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We present FixML, a system for automatically generating feedback on logical errors in functional programming
assignments. As functional languages have been gaining popularity, the number of students enrolling functional
programming courses has increased significantly. However, the quality of feedback, in particular for logical
errors, is hardly satisfying. To provide personalized feedback on logical errors, we present a new error-
correction algorithm for functional languages, which combines statistical error-localization and type-directed
program synthesis enhanced with components reduction and search space pruning using symbolic execution.
We implemented our algorithm in a tool, called FixML, and evaluated it with 497 students’ submissions from
13 exercises, including not only introductory but also more advanced problems. Our experimental results
show that our tool effectively corrects various and complex errors: it fixed 43% of the 497 submissions in 5.4
seconds on average and managed to fix a hard-to-find error in a large submission, consisting of 154 lines.
We also performed user study with 18 undergraduate students and confirmed that our system actually helps
students to better understand their programming errors.
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1 INTRODUCTION

Motivation. Themotivation for this work originated from an undergraduate course on functional
programming taught by the authors over the last few years. As functional languages have been
gaining popularity, the number of students enrolling the course has increased significantly. The
quality of feedback, however, hardly satisfied the increased demands. Because most students have
no experience in functional languages, they often have more difficulty with various programming
errors than learning other languages such as Java or Python. However, assisting students to resolve
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• T.A. experience in functional programming course.

• A lot of e-mails about assignments

Motivation
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Dear T.A. …

T.A.Student

49 Replies for a homework!!
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1:28 Anon.

6 | Sum of aexp list

7
8 let rec diff : aexp * string -> aexp

9 = fun (e, x) ->

10 match e with

11 | Const n -> Const 0

12 | Var a -> if (a <> x) then Const 0 else Const 1

13 | Power (a, n) -> if (a <> x) then Const 0 else Times [Const n; Power (a, n-1)]

14 | Times l ->

15 begin

16 match l with

17 | [] -> Const 0

18 | hd::tl -> Sum [Times ((diff (hd, x))::tl); Times [hd; diff (Times tl, x)]]

19 end

20 | Sum l -> Sum (List.map (fun e -> diff (e,x)) l)

B LANGUAGE
The full language of F��ML is as follows:

E ::= () | n | x | true | false | str | �x.E | E1 + E2 | E1 � E2 | E1 ⇥ E2 | E1/E2 | E1 mod E2 | �E
| not E | E1 | | E2 | E1 &&E2 | E1 < E2 | E1 > E2 | E1  E2 | E1 � E2 | E1 = E2 | E1<>E2
| E1 E2 | E1::E2 | E1@E2 | E1ˆE2 | raise E | (E1, . . . ,Ek ) | [E1; . . . ;Ek ]
| if E1 E2 E3 | c (E1, . . . ,Ek ) | let x = E1 in E2 | let rec f (x ) = E1 in E2
| let x1 = E1 and . . . and xk = Ek in E | let rec f1 (x1) = E1 and . . . and fk (xk ) = Ek in E
| match E with p1 ! E1 | · · · | pk ! Ek
| ⇤

� ::= unit | int | bool | string | exn | �1 ! �2 | � list | T | (�1⇤ . . . ⇤�k ) | �
p ::= n | x | true | false | p1 :: p2 | [p1; . . . ;pk ] | (p1, . . . ,p2) | c (p1, . . . ,pk ) | p1 | · · · | pk | _

C FEEDBACK ON A LARGE PROGRAM
F��ML was able to accurately identify and �x the error at line 123 in the following student program
for problem #13 in 3.4 seconds.

1 type aexp =

2 |CONST of int

3 | VAR of string

4 | POWER of string * int

5 | TIMES of aexp list

6 | SUM of aexp list

7
8 type env = (string * int * int) list

9
10 let diff : aexp * string -> aexp

11 = fun (aexp, x) ->

12
13 let rec deployEnv : env -> int -> aexp list

14 = fun env flag ->

15 match env with

16 | hd::tl ->

17 (
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1:28 Anon.

6 | Sum of aexp list

7
8 let rec diff : aexp * string -> aexp

9 = fun (e, x) ->

10 match e with

11 | Const n -> Const 0

12 | Var a -> if (a <> x) then Const 0 else Const 1

13 | Power (a, n) -> if (a <> x) then Const 0 else Times [Const n; Power (a, n-1)]

14 | Times l ->

15 begin

16 match l with

17 | [] -> Const 0

18 | hd::tl -> Sum [Times ((diff (hd, x))::tl); Times [hd; diff (Times tl, x)]]

19 end

20 | Sum l -> Sum (List.map (fun e -> diff (e,x)) l)

B LANGUAGE
The full language of F��ML is as follows:

E ::= () | n | x | true | false | str | �x.E | E1 + E2 | E1 � E2 | E1 ⇥ E2 | E1/E2 | E1 mod E2 | �E
| not E | E1 | | E2 | E1 &&E2 | E1 < E2 | E1 > E2 | E1  E2 | E1 � E2 | E1 = E2 | E1<>E2
| E1 E2 | E1::E2 | E1@E2 | E1ˆE2 | raise E | (E1, . . . ,Ek ) | [E1; . . . ;Ek ]
| if E1 E2 E3 | c (E1, . . . ,Ek ) | let x = E1 in E2 | let rec f (x ) = E1 in E2
| let x1 = E1 and . . . and xk = Ek in E | let rec f1 (x1) = E1 and . . . and fk (xk ) = Ek in E
| match E with p1 ! E1 | · · · | pk ! Ek
| ⇤

� ::= unit | int | bool | string | exn | �1 ! �2 | � list | T | (�1⇤ . . . ⇤�k ) | �
p ::= n | x | true | false | p1 :: p2 | [p1; . . . ;pk ] | (p1, . . . ,p2) | c (p1, . . . ,pk ) | p1 | · · · | pk | _

C FEEDBACK ON A LARGE PROGRAM
F��ML was able to accurately identify and �x the error at line 123 in the following student program
for problem #13 in 3.4 seconds.

1 type aexp =

2 |CONST of int

3 | VAR of string

4 | POWER of string * int

5 | TIMES of aexp list

6 | SUM of aexp list

7
8 type env = (string * int * int) list

9
10 let diff : aexp * string -> aexp

11 = fun (aexp, x) ->

12
13 let rec deployEnv : env -> int -> aexp list

14 = fun env flag ->

15 match env with

16 | hd::tl ->

17 (
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18 match hd with

19 |(x, c, p) ->

20 if (flag = 0 && c = 0) then deployEnv tl flag

21 else if (x = �const� && flag = 1 && c = 1) then deployEnv tl flag

22 else if (p = 0) then (CONST c)::(deployEnv tl flag)

23 else if (c = 1 && p = 1) then (VAR x)::(deployEnv tl flag)

24 else if (p = 1) then TIMES[CONST c; VAR x]::(deployEnv tl flag)

25 else if (c = 1) then POWER(x, p)::(deployEnv tl flag)

26 else TIMES [CONST c; POWER(x, p)]::(deployEnv tl flag)

27 )

28 | [] -> []

29 in

30
31 let rec updateEnv : (string * int * int) -> env -> int -> env

32 = fun elem env flag ->

33 match env with

34 | (hd::tl) ->

35 (

36 match hd with

37 | (x, c, p) ->

38 (

39 match elem with

40 |(x2, c2, p2) ->

41 if (flag = 0) then

42 if (x = x2 && p = p2) then (x, (c + c2), p)::tl

43 else hd::(updateEnv elem tl flag)

44 else

45 if (x = x2) then (x, (c*c2), (p + p2))::tl

46 else hd::(updateEnv elem tl flag)

47 )

48 )

49 | [] -> elem::[]

50 in

51
52 let rec doDiff : aexp * string -> aexp

53 = fun (aexp, x) ->

54 match aexp with

55 | CONST _ -> CONST 0

56 | VAR v ->

57 if (x = v) then CONST 1

58 else CONST 0

59 | POWER (v, p) ->

60 if (p = 0) then CONST 0

61 else if (x = v) then TIMES ((CONST p)::POWER (v, p-1)::[])

62 else CONST 0

63 | TIMES lst ->

64 (

65 match lst with

66 | (hd::[]) -> doDiff (hd, x)

67 | (hd::tl) ->

68 let diff_hd = doDiff(hd, x) in

69 let diff_tl = doDiff((TIMES tl), x) in

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.
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70 (

71 match (hd, diff_hd, tl, diff_tl) with

72 | (CONST p, CONST s, [CONST r], CONST q) -> CONST (p*q + r*s)

73 | (CONST p, _, _, CONST q) ->

74 if (diff_hd = CONST 0 || tl = [CONST 0]) then CONST (p*q)

75 else SUM [CONST(p*q); TIMES(diff_hd::tl)]

76 | (_, CONST s, [CONST r], _) ->

77 if (hd = CONST 0 || diff_tl = CONST 0) then CONST (r*s)

78 else SUM [TIMES [hd; diff_tl]; CONST(r*s)]

79 | _ ->

80 if (hd = CONST 0 || diff_tl = CONST 0) then TIMES(diff_hd::tl)

81 else if (tl = [CONST 0] || diff_hd = CONST 0) then TIMES [hd; diff_tl]

82 else SUM [TIMES [hd; diff_tl]; TIMES (diff_hd::tl)]

83 )

84 | [] -> CONST 0

85 )

86 | SUM lst -> SUM(List.map (fun aexp -> doDiff(aexp, x)) lst)

87 in

88
89 let rec simplify : aexp -> env -> int -> aexp list

90 = fun aexp env flag ->

91 match aexp with

92 | SUM lst ->

93 (

94 match lst with

95 | (CONST c)::tl -> simplify (SUM tl) (updateEnv (�const�, c, 0) env 0) 0

96 | (VAR x)::tl -> simplify (SUM tl) (updateEnv (x, 1, 1) env 0) 0

97 | (POWER (x, p))::tl -> simplify (SUM tl) (updateEnv (x, 1, p) env 0) 0

98 | (SUM lst)::tl -> simplify (SUM (List.append lst tl)) env 0

99 | (TIMES lst)::tl ->

100 (

101 let l = simplify (TIMES lst) [] 1 in

102 match l with

103 | h::t ->

104 if (t = []) then List.append l (simplify (SUM tl) env 0)

105 else List.append (TIMES l::[]) (simplify (SUM tl) env 0)

106 | [] -> []

107 )

108 | [] -> deployEnv env 0

109 )

110 | TIMES lst ->

111 (

112 match lst with

113 | (CONST c)::tl -> simplify (TIMES tl) (updateEnv (�const�, c, 0) env 1) 1

114 | (VAR x)::tl -> simplify (TIMES tl) (updateEnv (x, 1, 1) env 1) 1

115 | (POWER (x, p))::tl -> simplify (TIMES tl) (updateEnv (x, 1, p) env 1) 1

116 | (SUM lst)::tl ->

117 (

118 let l = simplify (SUM lst) [] 0 in

119 match l with

120 | h::t ->

121 if (t = []) then List.append l (simplify (TIMES tl) env 1)
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122 else List.append (SUM l::[]) (simplify (TIMES tl) env 1)

123 | [] -> [] (* Feedback : Replace [] by ((Sum lst) :: tl) *)

124 )

125 | (TIMES lst)::tl -> simplify (TIMES (List.append lst tl)) env 1

126 | [] -> deployEnv env 1

127 )

128 in

129
130 let result = doDiff (aexp, x) in

131 match result with

132 | SUM _ -> SUM (simplify result [] 0)

133 | TIMES _ -> TIMES (simplify result [] 1)

134 | _ -> result
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6 | Sum of aexp list

7
8 let rec diff : aexp * string -> aexp

9 = fun (e, x) ->

10 match e with

11 | Const n -> Const 0

12 | Var a -> if (a <> x) then Const 0 else Const 1

13 | Power (a, n) -> if (a <> x) then Const 0 else Times [Const n; Power (a, n-1)]

14 | Times l ->

15 begin

16 match l with

17 | [] -> Const 0

18 | hd::tl -> Sum [Times ((diff (hd, x))::tl); Times [hd; diff (Times tl, x)]]

19 end

20 | Sum l -> Sum (List.map (fun e -> diff (e,x)) l)

B LANGUAGE
The full language of F��ML is as follows:

E ::= () | n | x | true | false | str | �x.E | E1 + E2 | E1 � E2 | E1 ⇥ E2 | E1/E2 | E1 mod E2 | �E
| not E | E1 | | E2 | E1 &&E2 | E1 < E2 | E1 > E2 | E1  E2 | E1 � E2 | E1 = E2 | E1<>E2
| E1 E2 | E1::E2 | E1@E2 | E1ˆE2 | raise E | (E1, . . . ,Ek ) | [E1; . . . ;Ek ]
| if E1 E2 E3 | c (E1, . . . ,Ek ) | let x = E1 in E2 | let rec f (x ) = E1 in E2
| let x1 = E1 and . . . and xk = Ek in E | let rec f1 (x1) = E1 and . . . and fk (xk ) = Ek in E
| match E with p1 ! E1 | · · · | pk ! Ek
| ⇤

� ::= unit | int | bool | string | exn | �1 ! �2 | � list | T | (�1⇤ . . . ⇤�k ) | �
p ::= n | x | true | false | p1 :: p2 | [p1; . . . ;pk ] | (p1, . . . ,p2) | c (p1, . . . ,pk ) | p1 | · · · | pk | _

C FEEDBACK ON A LARGE PROGRAM
F��ML was able to accurately identify and �x the error at line 123 in the following student program
for problem #13 in 3.4 seconds.

1 type aexp =

2 |CONST of int

3 | VAR of string

4 | POWER of string * int

5 | TIMES of aexp list

6 | SUM of aexp list

7
8 type env = (string * int * int) list

9
10 let diff : aexp * string -> aexp

11 = fun (aexp, x) ->

12
13 let rec deployEnv : env -> int -> aexp list

14 = fun env flag ->

15 match env with

16 | hd::tl ->

17 (
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6 | Sum of aexp list

7
8 let rec diff : aexp * string -> aexp

9 = fun (e, x) ->

10 match e with

11 | Const n -> Const 0

12 | Var a -> if (a <> x) then Const 0 else Const 1

13 | Power (a, n) -> if (a <> x) then Const 0 else Times [Const n; Power (a, n-1)]

14 | Times l ->

15 begin

16 match l with

17 | [] -> Const 0

18 | hd::tl -> Sum [Times ((diff (hd, x))::tl); Times [hd; diff (Times tl, x)]]

19 end

20 | Sum l -> Sum (List.map (fun e -> diff (e,x)) l)

B LANGUAGE
The full language of F��ML is as follows:

E ::= () | n | x | true | false | str | �x.E | E1 + E2 | E1 � E2 | E1 ⇥ E2 | E1/E2 | E1 mod E2 | �E
| not E | E1 | | E2 | E1 &&E2 | E1 < E2 | E1 > E2 | E1  E2 | E1 � E2 | E1 = E2 | E1<>E2
| E1 E2 | E1::E2 | E1@E2 | E1ˆE2 | raise E | (E1, . . . ,Ek ) | [E1; . . . ;Ek ]
| if E1 E2 E3 | c (E1, . . . ,Ek ) | let x = E1 in E2 | let rec f (x ) = E1 in E2
| let x1 = E1 and . . . and xk = Ek in E | let rec f1 (x1) = E1 and . . . and fk (xk ) = Ek in E
| match E with p1 ! E1 | · · · | pk ! Ek
| ⇤

� ::= unit | int | bool | string | exn | �1 ! �2 | � list | T | (�1⇤ . . . ⇤�k ) | �
p ::= n | x | true | false | p1 :: p2 | [p1; . . . ;pk ] | (p1, . . . ,p2) | c (p1, . . . ,pk ) | p1 | · · · | pk | _

C FEEDBACK ON A LARGE PROGRAM
F��ML was able to accurately identify and �x the error at line 123 in the following student program
for problem #13 in 3.4 seconds.

1 type aexp =

2 |CONST of int

3 | VAR of string

4 | POWER of string * int

5 | TIMES of aexp list

6 | SUM of aexp list

7
8 type env = (string * int * int) list

9
10 let diff : aexp * string -> aexp

11 = fun (aexp, x) ->

12
13 let rec deployEnv : env -> int -> aexp list

14 = fun env flag ->

15 match env with

16 | hd::tl ->

17 (
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18 match hd with

19 |(x, c, p) ->

20 if (flag = 0 && c = 0) then deployEnv tl flag

21 else if (x = �const� && flag = 1 && c = 1) then deployEnv tl flag

22 else if (p = 0) then (CONST c)::(deployEnv tl flag)

23 else if (c = 1 && p = 1) then (VAR x)::(deployEnv tl flag)

24 else if (p = 1) then TIMES[CONST c; VAR x]::(deployEnv tl flag)

25 else if (c = 1) then POWER(x, p)::(deployEnv tl flag)

26 else TIMES [CONST c; POWER(x, p)]::(deployEnv tl flag)

27 )

28 | [] -> []

29 in

30
31 let rec updateEnv : (string * int * int) -> env -> int -> env

32 = fun elem env flag ->

33 match env with

34 | (hd::tl) ->

35 (

36 match hd with

37 | (x, c, p) ->

38 (

39 match elem with

40 |(x2, c2, p2) ->

41 if (flag = 0) then

42 if (x = x2 && p = p2) then (x, (c + c2), p)::tl

43 else hd::(updateEnv elem tl flag)

44 else

45 if (x = x2) then (x, (c*c2), (p + p2))::tl

46 else hd::(updateEnv elem tl flag)

47 )

48 )

49 | [] -> elem::[]

50 in

51
52 let rec doDiff : aexp * string -> aexp

53 = fun (aexp, x) ->

54 match aexp with

55 | CONST _ -> CONST 0

56 | VAR v ->

57 if (x = v) then CONST 1

58 else CONST 0

59 | POWER (v, p) ->

60 if (p = 0) then CONST 0

61 else if (x = v) then TIMES ((CONST p)::POWER (v, p-1)::[])

62 else CONST 0

63 | TIMES lst ->

64 (

65 match lst with

66 | (hd::[]) -> doDiff (hd, x)

67 | (hd::tl) ->

68 let diff_hd = doDiff(hd, x) in

69 let diff_tl = doDiff((TIMES tl), x) in
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70 (

71 match (hd, diff_hd, tl, diff_tl) with

72 | (CONST p, CONST s, [CONST r], CONST q) -> CONST (p*q + r*s)

73 | (CONST p, _, _, CONST q) ->

74 if (diff_hd = CONST 0 || tl = [CONST 0]) then CONST (p*q)

75 else SUM [CONST(p*q); TIMES(diff_hd::tl)]

76 | (_, CONST s, [CONST r], _) ->

77 if (hd = CONST 0 || diff_tl = CONST 0) then CONST (r*s)

78 else SUM [TIMES [hd; diff_tl]; CONST(r*s)]

79 | _ ->

80 if (hd = CONST 0 || diff_tl = CONST 0) then TIMES(diff_hd::tl)

81 else if (tl = [CONST 0] || diff_hd = CONST 0) then TIMES [hd; diff_tl]

82 else SUM [TIMES [hd; diff_tl]; TIMES (diff_hd::tl)]

83 )

84 | [] -> CONST 0

85 )

86 | SUM lst -> SUM(List.map (fun aexp -> doDiff(aexp, x)) lst)

87 in

88
89 let rec simplify : aexp -> env -> int -> aexp list

90 = fun aexp env flag ->

91 match aexp with

92 | SUM lst ->

93 (

94 match lst with

95 | (CONST c)::tl -> simplify (SUM tl) (updateEnv (�const�, c, 0) env 0) 0

96 | (VAR x)::tl -> simplify (SUM tl) (updateEnv (x, 1, 1) env 0) 0

97 | (POWER (x, p))::tl -> simplify (SUM tl) (updateEnv (x, 1, p) env 0) 0

98 | (SUM lst)::tl -> simplify (SUM (List.append lst tl)) env 0

99 | (TIMES lst)::tl ->

100 (

101 let l = simplify (TIMES lst) [] 1 in

102 match l with

103 | h::t ->

104 if (t = []) then List.append l (simplify (SUM tl) env 0)

105 else List.append (TIMES l::[]) (simplify (SUM tl) env 0)

106 | [] -> []

107 )

108 | [] -> deployEnv env 0

109 )

110 | TIMES lst ->

111 (

112 match lst with

113 | (CONST c)::tl -> simplify (TIMES tl) (updateEnv (�const�, c, 0) env 1) 1

114 | (VAR x)::tl -> simplify (TIMES tl) (updateEnv (x, 1, 1) env 1) 1

115 | (POWER (x, p))::tl -> simplify (TIMES tl) (updateEnv (x, 1, p) env 1) 1

116 | (SUM lst)::tl ->

117 (

118 let l = simplify (SUM lst) [] 0 in

119 match l with

120 | h::t ->

121 if (t = []) then List.append l (simplify (TIMES tl) env 1)
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122 else List.append (SUM l::[]) (simplify (TIMES tl) env 1)

123 | [] -> [] (* Feedback : Replace [] by ((Sum lst) :: tl) *)

124 )

125 | (TIMES lst)::tl -> simplify (TIMES (List.append lst tl)) env 1

126 | [] -> deployEnv env 1

127 )

128 in

129
130 let result = doDiff (aexp, x) in

131 match result with

132 | SUM _ -> SUM (simplify result [] 0)

133 | TIMES _ -> TIMES (simplify result [] 1)

134 | _ -> result
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학생 제출 답안
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Student’s implementation: Solution:

Time: 3.4 sec

Just Replace “[]”  
by“SUM tl”

Automated T.A.

Goal



Example1: Mirroring Tree

• Warming up!
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type btree =  
  | Empty 
  | Node of int * btree * btree 

let rec mirror tree =  
  match tree with 
  | Empty -> Empty 
  | Node (n,l,r) -> Node (n,r,l)
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Example1: Mirroring Tree

• Warming up!

!10

type btree =  
  | Empty 
  | Node of int * btree * btree 

let rec mirror tree =  
  match tree with 
  | Empty -> Empty 
  | Node (n,l,r) -> Node (n,r,l)

FixML: Node (n, mirror r, mirror l)

Time: 0.1 sec
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Example2: Natural Numbers

• More complicated program

!11

type nat =  
  |ZERO 
  |SUCC of nat 

let rec natadd n1 n2 =  
  match n1 with 
  |ZERO -> ZERO 
  |SUCC n -> SUCC (natadd n n2) 

let rec natmul n1 n2 = 
  match n1 with 
  | ZERO -> ZERO  
  | SUCC ZERO -> n2 
  | SUCC n1’ ->  
    SUCC( match n2 with 
      | ZERO -> ZERO 
      | SUCC ZERO -> SUCC ZERO 
      | SUCC n2’ -> SUCC (natmul n1’ (natmul n1 n2’)) 
    )

Test cases : 
natmul (ZERO) (SUCC ZERO) = ZERO 
natmul (SUCC ZERO) (SUCC ZERO) = SUCC ZERO 
natmul (SUCC(SUCC ZERO)) (SUCC(SUCC(SUCC ZERO))) 
= SUCC(SUCC(SUCC(SUCC(SUCC(SUCC ZERO)))))
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• More complicated program
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type nat =  
  |ZERO 
  |SUCC of nat 

let rec natadd n1 n2 =  
  match n1 with 
  |ZERO -> ZERO 
  |SUCC n -> SUCC (natadd n n2) 

let rec natmul n1 n2 = 
  match n1 with 
  | ZERO -> ZERO  
  | SUCC ZERO -> n2 
  | SUCC n1’ ->  
    SUCC( match n2 with 
      | ZERO -> ZERO 
      | SUCC ZERO -> SUCC ZERO 
      | SUCC n2’ -> SUCC (natmul n1’ (natmul n1 n2’)) 
    )

Test cases : 
natmul (ZERO) (SUCC ZERO) = ZERO 
natmul (SUCC ZERO) (SUCC ZERO) = SUCC ZERO 
natmul (SUCC(SUCC ZERO)) (SUCC(SUCC(SUCC ZERO))) 
= SUCC(SUCC(SUCC(SUCC(SUCC(SUCC ZERO)))))

2 + (n1 − 1) × (n1 × (n2 − 1))

Wrong formula:



Example2: Natural Numbers

• More complicated program
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type nat =  
  |ZERO 
  |SUCC of nat 

let rec natadd n1 n2 =  
  match n1 with 
  |ZERO -> ZERO 
  |SUCC n -> SUCC (natadd n n2) 

let rec natmul n1 n2 = 
  match n1 with 
  | ZERO -> ZERO  
  | SUCC ZERO -> n2 
  | SUCC n1’ ->  
    SUCC( match n2 with 
      | ZERO -> ZERO 
      | SUCC ZERO -> SUCC ZERO 
      | SUCC n2’ -> SUCC (natmul n1’ (natmul n1 n2’)) 
    )

Test cases : 
natmul (ZERO) (SUCC ZERO) = ZERO 
natmul (SUCC ZERO) (SUCC ZERO) = SUCC ZERO 
natmul (SUCC(SUCC ZERO)) (SUCC(SUCC(SUCC ZERO))) 
= SUCC(SUCC(SUCC(SUCC(SUCC(SUCC ZERO)))))

2 + (n1 − 1) × (n1 × (n2 − 1))

Wrong formula:

FixML: 
natadd n2(natmul n1’ n2)
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F��ML can correct diverse types of logical errors. For example, consider the incorrect program
written by another student:

1 let rec diff (e,x) =

2 match e with

3 | SUM [] -> SUM []

4 | SUM (h::[]) -> CONST 0 (* Feedback: Replace �CONST 0� by �diff (h,x)� *)

5 | SUM (h::t) -> SUM [diff (h,x); diff (SUM t,x)] | ...

In this case, the program is incorrect as it does not di�erentiate the head element h at line 4. With
the same solution and testcases, F��ML corrects the error by replacing the expression CONST 0 by
diff (h,x) in 0.7 seconds.

Note that the two student submissions are substantially di�erent from the instructor’s solution.
For example, in Appendix A, the instructor implemented the SUM case using List.map as follows
(Problem #13):

1 let rec diff (e,x) =

2 match e with

3 | SUM l -> SUM (List.map (fun e -> diff (e,x)) l) | ...

We observed that, for nontrivial programming assignments, students use many di�erent ways of
implementing the required functionality (see Section 5.5). The development of F��MLwas motivated
by the di�erence between the solution and submissions, which makes it di�cult for students to
identify and correct the errors in their own programs.
Furthermore, F��ML can introduce more complex expressions such as conditional expressions.

For example, consider the following code:

1 let rec diff (e,x) =

2 match e with

3 | Var v -> CONST 1 (* Feedback: Replace �Const 1� by �Const (if (x=v) then 1 else 0)� *) | ...

The program has an error at line 3, where the student missed the case when the variable v equals
to the input variable x. F��ML correctly identi�ed this error and corrected the expression 1 by if

var=str then 1 else 0 in 2.1 seconds.

Example 2 (Natural Numbers). The next problem is to implement functions that add and
multiply user-de�ned natural numbers. The natural number can be de�ned in datatype as follows:

1 type nat = ZERO | SUCC of nat

For instance, (SUCC (SUCC ZERO)) denotes 2. The goal of the problem is to de�ne two functions
natadd: nat -> nat -> nat and natmul: nat -> nat -> nat, which take two natural numbers
as input and produce their addition and multiplication, respectively. For example, natadd (SUCC

(SUCC ZERO)) (SUCC ZERO) and natmul (SUCC (SUCC ZERO)) (SUCC ZERO) should produce
(SUCC (SUCC (SUCC ZERO))) and (SUCC (SUCC ZERO))), respectively.

Fig. 2 shows an erroneous program written by a student, where natadd is correct but natmul
has a big conceptual error. Note that multiplication is inductively de�ned with addition as follows:

n1 ⇥ n2 =

⇢
0 n1 = 0
n2 + (n1 � 1) ⇥ n2 n1 , 0

However, the student could not conceive this equation and implemented the wrong codes at lines 5–
8, where a substantial modi�cation is needed to correct the program. Impressively, F��ML replaced
the three lines by the correction expression (natadd n2 (natmul n1’ n2)) in 22 seconds.
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Correct formula:

Time: 22 sec
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• Given solution and test cases, our system automatically fixes 
the student submissions.
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Error Localization

!15

ML
Correct Program

ML
Incorrect Program

ML
Repaired Program

MLMLMLML

Statistical Fault 
Localization

Program Synthesis
Testcases

Component
Reduction

Type-directed
Enumeration

Symbolic
Execution

• Given buggy program and test cases, return a set of partial 
programs with suspicious score.



Statistical Fault Localization
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let rec natmul n1 n2 = 
  match n1 with 
  | ZERO -> ZERO  
  | SUCC ZERO -> n2 
  | SUCC n1’ ->  
    SUCC( match n2 with 
      | ZERO -> ZERO 
      | SUCC ZERO -> SUCC ZERO 
      | SUCC n2’ -> SUCC (natmul n1’ (natmul n1 n2’)) 
    )

Test cases : 
natmul ZERO (SUCC ZERO) = ZERO 

natmul (SUCC ZERO) (SUCC ZERO) = (SUCC ZERO) 

natmul (SUCC (SUCC ZERO)) ZERO = ZERO 

  Student’s program:
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let rec natmul n1 n2 = 
  match n1 with 
  | ZERO -> ZERO  
  | SUCC ZERO -> n2 
  | SUCC n1’ ->  
    SUCC( match n2 with 
      | ZERO -> ZERO 
      | SUCC ZERO -> SUCC ZERO 
      | SUCC n2’ -> SUCC (natmul n1’ (natmul n1 n2’)) 
    )

Test cases : 
natmul ZERO (SUCC ZERO) = ZERO 

natmul (SUCC ZERO) (SUCC ZERO) = (SUCC ZERO) 
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  Student’s program:

The program satisfies the test case => Positive
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let rec natmul n1 n2 = 
  match n1 with 
  | ZERO -> ZERO  
  | SUCC ZERO -> n2 
  | SUCC n1’ ->  
    SUCC( match n2 with 
      | ZERO -> ZERO 
      | SUCC ZERO -> SUCC ZERO 
      | SUCC n2’ -> SUCC (natmul n1’ (natmul n1 n2’)) 
    )

Test cases : 
natmul ZERO (SUCC ZERO) = ZERO 

natmul (SUCC ZERO) (SUCC ZERO) = (SUCC ZERO) 

natmul (SUCC (SUCC ZERO)) ZERO = ZERO 

  Student’s program:

The program cannot satisfy the test case => Negative
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let rec natmul n1 n2 = 
  match n1 with 
  | ZERO -> ZERO  
  | SUCC ZERO -> n2 
  | SUCC n1’ ->  
    SUCC( match n2 with 
      | ZERO -> ZERO 
      | SUCC ZERO -> SUCC ZERO 
      | SUCC n2’ -> SUCC (natmul n1’ (natmul n1 n2’)) 
    )

Test cases : 
natmul ZERO (SUCC ZERO) = ZERO 

natmul (SUCC ZERO) (SUCC ZERO) = (SUCC ZERO) 

natmul (SUCC (SUCC ZERO)) ZERO = ZERO 

  Student’s program:

Only positive

Positive + negative

Only negative



Statistical Fault Localization

!20

let rec natmul n1 n2 = 
  match n1 with 
  | ZERO -> ZERO  
  | SUCC ZERO -> n2 
  | SUCC n1’ ->  
    SUCC( match n2 with 
      | ZERO -> ZERO 
      | SUCC ZERO -> SUCC ZERO 
      | SUCC n2’ -> SUCC (natmul n1’ (natmul n1 n2’)) 
    )

Test cases : 
natmul ZERO (SUCC ZERO) = ZERO 

natmul (SUCC ZERO) (SUCC ZERO) = (SUCC ZERO) 

natmul (SUCC (SUCC ZERO)) ZERO = ZERO 

  Student’s program:

More negative, less positive => highly suspicious

Only positive

Positive + negative

Only negative



Statistical Fault Localization
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let rec natmul n1 n2 = 
  match n1 with 
  | ZERO -> ZERO  
  | SUCC ZERO -> n2 
  | SUCC n1’ ->  
    SUCC( match n2 with 
      | ZERO -> ZERO 
      | SUCC ZERO -> SUCC ZERO 
      | SUCC n2’ -> SUCC (natmul n1’ (natmul n1 n2’)) 
    )

Test cases : 
natmul ZERO (SUCC ZERO) = ZERO 

natmul (SUCC ZERO) (SUCC ZERO) = (SUCC ZERO) 

natmul (SUCC (SUCC ZERO)) ZERO = ZERO 

  Student’s program:

let rec natmul n1 n2 = 
  match n1 with 
  | ZERO -> ZERO  
  | SUCC ZERO -> n2 
  | SUCC n1’ -> ?

High LowS1

P1



Statistical Fault Localization
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let rec natmul n1 n2 = 
  match n1 with 
  | ZERO -> ZERO  
  | SUCC ZERO -> n2 
  | SUCC n1’ ->  
    SUCC( match n2 with 
      | ZERO -> ZERO 
      | SUCC ZERO -> SUCC ZERO 
      | SUCC n2’ -> SUCC (natmul n1’ (natmul n1 n2’)) 
    )

Test cases : 
natmul ZERO (SUCC ZERO) = ZERO 

natmul (SUCC ZERO) (SUCC ZERO) = (SUCC ZERO) 

natmul (SUCC (SUCC ZERO)) ZERO = ZERO 

  Student’s program:

let rec natmul n1 n2 = 
  match n1 with 
  | ZERO -> ZERO  
  | SUCC ZERO -> n2 
  | SUCC n1’ -> ?

… …

High LowS1 S2 S3

P1 P2 P3let rec natmul n1 n2 = 
  match n1 with 
  | ZERO -> ZERO  
  | SUCC ZERO -> ? 
  | SUCC n1’ -> …

let rec natmul n1 n2 = 
  match n1 with 
  | ZERO -> ?  
  | SUCC ZERO -> n2 
  | SUCC n1’ -> …



Statistical Fault Localization
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let rec natmul n1 n2 = 
  match n1 with 
  | ZERO -> ZERO  
  | SUCC ZERO -> n2 
  | SUCC n1’ ->  
    SUCC( match n2 with 
      | ZERO -> ZERO 
      | SUCC ZERO -> SUCC ZERO 
      | SUCC n2’ -> SUCC (natmul n1’ (natmul n1 n2’)) 
    )

Test cases : 
natmul ZERO (SUCC ZERO) = ZERO 

natmul (SUCC ZERO) (SUCC ZERO) = (SUCC ZERO) 

natmul (SUCC (SUCC ZERO)) ZERO = ZERO 

  Student’s program:

let rec natmul n1 n2 = 
  match n1 with 
  | ZERO -> ZERO  
  | SUCC ZERO -> n2 
  | SUCC n1’ -> ?

… …

High LowS1 S2 S3

P1 P2 P3let rec natmul n1 n2 = 
  match n1 with 
  | ZERO -> ZERO  
  | SUCC ZERO -> ? 
  | SUCC n1’ -> …

let rec natmul n1 n2 = 
  match n1 with 
  | ZERO -> ?  
  | SUCC ZERO -> n2 
  | SUCC n1’ -> … MLMLMLML

(Si, Pi)

Return a set of scored partial programs



Program Synthesis

!24

ML
Correct Program

ML
Incorrect Program

ML
Repaired Program

MLMLMLML

Statistical Fault 
Localization

Program Synthesis
Testcases

Component
Reduction

Type-directed
Enumeration

Symbolic
Execution

• Given the set of scored partial program, it generates a repaired 
program.



Baseline: Enumerative Search
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let rec natmul n1 n2 = 

  match n1 with 

  | ZERO -> ZERO | SUCC ZERO -> n2 

  | SUCC n1’ -> ?

• Enumerating all expressions in the language



Baseline: Enumerative Search

!26

let rec natmul n1 n2 = 

  match n1 with 

  | ZERO -> ZERO | SUCC ZERO -> n2 

  | SUCC n1’ -> ?

let rec natmul n1 n2 = 

  match n1 with 

  | ZERO -> ZERO | SUCC ZERO -> n2 

  | SUCC n1’ -> SUCC ?

let rec natmul n1 n2 = 

  match n1 with 

  | ZERO -> ZERO | SUCC ZERO -> n2 

  | SUCC n1’ -> (fun x -> ?)

let rec natmul n1 n2 = 

  match n1 with 

  | ZERO -> ZERO | SUCC ZERO -> n2 

  | SUCC n1’ -> n1

let rec natmul n1 n2 = 

  match n1 with 

  | ZERO -> ZERO | SUCC ZERO -> n2 

  | SUCC n1’ -> if ? then ? else ?

…

• Enumerating all expressions in the language



Baseline: Enumerative Search
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let rec natmul n1 n2 = 

  match n1 with 

  | ZERO -> ZERO | SUCC ZERO -> n2 

  | SUCC n1’ -> ?

let rec natmul n1 n2 = 

  match n1 with 

  | ZERO -> ZERO | SUCC ZERO -> n2 

  | SUCC n1’ -> SUCC ?

let rec natmul n1 n2 = 

  match n1 with 

  | ZERO -> ZERO | SUCC ZERO -> n2 

  | SUCC n1’ -> (fun x -> ?)

let rec natmul n1 n2 = 

  match n1 with 

  | ZERO -> ZERO | SUCC ZERO -> n2 

  | SUCC n1’ -> n1

let rec natmul n1 n2 = 

  match n1 with 

  | ZERO -> ZERO | SUCC ZERO -> n2 

  | SUCC n1’ -> if ? then ? else ?

let rec natmul n1 n2 = 

  match n1 with 

  | ZERO -> ZERO | SUCC ZERO -> SUCC ZERO 

  | SUCC n1’ -> SUCC (ZERO)

let rec natmul n1 n2 = 

  match n1 with 

  | ZERO -> ZERO | SUCC ZERO -> SUCC ZERO 

  | SUCC n1’ -> SUCC (n1’)

let rec natmul n1 n2 = 

  match n1 with 

  | ZERO -> ZERO | SUCC ZERO -> SUCC ZERO 

  | SUCC n1’ -> SUCC (if ? then ? else ?)

let rec natmul n1 n2 = 

  match n1 with 

  | ZERO -> ZERO | SUCC ZERO -> SUCC ZERO 

  | SUCC n1’ -> SUCC (? ?)

let rec natmul n1 n2 = 

  match n1 with 

  | ZERO -> ZERO | SUCC ZERO -> SUCC ZERO 

  | SUCC n1’ -> SUCC (true)…
…

• Enumerating all expressions in the language

 Extremely inefficient!



• Searching only well-typed program

State-of-the-art: Type-directed Search

!28

let rec natmul n1 n2 = 
  match n1 with 
  | ZERO -> ZERO | SUCC ZERO -> n2 
  | SUCC n1’ -> ?

let rec natmul n1 n2 = 
  match n1 with 
  | ZERO -> ZERO | SUCC ZERO -> n2 
  | SUCC n1’ -> SUCC ?

let rec natmul n1 n2 = 
  match n1 with 
  | ZERO -> ZERO | SUCC ZERO -> n2 
  | SUCC n1’ -> (fun x -> ?)

let rec natmul n1 n2 = 
  match n1 with 
  | ZERO -> ZERO | SUCC ZERO -> n2 
  | SUCC n1’ -> n1

let rec natmul n1 n2 = 
  match n1 with 
  | ZERO -> ZERO | SUCC ZERO -> n2 
  | SUCC n1’ -> if ? then ? else ?

Hole type : nat

Expression type : 
t' -> t’



• Searching only well-typed program

State-of-the-art: Type-directed Search

!29

let rec natmul n1 n2 = 
  match n1 with 
  | ZERO -> ZERO | SUCC ZERO -> n2 
  | SUCC n1’ -> ?

let rec natmul n1 n2 = 
  match n1 with 
  | ZERO -> ZERO | SUCC ZERO -> n2 
  | SUCC n1’ -> SUCC ?

let rec natmul n1 n2 = 
  match n1 with 
  | ZERO -> ZERO | SUCC ZERO -> n2 
  | SUCC n1’ -> (fun x -> ?)

let rec natmul n1 n2 = 
  match n1 with 
  | ZERO -> ZERO | SUCC ZERO -> n2 
  | SUCC n1’ -> n1

let rec natmul n1 n2 = 
  match n1 with 
  | ZERO -> ZERO | SUCC ZERO -> n2 
  | SUCC n1’ -> if ? then ? else ?

Hole type : nat

Expression type : 
t' -> t’

Still inefficient in our cases!



Our Solution

• Component reduction

• Syntactic component reduction

• Variable component reduction

• Pruning with symbolic execution
!30

ML
Correct Program

ML
Incorrect Program

ML
Repaired Program

MLMLMLML

Statistical Fault 
Localization

Program Synthesis
Testcases

Component
Reduction

Type-directed
Enumeration

Symbolic
Execution



Technique 1: Syntactic Component Reduction
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Automatic Error Correction for Functional Programming Assignments 1:25

11 | Const n -> Const 0

12 | Var a -> if (a <> x) then Const 0 else Const 1

13 | Power (a, n) -> if (a <> x) then Const 0 else Times [Const n; Power (a, n-1)]

14 | Times l ->

15 begin

16 match l with

17 | [] -> Const 0

18 | hd::tl -> Sum [Times ((diff (hd, x))::tl); Times [hd; diff (Times tl, x)]]

19 end

20 | Sum l -> Sum (List.map (fun e -> diff (e,x)) l)

B LANGUAGE
The full language of F��ML is as follows:

E ::= () | n | x | true | false | str | �x.E | E1 + E2 | E1 � E2 | E1 ⇥ E2 | E1/E2 | E1 mod E2 | �E
| not E | E1 | | E2 | E1 &&E2 | E1 < E2 | E1 > E2 | E1  E2 | E1 � E2 | E1 = E2 | E1<>E2
| E1 E2 | E1::E2 | E1@E2 | E1ˆE2 | raise E | (E1, . . . ,Ek ) | [E1; . . . ;Ek ]
| if E1 E2 E3 | c(E1, . . . ,Ek ) | let x = E1 in E2 | let rec f (x) = E1 in E2
| let x1 = E1 and . . . and xk = Ek in E | let rec f1(x1) = E1 and . . . and fk (xk ) = Ek in E
| match E with p1 ! E1 | · · · | pk ! Ek
| ⇤

� ::= unit | int | bool | string | exn | �1 ! �2 | � list | T | (�1⇤ . . . ⇤�k ) | �
p ::= n | x | true | false | p1 :: p2 | [p1; . . . ;pk ] | (p1, . . . ,p2) | c(p1, . . . ,pk ) | p1 | · · · | pk | _

C FEEDBACK ON A LARGE PROGRAM
F��ML was able to accurately identify and �x the error at line 123 in the following student program
for problem #13 in 3.4 seconds.

1 type aexp =

2 |CONST of int

3 | VAR of string

4 | POWER of string * int

5 | TIMES of aexp list

6 | SUM of aexp list

7
8 type env = (string * int * int) list

9
10 let diff : aexp * string -> aexp

11 = fun (aexp, x) ->

12 let rec deployEnv : env -> int -> aexp list

13 = fun env flag ->

14 match env with

15 | hd::tl ->

16 begin match hd with

17 |(x, c, p) ->

18 if (flag = 0 && c = 0) then deployEnv tl flag

19 else if (x = �const� && flag = 1 && c = 1) then deployEnv tl flag

20 else if (p = 0) then (CONST c)::(deployEnv tl flag)

21 else if (c = 1 && p = 1) then (VAR x)::(deployEnv tl flag)

22 else if (p = 1) then TIMES[CONST c; VAR x]::(deployEnv tl flag)

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Language:

let rec natmul n1 n2 = 
  match n1 with 
  | ZERO -> ZERO  
  | SUCC ZERO -> n2 
  | SUCC n1’ -> ?

Partial Program: 36 expressions

• Enumerating all expressions is very expensive



Technique 1: Syntactic Component Reduction
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Automatic Error Correction for Functional Programming Assignments 1:25

11 | Const n -> Const 0

12 | Var a -> if (a <> x) then Const 0 else Const 1

13 | Power (a, n) -> if (a <> x) then Const 0 else Times [Const n; Power (a, n-1)]

14 | Times l ->

15 begin

16 match l with

17 | [] -> Const 0

18 | hd::tl -> Sum [Times ((diff (hd, x))::tl); Times [hd; diff (Times tl, x)]]

19 end

20 | Sum l -> Sum (List.map (fun e -> diff (e,x)) l)

B LANGUAGE
The full language of F��ML is as follows:

E ::= () | n | x | true | false | str | �x.E | E1 + E2 | E1 � E2 | E1 ⇥ E2 | E1/E2 | E1 mod E2 | �E
| not E | E1 | | E2 | E1 &&E2 | E1 < E2 | E1 > E2 | E1  E2 | E1 � E2 | E1 = E2 | E1<>E2
| E1 E2 | E1::E2 | E1@E2 | E1ˆE2 | raise E | (E1, . . . ,Ek ) | [E1; . . . ;Ek ]
| if E1 E2 E3 | c(E1, . . . ,Ek ) | let x = E1 in E2 | let rec f (x) = E1 in E2
| let x1 = E1 and . . . and xk = Ek in E | let rec f1(x1) = E1 and . . . and fk (xk ) = Ek in E
| match E with p1 ! E1 | · · · | pk ! Ek
| ⇤

� ::= unit | int | bool | string | exn | �1 ! �2 | � list | T | (�1⇤ . . . ⇤�k ) | �
p ::= n | x | true | false | p1 :: p2 | [p1; . . . ;pk ] | (p1, . . . ,p2) | c(p1, . . . ,pk ) | p1 | · · · | pk | _

C FEEDBACK ON A LARGE PROGRAM
F��ML was able to accurately identify and �x the error at line 123 in the following student program
for problem #13 in 3.4 seconds.

1 type aexp =

2 |CONST of int

3 | VAR of string

4 | POWER of string * int

5 | TIMES of aexp list

6 | SUM of aexp list

7
8 type env = (string * int * int) list

9
10 let diff : aexp * string -> aexp

11 = fun (aexp, x) ->

12 let rec deployEnv : env -> int -> aexp list

13 = fun env flag ->

14 match env with

15 | hd::tl ->

16 begin match hd with

17 |(x, c, p) ->

18 if (flag = 0 && c = 0) then deployEnv tl flag

19 else if (x = �const� && flag = 1 && c = 1) then deployEnv tl flag

20 else if (p = 0) then (CONST c)::(deployEnv tl flag)

21 else if (c = 1 && p = 1) then (VAR x)::(deployEnv tl flag)

22 else if (p = 1) then TIMES[CONST c; VAR x]::(deployEnv tl flag)

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Language:

let rec natmul n1 n2 = 
  match n1 with 
  | ZERO -> ZERO  
  | SUCC ZERO -> n2 
  | SUCC n1’ -> ?

Partial Program: 36 expressions

Observation:
Although the implementations are very different,

used components are similar.

• Enumerating all expressions is very expensive

let rec natmul n1 n2 = 
  match n1 with 
  |ZERO -> ZERO 
  | SUCC n1’ -> natadd n2 (natmul n1’ n2)

Solution:
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Automatic Error Correction for Functional Programming Assignments 1:25

11 | Const n -> Const 0

12 | Var a -> if (a <> x) then Const 0 else Const 1

13 | Power (a, n) -> if (a <> x) then Const 0 else Times [Const n; Power (a, n-1)]

14 | Times l ->

15 begin

16 match l with

17 | [] -> Const 0

18 | hd::tl -> Sum [Times ((diff (hd, x))::tl); Times [hd; diff (Times tl, x)]]

19 end

20 | Sum l -> Sum (List.map (fun e -> diff (e,x)) l)

B LANGUAGE
The full language of F��ML is as follows:

E ::= () | n | x | true | false | str | �x.E | E1 + E2 | E1 � E2 | E1 ⇥ E2 | E1/E2 | E1 mod E2 | �E
| not E | E1 | | E2 | E1 &&E2 | E1 < E2 | E1 > E2 | E1  E2 | E1 � E2 | E1 = E2 | E1<>E2
| E1 E2 | E1::E2 | E1@E2 | E1ˆE2 | raise E | (E1, . . . ,Ek ) | [E1; . . . ;Ek ]
| if E1 E2 E3 | c(E1, . . . ,Ek ) | let x = E1 in E2 | let rec f (x) = E1 in E2
| let x1 = E1 and . . . and xk = Ek in E | let rec f1(x1) = E1 and . . . and fk (xk ) = Ek in E
| match E with p1 ! E1 | · · · | pk ! Ek
| ⇤

� ::= unit | int | bool | string | exn | �1 ! �2 | � list | T | (�1⇤ . . . ⇤�k ) | �
p ::= n | x | true | false | p1 :: p2 | [p1; . . . ;pk ] | (p1, . . . ,p2) | c(p1, . . . ,pk ) | p1 | · · · | pk | _

C FEEDBACK ON A LARGE PROGRAM
F��ML was able to accurately identify and �x the error at line 123 in the following student program
for problem #13 in 3.4 seconds.

1 type aexp =

2 |CONST of int

3 | VAR of string

4 | POWER of string * int

5 | TIMES of aexp list

6 | SUM of aexp list

7
8 type env = (string * int * int) list

9
10 let diff : aexp * string -> aexp

11 = fun (aexp, x) ->

12 let rec deployEnv : env -> int -> aexp list

13 = fun env flag ->

14 match env with

15 | hd::tl ->

16 begin match hd with

17 |(x, c, p) ->

18 if (flag = 0 && c = 0) then deployEnv tl flag

19 else if (x = �const� && flag = 1 && c = 1) then deployEnv tl flag

20 else if (p = 0) then (CONST c)::(deployEnv tl flag)

21 else if (c = 1 && p = 1) then (VAR x)::(deployEnv tl flag)

22 else if (p = 1) then TIMES[CONST c; VAR x]::(deployEnv tl flag)

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Language:

let rec natmul n1 n2 = 
  match n1 with 
  |ZERO -> ZERO 
  | SUCC n1’ -> natadd n2 (natmul n1’ n2)

Solution:

let rec natmul n1 n2 = 
  match n1 with 
  | ZERO -> ZERO  
  | SUCC ZERO -> n2 
  | SUCC n1’ -> ?

Partial Program: 36 expressions

• Enumerating all expressions is very expensive

Enumerating expressions only used in solution

Technique 1: Syntactic Component Reduction

4



Technique 2: Variable Component Reduction

!34

let rec natmul n1 n2 = 
  match n1 with 
  | ZERO -> ZERO  
  | SUCC ZERO -> n2 
  | SUCC n1’ -> ?

Bound Variable: {natmul, n1, n2, n1’}

Partial Program:

• Enumerating all variables generates redundant programs.



Technique 2: Variable Component Reduction
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let rec natmul n1 n2 = 
  match n1 with 
  | ZERO -> ZERO  
  | SUCC ZERO -> n2 
  | SUCC n1’ -> ?

Bound Variable: {natmul, n1, n2, n1’}

Partial Program:
let rec natmul n1 n2 = 
  match n1 with 
  | ZERO -> ZERO  
  | SUCC ZERO -> n2 
  | SUCC n1’ -> SUCC n1’

let rec natmul n1 n2 = 
  match n1 with 
  | ZERO -> ZERO  
  | SUCC ZERO -> n2 
  | SUCC n1’ -> n1

Enumeration

• Enumerating all variables generates redundant programs.



• Enumerating all variables generates redundant programs.

Technique 2: Variable Component Reduction

!36

let rec natmul n1 n2 = 
  match n1 with 
  | ZERO -> ZERO  
  | SUCC ZERO -> n2 
  | SUCC n1’ -> ?

Bound Variable: {natmul, n1, n2, n1’}

Partial Program:
let rec natmul n1 n2 = 
  match n1 with 
  | ZERO -> ZERO  
  | SUCC ZERO -> n2 
  | SUCC n1’ -> SUCC n1’

let rec natmul n1 n2 = 
  match n1 with 
  | ZERO -> ZERO  
  | SUCC ZERO -> n2 
  | SUCC n1’ -> n1

Enumeration

Semantically equivalent programs

n1 = SUCC n1’



• Enumerating all variables generates redundant programs.

Technique 2: Variable Component Reduction

!37

let rec natmul n1 n2 = 
  match n1 with 
  | ZERO -> ZERO  
  | SUCC ZERO -> n2 
  | SUCC n1’ -> ?

Bound Variable: {natmul, n1, n2, n1’}

Partial Program:
let rec natmul n1 n2 = 
  match n1 with 
  | ZERO -> ZERO  
  | SUCC ZERO -> n2 
  | SUCC n1’ -> SUCC n1’

let rec natmul n1 n2 = 
  match n1 with 
  | ZERO -> ZERO  
  | SUCC ZERO -> n2 
  | SUCC n1’ -> n1

Enumeration

Data-flow analysis:
n1 can be always expressed with n1' 

n1 = SUCC n1’

Choosing the minimal set of variables through data-flow analysis



• There are programs eventually inconsistent with the test cases 

Technique 3: Pruning via symbolic execution

!38

let rec natmul n1 n2 = 
  match n1 with 
  | ZERO -> ZERO  
  | SUCC ZERO -> n2 
  | SUCC n1’ -> SUCC ?

Test cases : 
natmul ZERO (SUCC ZERO) = ZERO 

natmul (SUCC ZERO) (SUCC ZERO) = (SUCC ZERO) 

natmul (SUCC (SUCC (ZERO))) ZERO = ZERO

Partial Program:



• There are programs eventually inconsistent with the test cases 

Technique 3: Pruning via symbolic execution

!39

let rec natmul n1 n2 = 
  match n1 with 
  | ZERO -> ZERO  
  | SUCC ZERO -> n2 
  | SUCC n1’ -> SUCC ?

Test cases : 
natmul ZERO (SUCC ZERO) = ZERO 

natmul (SUCC ZERO) (SUCC ZERO) = (SUCC ZERO) 

natmul (SUCC (SUCC (ZERO))) ZERO = ZERO

Partial Program:

Symbolic execution: 
 natmul (SUCC (SUCC (ZERO))) ZERO => (SUCC ?)



• There are programs eventually inconsistent with the test cases 

Technique 3: Pruning via symbolic execution

!40

let rec natmul n1 n2 = 
  match n1 with 
  | ZERO -> ZERO  
  | SUCC ZERO -> n2 
  | SUCC n1’ -> SUCC ?

Test cases : 
natmul ZERO (SUCC ZERO) = ZERO 

natmul (SUCC ZERO) (SUCC ZERO) = (SUCC ZERO) 

natmul (SUCC (SUCC (ZERO))) ZERO = ZERO

Partial Program:

Symbolic execution: 
 natmul (SUCC (SUCC (ZERO))) ZERO => (SUCC ?)

SAT (SUCC ? = ZERO) => UNSAT



• There are programs eventually inconsistent with the test cases 

Technique 3: Pruning via symbolic execution

!41

let rec natmul n1 n2 = 
  match n1 with 
  | ZERO -> ZERO  
  | SUCC ZERO -> n2 
  | SUCC n1’ -> SUCC ?

Test cases : 
natmul ZERO (SUCC ZERO) = ZERO 

natmul (SUCC ZERO) (SUCC ZERO) = (SUCC ZERO) 

natmul (SUCC (SUCC (ZERO))) ZERO = ZERO

Partial Program:

Symbolic execution: 
 natmul (SUCC (SUCC (ZERO))) ZERO => (SUCC ?)

SAT (SUCC ? = ZERO) => UNSAT

Safely pruning the partial programs



Evaluation
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• Evaluated on 497 programs written in OCaml with logical 
errors from 13 assignments.

• Various task from introductory to advanced (2-154 lines) 
problems

• Conducted user study with 18 under-graduate students.



Effectiveness

• Average time: 5.4 sec / Fix rate: 43%

• Generating patches for diverse problems
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Table 1. Performance of F��ML on 497 student submissions. #P reports the number of target programs for
each problem. #T reports the number of testcases used for each problem. LOC reports the number of lines in
submissions averaged over all submissions as well as the LOCs of the smallest and largest submissions. Time
reports average time took for localizing and fixing errors in seconds. Fix Rate reports the ratio of successfully
fixed programs by F��ML.

No Problem Description #P #T LOC Time Fix Rate
(min-max) (#Fix)

1 Filtering elements satisfying a predicate in a list 3 10 6 (6-7) 13.0 100% (3)
2 Finding a maximum element in a list 32 10 8 (4-14) 0.2 100% (32)
3 Mirroring a binary tree 9 10 11 (9-14) 0.1 89% (8)
4 Checking membership in a binary tree 15 17 11 (9-18) 5.2 80% (12)
5 Computing

Õk
i=j f (i) for j, k , and f 23 11 5 (2-9) 4.2 78% (18)

6 Adding and multiplying user-de�ned natural numbers 34 10 20 (13-50) 20.6 59% (20)
7 Finding the number of ways of coin-changes 9 10 21 (6-35) 2.6 44% (4)
8 Composing functions 28 12 7 (3-19) 5.5 43% (12)
9 Implementing a leftist heap using a priority queue 20 13 43 (33-72) 2.6 40% (8)
10 Evaluating expressions and propositional formulas 101 17 32 (17-57) 1.2 39% (39)
11 Adding numbers in user-de�ned number system 14 10 52 (19-138) 7.0 36% (5)
12 Deciding lambda terms are well-formed or not 86 11 30 (13-79) 1.3 26% (22)
13 Di�erentiating algebraic expressions 123 17 36 (14-154) 11.4 25% (31)

Total / Average 497 158 27 (2-154) 5.4 43% (214)

onl, such as programming tasks that manipulate integers or arrays (e.g. reversing numbers, �nding
the kth largest element, etc) [Gulwani et al. 2018; Singh et al. 2013; Wang et al. 2018]. In this paper,
we aim for more sizable programs up to 100 lines of code.

In Table 1, we report the number of incorrect submissions we could collect for each problem
(#P), the number of testcases (#T), (average, smallest, largest) LOCs of the submissions (LOC), the
average time took to generate corrections (including localization), and the ratio of successfully
�xed submissions for each problem with respect to the entire programs (Fix Rate). In Appendix A,
we provide solution programs for each benchmark problem.

Results. The results in Table 1 indicate that F��ML is powerful and capable of �xing logical
errors in real student submissions. In summary, F��ML successfully �xed 214 out of 497 submissions
in 5.4 seconds on average.4 For introductory-level problems (#1–#5), F��ML �xed most (89%, 73/82)
of the submissions in 2.5 seconds on average. For intermediate-level problems (#6–#9), the �x rate
was 48% (44/91) and the average time for �xing was 11.6 seconds. For problems at advanced level
(#10–#13), F��ML was able to correct 30% (97/324) in 4.8 seconds on average. Although the �x rates
decrease in problems at advanced-level, the results are still impressive, considering the size and
complexity of the benchmark programs. For example, F��ML managed to accurately localize and
repair an error in the largest submission (154 lines) presented in Appendix C.

5.2 Helpfulness
To assess how helpful F��ML is for students, we have conducted user study with 18 undergraduate
students who took the Programming Language course taught by the authors.

4We manually checked the correctness of the 214 �xes.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Introductory
Fix: 89%

Time: 2.5 sec

Intermediate
Fix: 48%

Time: 11.6 sec

Advanced
Fix: 30%

Time: 4.8 sec



Technique Utility

• Compare to Type : 579sec vs 65sec (x 8.9 faster)
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Technique Utility

• Compare to Type : 579sec vs 65sec (x 8.9 faster)
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Helpfulness
Q1. Does the tool generate better corrections?

Q2. Does the feedback help to understand your mistakes?

Q3. Is the tool overall useful in learning functional programming?
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33%

67%
42%

8%

50%

Yes
No
Neutral

28%

72%

Q1 Q2 Q3

Agreed with the helpfulness!



Summary

• The first system to provide personalized feedback of logical 
errors for functional programming assignments

• Code and our data: https://github.com/kupl/FixML 

• Tool usage: https://tryml.korea.ac.kr

!47



• To check the correctness of given programs, FixML still requires 
test cases that are manually designed.

Limitation of FixML
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We present FixML, a system for automatically generating feedback on logical errors in functional programming
assignments. As functional languages have been gaining popularity, the number of students enrolling functional
programming courses has increased significantly. However, the quality of feedback, in particular for logical
errors, is hardly satisfying. To provide personalized feedback on logical errors, we present a new error-
correction algorithm for functional languages, which combines statistical error-localization and type-directed
program synthesis enhanced with components reduction and search space pruning using symbolic execution.
We implemented our algorithm in a tool, called FixML, and evaluated it with 497 students’ submissions from
13 exercises, including not only introductory but also more advanced problems. Our experimental results
show that our tool effectively corrects various and complex errors: it fixed 43% of the 497 submissions in 5.4
seconds on average and managed to fix a hard-to-find error in a large submission, consisting of 154 lines.
We also performed user study with 18 undergraduate students and confirmed that our system actually helps
students to better understand their programming errors.
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Motivation

!50

• Detecting logical error is challenging and involves a lot of 
human effort.

• In a real classroom, there are too many submissions to 
investigate one by one.

• Manual test cases sometimes fail to detect corner-case error.

• Prior property-based testing also has limitations.

• It requires for user to design proper test generator and 
shrinker manually.

• Heavily dependent to the given generator, which makes it 
hard to detect program-specific errors.
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• Detecting logical error is challenging and involves a lot of 
human effort.

• In a real classroom, there are too many submissions to 
investigate one by one.

• Manual test cases sometimes fail to detect corner-case error.

• Prior property-based testing also has limitations.

• It requires for user to design proper test generator and 
shrinker manually.

• Generator basically performs random testing, which makes it 
hard to detect program-specific errors.



Motivating Example: Composing Function
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let rec iter : int * (int -> int) -> int -> int  
= fun (n, f) x -> 
  if (n < 0) then raise (Failure “Invalid Input”) 
  else if (n = 0) then x 
  else f (iter (n-1, f) x) 

Correct Program

Buggy Program

let rec iter : int * (int -> int) -> int -> int  
= fun (n, f) x -> 
let y = (f x) in 
if (n <= 0) then x else iter (n-1, f) y

5

1 let rec iter : int * (int -> int) -> int -> int

2 = fun (n, f) x ->

3 if (n < 0) then raise (Failure �Invalid Input�)

4 else if (n = 0) then x

5 else f (iter (n-1, f) x)

(a) A reference implementation
1 let rec iter : int * (int -> int) -> int -> int

2 = fun (n, f) x ->

3 let y = f x in

4 if (n <= 0) then x else iter (n-1, f) y

(b) A buggy implementation

Fig. 2. Example 2: iter

Example 2. The second exercise is to write a higher-order function called iter. The function,
iter: int * (int -> int) -> int -> int, takes two arguments. The �rst is a pair of an integer
n and an integer-valued function f. The second is an integer x. Then, iter(n,f) x evaluates to
the following:

iter(n, f) x = (f � · · · � f|      {z      }
n

)(x)

For instance, (iter (5, fun x -> 1 + x) 2) evaluates to 7. When n is 0, iter(n,f) is de�ned
to be an identity function. Fig 2(a) shows a reference implementation of iter.

Fig 2(b) shows a program written by a student, which has a tricky bug that is hard to anticipate
when manually designing test cases. Note that the student implementation is very similar to the
reference implementation. If n is no greater than 0, the result is the identity function (line 4).
Otherwise, at line 5, it evaluates iter (n-1, f) y, where y is the result of the single application of
f to x. The overall logic is correct and therefore the program works well in most cases. For example,
it correctly evaluates (iter (5, fun x -> 1 + x) 2) to 7. However, the program runs into
trouble if n is 0 and f is unde�ned on x because it attempts to evaluate the function application (f
x) even when n is 0 at line 3. For example, evaluating (iter (0, fun x -> 1 mod x) 0) causes a
division-by-zero error while the reference implementation produces 0 without any runtime errors.
We found that this submission also received the full credit as our manually crafted test cases could
not check this corner case.

On the other hand, our technique quickly detects the bug in 0.2 seconds. Given the two (correct
and incorrect) programs, our technique generates (0, fun x -> 1 mod x) for the �rst argument,
i.e., (n, f), and 0 for the second argument, i.e., x. Note that our technique is able to generate test
cases for high-order functions; that is, it can synthesize the function (fun x -> 1 mod x) as the
input of iter.

Example 3. In this example, we demonstrate another promising application of our technique;
it can resolve a common problem in automatic program repair, called test-suite-over�tted patches
[Smith et al. 2015]. In recent years, several techniques have been proposed for automatic program
repair systems that use test cases for checking the correctness of the repaired programs. However,
these systems often produce test-suite-over�tted patches which retain some bugs but satisfy the
given test cases. We show that our technique can enhance the performance of an existing program
repair system, F��ML [Lee et al. 2018b], for functional programming assignments.

Proc. ACM Program. Lang., Vol. , No. OOPSLA, Article . Publication date: October 2019.

• Applying a function ‘f ’ to ‘x’ ‘n’ times : 

• For example, (iter (5, fun x -> 1 + x) 2) evaluates to 7.
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let rec iter : int * (int -> int) -> int -> int  
= fun (n, f) x -> 
  if (n < 0) then raise (Failure “Invalid Input”) 
  else if (n = 0) then x 
  else f (iter (n-1, f) x) 

Correct Program

Buggy Program

let rec iter : int * (int -> int) -> int -> int  
= fun (n, f) x -> 
let y = (f x) in 
if (n <= 0) then x else iter (n-1, f) y

5

1 let rec iter : int * (int -> int) -> int -> int

2 = fun (n, f) x ->

3 if (n < 0) then raise (Failure �Invalid Input�)

4 else if (n = 0) then x

5 else f (iter (n-1, f) x)

(a) A reference implementation
1 let rec iter : int * (int -> int) -> int -> int

2 = fun (n, f) x ->

3 let y = f x in

4 if (n <= 0) then x else iter (n-1, f) y

(b) A buggy implementation

Fig. 2. Example 2: iter

Example 2. The second exercise is to write a higher-order function called iter. The function,
iter: int * (int -> int) -> int -> int, takes two arguments. The �rst is a pair of an integer
n and an integer-valued function f. The second is an integer x. Then, iter(n,f) x evaluates to
the following:

iter(n, f) x = (f � · · · � f|      {z      }
n

)(x)

For instance, (iter (5, fun x -> 1 + x) 2) evaluates to 7. When n is 0, iter(n,f) is de�ned
to be an identity function. Fig 2(a) shows a reference implementation of iter.

Fig 2(b) shows a program written by a student, which has a tricky bug that is hard to anticipate
when manually designing test cases. Note that the student implementation is very similar to the
reference implementation. If n is no greater than 0, the result is the identity function (line 4).
Otherwise, at line 5, it evaluates iter (n-1, f) y, where y is the result of the single application of
f to x. The overall logic is correct and therefore the program works well in most cases. For example,
it correctly evaluates (iter (5, fun x -> 1 + x) 2) to 7. However, the program runs into
trouble if n is 0 and f is unde�ned on x because it attempts to evaluate the function application (f
x) even when n is 0 at line 3. For example, evaluating (iter (0, fun x -> 1 mod x) 0) causes a
division-by-zero error while the reference implementation produces 0 without any runtime errors.
We found that this submission also received the full credit as our manually crafted test cases could
not check this corner case.

On the other hand, our technique quickly detects the bug in 0.2 seconds. Given the two (correct
and incorrect) programs, our technique generates (0, fun x -> 1 mod x) for the �rst argument,
i.e., (n, f), and 0 for the second argument, i.e., x. Note that our technique is able to generate test
cases for high-order functions; that is, it can synthesize the function (fun x -> 1 mod x) as the
input of iter.

Example 3. In this example, we demonstrate another promising application of our technique;
it can resolve a common problem in automatic program repair, called test-suite-over�tted patches
[Smith et al. 2015]. In recent years, several techniques have been proposed for automatic program
repair systems that use test cases for checking the correctness of the repaired programs. However,
these systems often produce test-suite-over�tted patches which retain some bugs but satisfy the
given test cases. We show that our technique can enhance the performance of an existing program
repair system, F��ML [Lee et al. 2018b], for functional programming assignments.
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• Applying a function ‘f ’ to ‘x’ ‘n’ times : 

• For example, (iter (5, fun x -> 1 + x) 2) evaluates to 7.
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let rec iter : int * (int -> int) -> int -> int  
= fun (n, f) x -> 
  if (n < 0) then raise (Failure “Invalid Input”) 
  else if (n = 0) then x 
  else f (iter (n-1, f) x) 

Correct Program

Buggy Program

let rec iter : int * (int -> int) -> int -> int  
= fun (n, f) x -> 
let y = (f x) in 
if (n <= 0) then x else iter (n-1, f) y

5

1 let rec iter : int * (int -> int) -> int -> int

2 = fun (n, f) x ->

3 if (n < 0) then raise (Failure �Invalid Input�)

4 else if (n = 0) then x

5 else f (iter (n-1, f) x)

(a) A reference implementation
1 let rec iter : int * (int -> int) -> int -> int

2 = fun (n, f) x ->

3 let y = f x in

4 if (n <= 0) then x else iter (n-1, f) y

(b) A buggy implementation

Fig. 2. Example 2: iter

Example 2. The second exercise is to write a higher-order function called iter. The function,
iter: int * (int -> int) -> int -> int, takes two arguments. The �rst is a pair of an integer
n and an integer-valued function f. The second is an integer x. Then, iter(n,f) x evaluates to
the following:

iter(n, f) x = (f � · · · � f|      {z      }
n

)(x)

For instance, (iter (5, fun x -> 1 + x) 2) evaluates to 7. When n is 0, iter(n,f) is de�ned
to be an identity function. Fig 2(a) shows a reference implementation of iter.

Fig 2(b) shows a program written by a student, which has a tricky bug that is hard to anticipate
when manually designing test cases. Note that the student implementation is very similar to the
reference implementation. If n is no greater than 0, the result is the identity function (line 4).
Otherwise, at line 5, it evaluates iter (n-1, f) y, where y is the result of the single application of
f to x. The overall logic is correct and therefore the program works well in most cases. For example,
it correctly evaluates (iter (5, fun x -> 1 + x) 2) to 7. However, the program runs into
trouble if n is 0 and f is unde�ned on x because it attempts to evaluate the function application (f
x) even when n is 0 at line 3. For example, evaluating (iter (0, fun x -> 1 mod x) 0) causes a
division-by-zero error while the reference implementation produces 0 without any runtime errors.
We found that this submission also received the full credit as our manually crafted test cases could
not check this corner case.

On the other hand, our technique quickly detects the bug in 0.2 seconds. Given the two (correct
and incorrect) programs, our technique generates (0, fun x -> 1 mod x) for the �rst argument,
i.e., (n, f), and 0 for the second argument, i.e., x. Note that our technique is able to generate test
cases for high-order functions; that is, it can synthesize the function (fun x -> 1 mod x) as the
input of iter.

Example 3. In this example, we demonstrate another promising application of our technique;
it can resolve a common problem in automatic program repair, called test-suite-over�tted patches
[Smith et al. 2015]. In recent years, several techniques have been proposed for automatic program
repair systems that use test cases for checking the correctness of the repaired programs. However,
these systems often produce test-suite-over�tted patches which retain some bugs but satisfy the
given test cases. We show that our technique can enhance the performance of an existing program
repair system, F��ML [Lee et al. 2018b], for functional programming assignments.
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• Applying a function ‘f ’ to ‘x’ ‘n’ times : 

• For example, (iter (5, fun x -> 1 + x) 2) evaluates to 7.

• Counter-example :  (n, f) = (0, fun x -> 1 mod x) and x = 0
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let rec iter : int * (int -> int) -> int -> int  
= fun (n, f) x -> 
  if (n < 0) then raise (Failure “Invalid Input”) 
  else if (n = 0) then x 
  else f (iter (n-1, f) x) 

Correct Program

Buggy Program

let rec iter : int * (int -> int) -> int -> int  
= fun (n, f) x -> 
let y = (f x) in 
if (n <= 0) then x else iter (n-1, f) y

5

1 let rec iter : int * (int -> int) -> int -> int

2 = fun (n, f) x ->

3 if (n < 0) then raise (Failure �Invalid Input�)

4 else if (n = 0) then x

5 else f (iter (n-1, f) x)

(a) A reference implementation
1 let rec iter : int * (int -> int) -> int -> int

2 = fun (n, f) x ->

3 let y = f x in

4 if (n <= 0) then x else iter (n-1, f) y

(b) A buggy implementation

Fig. 2. Example 2: iter

Example 2. The second exercise is to write a higher-order function called iter. The function,
iter: int * (int -> int) -> int -> int, takes two arguments. The �rst is a pair of an integer
n and an integer-valued function f. The second is an integer x. Then, iter(n,f) x evaluates to
the following:

iter(n, f) x = (f � · · · � f|      {z      }
n

)(x)

For instance, (iter (5, fun x -> 1 + x) 2) evaluates to 7. When n is 0, iter(n,f) is de�ned
to be an identity function. Fig 2(a) shows a reference implementation of iter.

Fig 2(b) shows a program written by a student, which has a tricky bug that is hard to anticipate
when manually designing test cases. Note that the student implementation is very similar to the
reference implementation. If n is no greater than 0, the result is the identity function (line 4).
Otherwise, at line 5, it evaluates iter (n-1, f) y, where y is the result of the single application of
f to x. The overall logic is correct and therefore the program works well in most cases. For example,
it correctly evaluates (iter (5, fun x -> 1 + x) 2) to 7. However, the program runs into
trouble if n is 0 and f is unde�ned on x because it attempts to evaluate the function application (f
x) even when n is 0 at line 3. For example, evaluating (iter (0, fun x -> 1 mod x) 0) causes a
division-by-zero error while the reference implementation produces 0 without any runtime errors.
We found that this submission also received the full credit as our manually crafted test cases could
not check this corner case.

On the other hand, our technique quickly detects the bug in 0.2 seconds. Given the two (correct
and incorrect) programs, our technique generates (0, fun x -> 1 mod x) for the �rst argument,
i.e., (n, f), and 0 for the second argument, i.e., x. Note that our technique is able to generate test
cases for high-order functions; that is, it can synthesize the function (fun x -> 1 mod x) as the
input of iter.

Example 3. In this example, we demonstrate another promising application of our technique;
it can resolve a common problem in automatic program repair, called test-suite-over�tted patches
[Smith et al. 2015]. In recent years, several techniques have been proposed for automatic program
repair systems that use test cases for checking the correctness of the repaired programs. However,
these systems often produce test-suite-over�tted patches which retain some bugs but satisfy the
given test cases. We show that our technique can enhance the performance of an existing program
repair system, F��ML [Lee et al. 2018b], for functional programming assignments.
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Division-by-zero

Return 0 as an output

• Applying a function ‘f ’ to ‘x’ ‘n’ times : 

• For example, (iter (5, fun x -> 1 + x) 2) evaluates to 7.

• Counter-example :  (n, f) = (0, fun x -> 1 mod x) and x = 0
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let rec iter : int * (int -> int) -> int -> int  
= fun (n, f) x -> 
  if (n < 0) then raise (Failure “Invalid Input”) 
  else if (n = 0) then x 
  else f (iter (n-1, f) x) 

Correct Program

Buggy Program

let rec iter : int * (int -> int) -> int -> int  
= fun (n, f) x -> 
let y = (f x) in 
if (n <= 0) then x else iter (n-1, f) y

5

1 let rec iter : int * (int -> int) -> int -> int

2 = fun (n, f) x ->

3 if (n < 0) then raise (Failure �Invalid Input�)

4 else if (n = 0) then x

5 else f (iter (n-1, f) x)

(a) A reference implementation
1 let rec iter : int * (int -> int) -> int -> int

2 = fun (n, f) x ->

3 let y = f x in

4 if (n <= 0) then x else iter (n-1, f) y

(b) A buggy implementation

Fig. 2. Example 2: iter

Example 2. The second exercise is to write a higher-order function called iter. The function,
iter: int * (int -> int) -> int -> int, takes two arguments. The �rst is a pair of an integer
n and an integer-valued function f. The second is an integer x. Then, iter(n,f) x evaluates to
the following:

iter(n, f) x = (f � · · · � f|      {z      }
n

)(x)

For instance, (iter (5, fun x -> 1 + x) 2) evaluates to 7. When n is 0, iter(n,f) is de�ned
to be an identity function. Fig 2(a) shows a reference implementation of iter.

Fig 2(b) shows a program written by a student, which has a tricky bug that is hard to anticipate
when manually designing test cases. Note that the student implementation is very similar to the
reference implementation. If n is no greater than 0, the result is the identity function (line 4).
Otherwise, at line 5, it evaluates iter (n-1, f) y, where y is the result of the single application of
f to x. The overall logic is correct and therefore the program works well in most cases. For example,
it correctly evaluates (iter (5, fun x -> 1 + x) 2) to 7. However, the program runs into
trouble if n is 0 and f is unde�ned on x because it attempts to evaluate the function application (f
x) even when n is 0 at line 3. For example, evaluating (iter (0, fun x -> 1 mod x) 0) causes a
division-by-zero error while the reference implementation produces 0 without any runtime errors.
We found that this submission also received the full credit as our manually crafted test cases could
not check this corner case.

On the other hand, our technique quickly detects the bug in 0.2 seconds. Given the two (correct
and incorrect) programs, our technique generates (0, fun x -> 1 mod x) for the �rst argument,
i.e., (n, f), and 0 for the second argument, i.e., x. Note that our technique is able to generate test
cases for high-order functions; that is, it can synthesize the function (fun x -> 1 mod x) as the
input of iter.

Example 3. In this example, we demonstrate another promising application of our technique;
it can resolve a common problem in automatic program repair, called test-suite-over�tted patches
[Smith et al. 2015]. In recent years, several techniques have been proposed for automatic program
repair systems that use test cases for checking the correctness of the repaired programs. However,
these systems often produce test-suite-over�tted patches which retain some bugs but satisfy the
given test cases. We show that our technique can enhance the performance of an existing program
repair system, F��ML [Lee et al. 2018b], for functional programming assignments.

Proc. ACM Program. Lang., Vol. , No. OOPSLA, Article . Publication date: October 2019.

Division-by-zero

Return 0 as an output

• Applying a function ‘f ’ to ‘x’ ‘n’ times : 

• For example, (iter (5, fun x -> 1 + x) 2) evaluates to 7.

• Counter-example :  (n, f) = (0, fun x -> 1 mod x) and x = 0

Automatically generate counter-example for each submission!



Running Example: List map
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Correct Program

Buggy Program

• Applying a function to all elements of given integer list

let rec map : (int -> int) -> int list -> int list 
= fun f lst -> 
  match lst with 
  | [] -> [] 
  | hd::tl -> (f hd)::(map f tl)

let rec map : (int -> int) -> int list -> int list 
= fun f lst -> 
  match lst with 
  | [] -> [] 
  | hd::tl -> if hd > 0 then (f hd)::(map f tl)  
              else hd::(map f tl)



Baseline1: Enumerative Search
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let rec map : (int -> int) -> int list -> int list 
= fun f lst -> 
  match lst with 
  | [] -> [] 
  | hd::tl -> (f hd)::(map f tl)

let rec map : (int -> int) -> int list -> int list 
= fun f lst -> 
  match lst with 
  | [] -> [] 
  | hd::tl -> if hd > 0 then (f hd)::(map f tl)  
              else hd::(map f tl)

Correct Program

Buggy Program

fun x -> ?f: 

• Enumerate all possible test cases from the smallest one until 
we find one causing different outputs.



Baseline1: Enumerative Search
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let rec map : (int -> int) -> int list -> int list 
= fun f lst -> 
  match lst with 
  | [] -> [] 
  | hd::tl -> (f hd)::(map f tl)

let rec map : (int -> int) -> int list -> int list 
= fun f lst -> 
  match lst with 
  | [] -> [] 
  | hd::tl -> if hd > 0 then (f hd)::(map f tl)  
              else hd::(map f tl)

Correct Program

Buggy Program

fun x -> ?f: fun x -> ?+?

fun x -> ?-?

…

fun x -> x

…

• Enumerate all possible test cases from the smallest one until 
we find one causing different outputs.



Baseline1: Enumerative Search
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let rec map : (int -> int) -> int list -> int list 
= fun f lst -> 
  match lst with 
  | [] -> [] 
  | hd::tl -> (f hd)::(map f tl)

let rec map : (int -> int) -> int list -> int list 
= fun f lst -> 
  match lst with 
  | [] -> [] 
  | hd::tl -> if hd > 0 then (f hd)::(map f tl)  
              else hd::(map f tl)

Correct Program

Buggy Program

fun x -> ?f: fun x -> ?+?

fun x -> ?-?

…

fun x -> x

…

fun x -> 2+?

fun x -> 3+?

…

fun x -> 1+?

…

fun x -> 4+?

• Enumerate all possible test cases from the smallest one until 
we find one causing different outputs.



Baseline1: Enumerative Search
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let rec map : (int -> int) -> int list -> int list 
= fun f lst -> 
  match lst with 
  | [] -> [] 
  | hd::tl -> (f hd)::(map f tl)

let rec map : (int -> int) -> int list -> int list 
= fun f lst -> 
  match lst with 
  | [] -> [] 
  | hd::tl -> if hd > 0 then (f hd)::(map f tl)  
              else hd::(map f tl)

Correct Program

Buggy Program

lst: 

fun x -> ?f: fun x -> ?+?

fun x -> ?-?

…

fun x -> x

…

fun x -> 2+?

fun x -> 3+?

…

fun x -> 1+?

…

? [?;?]

[?;?;?]
…

[?]
[]

fun x -> 4+?

[0]

[1]

…

[-1]

…

[2]

• Enumerate all possible test cases from the smallest one until 
we find one causing different outputs.



Baseline1: Enumerative Search
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let rec map : (int -> int) -> int list -> int list 
= fun f lst -> 
  match lst with 
  | [] -> [] 
  | hd::tl -> (f hd)::(map f tl)

let rec map : (int -> int) -> int list -> int list 
= fun f lst -> 
  match lst with 
  | [] -> [] 
  | hd::tl -> if hd > 0 then (f hd)::(map f tl)  
              else hd::(map f tl)

Correct Program

Buggy Program

lst: 

fun x -> ?f: fun x -> ?+?

fun x -> ?-?

…

fun x -> x

…

fun x -> 2+?

fun x -> 3+?

…

fun x -> 1+?

…

? [?;?]

[?;?;?]
…

[?]
[]

fun x -> 4+?

[0]

[1]

…

[-1]

…

[2]

Inefficient to search infinite values!

• Enumerate all possible test cases from the smallest one until 
we find one causing different outputs.



Baseline2: Symbolic Execution
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let rec map : (int -> int) -> int list -> int list 
= fun f lst -> 
  match lst with 
  | [] -> [] 
  | hd::tl -> (f hd)::(map f tl)

let rec map : (int -> int) -> int list -> int list 
= fun f lst -> 
  match lst with 
  | [] -> [] 
  | hd::tl -> if hd > 0 then (f hd)::(map f tl)  
              else hd::(map f tl)

Correct Program

Buggy Program

lst= f= α𝗅𝗌𝗍α𝖿

• Systematically compare two programs by executing them 
symbolically.



Baseline2: Symbolic Execution
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let rec map : (int -> int) -> int list -> int list 
= fun f lst -> 
  match lst with 
  | [] -> [] 
  | hd::tl -> (f hd)::(map f tl)

let rec map : (int -> int) -> int list -> int list 
= fun f lst -> 
  match lst with 
  | [] -> [] 
  | hd::tl -> if hd > 0 then (f hd)::(map f tl)  
              else hd::(map f tl)

Correct Program

Buggy Program

lst= f= α𝗅𝗌𝗍α𝖿

α𝗅𝗌𝗍 = []

r2 = []
r1 = []

• Systematically compare two programs by executing them 
symbolically.



Baseline2: Symbolic Execution
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let rec map : (int -> int) -> int list -> int list 
= fun f lst -> 
  match lst with 
  | [] -> [] 
  | hd::tl -> (f hd)::(map f tl)

let rec map : (int -> int) -> int list -> int list 
= fun f lst -> 
  match lst with 
  | [] -> [] 
  | hd::tl -> if hd > 0 then (f hd)::(map f tl)  
              else hd::(map f tl)

Correct Program

Buggy Program

lst= f= α𝗅𝗌𝗍α𝖿

α𝗅𝗌𝗍 = [α𝗁𝖽]

α𝗅𝗌𝗍 = []

r2 = []
r1 = []

• Systematically compare two programs by executing them 
symbolically.



Baseline2: Symbolic Execution
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let rec map : (int -> int) -> int list -> int list 
= fun f lst -> 
  match lst with 
  | [] -> [] 
  | hd::tl -> (f hd)::(map f tl)

let rec map : (int -> int) -> int list -> int list 
= fun f lst -> 
  match lst with 
  | [] -> [] 
  | hd::tl -> if hd > 0 then (f hd)::(map f tl)  
              else hd::(map f tl)

Correct Program

Buggy Program

lst= f= 

1. Path explosion

α𝗅𝗌𝗍α𝖿

α𝗅𝗌𝗍 = [α𝗁𝖽; α𝗍𝗅]

…

α𝗅𝗌𝗍 = [α𝗁𝖽]

α𝗅𝗌𝗍 = []

α𝗁𝖽 > 0

…

r2 = []
r1 = []

r2 = [(α𝖿 α𝗁𝖽)]
r1 = [(α𝖿 α𝗁𝖽)]

r2 = [α𝗁𝖽]
r1 = [(α𝖿 α𝗁𝖽)]

• Systematically compare two programs by executing them 
symbolically.



Baseline2: Symbolic Execution
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let rec map : (int -> int) -> int list -> int list 
= fun f lst -> 
  match lst with 
  | [] -> [] 
  | hd::tl -> (f hd)::(map f tl)

let rec map : (int -> int) -> int list -> int list 
= fun f lst -> 
  match lst with 
  | [] -> [] 
  | hd::tl -> if hd > 0 then (f hd)::(map f tl)  
              else hd::(map f tl)

Correct Program

Buggy Program

lst= f= 

1. Path explosion
2. Hard to handle non-primitive symbols

α𝗅𝗌𝗍α𝖿

α𝗅𝗌𝗍 = [α𝗁𝖽; α𝗍𝗅]

…

α𝗅𝗌𝗍 = [α𝗁𝖽]

α𝗅𝗌𝗍 = []

α𝗁𝖽 > 0

…

r2 = []
r1 = []

r2 = [(α𝖿 α𝗁𝖽)]
r1 = [(α𝖿 α𝗁𝖽)]

r2 = [α𝗁𝖽]
r1 = [(α𝖿 α𝗁𝖽)]

• Systematically compare two programs by executing them 
symbolically.



Key Idea

!68

• Combine enumerative search and symbolic execution to overcome 
the key limitations of each other.

• Enumerative search

        - Effectively generate small code snippet such as non-primitive  
          values (e.g. function type value)

        - Hard to enumerate infinite number of primitive values

• Symbolic execution

        - Easy to deduce specific primitive values using constraint solving

        - Heavy to apply to non-primitive values
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Our Approach

ML
Correct

Incorrect
ML

Generator Verifier

Counter-example

Symbolic Test Case

Fail to Verify

x = 1
y = 0

…

• Given a reference program and a buggy program, generate 
a counter-example without any human effort.



Symbolic Test Case Generation
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let rec map : (int -> int) -> int list -> int list 
= fun f lst -> 
  match lst with 
  | [] -> [] 
  | hd::tl -> (f hd)::(map f tl)

let rec map : (int -> int) -> int list -> int list 
= fun f lst -> 
  match lst with 
  | [] -> [] 
  | hd::tl -> if hd > 0 then (f hd)::(map f tl)  
              else hd::(map f tl)

Correct Program

Buggy Program

lst: 

fun x -> ?f: fun x -> ?+?

fun x -> ?-?

…

fun x -> x

…

fun x -> 2+?

fun x -> 3+?

…

fun x -> 1+?

…

? [?;?]

[?;?;?]
…

[?]
[]

fun x -> 4+?

[0]

[1]

…

[-1]

…

[2]

• Instead of generating concrete ones, synthesizing symbolic test 
cases by representing primitive values as symbols.



Symbolic Test Case Generation
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let rec map : (int -> int) -> int list -> int list 
= fun f lst -> 
  match lst with 
  | [] -> [] 
  | hd::tl -> (f hd)::(map f tl)

let rec map : (int -> int) -> int list -> int list 
= fun f lst -> 
  match lst with 
  | [] -> [] 
  | hd::tl -> if hd > 0 then (f hd)::(map f tl)  
              else hd::(map f tl)

Correct Program

Buggy Program

lst: 

fun x -> ?f: fun x -> ?+?

fun x -> ?-?

…

fun x -> x

…

fun x ->  +?

…

…

? [?;?]

[?;?;?]
…

[?]
[]

[  ]

α1

α2

• Instead of generating concrete ones, synthesizing symbolic test 
cases by representing primitive values as symbols.

Reduce the search space



Bounded Symbolic Execution
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let rec map : (int -> int) -> int list -> int list 
= fun f lst -> 
  match lst with 
  | [] -> [] 
  | hd::tl -> if hd > 0 then (f hd)::(map f tl)  
              else hd::(map f tl)

Buggy Program

(𝖿𝗎𝗇 𝗑 − > 𝗑 + α𝟣)
[α2]

Symbolic test cases:
  - f = 
  - lst = 

let rec map : (int -> int) -> int list -> int list 
= fun f lst -> 
  match lst with 
  | [] -> [] 
  | hd::tl -> (f hd)::(map f tl)

Correct Program

• Compute a set of all possible outputs and paths by running two 
programs with symbolic test cases.



Bounded Symbolic Execution

!73

let rec map : (int -> int) -> int list -> int list 
= fun f lst -> 
  match lst with 
  | [] -> [] 
  | hd::tl -> if hd > 0 then (f hd)::(map f tl)  
              else hd::(map f tl)

Buggy Program

let rec map : (int -> int) -> int list -> int list 
= fun f lst -> 
  match lst with 
  | [] -> [] 
  | hd::tl -> (f hd)::(map f tl)

Correct Program

• Compute a set of all possible outputs and paths by running two 
programs with symbolic test cases.

(𝖿𝗎𝗇 𝗑 − > 𝗑 + α𝟣)

Symbolic execution result:
  - Correct : 
  - Buggy : 

Φc = {(𝗍𝗋𝗎𝖾, [α𝟤 + α𝟣])}
Φb = {(α2 > 0,[α2 + α1]), (α2 ≤ 0,[α2])}

[α2]

Symbolic test cases:
  - f =                           
  - lst = 



Validation
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let rec map : (int -> int) -> int list -> int list 
= fun f lst -> 
  match lst with 
  | [] -> [] 
  | hd::tl -> if hd > 0 then (f hd)::(map f tl)  
              else hd::(map f tl)

Buggy Program

(𝖿𝗎𝗇 𝗑 − > 𝗑 + α𝟣)

Symbolic execution result:
  - Correct : 
  - Buggy : 

Φc = {(𝗍𝗋𝗎𝖾, [α𝟤 + α𝟣])}
Φb = {(α2 > 0,[α2 + α1]), (α2 ≤ 0,[α2])}

[α2]

Verification condition:

Symbolic test cases:
  - f =                           
  - lst = 

let rec map : (int -> int) -> int list -> int list 
= fun f lst -> 
  match lst with 
  | [] -> [] 
  | hd::tl -> (f hd)::(map f tl)

Correct Program

• Automatically infer specific values by solving the resulting 
verification condition.

⋀
(πc,vc)∈Φc

πc ⟹ ⋁
(πb,vb)∈Φb

πb ∧ vc = vb



Validation
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let rec map : (int -> int) -> int list -> int list 
= fun f lst -> 
  match lst with 
  | [] -> [] 
  | hd::tl -> if hd > 0 then (f hd)::(map f tl)  
              else hd::(map f tl)

Buggy Program

(𝖿𝗎𝗇 𝗑 − > 𝗑 + α𝟣)

Symbolic execution result:
  - Correct : 
  - Buggy : 

Φc = {(𝗍𝗋𝗎𝖾, [α𝟤 + α𝟣])}
Φb = {(α2 > 0,[α2 + α1]), (α2 ≤ 0,[α2])}

[α2]

Verification condition:
(𝗍𝗋𝗎𝖾 ⟹ (α2 > 0 ∧ [α2 + α1] = [α2 + α1]) ∨

(α2 ≤ 0 ∧ [α2 + α1] = [α2]))

Symbolic test cases:
  - f =                           
  - lst = 

let rec map : (int -> int) -> int list -> int list 
= fun f lst -> 
  match lst with 
  | [] -> [] 
  | hd::tl -> (f hd)::(map f tl)

Correct Program

• Automatically infer specific values by solving the resulting 
verification condition.



Validation

!76

let rec map : (int -> int) -> int list -> int list 
= fun f lst -> 
  match lst with 
  | [] -> [] 
  | hd::tl -> if hd > 0 then (f hd)::(map f tl)  
              else hd::(map f tl)

Buggy Program

(𝖿𝗎𝗇 𝗑 − > 𝗑 + α𝟣)

Symbolic execution result:
  - Correct : 
  - Buggy : 

Φc = {(𝗍𝗋𝗎𝖾, [α𝟤 + α𝟣])}
Φb = {(α2 > 0,[α2 + α1]), (α2 ≤ 0,[α2])}

[α2]

Verification condition:
(𝗍𝗋𝗎𝖾 ⟹ (α2 > 0 ∧ [α2 + α1] = [α2 + α1]) ∨

(α2 ≤ 0 ∧ [α2 + α1] = [α2]))

Symbolic test cases:
  - f =                           
  - lst = 

let rec map : (int -> int) -> int list -> int list 
= fun f lst -> 
  match lst with 
  | [] -> [] 
  | hd::tl -> (f hd)::(map f tl)

Correct Program

• Automatically infer specific values by solving the resulting 
verification condition.



Validation
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let rec map : (int -> int) -> int list -> int list 
= fun f lst -> 
  match lst with 
  | [] -> [] 
  | hd::tl -> if hd > 0 then (f hd)::(map f tl)  
              else hd::(map f tl)

Buggy Program

(𝖿𝗎𝗇 𝗑 − > 𝗑 + α𝟣)

Symbolic execution result:
  - Correct : 
  - Buggy : 

Φc = {(𝗍𝗋𝗎𝖾, [α𝟤 + α𝟣])}
Φb = {(α2 > 0,[α2 + α1]), (α2 ≤ 0,[α2])}

[α2]

Verification condition:
(𝗍𝗋𝗎𝖾 ⟹ (α2 > 0 ∧ [α2 + α1] = [α2 + α1]) ∨

(α2 ≤ 0 ∧ [α2 + α1] = [α2]))

Symbolic test cases:
  - f =                           
  - lst = 

let rec map : (int -> int) -> int list -> int list 
= fun f lst -> 
  match lst with 
  | [] -> [] 
  | hd::tl -> (f hd)::(map f tl)

Correct Program

• Automatically infer specific values by solving the resulting 
verification condition.

When                        , the VC is false.α1 = 1 ∧ α2 = 0

Counter Example : 
  - f =
  - lst =

(𝖿𝗎𝗇 𝗑 − > 𝗑 + 𝟣)
[0]



Evaluation
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• Implemented our approach in a tool, TestML.

• Evaluated it on 4,060 submissions from 10 problems used in 
our functional programming course.

• Research questions:

• How effectively does TestML detect erroneous submissions 
than manual test cases?

• Is TestML more effective than property-based testing?

• Can TestML enhance automatic program repair system?



Effectiveness

• For comparison, we used 10 manual test cases which have been 
continually refined.

• TestML found 88 more errors than human-provided test cases.
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Table 1. Comparison with the instructor-generated test cases. ‘T���ML 3’, ‘Manual 3’, ‘T���ML 7’, and
‘Manual 7’ indicate whether an erroneous program is found or not by T���ML or the manual test cases,
respectively.

No Problem Description
# Error Programs

T���ML 3 T���ML 3 T���ML 7 TotalManual 3 Manual 7 Manual 3
1 Finding a maximum element in a list 35 10 0 45
2 Filtering a list 5 4 0 9
3 Mirroring a binary tree 9 0 0 9
4 Checking membership in a binary tree 19 0 0 19
5 Computing

Õk
i=j f (i) for j, k , and f 32 0 0 32

6 Composing functions 46 3 0 49
7 Adding numbers in user-de�ned number system 14 4 0 18
8 Evaluating expressions and propositional formulas 105 7 0 112
9 Deciding lambda terms are well-formed or not 116 25 0 141
10 Di�erentiating algebraic expressions 162 35 0 197

Total 543 88 0 631

column. Furthermore, there are no errors which are detected only by the human-provided test cases
but missed by T���ML (the third sub-column of ‘# Error Programs’). This is remarkable because
the test cases are not a strawman; we have re�ned them several times over the past three years.
Despite of this e�ort, the latest version of our test cases for Problem 10 found only 7 more error
programs (162) compared to the oldest one (155). T���ML, however, found 42 more programs (197)
than the �rst version of test suite. In conclusion, T���ML found 631 erroneous submissions in total,
yet the manually-designed test cases only found 543.
The e�ectiveness of our technique comes from the ability to automatically examine numerous

submissions one by one. Because the instructor cannot predict the behaviors of divergent imple-
mentations or examine a huge set of programs individually, it is impossible to manually construct
a test set which includes all corner cases. We found that the students’ submissions are usually very
complex to understand and relatively sizable compared to instructor’s solution, which makes the
manual investigation more di�cult. However, as our technique is able to automatically generate a
counter-example of each submission without any manual e�ort, it can detect errors more precisely
than manually-designed test cases. We manually con�rmed that all erroneous programs newly
detected by our technique have actual errors.

Importance of Concise Test Cases. We also analyzed the experimental results qualitatively
as well as quantitatively. An interesting observation is that the counter-examples generated by
our technique are signi�cantly more concise than the manually-designed test cases. Consider the
following erroneous implementation of Problem 10.

1 let rec diff (e, var) =

2 match e with

3 | Times [hd] -> diff (hd, var)

4 | Times (hd::tl) ->

5 (match hd with

6 | Const a -> Times (hd::[diff (Times tl, var)])

7 | Var a ->

8 if (a = var) then Sum (hd::(diff (Times tl, var)::[diff (Times tl, var)]))

9 else Times (hd::[diff (Times tl, var)])

Proc. ACM Program. Lang., Vol. , No. OOPSLA, Article . Publication date: October 2019.



Comparison with property-based testing

• Used QCheck, a property-based testing tool for OCaml.

• Manually designed well-tuned test generator and shrinker for QCheck.

• TestML outperforms QCheck without any human effort.
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Table 2. Comparison with QCheck. ‘#E’ reports the number of detected erroneous programs and ‘Time’
reports the total amount of time to produce all the counter-examples.

No Problem Description QCheck1 QCheck2 T���ML
#E Time # E Time #E Time

1 Finding a maximum element in a list 45 86.0 38 72.6 45 0.5
3 Mirroring a binary tree 9 0.0 9 0.0 9 0.3
4 Checking membership in a binary tree 19 0.0 19 0.0 19 0.5
7 Adding numbers in user-de�ned number system 18 0.8 18 0.8 18 0.3
8 Evaluating expressions and propositional formulas 112 3.7 112 10.5 112 6.5
9 Deciding lambda terms are well-formed or not 139 110.4 130 555.8 141 10.4
10 Di�erentiating algebraic expressions 186 390.1 182 318.6 197 86.6

Total 528 592.0 508 958.4 541 105.1

The result also shows that T���ML is far more e�cient than QCheck in time cost. Because
QCheck basically performs random testing, it has some di�culties in �nding a speci�c counter-
example within a short time. Even it successfully generates a counter-example, QCheck often
produces multiple lines of long test cases which are hard to understand. As we mentioned in
the paragraph “Importance of Concise Test Cases” in Section 6.1, generating concise test cases is
important in logical error detection; thus, it is very natural for programmers to build an additional
input shrinker to simplify the test cases generated by QCheck. However, we found that the input
shrinker often degrades the performance as it spends more time shortening the test cases. The
evaluation results show that QCheck without any shrinkers took about 592.0 seconds in total
for generating 528 counter-examples, and 958.4 seconds for 508 counter-examples otherwise. In
contrast, T���ML generated 541 concise test cases with no needs for shrinking algorithm, and it
only took 105.1 seconds in total.

QCheck Requires Signi�cant Manual E�ort. The most important point is that our technique
outperforms the property-based test generator without anymanual e�ort such as an implementation
of a test generator or a shrinker. We found that the performance of QCheck heavily depends on
the given generator. For a proper experiment, we have built the generators and shrinkers as
well-designed as possible to generate counter-examples in reasonable time. For instance, if a
program does not need a large integer value, we designed a generator to only produce the small
unsigned integers (e.g. integers between 0 and 100). Without this optimization, we observed that
the performance of�ickCheck is seriously degraded. In an extreme case, it failed to detect a single
counter-example for some problems even with a 20-minute time budget. Thus, developers should
carefully design generators and shrinkers to use QCheck e�ectively; it, however, requires a lot of
e�ort and intuition to do so. Indeed, to achieve the result of the columns ‘QCheck1’ and ‘QCheck2’
in Table 2, we tried several experiments with a number of generators and shrinkers (more than 5
for each problem) and reported the best performance among the several trials. Unlike QCheck, our
technique does not require any such human e�ort for e�ective testing.

Di�culty of Testing Higher-order Functions. Since QCheck does not support a function
generator, we were not able to evaluate it on the three higher-order problems which take a function
as an input. To design a test generator and an input shrinker for functional test cases manually is
challenging as they require programmers to design grammar for an input function. Some researches
focus on addressing the problem of testing higher-order function in property-based testing (e.g.,
[Koopman and Plasmeijer 2006]).
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Test-suite Overfitted Patch
• Test-case-based program repair sometimes produces test-suite 

overfitted patches which satisfy only given test cases.
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let rec eval_exp e = 
  match e with 
  | Num n -> n 
  | Add (e1, e2) -> (eval_exp e1) + (eval_exp e2) 
  | Sub (e1, e2) -> (eval_exp e1) + (eval_exp e2) 

let rec eval f = 
  match f with 
  | True -> true 
  | False -> false 
  | Not f -> not (eval f) 
  | AndAlso (f1, f2) -> (eval f1) && (eval f2) 
  | OrElse (f1, f2) -> (eval f1) || (eval f2) 
  | Imply (f1, f2) -> not (eval f1) || (eval f2) 
  | Less (e1, e2) -> (eval_exp e1) < (eval_exp e2)

Input Output

Less (Num 1, Num 2) true 

Less (Sub (Num 1, Num 2), Num 4) true 

Less (Add (Num 1, Num 3), Sub (Num 2, Num 3)) false 

Buggy Program

Test Cases
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Counter-example Guided Repair

• Verify the correctness of generated patch by generating 
counter-example.

• Supplement the given test suite with newly found counter 
examples, and try to fix the error again.
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Fig. 8. Overall workflow of Counter-Example Guided Repair System

generates a patch by correcting the error in the given incorrect program and validates the patch
by counter-example generation. If the counter-example generator produces a counter-example of
the generated repair candidate, the system enriches the test suite by adding the newly discovered
counter-example and tries to repair the original error program again. It repeats this procedure until
there is no counter-example found by the counter-example generator. In this case, it concludes that
the patch is correct and returns it. If the patch generator fails to generate a repair candidate, the
system reports that generating a patch is failed.

Experimental Se�ing. For evaluation, we implemented a counter-example guided repair system
based on F��ML [Lee et al. 2018b], a state-of-the-art feedback generator for functional programming
assignments. As F��ML requires a reference implementation to e�ectively repair a buggy program,
we provided a solution program implemented by an instructor as a reference code. The benchmark
set is the same with the one used in the Table 1. To run F��ML, we provided 10 manually-designed
test cases used in Experiment 1 for each problem while the counter-example guided repair system
did not take any test cases beforehand. We set the timeouts for both the patch generation and
counter-example generation to 60 seconds. To identify the test-suite-over�tted patch problems
generated by F��ML, we manually con�rmed the correctness of all generated patches one by one
thoroughly. We classi�ed a patch as correct one when its semantics is the same with the one
of the solution code (i.e., it always returns the same output as the correct answer), and did as a
test-suite-over�tted patch otherwise.

Result. In Table 3, we present the number of detected error programs (#E), the number of correct
patches generated by F��ML (#P), the number of test-suite-over�tted patches (#O), and the ratio
of successfully repaired programs with respect to the entire programs (Rate). We compare the
performance of F��ML when using manual-test-cases (Manual Test Suite) with the one enhanced
by our counter-example generation algorithm (Our Technique). The result in Table 3 shows that the
counter-example guided approach dramatically improved the performance of F��ML. The number
of test-suite-over�tted patches notably decreased from 58 to 1 as the counter-example guided repair
system veri�es the correctness of patch candidates by generating counter-examples. As a result,
the patch rate eventually increased from 29% (156/543) to 38% (237/631) as well as the total number
of patches.

Even if our counter-example guided repair approach signi�cantly reduces the number of incorrect
patches, there was still an incorrect patch in Problem 5. Our technique failed to generate a counter-
example because its performance depends on SMT solver in symbolic veri�cation step and the
given solving time (50 milliseconds) was not enough to solve it. Because the insu�cient time is the
only reason for failure, this problem can be easily addressed by giving the solver more time. We
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Usefulness in Automatic Program Repair

• Applied our counter-example generation algorithm to FixML.

• Significantly reduce the number of test-suite overfitted patches 
(58 to 1).

• The patch rate eventually increased (from 29% to 38%).
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Table 3. Enhancement in automatic program repair. The column ‘#E’ indicates the number of detected error
programs, ‘#P’ reports the number of correct patches , ‘#O’ shows the number of test-suite-overfi�ed patches,
‘Rate’ represents the ratio of correctly patched programs to the erroneous programs.

No Problem Description Manual Test Suite Our Technique
#E #P #O Rate #E #P #O Rate

1 Finding a maximum element in a list 35 32 0 90% 45 42 0 93%
2 Filtering a list 5 3 0 60% 9 6 0 67%
3 Mirroring a binary tree 9 7 1 78% 9 8 0 89%
4 Checking membership in a binary tree 19 11 1 58% 19 12 0 63%
5 Computing

Õk
i=j f (i) for j, k , and f 32 11 6 34% 32 16 1 50%

6 Composing functions 46 17 0 37% 49 20 0 41%
7 Adding numbers in user-de�ned number system 14 4 2 29% 18 9 0 50%
8 Evaluating expressions and propositional formulas 105 29 12 28% 112 45 0 40%
9 Deciding lambda terms are well-formed or not 116 16 29 14% 141 33 0 23%
10 Di�erentiating algebraic expressions 162 26 7 16% 197 46 0 23%

Total/Average 543 156 58 29% 631 237 1 38%

observed that this incorrect patch also can be �xed when changing the timeout for solver from 50
milliseconds to 2 seconds.

7 RELATEDWORK
In this section, we discuss the researches closely related to our work. The existing works are
classi�ed into �ve categories according to their research �eld.

Property-based Testing. The property-based testing is a well-known approach for testing func-
tional programs. It aims to �nd test cases which fail to satisfy the prede�ned property, and
�ickCheck [Claessen and Hughes 2000] is the most famous framework for the property-based
testing. It, however, has a di�culty in generating function type test cases and requires users to build
test generators manually. To address these limitations, several researches have been proposed [Koop-
man and Plasmeijer 2006; Lampropoulos et al. 2017; Löscher and Sagonas 2017]. Koopman and
Plasmeijer [2006] improved property-based testing to test higher-order function more easily by
representing functions’ AST as a data type format and generating instances of this data type
using property-based testing tool. As constructing a test case generator is a burdensome task for
users, Lampropoulos et al. [2017] demonstrated Luck, a language which allows users to easily build,
read, and maintain the property-based test generators. Löscher and Sagonas [2017] proposed an
enhanced property-based testing called targeted property-based testing and implemented T�����
which uses a search strategy based guidance rather than completely random testing to generate
test cases more e�ectively. These recent works, however, still have the same limitation addressed
above; they basically require manual human e�ort, which is particularly undesirable when testing
numerous programs.

Symbolic Execution. Symbolic execution [Cadar et al. 2011; Khurshid et al. 2003; King 1976]
is another approach which is widely used in program testing. For example, it is used to check
the correctness of students’ program for providing an appropriate feedback [Phothilimthana and
Sridhara 2017; Singh et al. 2013]. It, however, has a well-known problem called path explosion
as it basically collects all execution paths of a program. Despite the modern high-performance
SAT and SMT solvers make symbolic execution practical by eliminating infeasible paths [Cadar
et al. 2008a,b], it is still hard to symbolically execute functional programs. In Section 6.3, we brie�y

Proc. ACM Program. Lang., Vol. , No. OOPSLA, Article . Publication date: October 2019.



Summary

• We proposed a novel technique for detecting logical errors in 
functional programming assignments without any human effort.

• Combining enumerative search and symbolic execution in a 
synergistic way 

• The evaluation results show that our technique is useful for 
error detection and program repair.

• Code and our data: https://github.com/kupl/TestML 
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Thank you for listening!
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Example3: Append Lists

• Stackoverflow example

!95

(* check whether the element e is in list l *) 
let rec find e l =  
  match l with 
  | [] -> false 
  | h::t -> if h = e then true else find e t 

(* append l1’s elements not in l2 *) 
let rec helper l1 l2 = 
  match l1 with 
  | [] -> l2  
  | h::t ->  
    if find h l2 = false then helper t (l2@[h]) 
    else helper t l2 

let append_list x y = helper x y

Test cases : 
append_list [1;3] [3;4;5] = [3;4;5;1] 
append_list [1] [3;3;4] = [3;4;1]
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FixML: (helper y [])

Time: 43 sec

Test cases : 
append_list [1;3] [3;4;5] = [3;4;5;1] 
append_list [1] [3;3;4] = [3;4;1]

Do not check the duplication in list y



Technique Utility

• Only statistical fault localization with enumerative search
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Technique Utility

• Statistical fault localization + type-directed search

!99

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120 140 160 180 200 220

Re
pa
ir-
Ti
m
e-
(s)

Benchmarks-solved

Localize

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120 140 160 180 200 220

Re
pa
ir-
Ti
m
e-
(s)

Benchmarks-solved

Localize Type



Technique Utility

• Localization + type-directed search + component reduction
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Failure reasons
1. Multiple error

2. Scalability issues

 

3. Cannot fix by replacing expressions
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Results: Similarity

• Calculate the top-1 similarity among the correct programs.

=> Providing feedback by detecting most similar solution is not 
much helpful.
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Fig. 11. Similarity between correct and incorrect submissions

Given f, a, and b, sigma f a b should compute
Õ

b

i=a f(i). The implementation works correctly as
long as f is injective (e.g. f = fun x -> x*x). However, it becomes incorrect when, for example, f
is (fun x -> x mod 3). The bug is at line 2, where the condition f a != f bmust be replaced by a
!= b. At an early stage of this work, F��MLwas not able to �nd this error, as such a counterexample
was missing in our testcases. We plan to automatically generate high-quality testcases, which then
enables F��ML not to miss tricky bugs.

Scalability. Although we have improved scalability signi�cantly, F��ML still needs more ad-
vanced program synthesis techniques to generate complex repairs. For instance, F��ML could not
�x the student’s submission below (Problem 13 in Table 1):
1 let rec diff (e, x)=

2 match e with

3 | Times lst ->

4 (match lst with

5 | [] -> Const 0

6 | hd::tl -> Times [diff (hd,x); diff (Times tl,x)]) |...

where a desirable �x is to replace Times [diff (hd,x); diff (Times tl,x)] (i.e., (f �)0 = f 0�0)
at line 6 with Sum [Times ((diff (hd,x))::tl); Times [hd; diff (Times tl,x)]] (i.e.,
(f �)0 = f 0� + f �0). However, F��ML failed to produce the correction even after 15 minutes. We
plan to develop more powerful synthesis techniques to generate sizable repairs.

5.5 Discussion 2: Similarity between Correct and Incorrect Submissions
A recent trend in automatic feedback generation systems is data-driven approach [Gulwani et al.
2018; Pu et al. 2016; Wang et al. 2018], where a number of correct implementations that are similar
to a given buggy program are exploited to �nd appropriate candidates for corrections. Readers
might wonder F��ML can bene�t from this promising and complementary approach. To answer
this question, we analyzed similarities between correct and incorrect programs submitted for our
13 benchmark problems in Table 1.

The analysis result in Fig. 11 implies that although the data-driven approach can be e�ective
for introductory-level problems, it would be unsuitable for more complex programs. In this study,
we checked whether we could �nd any similar programs for each incorrect submission using
M��� [Schleimer et al. 2003], a system for quantifying similarities between programs.5 For each
5For OCaml, we used the implementation available at https://github.com/Chris00/ocaml-moss
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• Evaluation of programming assignment heavily relies on given 
test cases.

• To properly evaluate students’ submissions, instructors manually 
design these test cases.

• However manually designed test cases sometimes miss some 
incorrect submissions.

Motivation
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Solve this problem by
generating counter-example automatically



Example1: Lambda Calculus

• Check all variables in given lambda calculus is bounded

!105

type var = string 
type lambda =  
  | V of var 
  | P of var * lambda 
  | C of lambda * lambda   

let rec remove (var,p) =  
  match p with 
  | V x -> if x = var then V “f” else V x 
  | P (x,p) -> P (x,remove (var,p)) 
  | C (p1,p2) -> C (remove (var,p1),remove (var,p2)) 

let rec check p =  
  match p with 
  | V x -> if x = “f” then true else false 
  | P (x,p) -> check (remove (x,p)) 
  | C (p1,p2) -> (check p1) && (check p2)

Test cases : 
check (V “x”) = false 
check (P (“y”, = false 
check (P (“x”, C (P true

𝖼𝗁𝖾𝖼𝗄(x) = 𝖿𝖺𝗅𝗌𝖾

𝖼𝗁𝖾𝖼𝗄(λx . ((λy . y) x)) = 𝗍𝗋𝗎𝖾
𝖼𝗁𝖾𝖼𝗄(λx . y) = 𝖿𝖺𝗅𝗌𝖾
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• Check all variables in given lambda calculus is bounded
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type lambda =  
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  | C of lambda * lambda   

let rec remove (var,p) =  
  match p with 
  | V x -> if x = var then V “f” else V x 
  | P (x,p) -> P (x,remove (var,p)) 
  | C (p1,p2) -> C (remove (var,p1),remove (var,p2)) 

let rec check p =  
  match p with 
  | V x -> if x = “f” then true else false 
  | P (x,p) -> check (remove (x,p)) 
  | C (p1,p2) -> (check p1) && (check p2)

Test cases : 
check (V “x”) = false 
check (P (“y”, = false 
check (P (“x”, C (P true

Counter Example :   V “f” = false

𝖼𝗁𝖾𝖼𝗄(x) = 𝖿𝖺𝗅𝗌𝖾

𝖼𝗁𝖾𝖼𝗄(λx . ((λy . y) x)) = 𝗍𝗋𝗎𝖾
𝖼𝗁𝖾𝖼𝗄(λx . y) = 𝖿𝖺𝗅𝗌𝖾

λx . x → λx . f

𝖼𝗁𝖾𝖼𝗄( f ) = 𝗍𝗋𝗎𝖾



Example2: Differentiation

• Generate more complicated input

!109

type aexp =  
  | Const of int 
  | Var of string 
  | Power of string * int 
  | Times of aexp list 
  | Sum of aexp list 

let rec diff (exp, var) = 
  match exp with 
  | Const n -> Const 0 
  | Var str -> if str = var then Const 1 else Const 0 
  | Power (str, n) -> if str = var && n > 0 then Times [Const n; Power (str, n-1)] else Const 0 
  | Times lst -> 
    (match lst with 
    | [] -> Const 0 
    | [hd] -> diff (hd, var) 
    | hd::tl -> Sum [Times (diff (hd, var)::tl); Times [hd; diff (Times tl, var)]]) 
  | Sum lst -> 
    (match lst with 
    | [] -> Const 0 
    | [hd] -> diff (hd, var) 
    | hd::tl -> Sum [diff (hd, var); diff (Times tl, var)])

Test cases : 
diff (Const 1,“x”) = Const 0 
diff (Var “x”,“x”) = Const 1 
diff (Power (“x”, 3),“x”) = Times[Const 3; Power (“x”, 2)]



Example2: Differentiation

• Generate more complicated input

!110

type aexp =  
  | Const of int 
  | Var of string 
  | Power of string * int 
  | Times of aexp list 
  | Sum of aexp list 

let rec diff (exp, var) = 
  match exp with 
  | Const n -> Const 0 
  | Var str -> if str = var then Const 1 else Const 0 
  | Power (str, n) -> if str = var && n > 0 then Times [Const n; Power (str, n-1)] else Const 0 
  | Times lst -> 
    (match lst with 
    | [] -> Const 0 
    | [hd] -> diff (hd, var) 
    | hd::tl -> Sum [Times (diff (hd, var)::tl); Times [hd; diff (Times tl, var)]]) 
  | Sum lst -> 
    (match lst with 
    | [] -> Const 0 
    | [hd] -> diff (hd, var) 
    | hd::tl -> Sum [diff (hd, var); diff (Times tl, var)])

( f(x) + h(x) + g(x))′� = f′�(x) + (g(x)h(x))′�

Test cases : 
diff (Const 1,“x”) = Const 0 
diff (Var “x”,“x”) = Const 1 
diff (Power (“x”, 3),“x”) = Times[Const 3; Power (“x”, 2)]



Example2: Differentiation

• Generate more complicated input

!111

type aexp =  
  | Const of int 
  | Var of string 
  | Power of string * int 
  | Times of aexp list 
  | Sum of aexp list 

let rec diff (exp, var) = 
  match exp with 
  | Const n -> Const 0 
  | Var str -> if str = var then Const 1 else Const 0 
  | Power (str, n) -> if str = var && n > 0 then Times [Const n; Power (str, n-1)] else Const 0 
  | Times lst -> 
    (match lst with 
    | [] -> Const 0 
    | [hd] -> diff (hd, var) 
    | hd::tl -> Sum [Times (diff (hd, var)::tl); Times [hd; diff (Times tl, var)]]) 
  | Sum lst -> 
    (match lst with 
    | [] -> Const 0 
    | [hd] -> diff (hd, var) 
    | hd::tl -> Sum [diff (hd, var); diff (Times tl, var)])

Counter Example :  
Sum[Var “x”; Var “x”;Const -1] => 2

( f(x) + h(x) + g(x))′� = f′�(x) + (g(x)h(x))′�

Test cases : 
diff (Const 1,“x”) = Const 0 
diff (Var “x”,“x”) = Const 1 
diff (Power (“x”, 3),“x”) = Times[Const 3; Power (“x”, 2)]



Example1: Lambda Calculus

• It is impossible for instructors to inspect every corner-cases for 
evaluation.

!112

type var = string 
type lambda =  
  | V of var 
  | P of var * lambda 
  | C of lambda * lambda   

let rec remove (var,p) =  
  match p with 
  | V x -> if x = var then V “f” else V x 
  | P (x,p) -> P (x,remove (var,p)) 
  | C (p1,p2) -> C (remove (var,p1),remove (var,p2)) 

let rec check p =  
  match p with 
  | V x -> if x = “f” then true else false 
  | P (x,p) -> check (remove (x,p)) 
  | C (p1,p2) -> (check p1) && (check p2)



Example1: Lambda Calculus

• It is impossible for instructors to inspect every corner-cases for 
evaluation.

!113

type var = string 
type lambda =  
  | V of var 
  | P of var * lambda 
  | C of lambda * lambda   

let rec remove (var,p) =  
  match p with 
  | V x -> if x = var then V “f” else V x 
  | P (x,p) -> P (x,remove (var,p)) 
  | C (p1,p2) -> C (remove (var,p1),remove (var,p2)) 

let rec check p =  
  match p with 
  | V x -> if x = “f” then true else false 
  | P (x,p) -> check (remove (x,p)) 
  | C (p1,p2) -> (check p1) && (check p2)



Example1: Lambda Calculus

• It is impossible for instructors to inspect every corner-cases for 
evaluation.

!114

type var = string 
type lambda =  
  | V of var 
  | P of var * lambda 
  | C of lambda * lambda   

let rec remove (var,p) =  
  match p with 
  | V x -> if x = var then V “f” else V x 
  | P (x,p) -> P (x,remove (var,p)) 
  | C (p1,p2) -> C (remove (var,p1),remove (var,p2)) 

let rec check p =  
  match p with 
  | V x -> if x = “f” then true else false 
  | P (x,p) -> check (remove (x,p)) 
  | C (p1,p2) -> (check p1) && (check p2) Counter Example :  V “f” => false



Example2: Differentiation

• It is hard to identify error in complicated programs and 
generating error-triggering input is also nontrivial.

!115

type aexp =  
  | Const of int 
  | Var of string 
  | Power of string * int 
  | Times of aexp list 
  | Sum of aexp list 

let rec diff (exp, var) = 
  match exp with 
  | Const n -> Const 0 
  | Var str -> if str = var then Const 1 else Const 0 
  | Power (str, n) -> if str = var && n > 0 then Times [Const n; Power (str, n-1)] else Const 0 
  | Times lst -> 
    (match lst with 
    | [] -> Const 0 
    | [hd] -> diff (hd, var) 
    | hd::tl -> Sum [Times (diff (hd, var)::tl); Times [hd; diff (Times tl, var)]]) 
  | Sum lst -> 
    (match lst with 
    | [] -> Const 0 
    | [hd] -> diff (hd, var) 
    | hd::tl -> Sum [diff (hd, var); diff (Times tl, var)])



Example2: Differentiation

• It is hard to identify error in complicated programs and 
generating error-triggering input is also nontrivial.

!116

type aexp =  
  | Const of int 
  | Var of string 
  | Power of string * int 
  | Times of aexp list 
  | Sum of aexp list 

let rec diff (exp, var) = 
  match exp with 
  | Const n -> Const 0 
  | Var str -> if str = var then Const 1 else Const 0 
  | Power (str, n) -> if str = var && n > 0 then Times [Const n; Power (str, n-1)] else Const 0 
  | Times lst -> 
    (match lst with 
    | [] -> Const 0 
    | [hd] -> diff (hd, var) 
    | hd::tl -> Sum [Times (diff (hd, var)::tl); Times [hd; diff (Times tl, var)]]) 
  | Sum lst -> 
    (match lst with 
    | [] -> Const 0 
    | [hd] -> diff (hd, var) 
    | hd::tl -> Sum [diff (hd, var); diff (Times tl, var)])

( f(x) + h(x) + g(x))′� = f′�(x) + (g(x)h(x))′�



Example2: Differentiation

• It is hard to identify error in complicated programs and 
generating error-triggering input is also nontrivial.

!117

type aexp =  
  | Const of int 
  | Var of string 
  | Power of string * int 
  | Times of aexp list 
  | Sum of aexp list 

let rec diff (exp, var) = 
  match exp with 
  | Const n -> Const 0 
  | Var str -> if str = var then Const 1 else Const 0 
  | Power (str, n) -> if str = var && n > 0 then Times [Const n; Power (str, n-1)] else Const 0 
  | Times lst -> 
    (match lst with 
    | [] -> Const 0 
    | [hd] -> diff (hd, var) 
    | hd::tl -> Sum [Times (diff (hd, var)::tl); Times [hd; diff (Times tl, var)]]) 
  | Sum lst -> 
    (match lst with 
    | [] -> Const 0 
    | [hd] -> diff (hd, var) 
    | hd::tl -> Sum [diff (hd, var); diff (Times tl, var)])

Counter Example :  
Sum[Var “x”; Var “x”;Const -1] => 2

( f(x) + h(x) + g(x))′� = f′�(x) + (g(x)h(x))′�


