double 42))

must be compiled as

apply (double〈number→number〉 , (double 42)〈number〉)

G. Castagna (CNRS) Four Forms of Polymorphism 152 / 192

Rationale

Mix static and dynamic typing

Dynamically typed:
function double (x : ???) {

(<condition>) ? 2*x : x.concat(x)

Statically typed:
function apply (f : number --> number, x : number) {

return (f x);
}

Mixed typing:
apply (double , (double 42))

Add checks at the boundaries:
apply (double , (double 42))

must be compiled as

apply (double〈number→number〉 , (double 42)〈number〉)

G. Castagna (CNRS) Four Forms of Polymorphism 152 / 192

Rationale

Mix static and dynamic typing

Dynamically typed:
function double (x : ???) {

(<condition>) ? 2*x : x.concat(x)

Statically typed:
function apply (f : number --> number, x : number) {

return (f x);
}

Mixed typing:
apply (double , (double 42))

Add checks at the boundaries:
apply (double , (double 42))

must be compiled as

apply (double〈number→number〉 , (double 42)〈number〉)

G. Castagna (CNRS) Four Forms of Polymorphism 152 / 192

A hot topic

Prominent Languages with Gradual Typing:
Typed Racket
Reticulated Python
TypeScript (Microsoft)
Flow (Facebook)
Hack (Facebook)
Dart (Google)
Thorn
Safe Typescript

Retrofitted on existing languages
New languages

Insert checks at run-time (a.k.a. sound gradual typing)
Permissive typing (no checks inserted)
Strict typing
Occurrence typing

G. Castagna (CNRS) Four Forms of Polymorphism 153 / 192

A hot topic

Prominent Languages with Gradual Typing:
Typed Racket
Reticulated Python
TypeScript (Microsoft)
Flow (Facebook)
Hack (Facebook)
Dart (Google)
Thorn
Safe Typescript

Retrofitted on existing languages
New languages

Insert checks at run-time (a.k.a. sound gradual typing)
Permissive typing (no checks inserted)
Strict typing
Occurrence typing

G. Castagna (CNRS) Four Forms of Polymorphism 153 / 192

A hot topic

Prominent Languages with Gradual Typing:
Typed Racket
Reticulated Python
TypeScript (Microsoft)
Flow (Facebook)
Hack (Facebook)
Dart (Google)
Thorn
Safe Typescript

Retrofitted on existing languages
New languages

Insert checks at run-time (a.k.a. sound gradual typing)
Permissive typing (no checks inserted)
Strict typing
Occurrence typing

G. Castagna (CNRS) Four Forms of Polymorphism 153 / 192

Roadmap

1 Add “???” to types

2 Define a typing discipline for programs with “???”
A well-typed program must still be well-typed with less-precise annotations
Less-precise annotations may make a program to become well-typed

3 Use the typing derivation to add dynamic type-checks at the boundaries
between statically-type and dynamically-typed parts

Using less precise annotations in a well-typed program must not yield
failures of dynamic checks (preserve semantics)
Failures of dynamic checks are due only to the dynamically-typed parts

Type precision: the lesser the “???”, the more precise the type.

G. Castagna (CNRS) Four Forms of Polymorphism 154 / 192

Outline

15 Main ideas

16 Formal system

17 Algorithmic Aspects

18 Criteria for Gradual Typing

19 Implementation issues

20 References

G. Castagna (CNRS) Four Forms of Polymorphism 155 / 192

Gradual Typing [Siek&Taha 2006]

Simply-typed λ-calculus types:

Types T ::= Bool | Int | T → T

| ???

A new consistency relation “∼” governs implicit casts involving “???”:

Bool∼Bool Int∼Int T∼??? ???∼T

S1∼T1 S2∼T2

S1→ S2∼T1→ T2

Relax application for consistent types:

[→ELIM∼∼∼]
Γ ` a : S→T Γ ` b : U U∼S

Γ ` ab : T

Use the type derivation to insert casts

[→ELIM∼∼∼]
Γ ` a : S→T

compiles
� a′ Γ ` b : U

compiles
� b′ U∼S

Γ ` ab : T
compiles

� a(b〈S〉)
(U 6≡ S)

G. Castagna (CNRS) Four Forms of Polymorphism 156 / 192

Gradual Typing [Siek&Taha 2006]

Simply-typed λ-calculus types:

Types T ::= Bool | Int | T → T | ???

A new consistency relation “∼” governs implicit casts involving “???”:

Bool∼Bool Int∼Int T∼??? ???∼T

S1∼T1 S2∼T2

S1→ S2∼T1→ T2

Relax application for consistent types:

[→ELIM∼∼∼]
Γ ` a : S→T Γ ` b : U U∼S

Γ ` ab : T

Use the type derivation to insert casts

[→ELIM∼∼∼]
Γ ` a : S→T

compiles
� a′ Γ ` b : U

compiles
� b′ U∼S

Γ ` ab : T
compiles

� a(b〈S〉)
(U 6≡ S)

G. Castagna (CNRS) Four Forms of Polymorphism 156 / 192

Gradual Typing [Siek&Taha 2006]

Simply-typed λ-calculus types:

Types T ::= Bool | Int | T → T | ???

A new consistency relation “∼” governs implicit casts involving “???”:

Bool∼Bool Int∼Int T∼??? ???∼T

S1∼T1 S2∼T2

S1→ S2∼T1→ T2

Relax application for consistent types:

[→ELIM∼∼∼]
Γ ` a : S→T Γ ` b : U U∼S

Γ ` ab : T

Use the type derivation to insert casts

[→ELIM∼∼∼]
Γ ` a : S→T

compiles
� a′ Γ ` b : U

compiles
� b′ U∼S

Γ ` ab : T
compiles

� a(b〈S〉)
(U 6≡ S)

G. Castagna (CNRS) Four Forms of Polymorphism 156 / 192

Gradual Typing [Siek&Taha 2006]

Simply-typed λ-calculus types:

Types T ::= Bool | Int | T → T | ???

A new consistency relation “∼” governs implicit casts involving “???”:

Bool∼Bool Int∼Int T∼??? ???∼T

S1∼T1 S2∼T2

S1→ S2∼T1→ T2

Relax application for consistent types:

[→ELIM∼∼∼]
Γ ` a : S→T Γ ` b : U U∼S

Γ ` ab : T

Use the type derivation to insert casts

[→ELIM∼∼∼]
Γ ` a : S→T

compiles
� a′ Γ ` b : U

compiles
� b′ U∼S

Γ ` ab : T
compiles

� a(b〈S〉)
(U 6≡ S)

G. Castagna (CNRS) Four Forms of Polymorphism 156 / 192

Gradual Typing [Siek&Taha 2006]

Simply-typed λ-calculus types:

Types T ::= Bool | Int | T → T | ???

A new consistency relation “∼” governs implicit casts involving “???”:

Bool∼Bool Int∼Int T∼??? ???∼T

S1∼T1 S2∼T2

S1→ S2∼T1→ T2

Relax application for consistent types:

[→ELIM∼∼∼]
Γ ` a : S→T Γ ` b : U U∼S

Γ ` ab : T

Use the type derivation to insert casts

[→ELIM∼∼∼]
Γ ` a : S→T

compiles
� a′ Γ ` b : U

compiles
� b′ U∼S

Γ ` ab : T
compiles

� a(b〈S〉)
(U 6≡ S)

G. Castagna (CNRS) Four Forms of Polymorphism 156 / 192

Gradual Typing [Siek&Taha 2006]

Simply-typed λ-calculus types:

Types T ::= Bool | Int | T → T | ???

A new consistency relation “∼” governs implicit casts involving “???”:

Bool∼Bool Int∼Int T∼??? ???∼T

S1∼T1 S2∼T2

S1→ S2∼T1→ T2

Relax application for consistent types:

[→ELIM∼∼∼]
Γ ` a : S→T Γ ` b : U U∼S

Γ ` ab : T

Use the type derivation to insert casts

[→ELIM∼∼∼]
Γ ` a : S→T

compiles
� a′ Γ ` b : U

compiles
� b′ U∼S

Γ ` ab : T
compiles

� a(b〈S〉)
(U 6≡ S)

G. Castagna (CNRS) Four Forms of Polymorphism 156 / 192

Gradual Typing [Siek&Taha 2006]

Simply-typed λ-calculus types:

Types T ::= Bool | Int | T → T | ???

A new consistency relation “∼” governs implicit casts involving “???”:

Bool∼Bool Int∼Int T∼??? ???∼T

S1∼T1 S2∼T2

S1→ S2∼T1→ T2

Relax application for consistent types:

[→ELIM∼∼∼]
Γ ` a : S→T Γ ` b : U U∼S

Γ ` ab : T

Use the type derivation to insert casts

[→ELIM∼∼∼]
Γ ` a : S→T

compiles
� a′ Γ ` b : U

compiles
� b′ U∼S

Γ ` ab : T
compiles

� a(b〈S〉)
(U 6≡ S)

G. Castagna (CNRS) Four Forms of Polymorphism 156 / 192

The remaining compilation rules
implement the identity (they do
not modify the compiled term)

Problems

The consistency relation must not be transitive:
Since Int∼??? and ???∼Bool, then transitivity would imply Int∼Bool:

` λx : Int.x + 1 : Int→ Int ` true : Bool Int∼Bool
` (λx : Int.x + 1)true : Int

it is hard to work with a non-transitive relation.

It has a flavor of substitutivity ... but not always:

function double (x : ???) { (<condition>) ? 2*x : x.concat(x) }

function apply (f : number --> number, x : number) { return (f x) }

apply (double , (double 42))

It compiles as apply (double〈Int→ Int〉 , (double(42〈???〉))〈Int〉)
Casting ???→ ??? to Int→ Int is ok.
Casting ??? to Int is ok.
Casting an Int to ??? looks weird

G. Castagna (CNRS) Four Forms of Polymorphism 157 / 192

Problems

The consistency relation must not be transitive:
Since Int∼??? and ???∼Bool, then transitivity would imply Int∼Bool:

` λx : Int.x + 1 : Int→ Int ` true : Bool Int∼Bool
` (λx : Int.x + 1)true : Int

it is hard to work with a non-transitive relation.

It has a flavor of substitutivity ... but not always:

function double (x : ???) { (<condition>) ? 2*x : x.concat(x) }

function apply (f : number --> number, x : number) { return (f x) }

apply (double , (double 42))

It compiles as apply (double〈Int→ Int〉 , (double(42〈???〉))〈Int〉)

Casting ???→ ??? to Int→ Int is ok.
Casting ??? to Int is ok.
Casting an Int to ??? looks weird

G. Castagna (CNRS) Four Forms of Polymorphism 157 / 192

Problems

The consistency relation must not be transitive:
Since Int∼??? and ???∼Bool, then transitivity would imply Int∼Bool:

` λx : Int.x + 1 : Int→ Int ` true : Bool Int∼Bool
` (λx : Int.x + 1)true : Int

it is hard to work with a non-transitive relation.

It has a flavor of substitutivity ... but not always:

function double (x : ???) { (<condition>) ? 2*x : x.concat(x) }

function apply (f : number --> number, x : number) { return (f x) }

apply (double , (double 42))

It compiles as apply (double〈Int→ Int〉 , (double(42〈???〉))〈Int〉)
Casting ???→ ??? to Int→ Int is ok.

Casting ??? to Int is ok.
Casting an Int to ??? looks weird

G. Castagna (CNRS) Four Forms of Polymorphism 157 / 192

Problems

The consistency relation must not be transitive:
Since Int∼??? and ???∼Bool, then transitivity would imply Int∼Bool:

` λx : Int.x + 1 : Int→ Int ` true : Bool Int∼Bool
` (λx : Int.x + 1)true : Int

it is hard to work with a non-transitive relation.

It has a flavor of substitutivity ... but not always:

function double (x : ???) { (<condition>) ? 2*x : x.concat(x) }

function apply (f : number --> number, x : number) { return (f x) }

apply (double , (double 42))

It compiles as apply (double〈Int→ Int〉 , (double(42〈???〉))〈Int〉)
Casting ???→ ??? to Int→ Int is ok.
Casting ??? to Int is ok.

Casting an Int to ??? looks weird

G. Castagna (CNRS) Four Forms of Polymorphism 157 / 192

Problems

The consistency relation must not be transitive:
Since Int∼??? and ???∼Bool, then transitivity would imply Int∼Bool:

` λx : Int.x + 1 : Int→ Int ` true : Bool Int∼Bool
` (λx : Int.x + 1)true : Int

it is hard to work with a non-transitive relation.

It has a flavor of substitutivity ... but not always:

function double (x : ???) { (<condition>) ? 2*x : x.concat(x) }

function apply (f : number --> number, x : number) { return (f x) }

apply (double , (double 42))

It compiles as apply (double〈Int→ Int〉 , (double(42〈???〉))〈Int〉)
Casting ???→ ??? to Int→ Int is ok.
Casting ??? to Int is ok.
Casting an Int to ??? looks weird
G. Castagna (CNRS) Four Forms of Polymorphism 157 / 192

Problems

The [→ELIM∼] rule looks more an algorithic step than a typing rule:

[→ELIM∼]
Γ ` a : S→T Γ ` b : U U∼S

Γ ` ab : T

[→ELIM≤]

Γ `A a : S→T Γ `A b : U U≤S

Γ `A ab : T

We need a more principled methodology

Let’s take inspiration from what we did for subtyping

G. Castagna (CNRS) Four Forms of Polymorphism 158 / 192

Problems

The [→ELIM∼] rule looks more an algorithic step than a typing rule:

[→ELIM∼]
Γ ` a : S→T Γ ` b : U U∼S

Γ ` ab : T

[→ELIM≤]

Γ `A a : S→T Γ `A b : U U≤S

Γ `A ab : T

We need a more principled methodology

Let’s take inspiration from what we did for subtyping

G. Castagna (CNRS) Four Forms of Polymorphism 158 / 192

Problems

The [→ELIM∼] rule looks more an algorithic step than a typing rule:

[→ELIM∼]
Γ ` a : S→T Γ ` b : U U∼S

Γ ` ab : T

[→ELIM≤]

Γ `A a : S→T Γ `A b : U U≤S

Γ `A ab : T

We need a more principled methodology

Let’s take inspiration from what we did for subtyping

G. Castagna (CNRS) Four Forms of Polymorphism 158 / 192

Precision and Materialization

The precision relation “v”:
Precision relates a type with unknown “???” components to the types it may
dynamically become at run time.

Informally
The less “???” it uses, the more precise a type is.

Can be defined by induction for simple types:

???v T

S1 v T1 S2 v T2

S1→ S2 v T1→ T2 T v T

T1 v T2 T2 v T3

T1 v T3

It is not subtyping
It is a pre-order

Intuition
T v T ′ means that at run-time type T may turn out to be the type T ′

we say that T may materialize into T ′

G. Castagna (CNRS) Four Forms of Polymorphism 159 / 192

Precision and Materialization

The precision relation “v”:
Precision relates a type with unknown “???” components to the types it may
dynamically become at run time.

Informally
The less “???” it uses, the more precise a type is.

Can be defined by induction for simple types:

???v T

S1 v T1 S2 v T2

S1→ S2 v T1→ T2 T v T

T1 v T2 T2 v T3

T1 v T3

It is not subtyping
It is a pre-order

Intuition
T v T ′ means that at run-time type T may turn out to be the type T ′

we say that T may materialize into T ′

G. Castagna (CNRS) Four Forms of Polymorphism 159 / 192

Precision and Materialization

The precision relation “v”:
Precision relates a type with unknown “???” components to the types it may
dynamically become at run time.

Informally
The less “???” it uses, the more precise a type is.

Can be defined by induction for simple types:

???v T

S1 v T1 S2 v T2

S1→ S2 v T1→ T2 T v T

T1 v T2 T2 v T3

T1 v T3

It is not subtyping
It is a pre-order

Intuition
T v T ′ means that at run-time type T may turn out to be the type T ′

we say that T may materialize into T ′

G. Castagna (CNRS) Four Forms of Polymorphism 159 / 192

Precision and Materialization

The precision relation “v”:
Precision relates a type with unknown “???” components to the types it may
dynamically become at run time.

Informally
The less “???” it uses, the more precise a type is.

Can be defined by induction for simple types:

???v T

S1 v T1 S2 v T2

S1→ S2 v T1→ T2 T v T

T1 v T2 T2 v T3

T1 v T3

It is not subtyping

It is a pre-order

Intuition
T v T ′ means that at run-time type T may turn out to be the type T ′

we say that T may materialize into T ′

G. Castagna (CNRS) Four Forms of Polymorphism 159 / 192

Precision and Materialization

The precision relation “v”:
Precision relates a type with unknown “???” components to the types it may
dynamically become at run time.

Informally
The less “???” it uses, the more precise a type is.

Can be defined by induction for simple types:

???v T

S1 v T1 S2 v T2

S1→ S2 v T1→ T2 T v T

T1 v T2 T2 v T3

T1 v T3

It is not subtyping
It is a pre-order

Intuition
T v T ′ means that at run-time type T may turn out to be the type T ′

we say that T may materialize into T ′

G. Castagna (CNRS) Four Forms of Polymorphism 159 / 192

Precision and Materialization

The precision relation “v”:
Precision relates a type with unknown “???” components to the types it may
dynamically become at run time.

Informally
The less “???” it uses, the more precise a type is.

Can be defined by induction for simple types:

???v T

S1 v T1 S2 v T2

S1→ S2 v T1→ T2 T v T

T1 v T2 T2 v T3

T1 v T3

It is not subtyping
It is a pre-order

Intuition
T v T ′ means that at run-time type T may turn out to be the type T ′

we say that T may materialize into T ′

G. Castagna (CNRS) Four Forms of Polymorphism 159 / 192

Precision and Materialization

The precision relation is a pre-order thus, in particular, it is transitive:

??? v ???→ ??? v ???→ Int v Int→ Int

but:
??? v Int 6v ???

This means that it can be used in a subsumption-like rule:

[MATERIALIZE]
Γ ` a : S S v T

Γ ` a : T

We can add it to any type system to embed gradual typing in it.

Rationale
As subtyping caputures “safe replacement ”,

so precision captures “potential materialization ”.

G. Castagna (CNRS) Four Forms of Polymorphism 160 / 192

Precision and Materialization

The precision relation is a pre-order thus, in particular, it is transitive:

??? v ???→ ??? v ???→ Int v Int→ Int

but:
??? v Int 6v ???

This means that it can be used in a subsumption-like rule:

[MATERIALIZE]
Γ ` a : S S v T

Γ ` a : T

We can add it to any type system to embed gradual typing in it.

Rationale
As subtyping caputures “safe replacement ”,

so precision captures “potential materialization ”.

G. Castagna (CNRS) Four Forms of Polymorphism 160 / 192

Precision and Materialization

The precision relation is a pre-order thus, in particular, it is transitive:

??? v ???→ ??? v ???→ Int v Int→ Int

but:
??? v Int 6v ???

This means that it can be used in a subsumption-like rule:

[MATERIALIZE]
Γ ` a : S S v T

Γ ` a : T

We can add it to any type system to embed gradual typing in it.

Rationale
As subtyping caputures “safe replacement ”,

so precision captures “potential materialization ”.

G. Castagna (CNRS) Four Forms of Polymorphism 160 / 192

Precision and Materialization

The precision relation is a pre-order thus, in particular, it is transitive:

??? v ???→ ??? v ???→ Int v Int→ Int

but:
??? v Int 6v ???

This means that it can be used in a subsumption-like rule:

[MATERIALIZE]
Γ ` a : S S v T

Γ ` a : T

We can add it to any type system to embed gradual typing in it.

Rationale
As subtyping caputures “safe replacement ”,

so precision captures “potential materialization ”.

G. Castagna (CNRS) Four Forms of Polymorphism 160 / 192

Precision and Materialization

The precision relation is a pre-order thus, in particular, it is transitive:

??? v ???→ ??? v ???→ Int v Int→ Int

but:
??? v Int 6v ???

This means that it can be used in a subsumption-like rule:

[MATERIALIZE]
Γ ` a : S S v T

Γ ` a : T

We can add it to any type system to embed gradual typing in it.

Rationale
As subtyping caputures “safe replacement ”,

so precision captures “potential materialization ”.

G. Castagna (CNRS) Four Forms of Polymorphism 160 / 192

Precision and Materialization

Since potential materialization does not mean assured materialization, then we
have to check it at run-time:

[MATERIALIZE]
Γ ` a : S

compiles
� a′ S v T

Γ ` a : T
compiles

� a′〈T 〉

Rationale
Subtyping = assured materialization (cast always works)

Precision = possible materialization (cast may fail)

From a logical viewpoint:

[SUBSUMPTION]

Γ ` a : S
compiles

� a′ S≤T

Γ ` a : T
compiles

� a′LT M

[MATERIALIZE]

Γ ` a : S
compiles

� a′ S v T

Γ ` a : T
compiles

� a′〈T 〉
Subsumption as implicit
coercions (subtyping)

Materialization as explicit
casts (precision)

G. Castagna (CNRS) Four Forms of Polymorphism 161 / 192

Precision and Materialization

Since potential materialization does not mean assured materialization, then we
have to check it at run-time:

[MATERIALIZE]
Γ ` a : S

compiles
� a′ S v T

Γ ` a : T
compiles

� a′〈T 〉

Rationale
Subtyping = assured materialization (cast always works)

Precision = possible materialization (cast may fail)

From a logical viewpoint:

[SUBSUMPTION]

Γ ` a : S
compiles

� a′ S≤T

Γ ` a : T
compiles

� a′LT M

[MATERIALIZE]

Γ ` a : S
compiles

� a′ S v T

Γ ` a : T
compiles

� a′〈T 〉
Subsumption as implicit
coercions (subtyping)

Materialization as explicit
casts (precision)

G. Castagna (CNRS) Four Forms of Polymorphism 161 / 192

Precision and Materialization

Since potential materialization does not mean assured materialization, then we
have to check it at run-time:

[MATERIALIZE]
Γ ` a : S

compiles
� a′ S v T

Γ ` a : T
compiles

� a′〈T 〉

Rationale
Subtyping = assured materialization (cast always works)

Precision = possible materialization (cast may fail)

From a logical viewpoint:

[SUBSUMPTION]

Γ ` a : S
compiles

� a′ S≤T

Γ ` a : T
compiles

� a′LT M

[MATERIALIZE]

Γ ` a : S
compiles

� a′ S v T

Γ ` a : T
compiles

� a′〈T 〉
Subsumption as implicit
coercions (subtyping)

Materialization as explicit
casts (precision)

G. Castagna (CNRS) Four Forms of Polymorphism 161 / 192

Summing up

1 Take your favorite typed language
2 Add “???” to types
3 Add the materialization rule (with suitable v)
4 Compile to insert casts
5 Et voila: you have added gradual typing

Types T ::= Int | Bool | T → T

| ???

Terms a,b ::= x | ab | λx :T .a | 1 | 2 | ... (λx :T .a)b −→ a[b/x]

[VAR]

Γ ` x : Γ(x)

[→INTRO]
Γ,x : S ` a : T

Γ ` λx :S.a : S→ T

[→ELIM]
Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

[MATERIALIZE]
Γ ` a : S S v T

Γ ` a : T

[MATERIALIZECOMPIL]

Γ ` a : S
compiles

� a′ S v T

Γ ` a : T
compiles

� a′〈T 〉

G. Castagna (CNRS) Four Forms of Polymorphism 162 / 192

Summing up

1 Take your favorite typed language
2 Add “???” to types
3 Add the materialization rule (with suitable v)
4 Compile to insert casts
5 Et voila: you have added gradual typing

Types T ::= Int | Bool | T → T

| ???

Terms a,b ::= x | ab | λx :T .a | 1 | 2 | ... (λx :T .a)b −→ a[b/x]

[VAR]

Γ ` x : Γ(x)

[→INTRO]
Γ,x : S ` a : T

Γ ` λx :S.a : S→ T

[→ELIM]
Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

[MATERIALIZE]
Γ ` a : S S v T

Γ ` a : T

[MATERIALIZECOMPIL]

Γ ` a : S
compiles

� a′ S v T

Γ ` a : T
compiles

� a′〈T 〉

G. Castagna (CNRS) Four Forms of Polymorphism 162 / 192

Summing up

1 Take your favorite typed language
2 Add “???” to types
3 Add the materialization rule (with suitable v)
4 Compile to insert casts
5 Et voila: you have added gradual typing

Types T ::= Int | Bool | T → T | ???
Terms a,b ::= x | ab | λx :T .a | 1 | 2 | ... (λx :T .a)b −→ a[b/x]

[VAR]

Γ ` x : Γ(x)

[→INTRO]
Γ,x : S ` a : T

Γ ` λx :S.a : S→ T

[→ELIM]
Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

[MATERIALIZE]
Γ ` a : S S v T

Γ ` a : T

[MATERIALIZECOMPIL]

Γ ` a : S
compiles

� a′ S v T

Γ ` a : T
compiles

� a′〈T 〉

G. Castagna (CNRS) Four Forms of Polymorphism 162 / 192

Summing up

1 Take your favorite typed language
2 Add “???” to types
3 Add the materialization rule (with suitable v)
4 Compile to insert casts
5 Et voila: you have added gradual typing

Types T ::= Int | Bool | T → T | ???
Terms a,b ::= x | ab | λx :T .a | 1 | 2 | ... (λx :T .a)b −→ a[b/x]

[VAR]

Γ ` x : Γ(x)

[→INTRO]
Γ,x : S ` a : T

Γ ` λx :S.a : S→ T

[→ELIM]
Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

[MATERIALIZE]
Γ ` a : S S v T

Γ ` a : T

[MATERIALIZECOMPIL]

Γ ` a : S
compiles

� a′ S v T

Γ ` a : T
compiles

� a′〈T 〉

G. Castagna (CNRS) Four Forms of Polymorphism 162 / 192

Summing up

1 Take your favorite typed language
2 Add “???” to types
3 Add the materialization rule (with suitable v)
4 Compile to insert casts
5 Et voila: you have added gradual typing

Types T ::= Int | Bool | T → T | ???
Terms a,b ::= x | ab | λx :T .a | 1 | 2 | ... (λx :T .a)b −→ a[b/x]

[VAR]

Γ ` x : Γ(x)

[→INTRO]
Γ,x : S ` a : T

Γ ` λx :S.a : S→ T

[→ELIM]
Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

[MATERIALIZE]
Γ ` a : S S v T

Γ ` a : T

[MATERIALIZECOMPIL]

Γ ` a : S
compiles

� a′ S v T

Γ ` a : T
compiles

� a′〈T 〉

G. Castagna (CNRS) Four Forms of Polymorphism 162 / 192

Summing up

1 Take your favorite typed language
2 Add “???” to types
3 Add the materialization rule (with suitable v)
4 Compile to insert casts
5 Et voila: you have added gradual typing

Types T ::= Int | Bool | T → T | ???
Terms a,b ::= x | ab | λx :T .a | 1 | 2 | ... (λx :T .a)b −→ a[b/x]

[VAR]

Γ ` x : Γ(x)

[→INTRO]
Γ,x : S ` a : T

Γ ` λx :S.a : S→ T

[→ELIM]
Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

[MATERIALIZE]
Γ ` a : S S v T

Γ ` a : T

[MATERIALIZECOMPIL]

Γ ` a : S
compiles

� a′ S v T

Γ ` a : T
compiles

� a′〈T 〉

G. Castagna (CNRS) Four Forms of Polymorphism 162 / 192

Summing up

1 Take your favorite typed language
2 Add “???” to types
3 Add the materialization rule (with suitable v)
4 Compile to insert casts
5 Et voila: you have added gradual typing

Types T ::= Int | Bool | T → T | ???
Terms a,b ::= x | ab | λx :T .a | 1 | 2 | ... (λx :T .a)b −→ a[b/x]

[VAR]

Γ ` x : Γ(x)

[→INTRO]
Γ,x : S ` a : T

Γ ` λx :S.a : S→ T

[→ELIM]
Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

[MATERIALIZE]
Γ ` a : S S v T

Γ ` a : T

[MATERIALIZECOMPIL]

Γ ` a : S
compiles

� a′ S v T

Γ ` a : T
compiles

� a′〈T 〉

G. Castagna (CNRS) Four Forms of Polymorphism 162 / 192

Is it that
simple?!?!

Summing up

1 Take your favorite typed language
2 Add “???” to types
3 Add the materialization rule (with suitable v)
4 Compile to insert casts
5 Et voila: you have added gradual typing

Types T ::= Int | Bool | T → T | ???
Terms a,b ::= x | ab | λx :T .a | 1 | 2 | ... (λx :T .a)b −→ a[b/x]

[VAR]

Γ ` x : Γ(x)

[→INTRO]
Γ,x : S ` a : T

Γ ` λx :S.a : S→ T

[→ELIM]
Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

[MATERIALIZE]
Γ ` a : S S v T

Γ ` a : T

[MATERIALIZECOMPIL]

Γ ` a : S
compiles

� a′ S v T

Γ ` a : T
compiles

� a′〈T 〉

G. Castagna (CNRS) Four Forms of Polymorphism 162 / 192

YES!...as long as
you don’t pretend
to implement it!!!

Summing up

1 Take your favorite typed language
2 Add “???” to types
3 Add the materialization rule (with suitable v)
4 Compile to insert casts
5 Et voila: you have added gradual typing

Types T ::= Int | Bool | T → T | ???
Terms a,b ::= x | ab | λx :T .a | 1 | 2 | ... (λx :T .a)b −→ a[b/x]

[VAR]

Γ ` x : Γ(x)

[→INTRO]
Γ,x : S ` a : T

Γ ` λx :S.a : S→ T

[→ELIM]
Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

[MATERIALIZE]
Γ ` a : S S v T

Γ ` a : T

[MATERIALIZECOMPIL]

Γ ` a : S
compiles

� a′ S v T

Γ ` a : T
compiles

� a′〈T 〉

G. Castagna (CNRS) Four Forms of Polymorphism 162 / 192

YES!...as long as
you don’t pretend
to implement it!!!

Summing up

1 Take your favorite typed language
2 Add “???” to types
3 Add the materialization rule (with suitable v)
4 Compile to insert casts
5 Et voila: you have added gradual typing

Types T ::= Int | Bool | T → T | ???
Terms a,b ::= x | ab | λx :T .a | 1 | 2 | ... (λx :T .a)b −→ a[b/x]

[VAR]

Γ ` x : Γ(x)

[→INTRO]
Γ,x : S ` a : T

Γ ` λx :S.a : S→ T

[→ELIM]
Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

[MATERIALIZE]
Γ ` a : S S v T

Γ ` a : T

[MATERIALIZECOMPIL]

Γ ` a : S
compiles

� a′ S v T

Γ ` a : T
compiles

� a′〈T 〉

G. Castagna (CNRS) Four Forms of Polymorphism 162 / 192

YES!...as long as
you don’t pretend
to implement it!!!

Algorithmic aspects

From more theoretical to more practical ones:

Materialization elimination: as we had to eliminate subsumption to get a
type-checking algorithm so we have to do the same for [MATERIALIZE].

Implementation of casts: the implementation of the cast calculus is not
trivial. How do we check casts? In particular, how do we handle functional
casts:

(double〈Int→Int〉)(42) −→ ????

Error messages: when a cast fails which part of the program is to blame?

Efficient implementation: how to avoid accumulation of cast compositions
(i.e., stack overflow) and how to implement efficiently tail recursion for
functions with casts?

But before that, let me show you that the
approach works and it is pretty general

G. Castagna (CNRS) Four Forms of Polymorphism 163 / 192

Algorithmic aspects

From more theoretical to more practical ones:

Materialization elimination: as we had to eliminate subsumption to get a
type-checking algorithm so we have to do the same for [MATERIALIZE].

Implementation of casts: the implementation of the cast calculus is not
trivial. How do we check casts? In particular, how do we handle functional
casts:

(double〈Int→Int〉)(42) −→ ????

Error messages: when a cast fails which part of the program is to blame?

Efficient implementation: how to avoid accumulation of cast compositions
(i.e., stack overflow) and how to implement efficiently tail recursion for
functions with casts?

But before that, let me show you that the
approach works and it is pretty general

G. Castagna (CNRS) Four Forms of Polymorphism 163 / 192

Algorithmic aspects

From more theoretical to more practical ones:

Materialization elimination: as we had to eliminate subsumption to get a
type-checking algorithm so we have to do the same for [MATERIALIZE].

Implementation of casts: the implementation of the cast calculus is not
trivial. How do we check casts? In particular, how do we handle functional
casts:

(double〈Int→Int〉)(42) −→ ????

Error messages: when a cast fails which part of the program is to blame?

Efficient implementation: how to avoid accumulation of cast compositions
(i.e., stack overflow) and how to implement efficiently tail recursion for
functions with casts?

But before that, let me show you that the
approach works and it is pretty general

G. Castagna (CNRS) Four Forms of Polymorphism 163 / 192

Algorithmic aspects

From more theoretical to more practical ones:

Materialization elimination: as we had to eliminate subsumption to get a
type-checking algorithm so we have to do the same for [MATERIALIZE].

Implementation of casts: the implementation of the cast calculus is not
trivial. How do we check casts? In particular, how do we handle functional
casts:

(double〈Int→Int〉)(42) −→ ????

Error messages: when a cast fails which part of the program is to blame?

Efficient implementation: how to avoid accumulation of cast compositions
(i.e., stack overflow) and how to implement efficiently tail recursion for
functions with casts?

But before that, let me show you that the
approach works and it is pretty general

G. Castagna (CNRS) Four Forms of Polymorphism 163 / 192

Algorithmic aspects

From more theoretical to more practical ones:

Materialization elimination: as we had to eliminate subsumption to get a
type-checking algorithm so we have to do the same for [MATERIALIZE].

Implementation of casts: the implementation of the cast calculus is not
trivial. How do we check casts? In particular, how do we handle functional
casts:

(double〈Int→Int〉)(42) −→ ????

Error messages: when a cast fails which part of the program is to blame?

Efficient implementation: how to avoid accumulation of cast compositions
(i.e., stack overflow) and how to implement efficiently tail recursion for
functions with casts?

But before that, let me show you that the
approach works and it is pretty general

G. Castagna (CNRS) Four Forms of Polymorphism 163 / 192

Algorithmic aspects

From more theoretical to more practical ones:

Materialization elimination: as we had to eliminate subsumption to get a
type-checking algorithm so we have to do the same for [MATERIALIZE].

Implementation of casts: the implementation of the cast calculus is not
trivial. How do we check casts? In particular, how do we handle functional
casts:

(double〈Int→Int〉)(42) −→ ????

Error messages: when a cast fails which part of the program is to blame?

Efficient implementation: how to avoid accumulation of cast compositions
(i.e., stack overflow) and how to implement efficiently tail recursion for
functions with casts?

But before that, let me show you that the
approach works and it is pretty general

G. Castagna (CNRS) Four Forms of Polymorphism 163 / 192

A principled approach

Simply Typed Lambda Calculus

+ Gradual Typing + Subtyping

Syntax:
Types T ::= Int | Bool | T → T

| ???

Terms a,b ::= x | ab | λx :T .a | 1 | 2 | ...

Semantics:

(β) (λx :T .a)b −→ a[b/x]

Typing

Γ ` x : Γ(x)

Γ,x : S ` a : T

Γ ` λx :S.a : S→ T

Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

[MATERIALIZE]
Γ ` a : S S v T

Γ ` a : T
[SUBSUM]

Γ ` a : S S≤T

Γ ` a : T

G. Castagna (CNRS) Four Forms of Polymorphism 164 / 192

A principled approach

Simply Typed Lambda Calculus

+ Gradual Typing + Subtyping

Syntax:
Types T ::= Int | Bool | T → T | ???

Terms a,b ::= x | ab | λx :T .a | 1 | 2 | ...

Semantics:

(β) (λx :T .a)b −→ a[b/x]

Typing

Γ ` x : Γ(x)

Γ,x : S ` a : T

Γ ` λx :S.a : S→ T

Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

[MATERIALIZE]
Γ ` a : S S v T

Γ ` a : T

[SUBSUM]
Γ ` a : S S≤T

Γ ` a : T

G. Castagna (CNRS) Four Forms of Polymorphism 164 / 192

A principled approach

Simply Typed Lambda Calculus

+ Gradual Typing + Subtyping

Syntax:
Types T ::= Int | Bool | T → T | ???

Terms a,b ::= x | ab | λx :T .a | 1 | 2 | ...

Semantics:

(β) (λx :T .a)b −→ a[b/x]

Typing

Γ ` x : Γ(x)

Γ,x : S ` a : T

Γ ` λx :S.a : S→ T

Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

[MATERIALIZE]
Γ ` a : S S v T

Γ ` a : T

[SUBSUM]
Γ ` a : S S≤T

Γ ` a : T

G. Castagna (CNRS) Four Forms of Polymorphism 164 / 192

semantics must be
given by compilation

A principled approach

Simply Typed Lambda Calculus

+ Gradual Typing + Subtyping

Syntax:
Types T ::= Int | Bool | T → T | ???

Terms a,b ::= x | ab | λx :T .a | 1 | 2 | ...

Semantics:

[MATERIALIZECOMPIL]
Γ ` a : S

compiles
� a′ S v T

Γ ` a : T
compiles

� a′〈T 〉
Typing

Γ ` x : Γ(x)

Γ,x : S ` a : T

Γ ` λx :S.a : S→ T

Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

[MATERIALIZE]
Γ ` a : S S v T

Γ ` a : T

[SUBSUM]
Γ ` a : S S≤T

Γ ` a : T

G. Castagna (CNRS) Four Forms of Polymorphism 164 / 192

A principled approach

Simply Typed Lambda Calculus + Gradual Typing

+ Subtyping

Syntax:
Types T ::= Int | Bool | T → T | ???

Terms a,b ::= x | ab | λx :T .a | 1 | 2 | ...

Semantics:

[MATERIALIZECOMPIL]
Γ ` a : S

compiles
� a′ S v T

Γ ` a : T
compiles

� a′〈T 〉
Typing

Γ ` x : Γ(x)

Γ,x : S ` a : T

Γ ` λx :S.a : S→ T

Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

[MATERIALIZE]
Γ ` a : S S v T

Γ ` a : T

[SUBSUM]
Γ ` a : S S≤T

Γ ` a : T

G. Castagna (CNRS) Four Forms of Polymorphism 164 / 192

A principled approach

Simply Typed Lambda Calculus + Gradual Typing + Subtyping

Syntax:
Types T ::= Int | Bool | T → T | ???

Terms a,b ::= x | ab | λx :T .a | 1 | 2 | ...

Semantics:

[MATERIALIZECOMPIL]
Γ ` a : S

compiles
� a′ S v T

Γ ` a : T
compiles

� a′〈T 〉
Typing

Γ ` x : Γ(x)

Γ,x : S ` a : T

Γ ` λx :S.a : S→ T

Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

[MATERIALIZE]
Γ ` a : S S v T

Γ ` a : T
[SUBSUM]

Γ ` a : S S≤T

Γ ` a : T
G. Castagna (CNRS) Four Forms of Polymorphism 164 / 192

Soundness

If the reduction semantics of the cast calculus is reasonably defined (see
later) then:

Theorem (Soundness)

If Γ ` a : T , then Γ ` a : T
compiles

� a′ and

either a′ reduces to a value of type T

or a′ diverges

or a′ fails for a cast on a dynamic type

G. Castagna (CNRS) Four Forms of Polymorphism 165 / 192

Soundness

If the reduction semantics of the cast calculus is reasonably defined (see
later) then:

Theorem (Soundness)

If Γ ` a : T , then Γ ` a : T
compiles

� a′ and

either a′ reduces to a value of type T

or a′ diverges

or a′ fails for a cast on a dynamic type

G. Castagna (CNRS) Four Forms of Polymorphism 165 / 192

HM Polymorphism

+ Gradual Typing + Subtyping

Syntax:

Types T ::= Int | Bool | T → T | α

| ???

Schemas σ ::= T | ∀α.σ
Terms a,b ::= x | ab | λx .a | let x = a in b | 1 | 2 | ...

Semantics:

(β) (λx .a)b −→ a[b/x]

Typing

Γ ` x : Γ(x)

Γ,x : S ` a : T

Γ ` λx .a : S→ T

Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

Γ ` a : σ1 Γ,x : σ1 ` b : σ2

Γ ` let x = a in b : σ2

Γ ` a : T α 6∈ fv(Γ)

Γ ` a : ∀α.T
Γ ` a : ∀α.T

Γ ` a : T [S/α]

[MATERIALIZE]
Γ ` a : S S v T

Γ ` a : T
[SUBSUM]

Γ ` a : S S≤T

Γ ` a : T

G. Castagna (CNRS) Four Forms of Polymorphism 166 / 192

HM Polymorphism + Gradual Typing

+ Subtyping

Syntax:

Types T ::= Int | Bool | T → T | α | ???
Schemas σ ::= T | ∀α.σ
Terms a,b ::= x | ab | λx .a | let x = a in b | 1 | 2 | ...

Semantics:

[MATERIALIZECOMPIL]
Γ ` a : S

compiles
� a′ S v T

Γ ` a : T
compiles

� a′〈T 〉
Typing

Γ ` x : Γ(x)

Γ,x : S ` a : T

Γ ` λx .a : S→ T

Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

Γ ` a : σ1 Γ,x : σ1 ` b : σ2

Γ ` let x = a in b : σ2

Γ ` a : T α 6∈ fv(Γ)

Γ ` a : ∀α.T
Γ ` a : ∀α.T

Γ ` a : T [S/α]

[MATERIALIZE]
Γ ` a : S S v T

Γ ` a : T

[SUBSUM]
Γ ` a : S S≤T

Γ ` a : T

G. Castagna (CNRS) Four Forms of Polymorphism 166 / 192

HM Polymorphism + Gradual Typing + Subtyping

Syntax:

Types T ::= Int | Bool | T → T | α | ???
Schemas σ ::= T | ∀α.σ
Terms a,b ::= x | ab | λx .a | let x = a in b | 1 | 2 | ...

Semantics:

[MATERIALIZECOMPIL]
Γ ` a : S

compiles
� a′ S v T

Γ ` a : T
compiles

� a′〈T 〉
Typing

Γ ` x : Γ(x)

Γ,x : S ` a : T

Γ ` λx .a : S→ T

Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

Γ ` a : σ1 Γ,x : σ1 ` b : σ2

Γ ` let x = a in b : σ2

Γ ` a : T α 6∈ fv(Γ)

Γ ` a : ∀α.T
Γ ` a : ∀α.T

Γ ` a : T [S/α]

[MATERIALIZE]
Γ ` a : S S v T

Γ ` a : T
[SUBSUM]

Γ ` a : S S≤T

Γ ` a : T
G. Castagna (CNRS) Four Forms of Polymorphism 166 / 192

HM Polymorphism + Gradual Typing + Subtyping

Syntax:

Types T ::= Int | Bool | T → T | α | ???
Schemas σ ::= T | ∀α.σ
Terms a,b ::= x | ab | λx .a | let x = a in b | 1 | 2 | ...

Semantics:

[MATERIALIZECOMPIL]
Γ ` a : S

compiles
� a′ S v T

Γ ` a : T
compiles

� a′〈T 〉
Typing

Γ ` x : Γ(x)

Γ,x : S ` a : T

Γ ` λx .a : S→ T

Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

Γ ` a : σ1 Γ,x : σ1 ` b : σ2

Γ ` let x = a in b : σ2

Γ ` a : T α 6∈ fv(Γ)

Γ ` a : ∀α.T
Γ ` a : ∀α.T

Γ ` a : T [S/α]

[MATERIALIZE]
Γ ` a : S S v T

Γ ` a : T
[SUBSUM]

Γ ` a : S S≤T

Γ ` a : T
G. Castagna (CNRS) Four Forms of Polymorphism 166 / 192

Some details are missing:
annotations and no inference for
gradual types ... but that’s it!!

HM Polymorphism + Gradual Typing + Subtyping

Syntax:

Types T ::= Int | Bool | T → T | α | ???
Schemas σ ::= T | ∀α.σ
Terms a,b ::= x | ab | λx .a | let x = a in b | 1 | 2 | ...

Semantics:

[MATERIALIZECOMPIL]
Γ ` a : S

compiles
� a′ S v T

Γ ` a : T
compiles

� a′〈T 〉
Typing

Γ ` x : Γ(x)

Γ,x : S ` a : T

Γ ` λx .a : S→ T

Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

Γ ` a : σ1 Γ,x : σ1 ` b : σ2

Γ ` let x = a in b : σ2

Γ ` a : T α 6∈ fv(Γ)

Γ ` a : ∀α.T
Γ ` a : ∀α.T

Γ ` a : T [S/α]

[MATERIALIZE]
Γ ` a : S S v T

Γ ` a : T
[SUBSUM]

Γ ` a : S S≤T

Γ ` a : T
G. Castagna (CNRS) Four Forms of Polymorphism 166 / 192

That’s all, but how
do I implement it?!?

Outline

15 Main ideas

16 Formal system

17 Algorithmic Aspects

18 Criteria for Gradual Typing

19 Implementation issues

20 References

G. Castagna (CNRS) Four Forms of Polymorphism 167 / 192

1. Type-checking algorithm

Γ ` x : Γ(x)

Γ,x : S ` a : T

Γ ` λx :S.a : S→ T

Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

[MATERIALIZE]
Γ ` a : S S v T

Γ ` a : T

It is a sound and complete algorithm:

Γ ` a : T ⇐⇒ Γ ` a : S and S v T

Actually this is the good old [→ELIM∼∼∼] rule of Siek&Taha (but defined for a
sensible relation):

[→ELIM∼∼∼]
Γ ` a : S→ T Γ ` b : U U∼S

Γ ` ab : T

since U∼S ⇐⇒ ∃V .S v V ,U v V

G. Castagna (CNRS) Four Forms of Polymorphism 168 / 192

1. Type-checking algorithm

Γ ` x : Γ(x)

Γ,x : S ` a : T

Γ ` λx :S.a : S→ T

Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

[MATERIALIZE]
Γ ` a : S S v T

Γ ` a : T

It is a sound and complete algorithm:

Γ ` a : T ⇐⇒ Γ ` a : S and S v T

Actually this is the good old [→ELIM∼∼∼] rule of Siek&Taha (but defined for a
sensible relation):

[→ELIM∼∼∼]
Γ ` a : S→ T Γ ` b : U U∼S

Γ ` ab : T

since U∼S ⇐⇒ ∃V .S v V ,U v V

G. Castagna (CNRS) Four Forms of Polymorphism 168 / 192

1. Type-checking algorithm

Γ `A x : Γ(x)

Γ,x : S `A a : T

Γ `A λx :S.a : S→ T

[→ELIMv]
Γ `A a : S→ T Γ `A b : U

Γ `A ab : T
∃V .S v V ,U v V

It is a sound and complete algorithm:

Γ ` a : T ⇐⇒ Γ ` a : S and S v T

Actually this is the good old [→ELIM∼∼∼] rule of Siek&Taha (but defined for a
sensible relation):

[→ELIM∼∼∼]
Γ ` a : S→ T Γ ` b : U U∼S

Γ ` ab : T

since U∼S ⇐⇒ ∃V .S v V ,U v V

G. Castagna (CNRS) Four Forms of Polymorphism 168 / 192

1. Type-checking algorithm

Γ `A x : Γ(x)

Γ,x : S `A a : T

Γ `A λx :S.a : S→ T

[→ELIMv]
Γ `A a : S→ T Γ `A b : U

Γ `A ab : T
∃V .S v V ,U v V

It is a sound and complete algorithm:

Γ ` a : T ⇐⇒ Γ ` a : S and S v T

Actually this is the good old [→ELIM∼∼∼] rule of Siek&Taha (but defined for a
sensible relation):

[→ELIM∼∼∼]
Γ ` a : S→ T Γ ` b : U U∼S

Γ ` ab : T

since U∼S ⇐⇒ ∃V .S v V ,U v V

G. Castagna (CNRS) Four Forms of Polymorphism 168 / 192

1. Type-checking algorithm

Γ `A x : Γ(x)

Γ,x : S `A a : T

Γ `A λx :S.a : S→ T

[→ELIMv]
Γ `A a : S→ T Γ `A b : U

Γ `A ab : T
∃V .S v V ,U v V

It is a sound and complete algorithm:

Γ ` a : T ⇐⇒ Γ ` a : S and S v T

Actually this is the good old [→ELIM∼∼∼] rule of Siek&Taha (but defined for a
sensible relation):

[→ELIM∼∼∼]
Γ ` a : S→ T Γ ` b : U U∼S

Γ ` ab : T

since U∼S ⇐⇒ ∃V .S v V ,U v V
G. Castagna (CNRS) Four Forms of Polymorphism 168 / 192

2. Compilation

Thanks to the algorithm every well-typed term is a associated to a unique
typing derivation: we know where to put casts.

Indeed:

[→ELIMv]
Γ `A a : S→ T Γ `A b : U

Γ `A a(b) : T
∃V .S v V ,U v V

corresponds to the derivation

which tells us where to put cast:

→ELIM

MATER
Γ ` a : S→T

S v V T v T

S→T v V→T

Γ ` a : V→T

Γ ` b : U U v V

Γ ` b : V
MATER

Γ `A a(b) : T

Which V shall we use? well, obviously:

V = min
v
{W | S vW ,U vW}

G. Castagna (CNRS) Four Forms of Polymorphism 169 / 192

2. Compilation

Thanks to the algorithm every well-typed term is a associated to a unique
typing derivation: we know where to put casts. Indeed:

[→ELIMv]
Γ `A a : S→ T Γ `A b : U

Γ `A a(b) : T
∃V .S v V ,U v V

corresponds to the derivation

which tells us where to put cast:

→ELIM

MATER
Γ ` a : S→T

S v V T v T

S→T v V→T

Γ ` a : V→T

Γ ` b : U U v V

Γ ` b : V
MATER

Γ `A a(b) : T

Which V shall we use? well, obviously:

V = min
v
{W | S vW ,U vW}

G. Castagna (CNRS) Four Forms of Polymorphism 169 / 192

2. Compilation

Thanks to the algorithm every well-typed term is a associated to a unique
typing derivation: we know where to put casts. Indeed:

[→ELIMv]
Γ `A a : S→ T Γ `A b : U

Γ `A a(b) : T
∃V .S v V ,U v V

corresponds to the derivation

which tells us where to put cast:

→ELIM

MATER
Γ ` a : S→T

S v V T v T

S→T v V→T

Γ ` a : V→T

Γ ` b : U U v V

Γ ` b : V
MATER

Γ `A a(b) : T

Which V shall we use? well, obviously:

V = min
v
{W | S vW ,U vW}

G. Castagna (CNRS) Four Forms of Polymorphism 169 / 192

2. Compilation

Thanks to the algorithm every well-typed term is a associated to a unique
typing derivation: we know where to put casts. Indeed:

[→ELIMv]
Γ `A a : S→ T Γ `A b : U

Γ `A a(b) : T
∃V .S v V ,U v V

corresponds to the derivation which tells us where to put cast:

→ELIM

MATER
Γ ` a : S→T

S v V T v T

S→T v V→T

Γ ` a〈V→T 〉 : V→T

Γ ` b : U U v V

Γ ` b〈V 〉 : V
MATER

Γ `A a〈V→T 〉(b〈V 〉) : T

Which V shall we use? well, obviously:

V = min
v
{W | S vW ,U vW}

G. Castagna (CNRS) Four Forms of Polymorphism 169 / 192

2. Compilation

Thanks to the algorithm every well-typed term is a associated to a unique
typing derivation: we know where to put casts. Indeed:

[→ELIMv]
Γ `A a : S→ T Γ `A b : U

Γ `A a(b) : T
∃V .S v V ,U v V

corresponds to the derivation which tells us where to put cast:

→ELIM

MATER
Γ ` a : S→T

S v V T v T

S→T v V→T

Γ ` a〈V→T 〉 : V→T

Γ ` b : U U v V

Γ ` b〈V 〉 : V
MATER

Γ `A a〈V→T 〉(b〈V 〉) : T

Which V shall we use? well, obviously:

V = min
v
{W | S vW ,U vW}

G. Castagna (CNRS) Four Forms of Polymorphism 169 / 192

2. Compilation

This yields the following compilation rule:

[→ELIMvCOMPIL]

Γ ` a : S→ T
compiles

� a′ Γ ` b : U
compiles

� b′

Γ `A ab : T
compiles

� a′〈V→T 〉(b′〈V 〉)
(V=minv{W | SvW ,UvW})

Of course we do not insert the corresponding cast when V = S or V = U.

Cast insertion different from Siek&Taha: we cast both the function and the
arguement:

We only use “upcast”, that is cast from less precise to more precise types.
This is formalized by the [MATERIALIZE] rule for the language with casts
(all the other rules are as before)

[MATERIALIZE]
Γ ` a : S S v T

Γ ` a〈T 〉 : T

The compilation rules map well-typed terms into well-typed terms: terms are
cast to types more precise than their static type.

G. Castagna (CNRS) Four Forms of Polymorphism 170 / 192

2. Compilation

This yields the following compilation rule:

[→ELIMvCOMPIL]

Γ ` a : S→ T
compiles

� a′ Γ ` b : U
compiles

� b′

Γ `A ab : T
compiles

� a′〈V→T 〉(b′〈V 〉)
(V=minv{W | SvW ,UvW})

Of course we do not insert the corresponding cast when V = S or V = U.

Cast insertion different from Siek&Taha: we cast both the function and the
arguement:

We only use “upcast”, that is cast from less precise to more precise types.
This is formalized by the [MATERIALIZE] rule for the language with casts
(all the other rules are as before)

[MATERIALIZE]
Γ ` a : S S v T

Γ ` a〈T 〉 : T

The compilation rules map well-typed terms into well-typed terms: terms are
cast to types more precise than their static type.

G. Castagna (CNRS) Four Forms of Polymorphism 170 / 192

2. Compilation

This yields the following compilation rule:

[→ELIMvCOMPIL]

Γ ` a : S→ T
compiles

� a′ Γ ` b : U
compiles

� b′

Γ `A ab : T
compiles

� a′〈V→T 〉(b′〈V 〉)
(V=minv{W | SvW ,UvW})

Of course we do not insert the corresponding cast when V = S or V = U.

Cast insertion different from Siek&Taha: we cast both the function and the
arguement:

We only use “upcast”, that is cast from less precise to more precise types.
This is formalized by the [MATERIALIZE] rule for the language with casts
(all the other rules are as before)

[MATERIALIZE]
Γ ` a : S S v T

Γ ` a〈T 〉 : T

The compilation rules map well-typed terms into well-typed terms: terms are
cast to types more precise than their static type.

G. Castagna (CNRS) Four Forms of Polymorphism 170 / 192

2. Compilation

This yields the following compilation rule:

[→ELIMvCOMPIL]

Γ ` a : S→ T
compiles

� a′ Γ ` b : U
compiles

� b′

Γ `A ab : T
compiles

� a′〈V→T 〉(b′〈V 〉)
(V=minv{W | SvW ,UvW})

Of course we do not insert the corresponding cast when V = S or V = U.

Cast insertion different from Siek&Taha: we cast both the function and the
arguement:

We only use “upcast”, that is cast from less precise to more precise types.
This is formalized by the [MATERIALIZE] rule for the language with casts
(all the other rules are as before)

[MATERIALIZE]
Γ ` a : S S v T

Γ ` a〈T 〉 : T

The compilation rules map well-typed terms into well-typed terms: terms are
cast to types more precise than their static type.

G. Castagna (CNRS) Four Forms of Polymorphism 170 / 192

2. Compilation

This yields the following compilation rule:

[→ELIMvCOMPIL]

Γ ` a : S→ T
compiles

� a′ Γ ` b : U
compiles

� b′

Γ `A ab : T
compiles

� a′〈V→T 〉(b′〈V 〉)
(V=minv{W | SvW ,UvW})

Of course we do not insert the corresponding cast when V = S or V = U.

Cast insertion different from Siek&Taha: we cast both the function and the
arguement:

We only use “upcast”, that is cast from less precise to more precise types.
This is formalized by the [MATERIALIZE] rule for the language with casts
(all the other rules are as before)

[MATERIALIZE]
Γ ` a : S S v T

Γ ` a〈T 〉 : T

The compilation rules map well-typed terms into well-typed terms: terms are
cast to types more precise than their static type.

G. Castagna (CNRS) Four Forms of Polymorphism 170 / 192

It’s time to speak of this
language with casts

The cast language

Gradually Typed Language

with Casts

Syntax:

Types T ::= Int | Bool | T → T | ???

Terms a,b ::= x | ab | λx :T .a | 1 | 2 | ...
Typing

Γ ` x : Γ(x)

Γ,x : S ` a : T

Γ ` λx :S.a : S→ T

Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

[MATERIALIZE]
Γ ` a : S S v T

Γ ` a〈T 〉 : T
Semantics:

(β) (λx :T .a)b −→ a[b/x]

Still missing the semantics for casts

G. Castagna (CNRS) Four Forms of Polymorphism 171 / 192

The cast language

Gradually Typed Language

with Casts

Syntax:

Types T ::= Int | Bool | T → T | ???

Terms a,b ::= x | ab | λx :T .a | a〈T 〉 | 1 | 2 | ...
Typing

Γ ` x : Γ(x)

Γ,x : S ` a : T

Γ ` λx :S.a : S→ T

Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

[MATERIALIZE]
Γ ` a : S S v T

Γ ` a〈T 〉 : T
Semantics:

(β) (λx :T .a)b −→ a[b/x]

Still missing the semantics for casts

G. Castagna (CNRS) Four Forms of Polymorphism 171 / 192

The cast language

Gradually Typed Language

with Casts

Syntax:

Types T ::= Int | Bool | T → T | ???

Terms a,b ::= x | ab | λx :T .a | a〈T 〉 | 1 | 2 | ...
Typing

Γ ` x : Γ(x)

Γ,x : S ` a : T

Γ ` λx :S.a : S→ T

Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

[MATERIALIZE]
Γ ` a : S S v T

Γ ` a〈T 〉 : T

Semantics:

(β) (λx :T .a)b −→ a[b/x]

Still missing the semantics for casts

G. Castagna (CNRS) Four Forms of Polymorphism 171 / 192

The cast language

Gradually Typed Language

with Casts

Syntax:

Types T ::= Int | Bool | T → T | ???

Terms a,b ::= x | ab | λx :T .a | a〈T 〉 | 1 | 2 | ...
Typing

Γ ` x : Γ(x)

Γ,x : S ` a : T

Γ ` λx :S.a : S→ T

Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

[MATERIALIZE]
Γ ` a : S S v T

Γ ` a〈T 〉 : T
Semantics:

(β) (λx :T .a)b −→ a[b/x]

Still missing the semantics for casts

G. Castagna (CNRS) Four Forms of Polymorphism 171 / 192

The cast language

Gradually Typed Language with Casts

Syntax:

Types T ::= Int | Bool | T → T | ???

Terms a,b ::= x | ab | λx :T .a | a〈T 〉 | 1 | 2 | ...
Typing

Γ ` x : Γ(x)

Γ,x : S ` a : T

Γ ` λx :S.a : S→ T

Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

[MATERIALIZE]
Γ ` a : S S v T

Γ ` a〈T 〉 : T
Semantics:

(β) (λx :T .a)b −→ a[b/x]

Still missing the semantics for casts

G. Castagna (CNRS) Four Forms of Polymorphism 171 / 192

The cast language

Gradually Typed Language with Casts

Syntax:

Types T ::= Int | Bool | T → T | ???

Terms a,b ::= x | ab | λx :T .a | a〈T 〉 | 1 | 2 | ...
Typing

Γ ` x : Γ(x)

Γ,x : S ` a : T

Γ ` λx :S.a : S→ T

Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

[MATERIALIZE]
Γ ` a : S S v T

Γ ` a〈T 〉 : T
Semantics:

(β) (λx :T .a)b −→ a[b/x]

Still missing the semantics for casts

G. Castagna (CNRS) Four Forms of Polymorphism 171 / 192

The cast language

What is the dynamic semantics of casts?

Easy for non functional values:
3〈Int〉 −→ 3
3〈Bool〉 −→ Fail

If T is not an arrow type, then for a〈T 〉 check whether the result of a is of type T

Not so trivial for functions:
function foo (x : ???) {

if (x == 42) { return (2*x)} else { true }
}
Consider foo〈Int→Int〉. Function foo is not of type Int→Int, nevertheless
(foo〈Int→Int〉)(42) must not fail: it’s applied to an Int and returns an Int.

Delay the dynamic check of a type until you get to non-functional values

(foo〈Int→ Int〉)() −→ (foo(42〈Int〉))〈Int〉

G. Castagna (CNRS) Four Forms of Polymorphism 172 / 192

The cast language

What is the dynamic semantics of casts?
Easy for non functional values:
3〈Int〉 −→ 3
3〈Bool〉 −→ Fail

If T is not an arrow type, then for a〈T 〉 check whether the result of a is of type T

Not so trivial for functions:
function foo (x : ???) {

if (x == 42) { return (2*x)} else { true }
}
Consider foo〈Int→Int〉. Function foo is not of type Int→Int, nevertheless
(foo〈Int→Int〉)(42) must not fail: it’s applied to an Int and returns an Int.

Delay the dynamic check of a type until you get to non-functional values

(foo〈Int→ Int〉)() −→ (foo(42〈Int〉))〈Int〉

G. Castagna (CNRS) Four Forms of Polymorphism 172 / 192

The cast language

What is the dynamic semantics of casts?
Easy for non functional values:
3〈Int〉 −→ 3
3〈Bool〉 −→ Fail

If T is not an arrow type, then for a〈T 〉 check whether the result of a is of type T

Not so trivial for functions:
function foo (x : ???) {

if (x == 42) { return (2*x)} else { true }
}
Consider foo〈Int→Int〉. Function foo is not of type Int→Int, nevertheless
(foo〈Int→Int〉)(42) must not fail: it’s applied to an Int and returns an Int.

Delay the dynamic check of a type until you get to non-functional values

(foo〈Int→ Int〉)() −→ (foo(42〈Int〉))〈Int〉

G. Castagna (CNRS) Four Forms of Polymorphism 172 / 192

The cast language

What is the dynamic semantics of casts?
Easy for non functional values:
3〈Int〉 −→ 3
3〈Bool〉 −→ Fail

If T is not an arrow type, then for a〈T 〉 check whether the result of a is of type T

Not so trivial for functions:
function foo (x : ???) {

if (x == 42) { return (2*x)} else { true }
}
Consider foo〈Int→Int〉.

Function foo is not of type Int→Int, nevertheless
(foo〈Int→Int〉)(42) must not fail: it’s applied to an Int and returns an Int.

Delay the dynamic check of a type until you get to non-functional values

(foo〈Int→ Int〉)() −→ (foo(42〈Int〉))〈Int〉

G. Castagna (CNRS) Four Forms of Polymorphism 172 / 192

The cast language

What is the dynamic semantics of casts?
Easy for non functional values:
3〈Int〉 −→ 3
3〈Bool〉 −→ Fail

If T is not an arrow type, then for a〈T 〉 check whether the result of a is of type T

Not so trivial for functions:
function foo (x : ???) {

if (x == 42) { return (2*x)} else { true }
}
Consider foo〈Int→Int〉. Function foo is not of type Int→Int

, nevertheless
(foo〈Int→Int〉)(42) must not fail: it’s applied to an Int and returns an Int.

Delay the dynamic check of a type until you get to non-functional values

(foo〈Int→ Int〉)() −→ (foo(42〈Int〉))〈Int〉

G. Castagna (CNRS) Four Forms of Polymorphism 172 / 192

The cast language

What is the dynamic semantics of casts?
Easy for non functional values:
3〈Int〉 −→ 3
3〈Bool〉 −→ Fail

If T is not an arrow type, then for a〈T 〉 check whether the result of a is of type T

Not so trivial for functions:
function foo (x : ???) {

if (x == 42) { return (2*x)} else { true }
}
Consider foo〈Int→Int〉. Function foo is not of type Int→Int, nevertheless
(foo〈Int→Int〉)(42) must not fail: it’s applied to an Int and returns an Int.

Delay the dynamic check of a type until you get to non-functional values

(foo〈Int→ Int〉)() −→ (foo(42〈Int〉))〈Int〉

G. Castagna (CNRS) Four Forms of Polymorphism 172 / 192

The cast language

What is the dynamic semantics of casts?
Easy for non functional values:
3〈Int〉 −→ 3
3〈Bool〉 −→ Fail

If T is not an arrow type, then for a〈T 〉 check whether the result of a is of type T

Not so trivial for functions:
function foo (x : ???) {

if (x == 42) { return (2*x)} else { true }
}
Consider foo〈Int→Int〉. Function foo is not of type Int→Int, nevertheless
(foo〈Int→Int〉)(42) must not fail: it’s applied to an Int and returns an Int.

Delay the dynamic check of a type until you get to non-functional values

(foo〈Int→ Int〉)() −→ (foo(42〈Int〉))〈Int〉

G. Castagna (CNRS) Four Forms of Polymorphism 172 / 192

That is easy, but what about
(foo〈Int→ Int〉)(exp)?

The cast language

What is the dynamic semantics of casts?
Easy for non functional values:
3〈Int〉 −→ 3
3〈Bool〉 −→ Fail

If T is not an arrow type, then for a〈T 〉 check whether the result of a is of type T

Not so trivial for functions:
function foo (x : ???) {

if (x == 42) { return (2*x)} else { true }
}
Consider foo〈Int→Int〉. Function foo is not of type Int→Int, nevertheless
(foo〈Int→Int〉)(42) must not fail: it’s applied to an Int and returns an Int.

Delay the dynamic check of a type until you get to non-functional values

(foo〈Int→ Int〉)() −→ (foo(42〈Int〉))〈Int〉

G. Castagna (CNRS) Four Forms of Polymorphism 172 / 192

The cast language

What is the dynamic semantics of casts?
Easy for non functional values:
3〈Int〉 −→ 3
3〈Bool〉 −→ Fail

If T is not an arrow type, then for a〈T 〉 check whether the result of a is of type T

Not so trivial for functions:
function foo (x : ???) {

if (x == 42) { return (2*x)} else { true }
}
Consider foo〈Int→Int〉. Function foo is not of type Int→Int, nevertheless
(foo〈Int→Int〉)(42) must not fail: it’s applied to an Int and returns an Int.

Delay the dynamic check of a type until you get to non-functional values

(foo〈Int→ Int〉)(exp)

−→ (foo(42〈Int〉))〈Int〉

G. Castagna (CNRS) Four Forms of Polymorphism 172 / 192

The cast language

What is the dynamic semantics of casts?
Easy for non functional values:
3〈Int〉 −→ 3
3〈Bool〉 −→ Fail

If T is not an arrow type, then for a〈T 〉 check whether the result of a is of type T

Not so trivial for functions:
function foo (x : ???) {

if (x == 42) { return (2*x)} else { true }
}
Consider foo〈Int→Int〉. Function foo is not of type Int→Int, nevertheless
(foo〈Int→Int〉)(42) must not fail: it’s applied to an Int and returns an Int.

Delay the dynamic check of a type until you get to non-functional values

(foo〈Int→ Int〉)(42)

−→ (foo(42〈Int〉))〈Int〉

G. Castagna (CNRS) Four Forms of Polymorphism 172 / 192

The cast language

What is the dynamic semantics of casts?
Easy for non functional values:
3〈Int〉 −→ 3
3〈Bool〉 −→ Fail

If T is not an arrow type, then for a〈T 〉 check whether the result of a is of type T

Not so trivial for functions:
function foo (x : ???) {

if (x == 42) { return (2*x)} else { true }
}
Consider foo〈Int→Int〉. Function foo is not of type Int→Int, nevertheless
(foo〈Int→Int〉)(42) must not fail: it’s applied to an Int and returns an Int.

Delay the dynamic check of a type until you get to non-functional values

(foo〈Int→ Int〉)(42) −→ (foo(42〈Int〉))〈Int〉
G. Castagna (CNRS) Four Forms of Polymorphism 172 / 192

The cast language

Syntax:

Types T ::= Int | Bool | T → T | ???
Terms a,b ::= x | ab | λx :T .a | a〈T 〉 | 1 | 2 | ...
Values v ::= λx :T .a | 1 | 2 | ...

Typing

Γ ` x : Γ(x)

Γ,x : S ` a : T

Γ ` λx :S.a : S→ T

Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

[MATERIALIZE]
Γ ` a : S S v T

Γ ` a〈T 〉 : T
Semantics:

(λx :T .a)v −→ a[v/x]
v〈T 〉 −→ v if T 6= S1→S2 and ` v : T
v〈T 〉 −→ Fail if T 6= S1→S2 and 6` v : T

(v1〈S→ T 〉)v2 −→ (v1(v2〈S〉)〈T 〉
G. Castagna (CNRS) Four Forms of Polymorphism 173 / 192

The cast language

The cast language is sound:

Theorem (Soundness)
For every term a of the cast language, if Γ ` a : T , then

either a reduces to a value of type T

or a diverges

or a reduces to Fail

[no stuck term]

What are the consenquences of this theorem on our initial language?
How does it fit our framework? Let me first add a further bit

G. Castagna (CNRS) Four Forms of Polymorphism 174 / 192

Tracking errors

The message Fail is not very useful for debugging

We can modify compilation to track the origine of failures:

[MATERIALIZE]
Γ ` a : S

compiles
� a′ S v T

Γ ` a : T
compiles

� a′〈T 〉`

where ` is a pointer to the source code of a

Then it suffices to change the semantics of the cast language to return this
pointer:

Semantics:

(λx :T .a)v −→ a[v/x]
v〈T 〉` −→ v if T 6= S1→S2 and ` v : T
v〈T 〉` −→ blame ` if T 6= S1→S2 and 6` v : T

(v1〈S→ T 〉`)v2 −→ (v1(v2〈S〉`)〈T 〉`

G. Castagna (CNRS) Four Forms of Polymorphism 175 / 192

Tracking errors

The message Fail is not very useful for debugging

We can modify compilation to track the origine of failures:

[MATERIALIZE]
Γ ` a : S

compiles
� a′ S v T

Γ ` a : T
compiles

� a′〈T 〉`

where ` is a pointer to the source code of a

Then it suffices to change the semantics of the cast language to return this
pointer:

Semantics:

(λx :T .a)v −→ a[v/x]
v〈T 〉` −→ v if T 6= S1→S2 and ` v : T
v〈T 〉` −→ blame ` if T 6= S1→S2 and 6` v : T

(v1〈S→ T 〉`)v2 −→ (v1(v2〈S〉`)〈T 〉`

G. Castagna (CNRS) Four Forms of Polymorphism 175 / 192

Tracking errors

The message Fail is not very useful for debugging

We can modify compilation to track the origine of failures:

[MATERIALIZE]
Γ ` a : S

compiles
� a′ S v T

Γ ` a : T
compiles

� a′〈T 〉`

where ` is a pointer to the source code of a

Then it suffices to change the semantics of the cast language to return this
pointer:

Semantics:

(λx :T .a)v −→ a[v/x]
v〈T 〉` −→ v if T 6= S1→S2 and ` v : T
v〈T 〉` −→ blame ` if T 6= S1→S2 and 6` v : T

(v1〈S→ T 〉`)v2 −→ (v1(v2〈S〉`)〈T 〉`

G. Castagna (CNRS) Four Forms of Polymorphism 175 / 192

Outline

15 Main ideas

16 Formal system

17 Algorithmic Aspects

18 Criteria for Gradual Typing

19 Implementation issues

20 References

G. Castagna (CNRS) Four Forms of Polymorphism 176 / 192

Criterion: Type Soundness

Every expression must only result in values whose
type agrees with the static type of the expression.

Theorem (Soundness)

If Γ ` a : T , then Γ ` a : T
compiles

� a′ and

either a′ reduces to a value of type T

or a′ diverges

or a′ fails for a cast on a dynamic type

A Corollary of the soundness of the cast calculus and of the following lemma of
type preservation.

Lemma. If Γ ` a : T then then Γ ` a : T
compiles

� a′ and Γ ` a′ : S v T

G. Castagna (CNRS) Four Forms of Polymorphism 177 / 192

Criterion: Type Soundness

Every expression must only result in values whose
type agrees with the static type of the expression.

Theorem (Soundness)

If Γ ` a : T , then Γ ` a : T
compiles

� a′ and

either a′ reduces to a value of type T

or a′ diverges

or a′ fails for a cast on a dynamic type

A Corollary of the soundness of the cast calculus and of the following lemma of
type preservation.

Lemma. If Γ ` a : T then then Γ ` a : T
compiles

� a′ and Γ ` a′ : S v T

G. Castagna (CNRS) Four Forms of Polymorphism 177 / 192

Criterion: Type Soundness

Every expression must only result in values whose
type agrees with the static type of the expression.

Theorem (Soundness)

If Γ ` a : T , then Γ ` a : T
compiles

� a′ and

either a′ reduces to a value of type T

or a′ diverges

or a′ fails for a cast on a dynamic type

A Corollary of the soundness of the cast calculus and of the following lemma of
type preservation.

Lemma. If Γ ` a : T then then Γ ` a : T
compiles

� a′ and Γ ` a′ : S v T

G. Castagna (CNRS) Four Forms of Polymorphism 177 / 192

Criterion: Blame Tracking

When a runtime type error occurs, it is never the
fault of a statically typed region of code.

Theorem (Blame Theorem)

Let C[a] be a program such that ??? does not occur in a.
If Γ ` C[a] : T

compiles
� b and b −→ blame `, then ` ∈ C[] and ` 6∈ a.

G. Castagna (CNRS) Four Forms of Polymorphism 178 / 192

Criterion: Blame Tracking

When a runtime type error occurs, it is never the
fault of a statically typed region of code.

Theorem (Blame Theorem)

Let C[a] be a program such that ??? does not occur in a.
If Γ ` C[a] : T

compiles
� b and b −→ blame `, then ` ∈ C[] and ` 6∈ a.

G. Castagna (CNRS) Four Forms of Polymorphism 178 / 192

Criterion: Gradual Guarantee

Using less precise types must not change the
outcome of type checking or of running a program.

An expression a is less precise than b, written av b, if a is b but with less
precise annotations.

Note: a dynamically typed version of a is where all annotations are ???: it is a
minimal element in the precision lattice.

Theorem (Gradual Guarantee)

If Γ ` a : T
compiles

� a′ and b v a, then:

Γ ` b : T ′
compiles

� b′ and T ′ v T

if a′ −→ v , then b′ −→ v ′ and v ′ v v .

G. Castagna (CNRS) Four Forms of Polymorphism 179 / 192

Criterion: Gradual Guarantee

Using less precise types must not change the
outcome of type checking or of running a program.

An expression a is less precise than b, written av b, if a is b but with less
precise annotations.

Note: a dynamically typed version of a is where all annotations are ???: it is a
minimal element in the precision lattice.

Theorem (Gradual Guarantee)

If Γ ` a : T
compiles

� a′ and b v a, then:

Γ ` b : T ′
compiles

� b′ and T ′ v T

if a′ −→ v , then b′ −→ v ′ and v ′ v v .

G. Castagna (CNRS) Four Forms of Polymorphism 179 / 192

Criterion: Gradual Guarantee

Using less precise types must not change the
outcome of type checking or of running a program.

An expression a is less precise than b, written av b, if a is b but with less
precise annotations.

Note: a dynamically typed version of a is where all annotations are ???: it is a
minimal element in the precision lattice.

Theorem (Gradual Guarantee)

If Γ ` a : T
compiles

� a′ and b v a, then:

Γ ` b : T ′
compiles

� b′ and T ′ v T

if a′ −→ v , then b′ −→ v ′ and v ′ v v .

G. Castagna (CNRS) Four Forms of Polymorphism 179 / 192

Outline

15 Main ideas

16 Formal system

17 Algorithmic Aspects

18 Criteria for Gradual Typing

19 Implementation issues

20 References

G. Castagna (CNRS) Four Forms of Polymorphism 180 / 192

A hint to efficient implementation

A gradually typed tail-recursive function:

In Siek&Taha it is compiled into:

let rec odd : Int -> ? = fun n ->
if n = 0 then false<?>
else (even (n-1))<?>

and even : Int -> Bool = fun n ->
if n = 0 then true
else (odd (n-1))<Bool>

It produces accumulation of casts:

odd 5 −→ (even 4)<?>
−→ (odd 3)<Bool><?>
−→ (even 2)<?><Bool><?>
−→ (odd 1)<Bool><?><Bool><?>
−→ (even 0)<?><Bool><?><Bool><?>

Solution: specific implementation of tail-recursion combine with cast
compression via intersection types:

E 〈τ〉〈τ′〉 can be “compressed” to E 〈τ∧ τ′〉.

G. Castagna (CNRS) Four Forms of Polymorphism 181 / 192

A hint to efficient implementation

A gradually typed tail-recursive function: In Siek&Taha it is compiled into:

let rec odd : Int -> ? = fun n ->
if n = 0 then false<?>
else (even (n-1))<?>

and even : Int -> Bool = fun n ->
if n = 0 then true
else (odd (n-1))<Bool>

It produces accumulation of casts:

odd 5 −→ (even 4)<?>
−→ (odd 3)<Bool><?>
−→ (even 2)<?><Bool><?>
−→ (odd 1)<Bool><?><Bool><?>
−→ (even 0)<?><Bool><?><Bool><?>

Solution: specific implementation of tail-recursion combine with cast
compression via intersection types:

E 〈τ〉〈τ′〉 can be “compressed” to E 〈τ∧ τ′〉.

G. Castagna (CNRS) Four Forms of Polymorphism 181 / 192

A hint to efficient implementation

A gradually typed tail-recursive function:

In Siek&Taha it is compiled into:

let rec odd : Int -> ? = fun n ->
if n = 0 then false<?>
else (even (n-1))<?>

and even : Int -> Bool = fun n ->
if n = 0 then true
else (odd (n-1))<Bool>

It produces accumulation of casts:

odd 5 −→ (even 4)<?>
−→ (odd 3)<Bool><?>
−→ (even 2)<?><Bool><?>
−→ (odd 1)<Bool><?><Bool><?>
−→ (even 0)<?><Bool><?><Bool><?>

Solution: specific implementation of tail-recursion combine with cast
compression via intersection types:

E 〈τ〉〈τ′〉 can be “compressed” to E 〈τ∧ τ′〉.

G. Castagna (CNRS) Four Forms of Polymorphism 181 / 192

A hint to efficient implementation

A gradually typed tail-recursive function:

In Siek&Taha it is compiled into:

let rec odd : Int -> ? = fun n ->
if n = 0 then false<?>
else (even (n-1))<?>

and even : Int -> Bool = fun n ->
if n = 0 then true
else (odd (n-1))<Bool>

It produces accumulation of casts:

odd 5 −→ (even 4)<?>
−→ (odd 3)<Bool><?>
−→ (even 2)<?><Bool><?>
−→ (odd 1)<Bool><?><Bool><?>
−→ (even 0)<?><Bool><?><Bool><?>

Solution: specific implementation of tail-recursion combine with cast
compression via intersection types:

E 〈τ〉〈τ′〉 can be “compressed” to E 〈τ∧ τ′〉.
G. Castagna (CNRS) Four Forms of Polymorphism 181 / 192

Outline

15 Main ideas

16 Formal system

17 Algorithmic Aspects

18 Criteria for Gradual Typing

19 Implementation issues

20 References

G. Castagna (CNRS) Four Forms of Polymorphism 182 / 192

To go further

Some starting points:

Objects: Siek & Taha (ECOOP 2007)

Type inference: Siek & Vachharajani (DLS 2008), Garcia & Cimini (POPL
2015) [both superseded by Castagna & al (POPL 2019)]

Occurrence Typing: Tobin-Hochstadt & Felleisen (POPL 2008)

Foundational approach: Garcia & Clark & Tanter (POPL 2016)

Gradual Guarantees: Siek& Vitousek & Cimini & Boyland (SNAPL 2015)

Second order parametric polymorphism: Igarashi et al. (ICFP 2017),
Xie & Bi & Oliveira (ESOP 2018)

Union and intersection types: Castagna & Lanvin (ICFP 2017)

Implementation aspects: Takikawa et al. (POPL 2016), Bauman et al.
(OOPSLA 2017), Kuhlenschmidt et al. (PLDI 2019), Castagna & Duboc &
Lanvin & Siek (IFL 2019)

Type inference, subtyping, union and intersection types: Castagna &
Lanvin & Petrucciani & Siek (POPL 2019) The full monty!
G. Castagna (CNRS) Four Forms of Polymorphism 183 / 192

HM Polymorphism + Gradual Typing

+ Subtyping

Syntax:

Types T ::= Int | Bool | T → T | α | ???
Schemas σ ::= T | ∀α.σ
Terms a,b ::= x | ab | λx .a | let x = a in b | 1 | 2 | ...

Semantics:

[MATERIALIZECOMPIL]
Γ ` a : S

compiles
� a′ S v T

Γ ` a : T
compiles

� a′〈T 〉
Typing

Γ ` x : Γ(x)

Γ,x : S ` a : T

Γ ` λx .a : S→ T

Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

Γ ` a : σ1 Γ,x : σ1 ` b : σ2

Γ ` let x = a in b : σ2

Γ ` a : T α 6∈ fv(Γ)

Γ ` a : ∀α.T
Γ ` a : ∀α.T

Γ ` a : T [S/α]

[MATERIALIZE]
Γ ` a : S S v T

Γ ` a : T

[SUBSUM]
Γ ` a : S S≤T

Γ ` a : T

G. Castagna (CNRS) Four Forms of Polymorphism 184 / 192

HM Polymorphism + Gradual Typing + Subtyping

Syntax:

Types T ::= Int | Bool | T → T | α | ???
Schemas σ ::= T | ∀α.σ
Terms a,b ::= x | ab | λx .a | let x = a in b | 1 | 2 | ...

Semantics:

[MATERIALIZECOMPIL]
Γ ` a : S

compiles
� a′ S v T

Γ ` a : T
compiles

� a′〈T 〉
Typing

Γ ` x : Γ(x)

Γ,x : S ` a : T

Γ ` λx .a : S→ T

Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

Γ ` a : σ1 Γ,x : σ1 ` b : σ2

Γ ` let x = a in b : σ2

Γ ` a : T α 6∈ fv(Γ)

Γ ` a : ∀α.T
Γ ` a : ∀α.T

Γ ` a : T [S/α]

[MATERIALIZE]
Γ ` a : S S v T

Γ ` a : T
[SUBSUM]

Γ ` a : S S≤T

Γ ` a : T
G. Castagna (CNRS) Four Forms of Polymorphism 184 / 192

HM Polymorphism + Gradual Typing + Subtyping

Syntax:

Types T ::= Int | Bool | T → T | α | ???
Schemas σ ::= T | ∀α.σ
Terms a,b ::= x | ab | λx .a | let x = a in b | 1 | 2 | ...

Semantics:

[MATERIALIZECOMPIL]
Γ ` a : S

compiles
� a′ S v T

Γ ` a : T
compiles

� a′〈T 〉
Typing

Γ ` x : Γ(x)

Γ,x : S ` a : T

Γ ` λx .a : S→ T

Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

Γ ` a : σ1 Γ,x : σ1 ` b : σ2

Γ ` let x = a in b : σ2

Γ ` a : T α 6∈ fv(Γ)

Γ ` a : ∀α.T
Γ ` a : ∀α.T

Γ ` a : T [S/α]

[MATERIALIZE]
Γ ` a : S S v T

Γ ` a : T
[SUBSUM]

Γ ` a : S S≤T

Γ ` a : T
G. Castagna (CNRS) Four Forms of Polymorphism 184 / 192

Some details are missing:
annotations and no inference for
gradual types ... but that’s it!!

HM Polymorphism + Gradual Typing + Subtyping

Syntax:

Types T ::= Int | Bool | T → T | α | ???
Schemas σ ::= T | ∀α.σ
Terms a,b ::= x | ab | λx .a | let x = a in b | 1 | 2 | ...

Semantics:

[MATERIALIZECOMPIL]
Γ ` a : S

compiles
� a′ S v T

Γ ` a : T
compiles

� a′〈T 〉
Typing

Γ ` x : Γ(x)

Γ,x : S ` a : T

Γ ` λx .a : S→ T

Γ ` a : S→ T Γ ` b : S

Γ ` ab : T

Γ ` a : σ1 Γ,x : σ1 ` b : σ2

Γ ` let x = a in b : σ2

Γ ` a : T α 6∈ fv(Γ)

Γ ` a : ∀α.T
Γ ` a : ∀α.T

Γ ` a : T [S/α]

[MATERIALIZE]
Γ ` a : S S v T

Γ ` a : T
[SUBSUM]

Γ ` a : S S≤T

Γ ` a : T
G. Castagna (CNRS) Four Forms of Polymorphism 184 / 192

That’s all, but how
do I implement it?!?

The missing details

Syntax:

StaticTypes T ::= Int | Bool | T → T | α
GradualTypes τ ::= Int | Bool | τ→ τ | α | ???
Schemas σ ::= T | ∀α.σ
Terms a,b ::= x | ab | λx .a | λx : τ.a | let x = a in b | 1 | 2 | ...

Typing

Γ ` x : Γ(x)

Γ ` a : τ′→ τ Γ ` b : τ′

Γ ` ab : τ

Γ,x : τ ` a : τ′

Γ ` λx : τ.a : τ→ τ′
Γ,x : S ` a : τ

Γ ` λx .a : S→ τ

Γ ` a : σ1 Γ,x : σ1 ` b : σ2

Γ ` let x = a in b : σ2

Γ ` a : τ α 6∈ fv(Γ)

Γ ` a : ∀α.τ
Γ ` a : ∀α.τ

Γ ` a : τ[τ′/α]

[MATERIALIZE]
Γ ` a : τ′ τ′ v τ

Γ ` a : τ
[SUBSUM]

Γ ` a : τ′ τ′≤τ
Γ ` a : τ

G. Castagna (CNRS) Four Forms of Polymorphism 185 / 192

Without subtyping

We generate sets D of type constraints

D ::= ∅ | (t1 ≤̇ t2)∪D | (τ v̇ α)∪D

Then we find a type substitution θ that solves D that is

for all (t1 ≤̇ t2) we have t1θ = t2θ
for all (τ v̇ α) we have τθv αθ and τθ is a static type

G. Castagna (CNRS) Four Forms of Polymorphism 186 / 192

Constraint generation

We do not directly generate type constraint.
We first generate structured constraints of the form1:

C ::= (t ≤̇ t) | (τ v̇ α) | (x v̇ α) | def x : τ in C | ∃~α.C | C∧C

〈〈x : t〉〉 = ∃α. (x v̇ α)∧ (α ≤̇ t)
〈〈(λx .e) : t〉〉 = ∃α1,α2. (def x : α1 in 〈〈e : α2〉〉)∧ (α1 v̇ α1)∧ (α1→α2 ≤̇ t)

〈〈(λx : τ.e) : t〉〉 = ∃α1,α2. (def x : τ in 〈〈e : α2〉〉)∧ (τ v̇ α1)∧ (α1→α2 ≤̇ t)
〈〈e1e2 : t〉〉 = ∃α.〈〈e1 : α→ t〉〉∧ 〈〈e2 : α〉〉

Note that 〈〈(λx : ???.x) : Int→ Int〉〉 can be solved,
whereas 〈〈(λx .x) : ???→ ???〉〉 cannot.

1Let constraints are omitted for the sake of simplicity
G. Castagna (CNRS) Four Forms of Polymorphism 187 / 192

Constraint generation

We do not directly generate type constraint.
We first generate structured constraints of the form1:

C ::= (t ≤̇ t) | (τ v̇ α) | (x v̇ α) | def x : τ in C | ∃~α.C | C∧C

〈〈x : t〉〉 = ∃α. (x v̇ α)∧ (α ≤̇ t)
〈〈(λx .e) : t〉〉 = ∃α1,α2. (def x : α1 in 〈〈e : α2〉〉)∧ (α1 v̇ α1)∧ (α1→α2 ≤̇ t)

〈〈(λx : τ.e) : t〉〉 = ∃α1,α2. (def x : τ in 〈〈e : α2〉〉)∧ (τ v̇ α1)∧ (α1→α2 ≤̇ t)
〈〈e1e2 : t〉〉 = ∃α.〈〈e1 : α→ t〉〉∧ 〈〈e2 : α〉〉

Note that 〈〈(λx : ???.x) : Int→ Int〉〉 can be solved,
whereas 〈〈(λx .x) : ???→ ???〉〉 cannot.

1Let constraints are omitted for the sake of simplicity
G. Castagna (CNRS) Four Forms of Polymorphism 187 / 192

Constraint generation

We do not directly generate type constraint.
We first generate structured constraints of the form1:

C ::= (t ≤̇ t) | (τ v̇ α) | (x v̇ α) | def x : τ in C | ∃~α.C | C∧C

〈〈x : t〉〉 = ∃α. (x v̇ α)∧ (α ≤̇ t)
〈〈(λx .e) : t〉〉 = ∃α1,α2. (def x : α1 in 〈〈e : α2〉〉)∧ (α1 v̇ α1)∧ (α1→α2 ≤̇ t)

〈〈(λx : τ.e) : t〉〉 = ∃α1,α2. (def x : τ in 〈〈e : α2〉〉)∧ (τ v̇ α1)∧ (α1→α2 ≤̇ t)
〈〈e1e2 : t〉〉 = ∃α.〈〈e1 : α→ t〉〉∧ 〈〈e2 : α〉〉

Note that 〈〈(λx : ???.x) : Int→ Int〉〉 can be solved,
whereas 〈〈(λx .x) : ???→ ???〉〉 cannot.

1Let constraints are omitted for the sake of simplicity
G. Castagna (CNRS) Four Forms of Polymorphism 187 / 192

Rewriting constraints

We then rewrite the structured constraints to obtain a set D of type constraints:

Γ ` (x v̇ α) {τ[~α:=~β] v̇ α}
Γ(x) = ∀~α.τ
~β FRESH

(Γ,x : τ) ` C D

Γ ` def x : τ in C D

Γ ` C1 D1 Γ ` C2 D2

Γ ` C1∧C2 D1∪D2

G. Castagna (CNRS) Four Forms of Polymorphism 188 / 192

Rewriting constraints

We then rewrite the structured constraints to obtain a set D of type constraints:

Γ ` (x v̇ α) {τ[~α:=~β] v̇ α}
Γ(x) = ∀~α.τ
~β FRESH

(Γ,x : τ) ` C D

Γ ` def x : τ in C D

Γ ` C1 D1 Γ ` C2 D2

Γ ` C1∧C2 D1∪D2

G. Castagna (CNRS) Four Forms of Polymorphism 188 / 192

Rewriting constraints

We then rewrite the structured constraints to obtain a set D of type constraints:

Γ ` (x v̇ α) {τ[~α:=~β] v̇ α}
Γ(x) = ∀~α.τ
~β FRESH

(Γ,x : τ) ` C D

Γ ` def x : τ in C D

Γ ` C1 D1 Γ ` C2 D2

Γ ` C1∧C2 D1∪D2

G. Castagna (CNRS) Four Forms of Polymorphism 188 / 192

Solving constraints

Everything is finally solved using unification, by replacing every occurence of ???
in materialization constraints by a distinct type variable.

For example, the constraint

???→ ???→ ??? v̇ Bool→ α

will become
X1→ X2→ X3 v̇ Bool→ α

and solving it will return the unifier

θ : X1 7→ Bool;X2 7→ β;X3 7→ γ;α 7→ (β→ γ)

G. Castagna (CNRS) Four Forms of Polymorphism 189 / 192

Solving constraints

Everything is finally solved using unification, by replacing every occurence of ???
in materialization constraints by a distinct type variable.
For example, the constraint

???→ ???→ ??? v̇ Bool→ α

will become
X1→ X2→ X3 v̇ Bool→ α

and solving it will return the unifier

θ : X1 7→ Bool;X2 7→ β;X3 7→ γ;α 7→ (β→ γ)

G. Castagna (CNRS) Four Forms of Polymorphism 189 / 192

Solving constraints

Everything is finally solved using unification, by replacing every occurence of ???
in materialization constraints by a distinct type variable.
For example, the constraint

???→ ???→ ??? v̇ Bool→ α

will become
X1→ X2→ X3 v̇ Bool→ α

and solving it will return the unifier

θ : X1 7→ Bool;X2 7→ β;X3 7→ γ;α 7→ (β→ γ)

G. Castagna (CNRS) Four Forms of Polymorphism 189 / 192

Solving constraints

Everything is finally solved using unification, by replacing every occurence of ???
in materialization constraints by a distinct type variable.
For example, the constraint

???→ ???→ ??? v̇ Bool→ α

will become
X1→ X2→ X3 v̇ Bool→ α

and solving it will return the unifier

θ : X1 7→ Bool;X2 7→ β;X3 7→ γ;α 7→ (β→ γ)

G. Castagna (CNRS) Four Forms of Polymorphism 189 / 192

Compilation and Results

To summarize, given an expression e, and a constraint derivation D of
Γ ` 〈〈e : t〉〉 D, we can compute a unifier θ satisfying D .

This derivation and the associated unifier can be used to compile e in a
straightforward way: to every materialization constraint introduced in D
corresponds a cast.
For instance
if D = Γ;` 〈〈x : t〉〉 {(τ v̇ α),(α ≤̇ t)} and θ is a solution for
{(τ v̇ α),(α ≤̇ t)} then

D;θ ` x
compiles

� x〈αθ〉
Inference (and compilation) for this system is sound, type-preserving and
complete w.r.t. the declarative system.

G. Castagna (CNRS) Four Forms of Polymorphism 190 / 192

Compilation and Results

To summarize, given an expression e, and a constraint derivation D of
Γ ` 〈〈e : t〉〉 D, we can compute a unifier θ satisfying D .

This derivation and the associated unifier can be used to compile e in a
straightforward way: to every materialization constraint introduced in D
corresponds a cast.
For instance
if D = Γ;` 〈〈x : t〉〉 {(τ v̇ α),(α ≤̇ t)} and θ is a solution for
{(τ v̇ α),(α ≤̇ t)} then

D;θ ` x
compiles

� x〈αθ〉
Inference (and compilation) for this system is sound, type-preserving and
complete w.r.t. the declarative system.

G. Castagna (CNRS) Four Forms of Polymorphism 190 / 192

Compilation and Results

To summarize, given an expression e, and a constraint derivation D of
Γ ` 〈〈e : t〉〉 D, we can compute a unifier θ satisfying D .

This derivation and the associated unifier can be used to compile e in a
straightforward way: to every materialization constraint introduced in D
corresponds a cast.
For instance
if D = Γ;` 〈〈x : t〉〉 {(τ v̇ α),(α ≤̇ t)} and θ is a solution for
{(τ v̇ α),(α ≤̇ t)} then

D;θ ` x
compiles

� x〈αθ〉
Inference (and compilation) for this system is sound, type-preserving and
complete w.r.t. the declarative system.

G. Castagna (CNRS) Four Forms of Polymorphism 190 / 192

Part 2: Adding subtyping

We saw that, declaratively, adding subtyping is just a matter of adding one
subsumption rule.

Constraint generation is also unchanged, unification constraints just become
subtyping constraints.

However, to solve constraints such as {(α ≤̇ t1),(α ≤̇ t2)} we have to compute
greatest lower bounds.

For example,

fun x -> if (fst x) then (1 + snd x) else x

should be of type (Bool×Int) → (Int | (Bool×Int))

G. Castagna (CNRS) Four Forms of Polymorphism 191 / 192

Part 2: Adding subtyping

We saw that, declaratively, adding subtyping is just a matter of adding one
subsumption rule.

Constraint generation is also unchanged, unification constraints just become
subtyping constraints.

However, to solve constraints such as {(α ≤̇ t1),(α ≤̇ t2)} we have to compute
greatest lower bounds.

For example,

fun x -> if (fst x) then (1 + snd x) else x

should be of type (Bool×Int) → (Int | (Bool×Int))

G. Castagna (CNRS) Four Forms of Polymorphism 191 / 192

Part 2: Adding subtyping

We saw that, declaratively, adding subtyping is just a matter of adding one
subsumption rule.

Constraint generation is also unchanged, unification constraints just become
subtyping constraints.

However, to solve constraints such as {(α ≤̇ t1),(α ≤̇ t2)} we have to compute
greatest lower bounds.

For example,

fun x -> if (fst x) then (1 + snd x) else x

should be of type (Bool×Int) → (Int | (Bool×Int))

G. Castagna (CNRS) Four Forms of Polymorphism 191 / 192

Part 2: Adding subtyping

We saw that, declaratively, adding subtyping is just a matter of adding one
subsumption rule.

Constraint generation is also unchanged, unification constraints just become
subtyping constraints.

However, to solve constraints such as {(α ≤̇ t1),(α ≤̇ t2)} we have to compute
greatest lower bounds.

For example,

fun x -> if (fst x) then (1 + snd x) else x

should be of type (Bool×Int) → (Int | (Bool×Int))

G. Castagna (CNRS) Four Forms of Polymorphism 191 / 192

Part 3: Adding Set-Theoretic Types

The types become:

StaticTypes T ::= Int | Bool | T → T | T ∨T | ¬T | Any | α
GradualTypes τ ::= Int | Bool | τ→ τ | α | ???
Schemas σ ::= T | ∀α.σ

Constraints are unchanged. However, the inference algorithm is now based on
the tallying algorithm of Castagna et al. [2015], rather than unification (but the
principle is the same).

{(α ≤̇ t1),(α ≤̇ t2)} {(α ≤̇ t1∧ t2)}

Soundness still holds for the inference algorithm, but completeness no longer
holds.

G. Castagna (CNRS) Four Forms of Polymorphism 192 / 192

Part 3: Adding Set-Theoretic Types

The types become:

StaticTypes T ::= Int | Bool | T → T | T ∨T | ¬T | Any | α
GradualTypes τ ::= Int | Bool | τ→ τ | α | ???
Schemas σ ::= T | ∀α.σ

Constraints are unchanged. However, the inference algorithm is now based on
the tallying algorithm of Castagna et al. [2015], rather than unification (but the
principle is the same).

{(α ≤̇ t1),(α ≤̇ t2)} {(α ≤̇ t1∧ t2)}

Soundness still holds for the inference algorithm, but completeness no longer
holds.

G. Castagna (CNRS) Four Forms of Polymorphism 192 / 192

	Background and Motivations
	Polymorphism
	Motivating Examples
	A Refresher Course on Operational Semantics

	Subtyping
	Simple Types
	Recursive Types
	Bibliography

	Parametric polymorphism
	Introduction
	Hindley-Milner System
	Inference algorithm

	Ad-Hoc Polymorphism
	Set-theoretic types
	Semantic Subtyping
	Application to a language.
	Adding Parametric Polymorphism: the Types
	Adding Parametric Polymorphism: the Language

	Gradual Typing
	Main ideas
	Formal system
	Algorithmic Aspects
	Criteria for Gradual Typing
	Implementation issues
	References

