
함수형 프로그래밍 과제 자동
채점 및 피드백 생성 시스템

2019.08.26
고려대학교 소프트웨어 분석 연구실

송도원

�1

�2

ML
Correct Program

ML
Incorrect Program

ML
Repaired Program

MLMLMLML

Statistical Fault
Localization

Program Synthesis
Testcases

Component
Reduction

Type-directed
Enumeration

Symbolic
Execution

• Automatically feedback generation system for logical errors in functional
programming assignment.

Today’s Talk: Part1

�3

• Automatic counter-example generation to detect incorrect submissions
without human-designed test cases.

Today’s Talk: Part2

ML
Correct

Incorrect
ML

Generator Verifier

Counter-example

Symbolic Test Case

Fail to Verify

x = 1
y = 0

…

Automatic Diagnosis and Correction
of Logical Errors for Functional

Programming Assignments

Junho Lee, Dowon Song, Sunbeom So, and Hakjoo Oh
Korea University

9 November 2018
OOPSLA`18 @ Boston, U.S.A.

158

Automatic Diagnosis and Correction of Logical Errors for
Functional Programming Assignments

JUNHO LEE, Korea University, Republic of Korea
DOWON SONG, Korea University, Republic of Korea
SUNBEOM SO, Korea University, Republic of Korea
HAKJOO OH∗, Korea University, Republic of Korea

We present FixML, a system for automatically generating feedback on logical errors in functional programming
assignments. As functional languages have been gaining popularity, the number of students enrolling functional
programming courses has increased significantly. However, the quality of feedback, in particular for logical
errors, is hardly satisfying. To provide personalized feedback on logical errors, we present a new error-
correction algorithm for functional languages, which combines statistical error-localization and type-directed
program synthesis enhanced with components reduction and search space pruning using symbolic execution.
We implemented our algorithm in a tool, called FixML, and evaluated it with 497 students’ submissions from
13 exercises, including not only introductory but also more advanced problems. Our experimental results
show that our tool effectively corrects various and complex errors: it fixed 43% of the 497 submissions in 5.4
seconds on average and managed to fix a hard-to-find error in a large submission, consisting of 154 lines.
We also performed user study with 18 undergraduate students and confirmed that our system actually helps
students to better understand their programming errors.

CCS Concepts: • Software and its engineering→ Automatic programming; Functional languages;

Additional Key Words and Phrases: Automated Program Repair, Program Synthesis

ACM Reference Format:
Junho Lee, Dowon Song, Sunbeom So, and Hakjoo Oh. 2018. Automatic Diagnosis and Correction of Log-
ical Errors for Functional Programming Assignments. Proc. ACM Program. Lang. 2, OOPSLA, Article 158
(November 2018), 30 pages. https://doi.org/10.1145/3276528

1 INTRODUCTION

Motivation. Themotivation for this work originated from an undergraduate course on functional
programming taught by the authors over the last few years. As functional languages have been
gaining popularity, the number of students enrolling the course has increased significantly. The
quality of feedback, however, hardly satisfied the increased demands. Because most students have
no experience in functional languages, they often have more difficulty with various programming
errors than learning other languages such as Java or Python. However, assisting students to resolve

∗Corresponding author

Authors’ addresses: Junho Lee, junho_lee@korea.ac.kr, Department of Computer Science and Engineering, Korea University,
145, Anam-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea; Dowon Song, dowon_song@korea.ac.kr, Department of
Computer Science and Engineering, Korea University, 145, Anam-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea; Sunbeom
So, sunbeom_so@korea.ac.kr, Department of Computer Science and Engineering, Korea University, 145, Anam-ro, Sungbuk-
gu, Seoul, 02841, Republic of Korea; Hakjoo Oh, hakjoo_oh@korea.ac.kr, Department of Computer Science and Engineering,
Korea University, 145, Anam-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).
2475-1421/2018/11-ART158
https://doi.org/10.1145/3276528

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 158. Publication date: November 2018.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

�4

• T.A. experience in functional programming course.

• A lot of e-mails about assignments

Motivation

!5

Dear T.A. …

T.A.Student

49 Replies for a homework!!

Motivation
1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1:28 Anon.

6 | Sum of aexp list

7
8 let rec diff : aexp * string -> aexp

9 = fun (e, x) ->

10 match e with

11 | Const n -> Const 0

12 | Var a -> if (a <> x) then Const 0 else Const 1

13 | Power (a, n) -> if (a <> x) then Const 0 else Times [Const n; Power (a, n-1)]

14 | Times l ->

15 begin

16 match l with

17 | [] -> Const 0

18 | hd::tl -> Sum [Times ((diff (hd, x))::tl); Times [hd; diff (Times tl, x)]]

19 end

20 | Sum l -> Sum (List.map (fun e -> diff (e,x)) l)

B LANGUAGE
The full language of F��ML is as follows:

E ::= () | n | x | true | false | str | �x.E | E1 + E2 | E1 � E2 | E1 ⇥ E2 | E1/E2 | E1 mod E2 | �E
| not E | E1 | | E2 | E1 &&E2 | E1 < E2 | E1 > E2 | E1 E2 | E1 � E2 | E1 = E2 | E1<>E2
| E1 E2 | E1::E2 | E1@E2 | E1ˆE2 | raise E | (E1, . . . ,Ek) | [E1; . . . ;Ek]
| if E1 E2 E3 | c (E1, . . . ,Ek) | let x = E1 in E2 | let rec f (x) = E1 in E2
| let x1 = E1 and . . . and xk = Ek in E | let rec f1 (x1) = E1 and . . . and fk (xk) = Ek in E
| match E with p1 ! E1 | · · · | pk ! Ek
| ⇤

� ::= unit | int | bool | string | exn | �1 ! �2 | � list | T | (�1⇤ . . . ⇤�k) | �
p ::= n | x | true | false | p1 :: p2 | [p1; . . . ;pk] | (p1, . . . ,p2) | c (p1, . . . ,pk) | p1 | · · · | pk | _

C FEEDBACK ON A LARGE PROGRAM
F��ML was able to accurately identify and �x the error at line 123 in the following student program
for problem #13 in 3.4 seconds.

1 type aexp =

2 |CONST of int

3 | VAR of string

4 | POWER of string * int

5 | TIMES of aexp list

6 | SUM of aexp list

7
8 type env = (string * int * int) list

9
10 let diff : aexp * string -> aexp

11 = fun (aexp, x) ->

12
13 let rec deployEnv : env -> int -> aexp list

14 = fun env flag ->

15 match env with

16 | hd::tl ->

17 (

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

모범답안

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1:28 Anon.

6 | Sum of aexp list

7
8 let rec diff : aexp * string -> aexp

9 = fun (e, x) ->

10 match e with

11 | Const n -> Const 0

12 | Var a -> if (a <> x) then Const 0 else Const 1

13 | Power (a, n) -> if (a <> x) then Const 0 else Times [Const n; Power (a, n-1)]

14 | Times l ->

15 begin

16 match l with

17 | [] -> Const 0

18 | hd::tl -> Sum [Times ((diff (hd, x))::tl); Times [hd; diff (Times tl, x)]]

19 end

20 | Sum l -> Sum (List.map (fun e -> diff (e,x)) l)

B LANGUAGE
The full language of F��ML is as follows:

E ::= () | n | x | true | false | str | �x.E | E1 + E2 | E1 � E2 | E1 ⇥ E2 | E1/E2 | E1 mod E2 | �E
| not E | E1 | | E2 | E1 &&E2 | E1 < E2 | E1 > E2 | E1 E2 | E1 � E2 | E1 = E2 | E1<>E2
| E1 E2 | E1::E2 | E1@E2 | E1ˆE2 | raise E | (E1, . . . ,Ek) | [E1; . . . ;Ek]
| if E1 E2 E3 | c (E1, . . . ,Ek) | let x = E1 in E2 | let rec f (x) = E1 in E2
| let x1 = E1 and . . . and xk = Ek in E | let rec f1 (x1) = E1 and . . . and fk (xk) = Ek in E
| match E with p1 ! E1 | · · · | pk ! Ek
| ⇤

� ::= unit | int | bool | string | exn | �1 ! �2 | � list | T | (�1⇤ . . . ⇤�k) | �
p ::= n | x | true | false | p1 :: p2 | [p1; . . . ;pk] | (p1, . . . ,p2) | c (p1, . . . ,pk) | p1 | · · · | pk | _

C FEEDBACK ON A LARGE PROGRAM
F��ML was able to accurately identify and �x the error at line 123 in the following student program
for problem #13 in 3.4 seconds.

1 type aexp =

2 |CONST of int

3 | VAR of string

4 | POWER of string * int

5 | TIMES of aexp list

6 | SUM of aexp list

7
8 type env = (string * int * int) list

9
10 let diff : aexp * string -> aexp

11 = fun (aexp, x) ->

12
13 let rec deployEnv : env -> int -> aexp list

14 = fun env flag ->

15 match env with

16 | hd::tl ->

17 (

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Automatic Error Correction for Functional Programming Assignments 1:29

18 match hd with

19 |(x, c, p) ->

20 if (flag = 0 && c = 0) then deployEnv tl flag

21 else if (x = �const� && flag = 1 && c = 1) then deployEnv tl flag

22 else if (p = 0) then (CONST c)::(deployEnv tl flag)

23 else if (c = 1 && p = 1) then (VAR x)::(deployEnv tl flag)

24 else if (p = 1) then TIMES[CONST c; VAR x]::(deployEnv tl flag)

25 else if (c = 1) then POWER(x, p)::(deployEnv tl flag)

26 else TIMES [CONST c; POWER(x, p)]::(deployEnv tl flag)

27)

28 | [] -> []

29 in

30
31 let rec updateEnv : (string * int * int) -> env -> int -> env

32 = fun elem env flag ->

33 match env with

34 | (hd::tl) ->

35 (

36 match hd with

37 | (x, c, p) ->

38 (

39 match elem with

40 |(x2, c2, p2) ->

41 if (flag = 0) then

42 if (x = x2 && p = p2) then (x, (c + c2), p)::tl

43 else hd::(updateEnv elem tl flag)

44 else

45 if (x = x2) then (x, (c*c2), (p + p2))::tl

46 else hd::(updateEnv elem tl flag)

47)

48)

49 | [] -> elem::[]

50 in

51
52 let rec doDiff : aexp * string -> aexp

53 = fun (aexp, x) ->

54 match aexp with

55 | CONST _ -> CONST 0

56 | VAR v ->

57 if (x = v) then CONST 1

58 else CONST 0

59 | POWER (v, p) ->

60 if (p = 0) then CONST 0

61 else if (x = v) then TIMES ((CONST p)::POWER (v, p-1)::[])

62 else CONST 0

63 | TIMES lst ->

64 (

65 match lst with

66 | (hd::[]) -> doDiff (hd, x)

67 | (hd::tl) ->

68 let diff_hd = doDiff(hd, x) in

69 let diff_tl = doDiff((TIMES tl), x) in

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1:30 Anon.

70 (

71 match (hd, diff_hd, tl, diff_tl) with

72 | (CONST p, CONST s, [CONST r], CONST q) -> CONST (p*q + r*s)

73 | (CONST p, _, _, CONST q) ->

74 if (diff_hd = CONST 0 || tl = [CONST 0]) then CONST (p*q)

75 else SUM [CONST(p*q); TIMES(diff_hd::tl)]

76 | (_, CONST s, [CONST r], _) ->

77 if (hd = CONST 0 || diff_tl = CONST 0) then CONST (r*s)

78 else SUM [TIMES [hd; diff_tl]; CONST(r*s)]

79 | _ ->

80 if (hd = CONST 0 || diff_tl = CONST 0) then TIMES(diff_hd::tl)

81 else if (tl = [CONST 0] || diff_hd = CONST 0) then TIMES [hd; diff_tl]

82 else SUM [TIMES [hd; diff_tl]; TIMES (diff_hd::tl)]

83)

84 | [] -> CONST 0

85)

86 | SUM lst -> SUM(List.map (fun aexp -> doDiff(aexp, x)) lst)

87 in

88
89 let rec simplify : aexp -> env -> int -> aexp list

90 = fun aexp env flag ->

91 match aexp with

92 | SUM lst ->

93 (

94 match lst with

95 | (CONST c)::tl -> simplify (SUM tl) (updateEnv (�const�, c, 0) env 0) 0

96 | (VAR x)::tl -> simplify (SUM tl) (updateEnv (x, 1, 1) env 0) 0

97 | (POWER (x, p))::tl -> simplify (SUM tl) (updateEnv (x, 1, p) env 0) 0

98 | (SUM lst)::tl -> simplify (SUM (List.append lst tl)) env 0

99 | (TIMES lst)::tl ->

100 (

101 let l = simplify (TIMES lst) [] 1 in

102 match l with

103 | h::t ->

104 if (t = []) then List.append l (simplify (SUM tl) env 0)

105 else List.append (TIMES l::[]) (simplify (SUM tl) env 0)

106 | [] -> []

107)

108 | [] -> deployEnv env 0

109)

110 | TIMES lst ->

111 (

112 match lst with

113 | (CONST c)::tl -> simplify (TIMES tl) (updateEnv (�const�, c, 0) env 1) 1

114 | (VAR x)::tl -> simplify (TIMES tl) (updateEnv (x, 1, 1) env 1) 1

115 | (POWER (x, p))::tl -> simplify (TIMES tl) (updateEnv (x, 1, p) env 1) 1

116 | (SUM lst)::tl ->

117 (

118 let l = simplify (SUM lst) [] 0 in

119 match l with

120 | h::t ->

121 if (t = []) then List.append l (simplify (TIMES tl) env 1)

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Automatic Error Correction for Functional Programming Assignments 1:31

122 else List.append (SUM l::[]) (simplify (TIMES tl) env 1)

123 | [] -> [] (* Feedback : Replace [] by ((Sum lst) :: tl) *)

124)

125 | (TIMES lst)::tl -> simplify (TIMES (List.append lst tl)) env 1

126 | [] -> deployEnv env 1

127)

128 in

129
130 let result = doDiff (aexp, x) in

131 match result with

132 | SUM _ -> SUM (simplify result [] 0)

133 | TIMES _ -> TIMES (simplify result [] 1)

134 | _ -> result

REFERENCES
Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. 2013. Recursive Program Synthesis. In Proceedings of the 25th

International Conference on Computer Aided Veri�cation (CAV’13). Springer-Verlag, Berlin, Heidelberg, 934–950. DOI:
http://dx.doi.org/10.1007/978-3-642-39799-8_67

Thomas Ball, Mayur Naik, and Sriram K. Rajamani. 2003. From Symptom to Cause: Localizing Errors in Counterexample
Traces. In Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’03).
ACM, New York, NY, USA, 97–105. DOI:http://dx.doi.org/10.1145/604131.604140

Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow. 2017. DeepCoder: Learning
to Write Programs. In ICLR.

Sahil Bhatia and Rishabh Singh. 2016. Automated Correction for Syntax Errors in Programming Assignments using Recurrent
Neural Networks. CoRR abs/1603.06129 (2016). arXiv:1603.06129 http://arxiv.org/abs/1603.06129

Sheng Chen and Martin Erwig. 2014. Counter-factual Typing for Debugging Type Errors. In Proceedings of the 41st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’14). ACM, New York, NY, USA, 583–594.
DOI:http://dx.doi.org/10.1145/2535838.2535863

Loris D’Antoni, Roopsha Samanta, and Rishabh Singh. 2016. Qlose: Program Repair with Quantiative Objectives. (July 2016).
https://www.microsoft.com/en-us/research/publication/qlose-program-repair-with-quantiative-objectives/

Yu Feng, Ruben Martins, Jacob Van Ge�en, Isil Dillig, and Swarat Chaudhuri. 2017a. Component-based Synthesis of
Table Consolidation and Transformation Tasks from Examples. In Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI 2017). ACM, New York, NY, USA, 422–436. DOI:http:
//dx.doi.org/10.1145/3062341.3062351

Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W. Reps. 2017b. Component-based Synthesis for Complex
APIs. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2017). ACM,
New York, NY, USA, 599–612. DOI:http://dx.doi.org/10.1145/3009837.3009851

John K. Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing Data Structure Transformations from Input-output
Examples. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’15). ACM, New York, NY, USA, 229–239. DOI:http://dx.doi.org/10.1145/2737924.2737977

Stephanie Forrest, ThanhVu Nguyen, Westley Weimer, and Claire Le Goues. 2009. A Genetic Programming Approach
to Automated Software Repair. In Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation
(GECCO ’09). ACM, New York, NY, USA, 947–954. DOI:http://dx.doi.org/10.1145/1569901.1570031

Jonathan Frankle, Peter-Michael Osera, David Walker, and Steve Zdancewic. 2016. Example-directed Synthesis: A Type-
theoretic Interpretation. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’16). ACM, New York, NY, USA, 802–815. DOI:http://dx.doi.org/10.1145/2837614.2837629

Andreas Griesmayer, Stefan Staber, and Roderick Bloem. 2007. Automated Fault Localization for C Programs. Electron.
Notes Theor. Comput. Sci. 174, 4 (May 2007), 95–111. DOI:http://dx.doi.org/10.1016/j.entcs.2006.12.032

Alex Groce, Sagar Chaki, Daniel Kroening, and Ofer Strichman. 2006. Error Explanation with Distance Metrics. Int. J. Softw.
Tools Technol. Transf. 8, 3 (June 2006), 229–247. DOI:http://dx.doi.org/10.1007/s10009-005-0202-0

Sumit Gulwani. 2011. Automating String Processing in Spreadsheets Using Input-output Examples. In Proceedings of the
38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’11). ACM, New York,
NY, USA, 317–330. DOI:http://dx.doi.org/10.1145/1926385.1926423

Sumit Gulwani, Ivan Radicek, and Florian Zuleger. 2018. Automated Clustering and Program Repair for Introductory
Programming Assignments (PLDI ’18). To appear.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

학생 제출 답안

!6

Student’s implementation: Solution:

TA:
Hard to provide feedback!

Students:
Solution is meaningless…

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1:28 Anon.

6 | Sum of aexp list

7
8 let rec diff : aexp * string -> aexp

9 = fun (e, x) ->

10 match e with

11 | Const n -> Const 0

12 | Var a -> if (a <> x) then Const 0 else Const 1

13 | Power (a, n) -> if (a <> x) then Const 0 else Times [Const n; Power (a, n-1)]

14 | Times l ->

15 begin

16 match l with

17 | [] -> Const 0

18 | hd::tl -> Sum [Times ((diff (hd, x))::tl); Times [hd; diff (Times tl, x)]]

19 end

20 | Sum l -> Sum (List.map (fun e -> diff (e,x)) l)

B LANGUAGE
The full language of F��ML is as follows:

E ::= () | n | x | true | false | str | �x.E | E1 + E2 | E1 � E2 | E1 ⇥ E2 | E1/E2 | E1 mod E2 | �E
| not E | E1 | | E2 | E1 &&E2 | E1 < E2 | E1 > E2 | E1 E2 | E1 � E2 | E1 = E2 | E1<>E2
| E1 E2 | E1::E2 | E1@E2 | E1ˆE2 | raise E | (E1, . . . ,Ek) | [E1; . . . ;Ek]
| if E1 E2 E3 | c (E1, . . . ,Ek) | let x = E1 in E2 | let rec f (x) = E1 in E2
| let x1 = E1 and . . . and xk = Ek in E | let rec f1 (x1) = E1 and . . . and fk (xk) = Ek in E
| match E with p1 ! E1 | · · · | pk ! Ek
| ⇤

� ::= unit | int | bool | string | exn | �1 ! �2 | � list | T | (�1⇤ . . . ⇤�k) | �
p ::= n | x | true | false | p1 :: p2 | [p1; . . . ;pk] | (p1, . . . ,p2) | c (p1, . . . ,pk) | p1 | · · · | pk | _

C FEEDBACK ON A LARGE PROGRAM
F��ML was able to accurately identify and �x the error at line 123 in the following student program
for problem #13 in 3.4 seconds.

1 type aexp =

2 |CONST of int

3 | VAR of string

4 | POWER of string * int

5 | TIMES of aexp list

6 | SUM of aexp list

7
8 type env = (string * int * int) list

9
10 let diff : aexp * string -> aexp

11 = fun (aexp, x) ->

12
13 let rec deployEnv : env -> int -> aexp list

14 = fun env flag ->

15 match env with

16 | hd::tl ->

17 (

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

모범답안

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1:28 Anon.

6 | Sum of aexp list

7
8 let rec diff : aexp * string -> aexp

9 = fun (e, x) ->

10 match e with

11 | Const n -> Const 0

12 | Var a -> if (a <> x) then Const 0 else Const 1

13 | Power (a, n) -> if (a <> x) then Const 0 else Times [Const n; Power (a, n-1)]

14 | Times l ->

15 begin

16 match l with

17 | [] -> Const 0

18 | hd::tl -> Sum [Times ((diff (hd, x))::tl); Times [hd; diff (Times tl, x)]]

19 end

20 | Sum l -> Sum (List.map (fun e -> diff (e,x)) l)

B LANGUAGE
The full language of F��ML is as follows:

E ::= () | n | x | true | false | str | �x.E | E1 + E2 | E1 � E2 | E1 ⇥ E2 | E1/E2 | E1 mod E2 | �E
| not E | E1 | | E2 | E1 &&E2 | E1 < E2 | E1 > E2 | E1 E2 | E1 � E2 | E1 = E2 | E1<>E2
| E1 E2 | E1::E2 | E1@E2 | E1ˆE2 | raise E | (E1, . . . ,Ek) | [E1; . . . ;Ek]
| if E1 E2 E3 | c (E1, . . . ,Ek) | let x = E1 in E2 | let rec f (x) = E1 in E2
| let x1 = E1 and . . . and xk = Ek in E | let rec f1 (x1) = E1 and . . . and fk (xk) = Ek in E
| match E with p1 ! E1 | · · · | pk ! Ek
| ⇤

� ::= unit | int | bool | string | exn | �1 ! �2 | � list | T | (�1⇤ . . . ⇤�k) | �
p ::= n | x | true | false | p1 :: p2 | [p1; . . . ;pk] | (p1, . . . ,p2) | c (p1, . . . ,pk) | p1 | · · · | pk | _

C FEEDBACK ON A LARGE PROGRAM
F��ML was able to accurately identify and �x the error at line 123 in the following student program
for problem #13 in 3.4 seconds.

1 type aexp =

2 |CONST of int

3 | VAR of string

4 | POWER of string * int

5 | TIMES of aexp list

6 | SUM of aexp list

7
8 type env = (string * int * int) list

9
10 let diff : aexp * string -> aexp

11 = fun (aexp, x) ->

12
13 let rec deployEnv : env -> int -> aexp list

14 = fun env flag ->

15 match env with

16 | hd::tl ->

17 (

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Automatic Error Correction for Functional Programming Assignments 1:29

18 match hd with

19 |(x, c, p) ->

20 if (flag = 0 && c = 0) then deployEnv tl flag

21 else if (x = �const� && flag = 1 && c = 1) then deployEnv tl flag

22 else if (p = 0) then (CONST c)::(deployEnv tl flag)

23 else if (c = 1 && p = 1) then (VAR x)::(deployEnv tl flag)

24 else if (p = 1) then TIMES[CONST c; VAR x]::(deployEnv tl flag)

25 else if (c = 1) then POWER(x, p)::(deployEnv tl flag)

26 else TIMES [CONST c; POWER(x, p)]::(deployEnv tl flag)

27)

28 | [] -> []

29 in

30
31 let rec updateEnv : (string * int * int) -> env -> int -> env

32 = fun elem env flag ->

33 match env with

34 | (hd::tl) ->

35 (

36 match hd with

37 | (x, c, p) ->

38 (

39 match elem with

40 |(x2, c2, p2) ->

41 if (flag = 0) then

42 if (x = x2 && p = p2) then (x, (c + c2), p)::tl

43 else hd::(updateEnv elem tl flag)

44 else

45 if (x = x2) then (x, (c*c2), (p + p2))::tl

46 else hd::(updateEnv elem tl flag)

47)

48)

49 | [] -> elem::[]

50 in

51
52 let rec doDiff : aexp * string -> aexp

53 = fun (aexp, x) ->

54 match aexp with

55 | CONST _ -> CONST 0

56 | VAR v ->

57 if (x = v) then CONST 1

58 else CONST 0

59 | POWER (v, p) ->

60 if (p = 0) then CONST 0

61 else if (x = v) then TIMES ((CONST p)::POWER (v, p-1)::[])

62 else CONST 0

63 | TIMES lst ->

64 (

65 match lst with

66 | (hd::[]) -> doDiff (hd, x)

67 | (hd::tl) ->

68 let diff_hd = doDiff(hd, x) in

69 let diff_tl = doDiff((TIMES tl), x) in

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1:30 Anon.

70 (

71 match (hd, diff_hd, tl, diff_tl) with

72 | (CONST p, CONST s, [CONST r], CONST q) -> CONST (p*q + r*s)

73 | (CONST p, _, _, CONST q) ->

74 if (diff_hd = CONST 0 || tl = [CONST 0]) then CONST (p*q)

75 else SUM [CONST(p*q); TIMES(diff_hd::tl)]

76 | (_, CONST s, [CONST r], _) ->

77 if (hd = CONST 0 || diff_tl = CONST 0) then CONST (r*s)

78 else SUM [TIMES [hd; diff_tl]; CONST(r*s)]

79 | _ ->

80 if (hd = CONST 0 || diff_tl = CONST 0) then TIMES(diff_hd::tl)

81 else if (tl = [CONST 0] || diff_hd = CONST 0) then TIMES [hd; diff_tl]

82 else SUM [TIMES [hd; diff_tl]; TIMES (diff_hd::tl)]

83)

84 | [] -> CONST 0

85)

86 | SUM lst -> SUM(List.map (fun aexp -> doDiff(aexp, x)) lst)

87 in

88
89 let rec simplify : aexp -> env -> int -> aexp list

90 = fun aexp env flag ->

91 match aexp with

92 | SUM lst ->

93 (

94 match lst with

95 | (CONST c)::tl -> simplify (SUM tl) (updateEnv (�const�, c, 0) env 0) 0

96 | (VAR x)::tl -> simplify (SUM tl) (updateEnv (x, 1, 1) env 0) 0

97 | (POWER (x, p))::tl -> simplify (SUM tl) (updateEnv (x, 1, p) env 0) 0

98 | (SUM lst)::tl -> simplify (SUM (List.append lst tl)) env 0

99 | (TIMES lst)::tl ->

100 (

101 let l = simplify (TIMES lst) [] 1 in

102 match l with

103 | h::t ->

104 if (t = []) then List.append l (simplify (SUM tl) env 0)

105 else List.append (TIMES l::[]) (simplify (SUM tl) env 0)

106 | [] -> []

107)

108 | [] -> deployEnv env 0

109)

110 | TIMES lst ->

111 (

112 match lst with

113 | (CONST c)::tl -> simplify (TIMES tl) (updateEnv (�const�, c, 0) env 1) 1

114 | (VAR x)::tl -> simplify (TIMES tl) (updateEnv (x, 1, 1) env 1) 1

115 | (POWER (x, p))::tl -> simplify (TIMES tl) (updateEnv (x, 1, p) env 1) 1

116 | (SUM lst)::tl ->

117 (

118 let l = simplify (SUM lst) [] 0 in

119 match l with

120 | h::t ->

121 if (t = []) then List.append l (simplify (TIMES tl) env 1)

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Automatic Error Correction for Functional Programming Assignments 1:31

122 else List.append (SUM l::[]) (simplify (TIMES tl) env 1)

123 | [] -> [] (* Feedback : Replace [] by ((Sum lst) :: tl) *)

124)

125 | (TIMES lst)::tl -> simplify (TIMES (List.append lst tl)) env 1

126 | [] -> deployEnv env 1

127)

128 in

129
130 let result = doDiff (aexp, x) in

131 match result with

132 | SUM _ -> SUM (simplify result [] 0)

133 | TIMES _ -> TIMES (simplify result [] 1)

134 | _ -> result

REFERENCES
Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. 2013. Recursive Program Synthesis. In Proceedings of the 25th

International Conference on Computer Aided Veri�cation (CAV’13). Springer-Verlag, Berlin, Heidelberg, 934–950. DOI:
http://dx.doi.org/10.1007/978-3-642-39799-8_67

Thomas Ball, Mayur Naik, and Sriram K. Rajamani. 2003. From Symptom to Cause: Localizing Errors in Counterexample
Traces. In Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’03).
ACM, New York, NY, USA, 97–105. DOI:http://dx.doi.org/10.1145/604131.604140

Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow. 2017. DeepCoder: Learning
to Write Programs. In ICLR.

Sahil Bhatia and Rishabh Singh. 2016. Automated Correction for Syntax Errors in Programming Assignments using Recurrent
Neural Networks. CoRR abs/1603.06129 (2016). arXiv:1603.06129 http://arxiv.org/abs/1603.06129

Sheng Chen and Martin Erwig. 2014. Counter-factual Typing for Debugging Type Errors. In Proceedings of the 41st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’14). ACM, New York, NY, USA, 583–594.
DOI:http://dx.doi.org/10.1145/2535838.2535863

Loris D’Antoni, Roopsha Samanta, and Rishabh Singh. 2016. Qlose: Program Repair with Quantiative Objectives. (July 2016).
https://www.microsoft.com/en-us/research/publication/qlose-program-repair-with-quantiative-objectives/

Yu Feng, Ruben Martins, Jacob Van Ge�en, Isil Dillig, and Swarat Chaudhuri. 2017a. Component-based Synthesis of
Table Consolidation and Transformation Tasks from Examples. In Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI 2017). ACM, New York, NY, USA, 422–436. DOI:http:
//dx.doi.org/10.1145/3062341.3062351

Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W. Reps. 2017b. Component-based Synthesis for Complex
APIs. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2017). ACM,
New York, NY, USA, 599–612. DOI:http://dx.doi.org/10.1145/3009837.3009851

John K. Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing Data Structure Transformations from Input-output
Examples. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’15). ACM, New York, NY, USA, 229–239. DOI:http://dx.doi.org/10.1145/2737924.2737977

Stephanie Forrest, ThanhVu Nguyen, Westley Weimer, and Claire Le Goues. 2009. A Genetic Programming Approach
to Automated Software Repair. In Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation
(GECCO ’09). ACM, New York, NY, USA, 947–954. DOI:http://dx.doi.org/10.1145/1569901.1570031

Jonathan Frankle, Peter-Michael Osera, David Walker, and Steve Zdancewic. 2016. Example-directed Synthesis: A Type-
theoretic Interpretation. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’16). ACM, New York, NY, USA, 802–815. DOI:http://dx.doi.org/10.1145/2837614.2837629

Andreas Griesmayer, Stefan Staber, and Roderick Bloem. 2007. Automated Fault Localization for C Programs. Electron.
Notes Theor. Comput. Sci. 174, 4 (May 2007), 95–111. DOI:http://dx.doi.org/10.1016/j.entcs.2006.12.032

Alex Groce, Sagar Chaki, Daniel Kroening, and Ofer Strichman. 2006. Error Explanation with Distance Metrics. Int. J. Softw.
Tools Technol. Transf. 8, 3 (June 2006), 229–247. DOI:http://dx.doi.org/10.1007/s10009-005-0202-0

Sumit Gulwani. 2011. Automating String Processing in Spreadsheets Using Input-output Examples. In Proceedings of the
38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’11). ACM, New York,
NY, USA, 317–330. DOI:http://dx.doi.org/10.1145/1926385.1926423

Sumit Gulwani, Ivan Radicek, and Florian Zuleger. 2018. Automated Clustering and Program Repair for Introductory
Programming Assignments (PLDI ’18). To appear.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

학생 제출 답안

!7

Student’s implementation: Solution:

Time: 3.4 sec

Just Replace “[]”
by“SUM tl”

Automated T.A.

Goal

Example1: Mirroring Tree

• Warming up!

!8

type btree =
 | Empty
 | Node of int * btree * btree

let rec mirror tree =
 match tree with
 | Empty -> Empty
 | Node (n,l,r) -> Node (n,r,l)

1

2

3 4

1

2

4 3

mirror

Example1: Mirroring Tree

• Warming up!

!9

type btree =
 | Empty
 | Node of int * btree * btree

let rec mirror tree =
 match tree with
 | Empty -> Empty
 | Node (n,l,r) -> Node (n,r,l)

1

2

3 4

1

2

3 4

1

2

4 3

mirror

Example1: Mirroring Tree

• Warming up!

!10

type btree =
 | Empty
 | Node of int * btree * btree

let rec mirror tree =
 match tree with
 | Empty -> Empty
 | Node (n,l,r) -> Node (n,r,l)

FixML: Node (n, mirror r, mirror l)

Time: 0.1 sec

1

2

3 4

mirror
1

2

4 3

1

2

4 3

Example2: Natural Numbers

• More complicated program

!11

type nat =
 |ZERO
 |SUCC of nat

let rec natadd n1 n2 =
 match n1 with
 |ZERO -> ZERO
 |SUCC n -> SUCC (natadd n n2)

let rec natmul n1 n2 =
 match n1 with
 | ZERO -> ZERO
 | SUCC ZERO -> n2
 | SUCC n1’ ->
 SUCC(match n2 with
 | ZERO -> ZERO
 | SUCC ZERO -> SUCC ZERO
 | SUCC n2’ -> SUCC (natmul n1’ (natmul n1 n2’))
)

Test cases :
natmul (ZERO) (SUCC ZERO) = ZERO
natmul (SUCC ZERO) (SUCC ZERO) = SUCC ZERO
natmul (SUCC(SUCC ZERO)) (SUCC(SUCC(SUCC ZERO)))
= SUCC(SUCC(SUCC(SUCC(SUCC(SUCC ZERO)))))

Example2: Natural Numbers

• More complicated program

!12

type nat =
 |ZERO
 |SUCC of nat

let rec natadd n1 n2 =
 match n1 with
 |ZERO -> ZERO
 |SUCC n -> SUCC (natadd n n2)

let rec natmul n1 n2 =
 match n1 with
 | ZERO -> ZERO
 | SUCC ZERO -> n2
 | SUCC n1’ ->
 SUCC(match n2 with
 | ZERO -> ZERO
 | SUCC ZERO -> SUCC ZERO
 | SUCC n2’ -> SUCC (natmul n1’ (natmul n1 n2’))
)

Test cases :
natmul (ZERO) (SUCC ZERO) = ZERO
natmul (SUCC ZERO) (SUCC ZERO) = SUCC ZERO
natmul (SUCC(SUCC ZERO)) (SUCC(SUCC(SUCC ZERO)))
= SUCC(SUCC(SUCC(SUCC(SUCC(SUCC ZERO)))))

2 + (n1 − 1) × (n1 × (n2 − 1))

Wrong formula:

Example2: Natural Numbers

• More complicated program

!13

type nat =
 |ZERO
 |SUCC of nat

let rec natadd n1 n2 =
 match n1 with
 |ZERO -> ZERO
 |SUCC n -> SUCC (natadd n n2)

let rec natmul n1 n2 =
 match n1 with
 | ZERO -> ZERO
 | SUCC ZERO -> n2
 | SUCC n1’ ->
 SUCC(match n2 with
 | ZERO -> ZERO
 | SUCC ZERO -> SUCC ZERO
 | SUCC n2’ -> SUCC (natmul n1’ (natmul n1 n2’))
)

Test cases :
natmul (ZERO) (SUCC ZERO) = ZERO
natmul (SUCC ZERO) (SUCC ZERO) = SUCC ZERO
natmul (SUCC(SUCC ZERO)) (SUCC(SUCC(SUCC ZERO)))
= SUCC(SUCC(SUCC(SUCC(SUCC(SUCC ZERO)))))

2 + (n1 − 1) × (n1 × (n2 − 1))

Wrong formula:

FixML:
natadd n2(natmul n1’ n2)

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 Anon.

F��ML can correct diverse types of logical errors. For example, consider the incorrect program
written by another student:

1 let rec diff (e,x) =

2 match e with

3 | SUM [] -> SUM []

4 | SUM (h::[]) -> CONST 0 (* Feedback: Replace �CONST 0� by �diff (h,x)� *)

5 | SUM (h::t) -> SUM [diff (h,x); diff (SUM t,x)] | ...

In this case, the program is incorrect as it does not di�erentiate the head element h at line 4. With
the same solution and testcases, F��ML corrects the error by replacing the expression CONST 0 by
diff (h,x) in 0.7 seconds.

Note that the two student submissions are substantially di�erent from the instructor’s solution.
For example, in Appendix A, the instructor implemented the SUM case using List.map as follows
(Problem #13):

1 let rec diff (e,x) =

2 match e with

3 | SUM l -> SUM (List.map (fun e -> diff (e,x)) l) | ...

We observed that, for nontrivial programming assignments, students use many di�erent ways of
implementing the required functionality (see Section 5.5). The development of F��MLwas motivated
by the di�erence between the solution and submissions, which makes it di�cult for students to
identify and correct the errors in their own programs.
Furthermore, F��ML can introduce more complex expressions such as conditional expressions.

For example, consider the following code:

1 let rec diff (e,x) =

2 match e with

3 | Var v -> CONST 1 (* Feedback: Replace �Const 1� by �Const (if (x=v) then 1 else 0)� *) | ...

The program has an error at line 3, where the student missed the case when the variable v equals
to the input variable x. F��ML correctly identi�ed this error and corrected the expression 1 by if

var=str then 1 else 0 in 2.1 seconds.

Example 2 (Natural Numbers). The next problem is to implement functions that add and
multiply user-de�ned natural numbers. The natural number can be de�ned in datatype as follows:

1 type nat = ZERO | SUCC of nat

For instance, (SUCC (SUCC ZERO)) denotes 2. The goal of the problem is to de�ne two functions
natadd: nat -> nat -> nat and natmul: nat -> nat -> nat, which take two natural numbers
as input and produce their addition and multiplication, respectively. For example, natadd (SUCC

(SUCC ZERO)) (SUCC ZERO) and natmul (SUCC (SUCC ZERO)) (SUCC ZERO) should produce
(SUCC (SUCC (SUCC ZERO))) and (SUCC (SUCC ZERO))), respectively.

Fig. 2 shows an erroneous program written by a student, where natadd is correct but natmul
has a big conceptual error. Note that multiplication is inductively de�ned with addition as follows:

n1 ⇥ n2 =

⇢
0 n1 = 0
n2 + (n1 � 1) ⇥ n2 n1 , 0

However, the student could not conceive this equation and implemented the wrong codes at lines 5–
8, where a substantial modi�cation is needed to correct the program. Impressively, F��ML replaced
the three lines by the correction expression (natadd n2 (natmul n1’ n2)) in 22 seconds.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Correct formula:

Time: 22 sec

FixML

• Given solution and test cases, our system automatically fixes
the student submissions.

!14

ML
Correct Program

ML
Incorrect Program

ML
Repaired Program

MLMLMLML

Statistical Fault
Localization

Program Synthesis
Testcases

Component
Reduction

Type-directed
Enumeration

Symbolic
Execution

Error Localization

!15

ML
Correct Program

ML
Incorrect Program

ML
Repaired Program

MLMLMLML

Statistical Fault
Localization

Program Synthesis
Testcases

Component
Reduction

Type-directed
Enumeration

Symbolic
Execution

• Given buggy program and test cases, return a set of partial
programs with suspicious score.

Statistical Fault Localization

!16

let rec natmul n1 n2 =
 match n1 with
 | ZERO -> ZERO
 | SUCC ZERO -> n2
 | SUCC n1’ ->
 SUCC(match n2 with
 | ZERO -> ZERO
 | SUCC ZERO -> SUCC ZERO
 | SUCC n2’ -> SUCC (natmul n1’ (natmul n1 n2’))
)

Test cases :
natmul ZERO (SUCC ZERO) = ZERO

natmul (SUCC ZERO) (SUCC ZERO) = (SUCC ZERO)

natmul (SUCC (SUCC ZERO)) ZERO = ZERO

 Student’s program:

Statistical Fault Localization

!17

let rec natmul n1 n2 =
 match n1 with
 | ZERO -> ZERO
 | SUCC ZERO -> n2
 | SUCC n1’ ->
 SUCC(match n2 with
 | ZERO -> ZERO
 | SUCC ZERO -> SUCC ZERO
 | SUCC n2’ -> SUCC (natmul n1’ (natmul n1 n2’))
)

Test cases :
natmul ZERO (SUCC ZERO) = ZERO

natmul (SUCC ZERO) (SUCC ZERO) = (SUCC ZERO)

natmul (SUCC (SUCC ZERO)) ZERO = ZERO

 Student’s program:

The program satisfies the test case => Positive

Statistical Fault Localization

!18

let rec natmul n1 n2 =
 match n1 with
 | ZERO -> ZERO
 | SUCC ZERO -> n2
 | SUCC n1’ ->
 SUCC(match n2 with
 | ZERO -> ZERO
 | SUCC ZERO -> SUCC ZERO
 | SUCC n2’ -> SUCC (natmul n1’ (natmul n1 n2’))
)

Test cases :
natmul ZERO (SUCC ZERO) = ZERO

natmul (SUCC ZERO) (SUCC ZERO) = (SUCC ZERO)

natmul (SUCC (SUCC ZERO)) ZERO = ZERO

 Student’s program:

The program cannot satisfy the test case => Negative

Statistical Fault Localization

!19

let rec natmul n1 n2 =
 match n1 with
 | ZERO -> ZERO
 | SUCC ZERO -> n2
 | SUCC n1’ ->
 SUCC(match n2 with
 | ZERO -> ZERO
 | SUCC ZERO -> SUCC ZERO
 | SUCC n2’ -> SUCC (natmul n1’ (natmul n1 n2’))
)

Test cases :
natmul ZERO (SUCC ZERO) = ZERO

natmul (SUCC ZERO) (SUCC ZERO) = (SUCC ZERO)

natmul (SUCC (SUCC ZERO)) ZERO = ZERO

 Student’s program:

Only positive

Positive + negative

Only negative

Statistical Fault Localization

!20

let rec natmul n1 n2 =
 match n1 with
 | ZERO -> ZERO
 | SUCC ZERO -> n2
 | SUCC n1’ ->
 SUCC(match n2 with
 | ZERO -> ZERO
 | SUCC ZERO -> SUCC ZERO
 | SUCC n2’ -> SUCC (natmul n1’ (natmul n1 n2’))
)

Test cases :
natmul ZERO (SUCC ZERO) = ZERO

natmul (SUCC ZERO) (SUCC ZERO) = (SUCC ZERO)

natmul (SUCC (SUCC ZERO)) ZERO = ZERO

 Student’s program:

More negative, less positive => highly suspicious

Only positive

Positive + negative

Only negative

Statistical Fault Localization

!21

let rec natmul n1 n2 =
 match n1 with
 | ZERO -> ZERO
 | SUCC ZERO -> n2
 | SUCC n1’ ->
 SUCC(match n2 with
 | ZERO -> ZERO
 | SUCC ZERO -> SUCC ZERO
 | SUCC n2’ -> SUCC (natmul n1’ (natmul n1 n2’))
)

Test cases :
natmul ZERO (SUCC ZERO) = ZERO

natmul (SUCC ZERO) (SUCC ZERO) = (SUCC ZERO)

natmul (SUCC (SUCC ZERO)) ZERO = ZERO

 Student’s program:

let rec natmul n1 n2 =
 match n1 with
 | ZERO -> ZERO
 | SUCC ZERO -> n2
 | SUCC n1’ -> ?

High LowS1

P1

Statistical Fault Localization

!22

let rec natmul n1 n2 =
 match n1 with
 | ZERO -> ZERO
 | SUCC ZERO -> n2
 | SUCC n1’ ->
 SUCC(match n2 with
 | ZERO -> ZERO
 | SUCC ZERO -> SUCC ZERO
 | SUCC n2’ -> SUCC (natmul n1’ (natmul n1 n2’))
)

Test cases :
natmul ZERO (SUCC ZERO) = ZERO

natmul (SUCC ZERO) (SUCC ZERO) = (SUCC ZERO)

natmul (SUCC (SUCC ZERO)) ZERO = ZERO

 Student’s program:

let rec natmul n1 n2 =
 match n1 with
 | ZERO -> ZERO
 | SUCC ZERO -> n2
 | SUCC n1’ -> ?

… …

High LowS1 S2 S3

P1 P2 P3let rec natmul n1 n2 =
 match n1 with
 | ZERO -> ZERO
 | SUCC ZERO -> ?
 | SUCC n1’ -> …

let rec natmul n1 n2 =
 match n1 with
 | ZERO -> ?
 | SUCC ZERO -> n2
 | SUCC n1’ -> …

Statistical Fault Localization

!23

let rec natmul n1 n2 =
 match n1 with
 | ZERO -> ZERO
 | SUCC ZERO -> n2
 | SUCC n1’ ->
 SUCC(match n2 with
 | ZERO -> ZERO
 | SUCC ZERO -> SUCC ZERO
 | SUCC n2’ -> SUCC (natmul n1’ (natmul n1 n2’))
)

Test cases :
natmul ZERO (SUCC ZERO) = ZERO

natmul (SUCC ZERO) (SUCC ZERO) = (SUCC ZERO)

natmul (SUCC (SUCC ZERO)) ZERO = ZERO

 Student’s program:

let rec natmul n1 n2 =
 match n1 with
 | ZERO -> ZERO
 | SUCC ZERO -> n2
 | SUCC n1’ -> ?

… …

High LowS1 S2 S3

P1 P2 P3let rec natmul n1 n2 =
 match n1 with
 | ZERO -> ZERO
 | SUCC ZERO -> ?
 | SUCC n1’ -> …

let rec natmul n1 n2 =
 match n1 with
 | ZERO -> ?
 | SUCC ZERO -> n2
 | SUCC n1’ -> … MLMLMLML

(Si, Pi)

Return a set of scored partial programs

Program Synthesis

!24

ML
Correct Program

ML
Incorrect Program

ML
Repaired Program

MLMLMLML

Statistical Fault
Localization

Program Synthesis
Testcases

Component
Reduction

Type-directed
Enumeration

Symbolic
Execution

• Given the set of scored partial program, it generates a repaired
program.

Baseline: Enumerative Search

!25

let rec natmul n1 n2 =

 match n1 with

 | ZERO -> ZERO | SUCC ZERO -> n2

 | SUCC n1’ -> ?

• Enumerating all expressions in the language

Baseline: Enumerative Search

!26

let rec natmul n1 n2 =

 match n1 with

 | ZERO -> ZERO | SUCC ZERO -> n2

 | SUCC n1’ -> ?

let rec natmul n1 n2 =

 match n1 with

 | ZERO -> ZERO | SUCC ZERO -> n2

 | SUCC n1’ -> SUCC ?

let rec natmul n1 n2 =

 match n1 with

 | ZERO -> ZERO | SUCC ZERO -> n2

 | SUCC n1’ -> (fun x -> ?)

let rec natmul n1 n2 =

 match n1 with

 | ZERO -> ZERO | SUCC ZERO -> n2

 | SUCC n1’ -> n1

let rec natmul n1 n2 =

 match n1 with

 | ZERO -> ZERO | SUCC ZERO -> n2

 | SUCC n1’ -> if ? then ? else ?

…

• Enumerating all expressions in the language

Baseline: Enumerative Search

!27

let rec natmul n1 n2 =

 match n1 with

 | ZERO -> ZERO | SUCC ZERO -> n2

 | SUCC n1’ -> ?

let rec natmul n1 n2 =

 match n1 with

 | ZERO -> ZERO | SUCC ZERO -> n2

 | SUCC n1’ -> SUCC ?

let rec natmul n1 n2 =

 match n1 with

 | ZERO -> ZERO | SUCC ZERO -> n2

 | SUCC n1’ -> (fun x -> ?)

let rec natmul n1 n2 =

 match n1 with

 | ZERO -> ZERO | SUCC ZERO -> n2

 | SUCC n1’ -> n1

let rec natmul n1 n2 =

 match n1 with

 | ZERO -> ZERO | SUCC ZERO -> n2

 | SUCC n1’ -> if ? then ? else ?

let rec natmul n1 n2 =

 match n1 with

 | ZERO -> ZERO | SUCC ZERO -> SUCC ZERO

 | SUCC n1’ -> SUCC (ZERO)

let rec natmul n1 n2 =

 match n1 with

 | ZERO -> ZERO | SUCC ZERO -> SUCC ZERO

 | SUCC n1’ -> SUCC (n1’)

let rec natmul n1 n2 =

 match n1 with

 | ZERO -> ZERO | SUCC ZERO -> SUCC ZERO

 | SUCC n1’ -> SUCC (if ? then ? else ?)

let rec natmul n1 n2 =

 match n1 with

 | ZERO -> ZERO | SUCC ZERO -> SUCC ZERO

 | SUCC n1’ -> SUCC (? ?)

let rec natmul n1 n2 =

 match n1 with

 | ZERO -> ZERO | SUCC ZERO -> SUCC ZERO

 | SUCC n1’ -> SUCC (true)…
…

• Enumerating all expressions in the language

 Extremely inefficient!

• Searching only well-typed program

State-of-the-art: Type-directed Search

!28

let rec natmul n1 n2 =
 match n1 with
 | ZERO -> ZERO | SUCC ZERO -> n2
 | SUCC n1’ -> ?

let rec natmul n1 n2 =
 match n1 with
 | ZERO -> ZERO | SUCC ZERO -> n2
 | SUCC n1’ -> SUCC ?

let rec natmul n1 n2 =
 match n1 with
 | ZERO -> ZERO | SUCC ZERO -> n2
 | SUCC n1’ -> (fun x -> ?)

let rec natmul n1 n2 =
 match n1 with
 | ZERO -> ZERO | SUCC ZERO -> n2
 | SUCC n1’ -> n1

let rec natmul n1 n2 =
 match n1 with
 | ZERO -> ZERO | SUCC ZERO -> n2
 | SUCC n1’ -> if ? then ? else ?

Hole type : nat

Expression type :
t' -> t’

• Searching only well-typed program

State-of-the-art: Type-directed Search

!29

let rec natmul n1 n2 =
 match n1 with
 | ZERO -> ZERO | SUCC ZERO -> n2
 | SUCC n1’ -> ?

let rec natmul n1 n2 =
 match n1 with
 | ZERO -> ZERO | SUCC ZERO -> n2
 | SUCC n1’ -> SUCC ?

let rec natmul n1 n2 =
 match n1 with
 | ZERO -> ZERO | SUCC ZERO -> n2
 | SUCC n1’ -> (fun x -> ?)

let rec natmul n1 n2 =
 match n1 with
 | ZERO -> ZERO | SUCC ZERO -> n2
 | SUCC n1’ -> n1

let rec natmul n1 n2 =
 match n1 with
 | ZERO -> ZERO | SUCC ZERO -> n2
 | SUCC n1’ -> if ? then ? else ?

Hole type : nat

Expression type :
t' -> t’

Still inefficient in our cases!

Our Solution

• Component reduction

• Syntactic component reduction

• Variable component reduction

• Pruning with symbolic execution
!30

ML
Correct Program

ML
Incorrect Program

ML
Repaired Program

MLMLMLML

Statistical Fault
Localization

Program Synthesis
Testcases

Component
Reduction

Type-directed
Enumeration

Symbolic
Execution

Technique 1: Syntactic Component Reduction

!31

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Automatic Error Correction for Functional Programming Assignments 1:25

11 | Const n -> Const 0

12 | Var a -> if (a <> x) then Const 0 else Const 1

13 | Power (a, n) -> if (a <> x) then Const 0 else Times [Const n; Power (a, n-1)]

14 | Times l ->

15 begin

16 match l with

17 | [] -> Const 0

18 | hd::tl -> Sum [Times ((diff (hd, x))::tl); Times [hd; diff (Times tl, x)]]

19 end

20 | Sum l -> Sum (List.map (fun e -> diff (e,x)) l)

B LANGUAGE
The full language of F��ML is as follows:

E ::= () | n | x | true | false | str | �x.E | E1 + E2 | E1 � E2 | E1 ⇥ E2 | E1/E2 | E1 mod E2 | �E
| not E | E1 | | E2 | E1 &&E2 | E1 < E2 | E1 > E2 | E1 E2 | E1 � E2 | E1 = E2 | E1<>E2
| E1 E2 | E1::E2 | E1@E2 | E1ˆE2 | raise E | (E1, . . . ,Ek) | [E1; . . . ;Ek]
| if E1 E2 E3 | c(E1, . . . ,Ek) | let x = E1 in E2 | let rec f (x) = E1 in E2
| let x1 = E1 and . . . and xk = Ek in E | let rec f1(x1) = E1 and . . . and fk (xk) = Ek in E
| match E with p1 ! E1 | · · · | pk ! Ek
| ⇤

� ::= unit | int | bool | string | exn | �1 ! �2 | � list | T | (�1⇤ . . . ⇤�k) | �
p ::= n | x | true | false | p1 :: p2 | [p1; . . . ;pk] | (p1, . . . ,p2) | c(p1, . . . ,pk) | p1 | · · · | pk | _

C FEEDBACK ON A LARGE PROGRAM
F��ML was able to accurately identify and �x the error at line 123 in the following student program
for problem #13 in 3.4 seconds.

1 type aexp =

2 |CONST of int

3 | VAR of string

4 | POWER of string * int

5 | TIMES of aexp list

6 | SUM of aexp list

7
8 type env = (string * int * int) list

9
10 let diff : aexp * string -> aexp

11 = fun (aexp, x) ->

12 let rec deployEnv : env -> int -> aexp list

13 = fun env flag ->

14 match env with

15 | hd::tl ->

16 begin match hd with

17 |(x, c, p) ->

18 if (flag = 0 && c = 0) then deployEnv tl flag

19 else if (x = �const� && flag = 1 && c = 1) then deployEnv tl flag

20 else if (p = 0) then (CONST c)::(deployEnv tl flag)

21 else if (c = 1 && p = 1) then (VAR x)::(deployEnv tl flag)

22 else if (p = 1) then TIMES[CONST c; VAR x]::(deployEnv tl flag)

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Language:

let rec natmul n1 n2 =
 match n1 with
 | ZERO -> ZERO
 | SUCC ZERO -> n2
 | SUCC n1’ -> ?

Partial Program: 36 expressions

• Enumerating all expressions is very expensive

Technique 1: Syntactic Component Reduction

!32

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Automatic Error Correction for Functional Programming Assignments 1:25

11 | Const n -> Const 0

12 | Var a -> if (a <> x) then Const 0 else Const 1

13 | Power (a, n) -> if (a <> x) then Const 0 else Times [Const n; Power (a, n-1)]

14 | Times l ->

15 begin

16 match l with

17 | [] -> Const 0

18 | hd::tl -> Sum [Times ((diff (hd, x))::tl); Times [hd; diff (Times tl, x)]]

19 end

20 | Sum l -> Sum (List.map (fun e -> diff (e,x)) l)

B LANGUAGE
The full language of F��ML is as follows:

E ::= () | n | x | true | false | str | �x.E | E1 + E2 | E1 � E2 | E1 ⇥ E2 | E1/E2 | E1 mod E2 | �E
| not E | E1 | | E2 | E1 &&E2 | E1 < E2 | E1 > E2 | E1 E2 | E1 � E2 | E1 = E2 | E1<>E2
| E1 E2 | E1::E2 | E1@E2 | E1ˆE2 | raise E | (E1, . . . ,Ek) | [E1; . . . ;Ek]
| if E1 E2 E3 | c(E1, . . . ,Ek) | let x = E1 in E2 | let rec f (x) = E1 in E2
| let x1 = E1 and . . . and xk = Ek in E | let rec f1(x1) = E1 and . . . and fk (xk) = Ek in E
| match E with p1 ! E1 | · · · | pk ! Ek
| ⇤

� ::= unit | int | bool | string | exn | �1 ! �2 | � list | T | (�1⇤ . . . ⇤�k) | �
p ::= n | x | true | false | p1 :: p2 | [p1; . . . ;pk] | (p1, . . . ,p2) | c(p1, . . . ,pk) | p1 | · · · | pk | _

C FEEDBACK ON A LARGE PROGRAM
F��ML was able to accurately identify and �x the error at line 123 in the following student program
for problem #13 in 3.4 seconds.

1 type aexp =

2 |CONST of int

3 | VAR of string

4 | POWER of string * int

5 | TIMES of aexp list

6 | SUM of aexp list

7
8 type env = (string * int * int) list

9
10 let diff : aexp * string -> aexp

11 = fun (aexp, x) ->

12 let rec deployEnv : env -> int -> aexp list

13 = fun env flag ->

14 match env with

15 | hd::tl ->

16 begin match hd with

17 |(x, c, p) ->

18 if (flag = 0 && c = 0) then deployEnv tl flag

19 else if (x = �const� && flag = 1 && c = 1) then deployEnv tl flag

20 else if (p = 0) then (CONST c)::(deployEnv tl flag)

21 else if (c = 1 && p = 1) then (VAR x)::(deployEnv tl flag)

22 else if (p = 1) then TIMES[CONST c; VAR x]::(deployEnv tl flag)

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Language:

let rec natmul n1 n2 =
 match n1 with
 | ZERO -> ZERO
 | SUCC ZERO -> n2
 | SUCC n1’ -> ?

Partial Program: 36 expressions

Observation:
Although the implementations are very different,

used components are similar.

• Enumerating all expressions is very expensive

let rec natmul n1 n2 =
 match n1 with
 |ZERO -> ZERO
 | SUCC n1’ -> natadd n2 (natmul n1’ n2)

Solution:

!33

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Automatic Error Correction for Functional Programming Assignments 1:25

11 | Const n -> Const 0

12 | Var a -> if (a <> x) then Const 0 else Const 1

13 | Power (a, n) -> if (a <> x) then Const 0 else Times [Const n; Power (a, n-1)]

14 | Times l ->

15 begin

16 match l with

17 | [] -> Const 0

18 | hd::tl -> Sum [Times ((diff (hd, x))::tl); Times [hd; diff (Times tl, x)]]

19 end

20 | Sum l -> Sum (List.map (fun e -> diff (e,x)) l)

B LANGUAGE
The full language of F��ML is as follows:

E ::= () | n | x | true | false | str | �x.E | E1 + E2 | E1 � E2 | E1 ⇥ E2 | E1/E2 | E1 mod E2 | �E
| not E | E1 | | E2 | E1 &&E2 | E1 < E2 | E1 > E2 | E1 E2 | E1 � E2 | E1 = E2 | E1<>E2
| E1 E2 | E1::E2 | E1@E2 | E1ˆE2 | raise E | (E1, . . . ,Ek) | [E1; . . . ;Ek]
| if E1 E2 E3 | c(E1, . . . ,Ek) | let x = E1 in E2 | let rec f (x) = E1 in E2
| let x1 = E1 and . . . and xk = Ek in E | let rec f1(x1) = E1 and . . . and fk (xk) = Ek in E
| match E with p1 ! E1 | · · · | pk ! Ek
| ⇤

� ::= unit | int | bool | string | exn | �1 ! �2 | � list | T | (�1⇤ . . . ⇤�k) | �
p ::= n | x | true | false | p1 :: p2 | [p1; . . . ;pk] | (p1, . . . ,p2) | c(p1, . . . ,pk) | p1 | · · · | pk | _

C FEEDBACK ON A LARGE PROGRAM
F��ML was able to accurately identify and �x the error at line 123 in the following student program
for problem #13 in 3.4 seconds.

1 type aexp =

2 |CONST of int

3 | VAR of string

4 | POWER of string * int

5 | TIMES of aexp list

6 | SUM of aexp list

7
8 type env = (string * int * int) list

9
10 let diff : aexp * string -> aexp

11 = fun (aexp, x) ->

12 let rec deployEnv : env -> int -> aexp list

13 = fun env flag ->

14 match env with

15 | hd::tl ->

16 begin match hd with

17 |(x, c, p) ->

18 if (flag = 0 && c = 0) then deployEnv tl flag

19 else if (x = �const� && flag = 1 && c = 1) then deployEnv tl flag

20 else if (p = 0) then (CONST c)::(deployEnv tl flag)

21 else if (c = 1 && p = 1) then (VAR x)::(deployEnv tl flag)

22 else if (p = 1) then TIMES[CONST c; VAR x]::(deployEnv tl flag)

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Language:

let rec natmul n1 n2 =
 match n1 with
 |ZERO -> ZERO
 | SUCC n1’ -> natadd n2 (natmul n1’ n2)

Solution:

let rec natmul n1 n2 =
 match n1 with
 | ZERO -> ZERO
 | SUCC ZERO -> n2
 | SUCC n1’ -> ?

Partial Program: 36 expressions

• Enumerating all expressions is very expensive

Enumerating expressions only used in solution

Technique 1: Syntactic Component Reduction

4

Technique 2: Variable Component Reduction

!34

let rec natmul n1 n2 =
 match n1 with
 | ZERO -> ZERO
 | SUCC ZERO -> n2
 | SUCC n1’ -> ?

Bound Variable: {natmul, n1, n2, n1’}

Partial Program:

• Enumerating all variables generates redundant programs.

Technique 2: Variable Component Reduction

!35

let rec natmul n1 n2 =
 match n1 with
 | ZERO -> ZERO
 | SUCC ZERO -> n2
 | SUCC n1’ -> ?

Bound Variable: {natmul, n1, n2, n1’}

Partial Program:
let rec natmul n1 n2 =
 match n1 with
 | ZERO -> ZERO
 | SUCC ZERO -> n2
 | SUCC n1’ -> SUCC n1’

let rec natmul n1 n2 =
 match n1 with
 | ZERO -> ZERO
 | SUCC ZERO -> n2
 | SUCC n1’ -> n1

Enumeration

• Enumerating all variables generates redundant programs.

• Enumerating all variables generates redundant programs.

Technique 2: Variable Component Reduction

!36

let rec natmul n1 n2 =
 match n1 with
 | ZERO -> ZERO
 | SUCC ZERO -> n2
 | SUCC n1’ -> ?

Bound Variable: {natmul, n1, n2, n1’}

Partial Program:
let rec natmul n1 n2 =
 match n1 with
 | ZERO -> ZERO
 | SUCC ZERO -> n2
 | SUCC n1’ -> SUCC n1’

let rec natmul n1 n2 =
 match n1 with
 | ZERO -> ZERO
 | SUCC ZERO -> n2
 | SUCC n1’ -> n1

Enumeration

Semantically equivalent programs

n1 = SUCC n1’

• Enumerating all variables generates redundant programs.

Technique 2: Variable Component Reduction

!37

let rec natmul n1 n2 =
 match n1 with
 | ZERO -> ZERO
 | SUCC ZERO -> n2
 | SUCC n1’ -> ?

Bound Variable: {natmul, n1, n2, n1’}

Partial Program:
let rec natmul n1 n2 =
 match n1 with
 | ZERO -> ZERO
 | SUCC ZERO -> n2
 | SUCC n1’ -> SUCC n1’

let rec natmul n1 n2 =
 match n1 with
 | ZERO -> ZERO
 | SUCC ZERO -> n2
 | SUCC n1’ -> n1

Enumeration

Data-flow analysis:
n1 can be always expressed with n1'

n1 = SUCC n1’

Choosing the minimal set of variables through data-flow analysis

• There are programs eventually inconsistent with the test cases

Technique 3: Pruning via symbolic execution

!38

let rec natmul n1 n2 =
 match n1 with
 | ZERO -> ZERO
 | SUCC ZERO -> n2
 | SUCC n1’ -> SUCC ?

Test cases :
natmul ZERO (SUCC ZERO) = ZERO

natmul (SUCC ZERO) (SUCC ZERO) = (SUCC ZERO)

natmul (SUCC (SUCC (ZERO))) ZERO = ZERO

Partial Program:

• There are programs eventually inconsistent with the test cases

Technique 3: Pruning via symbolic execution

!39

let rec natmul n1 n2 =
 match n1 with
 | ZERO -> ZERO
 | SUCC ZERO -> n2
 | SUCC n1’ -> SUCC ?

Test cases :
natmul ZERO (SUCC ZERO) = ZERO

natmul (SUCC ZERO) (SUCC ZERO) = (SUCC ZERO)

natmul (SUCC (SUCC (ZERO))) ZERO = ZERO

Partial Program:

Symbolic execution:
 natmul (SUCC (SUCC (ZERO))) ZERO => (SUCC ?)

• There are programs eventually inconsistent with the test cases

Technique 3: Pruning via symbolic execution

!40

let rec natmul n1 n2 =
 match n1 with
 | ZERO -> ZERO
 | SUCC ZERO -> n2
 | SUCC n1’ -> SUCC ?

Test cases :
natmul ZERO (SUCC ZERO) = ZERO

natmul (SUCC ZERO) (SUCC ZERO) = (SUCC ZERO)

natmul (SUCC (SUCC (ZERO))) ZERO = ZERO

Partial Program:

Symbolic execution:
 natmul (SUCC (SUCC (ZERO))) ZERO => (SUCC ?)

SAT (SUCC ? = ZERO) => UNSAT

• There are programs eventually inconsistent with the test cases

Technique 3: Pruning via symbolic execution

!41

let rec natmul n1 n2 =
 match n1 with
 | ZERO -> ZERO
 | SUCC ZERO -> n2
 | SUCC n1’ -> SUCC ?

Test cases :
natmul ZERO (SUCC ZERO) = ZERO

natmul (SUCC ZERO) (SUCC ZERO) = (SUCC ZERO)

natmul (SUCC (SUCC (ZERO))) ZERO = ZERO

Partial Program:

Symbolic execution:
 natmul (SUCC (SUCC (ZERO))) ZERO => (SUCC ?)

SAT (SUCC ? = ZERO) => UNSAT

Safely pruning the partial programs

Evaluation

!42

• Evaluated on 497 programs written in OCaml with logical
errors from 13 assignments.

• Various task from introductory to advanced (2-154 lines)
problems

• Conducted user study with 18 under-graduate students.

Effectiveness

• Average time: 5.4 sec / Fix rate: 43%

• Generating patches for diverse problems

!43

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

1:16 Anon.

Table 1. Performance of F��ML on 497 student submissions. #P reports the number of target programs for
each problem. #T reports the number of testcases used for each problem. LOC reports the number of lines in
submissions averaged over all submissions as well as the LOCs of the smallest and largest submissions. Time
reports average time took for localizing and fixing errors in seconds. Fix Rate reports the ratio of successfully
fixed programs by F��ML.

No Problem Description #P #T LOC Time Fix Rate
(min-max) (#Fix)

1 Filtering elements satisfying a predicate in a list 3 10 6 (6-7) 13.0 100% (3)
2 Finding a maximum element in a list 32 10 8 (4-14) 0.2 100% (32)
3 Mirroring a binary tree 9 10 11 (9-14) 0.1 89% (8)
4 Checking membership in a binary tree 15 17 11 (9-18) 5.2 80% (12)
5 Computing

Õk
i=j f (i) for j, k , and f 23 11 5 (2-9) 4.2 78% (18)

6 Adding and multiplying user-de�ned natural numbers 34 10 20 (13-50) 20.6 59% (20)
7 Finding the number of ways of coin-changes 9 10 21 (6-35) 2.6 44% (4)
8 Composing functions 28 12 7 (3-19) 5.5 43% (12)
9 Implementing a leftist heap using a priority queue 20 13 43 (33-72) 2.6 40% (8)
10 Evaluating expressions and propositional formulas 101 17 32 (17-57) 1.2 39% (39)
11 Adding numbers in user-de�ned number system 14 10 52 (19-138) 7.0 36% (5)
12 Deciding lambda terms are well-formed or not 86 11 30 (13-79) 1.3 26% (22)
13 Di�erentiating algebraic expressions 123 17 36 (14-154) 11.4 25% (31)

Total / Average 497 158 27 (2-154) 5.4 43% (214)

onl, such as programming tasks that manipulate integers or arrays (e.g. reversing numbers, �nding
the kth largest element, etc) [Gulwani et al. 2018; Singh et al. 2013; Wang et al. 2018]. In this paper,
we aim for more sizable programs up to 100 lines of code.

In Table 1, we report the number of incorrect submissions we could collect for each problem
(#P), the number of testcases (#T), (average, smallest, largest) LOCs of the submissions (LOC), the
average time took to generate corrections (including localization), and the ratio of successfully
�xed submissions for each problem with respect to the entire programs (Fix Rate). In Appendix A,
we provide solution programs for each benchmark problem.

Results. The results in Table 1 indicate that F��ML is powerful and capable of �xing logical
errors in real student submissions. In summary, F��ML successfully �xed 214 out of 497 submissions
in 5.4 seconds on average.4 For introductory-level problems (#1–#5), F��ML �xed most (89%, 73/82)
of the submissions in 2.5 seconds on average. For intermediate-level problems (#6–#9), the �x rate
was 48% (44/91) and the average time for �xing was 11.6 seconds. For problems at advanced level
(#10–#13), F��ML was able to correct 30% (97/324) in 4.8 seconds on average. Although the �x rates
decrease in problems at advanced-level, the results are still impressive, considering the size and
complexity of the benchmark programs. For example, F��ML managed to accurately localize and
repair an error in the largest submission (154 lines) presented in Appendix C.

5.2 Helpfulness
To assess how helpful F��ML is for students, we have conducted user study with 18 undergraduate
students who took the Programming Language course taught by the authors.

4We manually checked the correctness of the 214 �xes.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2018.

Introductory
Fix: 89%

Time: 2.5 sec

Intermediate
Fix: 48%

Time: 11.6 sec

Advanced
Fix: 30%

Time: 4.8 sec

Technique Utility

• Compare to Type : 579sec vs 65sec (x 8.9 faster)

!44

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120 140 160 180 200 220

Re
pa
ir-
Ti
m
e-
(s)

Benchmarks-solved

Localize

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120 140 160 180 200 220

Re
pa
ir-
Ti
m
e-
(s)

Benchmarks-solved

Localize Type

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120 140 160 180 200 220

Re
pa
ir-
Ti
m
e-
(s)

Benchmarks-solved

Localize Type Comp

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120 140 160 180 200 220

Re
pa
ir-
Ti
m
e-
(s)

Benchmarks-solved

Localize Type Comp Ours

160 vs 214 (54 submissions more)

Technique Utility

• Compare to Type : 579sec vs 65sec (x 8.9 faster)

!45

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120 140 160 180 200 220

Re
pa
ir-
Ti
m
e-
(s)

Benchmarks-solved

Localize

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120 140 160 180 200 220

Re
pa
ir-
Ti
m
e-
(s)

Benchmarks-solved

Localize Type

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120 140 160 180 200 220

Re
pa
ir-
Ti
m
e-
(s)

Benchmarks-solved

Localize Type Comp

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120 140 160 180 200 220

Re
pa
ir-
Ti
m
e-
(s)

Benchmarks-solved

Localize Type Comp Ours

160 vs 214 (54 submissions more)

Helpfulness
Q1. Does the tool generate better corrections?

Q2. Does the feedback help to understand your mistakes?

Q3. Is the tool overall useful in learning functional programming?

!46

33%

67%
42%

8%

50%

Yes
No
Neutral

28%

72%

Q1 Q2 Q3

Agreed with the helpfulness!

Summary

• The first system to provide personalized feedback of logical
errors for functional programming assignments

• Code and our data: https://github.com/kupl/FixML

• Tool usage: https://tryml.korea.ac.kr

!47

• To check the correctness of given programs, FixML still requires
test cases that are manually designed.

Limitation of FixML

!48

ML
Correct Program

ML
Incorrect Program

ML
Repaired Program

MLMLMLML

Statistical Fault
Localization

Program Synthesis
Testcases

Component
Reduction

Type-directed
Enumeration

Symbolic
Execution

Automatic and Scalable Detection
of Logical Errors in Functional

Programming Assignments

Dowon Song, Myungho Lee, and Hakjoo Oh
Korea University

October 2019
OOPSLA`19 @ Athens, Greece

158

Automatic Diagnosis and Correction of Logical Errors for
Functional Programming Assignments

JUNHO LEE, Korea University, Republic of Korea
DOWON SONG, Korea University, Republic of Korea
SUNBEOM SO, Korea University, Republic of Korea
HAKJOO OH∗, Korea University, Republic of Korea

We present FixML, a system for automatically generating feedback on logical errors in functional programming
assignments. As functional languages have been gaining popularity, the number of students enrolling functional
programming courses has increased significantly. However, the quality of feedback, in particular for logical
errors, is hardly satisfying. To provide personalized feedback on logical errors, we present a new error-
correction algorithm for functional languages, which combines statistical error-localization and type-directed
program synthesis enhanced with components reduction and search space pruning using symbolic execution.
We implemented our algorithm in a tool, called FixML, and evaluated it with 497 students’ submissions from
13 exercises, including not only introductory but also more advanced problems. Our experimental results
show that our tool effectively corrects various and complex errors: it fixed 43% of the 497 submissions in 5.4
seconds on average and managed to fix a hard-to-find error in a large submission, consisting of 154 lines.
We also performed user study with 18 undergraduate students and confirmed that our system actually helps
students to better understand their programming errors.

CCS Concepts: • Software and its engineering→ Automatic programming; Functional languages;

Additional Key Words and Phrases: Automated Program Repair, Program Synthesis

ACM Reference Format:
Junho Lee, Dowon Song, Sunbeom So, and Hakjoo Oh. 2018. Automatic Diagnosis and Correction of Log-
ical Errors for Functional Programming Assignments. Proc. ACM Program. Lang. 2, OOPSLA, Article 158
(November 2018), 30 pages. https://doi.org/10.1145/3276528

1 INTRODUCTION

Motivation. Themotivation for this work originated from an undergraduate course on functional
programming taught by the authors over the last few years. As functional languages have been
gaining popularity, the number of students enrolling the course has increased significantly. The
quality of feedback, however, hardly satisfied the increased demands. Because most students have
no experience in functional languages, they often have more difficulty with various programming
errors than learning other languages such as Java or Python. However, assisting students to resolve

∗Corresponding author

Authors’ addresses: Junho Lee, junho_lee@korea.ac.kr, Department of Computer Science and Engineering, Korea University,
145, Anam-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea; Dowon Song, dowon_song@korea.ac.kr, Department of
Computer Science and Engineering, Korea University, 145, Anam-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea; Sunbeom
So, sunbeom_so@korea.ac.kr, Department of Computer Science and Engineering, Korea University, 145, Anam-ro, Sungbuk-
gu, Seoul, 02841, Republic of Korea; Hakjoo Oh, hakjoo_oh@korea.ac.kr, Department of Computer Science and Engineering,
Korea University, 145, Anam-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).
2475-1421/2018/11-ART158
https://doi.org/10.1145/3276528

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 158. Publication date: November 2018.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Motivation

!50

• Detecting logical error is challenging and involves a lot of
human effort.

• In a real classroom, there are too many submissions to
investigate one by one.

• Manual test cases sometimes fail to detect corner-case error.

• Prior property-based testing also has limitations.

• It requires for user to design proper test generator and
shrinker manually.

• Heavily dependent to the given generator, which makes it
hard to detect program-specific errors.

Motivation

!51

• Detecting logical error is challenging and involves a lot of
human effort.

• In a real classroom, there are too many submissions to
investigate one by one.

• Manual test cases sometimes fail to detect corner-case error.

• Prior property-based testing also has limitations.

• It requires for user to design proper test generator and
shrinker manually.

• Generator basically performs random testing, which makes it
hard to detect program-specific errors.

Motivating Example: Composing Function

!52

let rec iter : int * (int -> int) -> int -> int
= fun (n, f) x ->
 if (n < 0) then raise (Failure “Invalid Input”)
 else if (n = 0) then x
 else f (iter (n-1, f) x)

Correct Program

Buggy Program

let rec iter : int * (int -> int) -> int -> int
= fun (n, f) x ->
let y = (f x) in
if (n <= 0) then x else iter (n-1, f) y

5

1 let rec iter : int * (int -> int) -> int -> int

2 = fun (n, f) x ->

3 if (n < 0) then raise (Failure �Invalid Input�)

4 else if (n = 0) then x

5 else f (iter (n-1, f) x)

(a) A reference implementation
1 let rec iter : int * (int -> int) -> int -> int

2 = fun (n, f) x ->

3 let y = f x in

4 if (n <= 0) then x else iter (n-1, f) y

(b) A buggy implementation

Fig. 2. Example 2: iter

Example 2. The second exercise is to write a higher-order function called iter. The function,
iter: int * (int -> int) -> int -> int, takes two arguments. The �rst is a pair of an integer
n and an integer-valued function f. The second is an integer x. Then, iter(n,f) x evaluates to
the following:

iter(n, f) x = (f � · · · � f| {z }
n

)(x)

For instance, (iter (5, fun x -> 1 + x) 2) evaluates to 7. When n is 0, iter(n,f) is de�ned
to be an identity function. Fig 2(a) shows a reference implementation of iter.

Fig 2(b) shows a program written by a student, which has a tricky bug that is hard to anticipate
when manually designing test cases. Note that the student implementation is very similar to the
reference implementation. If n is no greater than 0, the result is the identity function (line 4).
Otherwise, at line 5, it evaluates iter (n-1, f) y, where y is the result of the single application of
f to x. The overall logic is correct and therefore the program works well in most cases. For example,
it correctly evaluates (iter (5, fun x -> 1 + x) 2) to 7. However, the program runs into
trouble if n is 0 and f is unde�ned on x because it attempts to evaluate the function application (f
x) even when n is 0 at line 3. For example, evaluating (iter (0, fun x -> 1 mod x) 0) causes a
division-by-zero error while the reference implementation produces 0 without any runtime errors.
We found that this submission also received the full credit as our manually crafted test cases could
not check this corner case.

On the other hand, our technique quickly detects the bug in 0.2 seconds. Given the two (correct
and incorrect) programs, our technique generates (0, fun x -> 1 mod x) for the �rst argument,
i.e., (n, f), and 0 for the second argument, i.e., x. Note that our technique is able to generate test
cases for high-order functions; that is, it can synthesize the function (fun x -> 1 mod x) as the
input of iter.

Example 3. In this example, we demonstrate another promising application of our technique;
it can resolve a common problem in automatic program repair, called test-suite-over�tted patches
[Smith et al. 2015]. In recent years, several techniques have been proposed for automatic program
repair systems that use test cases for checking the correctness of the repaired programs. However,
these systems often produce test-suite-over�tted patches which retain some bugs but satisfy the
given test cases. We show that our technique can enhance the performance of an existing program
repair system, F��ML [Lee et al. 2018b], for functional programming assignments.

Proc. ACM Program. Lang., Vol. , No. OOPSLA, Article . Publication date: October 2019.

• Applying a function ‘f ’ to ‘x’ ‘n’ times :

• For example, (iter (5, fun x -> 1 + x) 2) evaluates to 7.

Motivating Example: Composing Function

!53

let rec iter : int * (int -> int) -> int -> int
= fun (n, f) x ->
 if (n < 0) then raise (Failure “Invalid Input”)
 else if (n = 0) then x
 else f (iter (n-1, f) x)

Correct Program

Buggy Program

let rec iter : int * (int -> int) -> int -> int
= fun (n, f) x ->
let y = (f x) in
if (n <= 0) then x else iter (n-1, f) y

5

1 let rec iter : int * (int -> int) -> int -> int

2 = fun (n, f) x ->

3 if (n < 0) then raise (Failure �Invalid Input�)

4 else if (n = 0) then x

5 else f (iter (n-1, f) x)

(a) A reference implementation
1 let rec iter : int * (int -> int) -> int -> int

2 = fun (n, f) x ->

3 let y = f x in

4 if (n <= 0) then x else iter (n-1, f) y

(b) A buggy implementation

Fig. 2. Example 2: iter

Example 2. The second exercise is to write a higher-order function called iter. The function,
iter: int * (int -> int) -> int -> int, takes two arguments. The �rst is a pair of an integer
n and an integer-valued function f. The second is an integer x. Then, iter(n,f) x evaluates to
the following:

iter(n, f) x = (f � · · · � f| {z }
n

)(x)

For instance, (iter (5, fun x -> 1 + x) 2) evaluates to 7. When n is 0, iter(n,f) is de�ned
to be an identity function. Fig 2(a) shows a reference implementation of iter.

Fig 2(b) shows a program written by a student, which has a tricky bug that is hard to anticipate
when manually designing test cases. Note that the student implementation is very similar to the
reference implementation. If n is no greater than 0, the result is the identity function (line 4).
Otherwise, at line 5, it evaluates iter (n-1, f) y, where y is the result of the single application of
f to x. The overall logic is correct and therefore the program works well in most cases. For example,
it correctly evaluates (iter (5, fun x -> 1 + x) 2) to 7. However, the program runs into
trouble if n is 0 and f is unde�ned on x because it attempts to evaluate the function application (f
x) even when n is 0 at line 3. For example, evaluating (iter (0, fun x -> 1 mod x) 0) causes a
division-by-zero error while the reference implementation produces 0 without any runtime errors.
We found that this submission also received the full credit as our manually crafted test cases could
not check this corner case.

On the other hand, our technique quickly detects the bug in 0.2 seconds. Given the two (correct
and incorrect) programs, our technique generates (0, fun x -> 1 mod x) for the �rst argument,
i.e., (n, f), and 0 for the second argument, i.e., x. Note that our technique is able to generate test
cases for high-order functions; that is, it can synthesize the function (fun x -> 1 mod x) as the
input of iter.

Example 3. In this example, we demonstrate another promising application of our technique;
it can resolve a common problem in automatic program repair, called test-suite-over�tted patches
[Smith et al. 2015]. In recent years, several techniques have been proposed for automatic program
repair systems that use test cases for checking the correctness of the repaired programs. However,
these systems often produce test-suite-over�tted patches which retain some bugs but satisfy the
given test cases. We show that our technique can enhance the performance of an existing program
repair system, F��ML [Lee et al. 2018b], for functional programming assignments.

Proc. ACM Program. Lang., Vol. , No. OOPSLA, Article . Publication date: October 2019.

• Applying a function ‘f ’ to ‘x’ ‘n’ times :

• For example, (iter (5, fun x -> 1 + x) 2) evaluates to 7.

Motivating Example: Composing Function

!54

let rec iter : int * (int -> int) -> int -> int
= fun (n, f) x ->
 if (n < 0) then raise (Failure “Invalid Input”)
 else if (n = 0) then x
 else f (iter (n-1, f) x)

Correct Program

Buggy Program

let rec iter : int * (int -> int) -> int -> int
= fun (n, f) x ->
let y = (f x) in
if (n <= 0) then x else iter (n-1, f) y

5

1 let rec iter : int * (int -> int) -> int -> int

2 = fun (n, f) x ->

3 if (n < 0) then raise (Failure �Invalid Input�)

4 else if (n = 0) then x

5 else f (iter (n-1, f) x)

(a) A reference implementation
1 let rec iter : int * (int -> int) -> int -> int

2 = fun (n, f) x ->

3 let y = f x in

4 if (n <= 0) then x else iter (n-1, f) y

(b) A buggy implementation

Fig. 2. Example 2: iter

Example 2. The second exercise is to write a higher-order function called iter. The function,
iter: int * (int -> int) -> int -> int, takes two arguments. The �rst is a pair of an integer
n and an integer-valued function f. The second is an integer x. Then, iter(n,f) x evaluates to
the following:

iter(n, f) x = (f � · · · � f| {z }
n

)(x)

For instance, (iter (5, fun x -> 1 + x) 2) evaluates to 7. When n is 0, iter(n,f) is de�ned
to be an identity function. Fig 2(a) shows a reference implementation of iter.

Fig 2(b) shows a program written by a student, which has a tricky bug that is hard to anticipate
when manually designing test cases. Note that the student implementation is very similar to the
reference implementation. If n is no greater than 0, the result is the identity function (line 4).
Otherwise, at line 5, it evaluates iter (n-1, f) y, where y is the result of the single application of
f to x. The overall logic is correct and therefore the program works well in most cases. For example,
it correctly evaluates (iter (5, fun x -> 1 + x) 2) to 7. However, the program runs into
trouble if n is 0 and f is unde�ned on x because it attempts to evaluate the function application (f
x) even when n is 0 at line 3. For example, evaluating (iter (0, fun x -> 1 mod x) 0) causes a
division-by-zero error while the reference implementation produces 0 without any runtime errors.
We found that this submission also received the full credit as our manually crafted test cases could
not check this corner case.

On the other hand, our technique quickly detects the bug in 0.2 seconds. Given the two (correct
and incorrect) programs, our technique generates (0, fun x -> 1 mod x) for the �rst argument,
i.e., (n, f), and 0 for the second argument, i.e., x. Note that our technique is able to generate test
cases for high-order functions; that is, it can synthesize the function (fun x -> 1 mod x) as the
input of iter.

Example 3. In this example, we demonstrate another promising application of our technique;
it can resolve a common problem in automatic program repair, called test-suite-over�tted patches
[Smith et al. 2015]. In recent years, several techniques have been proposed for automatic program
repair systems that use test cases for checking the correctness of the repaired programs. However,
these systems often produce test-suite-over�tted patches which retain some bugs but satisfy the
given test cases. We show that our technique can enhance the performance of an existing program
repair system, F��ML [Lee et al. 2018b], for functional programming assignments.

Proc. ACM Program. Lang., Vol. , No. OOPSLA, Article . Publication date: October 2019.

• Applying a function ‘f ’ to ‘x’ ‘n’ times :

• For example, (iter (5, fun x -> 1 + x) 2) evaluates to 7.

• Counter-example : (n, f) = (0, fun x -> 1 mod x) and x = 0

Motivating Example: Composing Function

!55

let rec iter : int * (int -> int) -> int -> int
= fun (n, f) x ->
 if (n < 0) then raise (Failure “Invalid Input”)
 else if (n = 0) then x
 else f (iter (n-1, f) x)

Correct Program

Buggy Program

let rec iter : int * (int -> int) -> int -> int
= fun (n, f) x ->
let y = (f x) in
if (n <= 0) then x else iter (n-1, f) y

5

1 let rec iter : int * (int -> int) -> int -> int

2 = fun (n, f) x ->

3 if (n < 0) then raise (Failure �Invalid Input�)

4 else if (n = 0) then x

5 else f (iter (n-1, f) x)

(a) A reference implementation
1 let rec iter : int * (int -> int) -> int -> int

2 = fun (n, f) x ->

3 let y = f x in

4 if (n <= 0) then x else iter (n-1, f) y

(b) A buggy implementation

Fig. 2. Example 2: iter

Example 2. The second exercise is to write a higher-order function called iter. The function,
iter: int * (int -> int) -> int -> int, takes two arguments. The �rst is a pair of an integer
n and an integer-valued function f. The second is an integer x. Then, iter(n,f) x evaluates to
the following:

iter(n, f) x = (f � · · · � f| {z }
n

)(x)

For instance, (iter (5, fun x -> 1 + x) 2) evaluates to 7. When n is 0, iter(n,f) is de�ned
to be an identity function. Fig 2(a) shows a reference implementation of iter.

Fig 2(b) shows a program written by a student, which has a tricky bug that is hard to anticipate
when manually designing test cases. Note that the student implementation is very similar to the
reference implementation. If n is no greater than 0, the result is the identity function (line 4).
Otherwise, at line 5, it evaluates iter (n-1, f) y, where y is the result of the single application of
f to x. The overall logic is correct and therefore the program works well in most cases. For example,
it correctly evaluates (iter (5, fun x -> 1 + x) 2) to 7. However, the program runs into
trouble if n is 0 and f is unde�ned on x because it attempts to evaluate the function application (f
x) even when n is 0 at line 3. For example, evaluating (iter (0, fun x -> 1 mod x) 0) causes a
division-by-zero error while the reference implementation produces 0 without any runtime errors.
We found that this submission also received the full credit as our manually crafted test cases could
not check this corner case.

On the other hand, our technique quickly detects the bug in 0.2 seconds. Given the two (correct
and incorrect) programs, our technique generates (0, fun x -> 1 mod x) for the �rst argument,
i.e., (n, f), and 0 for the second argument, i.e., x. Note that our technique is able to generate test
cases for high-order functions; that is, it can synthesize the function (fun x -> 1 mod x) as the
input of iter.

Example 3. In this example, we demonstrate another promising application of our technique;
it can resolve a common problem in automatic program repair, called test-suite-over�tted patches
[Smith et al. 2015]. In recent years, several techniques have been proposed for automatic program
repair systems that use test cases for checking the correctness of the repaired programs. However,
these systems often produce test-suite-over�tted patches which retain some bugs but satisfy the
given test cases. We show that our technique can enhance the performance of an existing program
repair system, F��ML [Lee et al. 2018b], for functional programming assignments.

Proc. ACM Program. Lang., Vol. , No. OOPSLA, Article . Publication date: October 2019.

Division-by-zero

Return 0 as an output

• Applying a function ‘f ’ to ‘x’ ‘n’ times :

• For example, (iter (5, fun x -> 1 + x) 2) evaluates to 7.

• Counter-example : (n, f) = (0, fun x -> 1 mod x) and x = 0

Motivating Example: Composing Function

!56

let rec iter : int * (int -> int) -> int -> int
= fun (n, f) x ->
 if (n < 0) then raise (Failure “Invalid Input”)
 else if (n = 0) then x
 else f (iter (n-1, f) x)

Correct Program

Buggy Program

let rec iter : int * (int -> int) -> int -> int
= fun (n, f) x ->
let y = (f x) in
if (n <= 0) then x else iter (n-1, f) y

5

1 let rec iter : int * (int -> int) -> int -> int

2 = fun (n, f) x ->

3 if (n < 0) then raise (Failure �Invalid Input�)

4 else if (n = 0) then x

5 else f (iter (n-1, f) x)

(a) A reference implementation
1 let rec iter : int * (int -> int) -> int -> int

2 = fun (n, f) x ->

3 let y = f x in

4 if (n <= 0) then x else iter (n-1, f) y

(b) A buggy implementation

Fig. 2. Example 2: iter

Example 2. The second exercise is to write a higher-order function called iter. The function,
iter: int * (int -> int) -> int -> int, takes two arguments. The �rst is a pair of an integer
n and an integer-valued function f. The second is an integer x. Then, iter(n,f) x evaluates to
the following:

iter(n, f) x = (f � · · · � f| {z }
n

)(x)

For instance, (iter (5, fun x -> 1 + x) 2) evaluates to 7. When n is 0, iter(n,f) is de�ned
to be an identity function. Fig 2(a) shows a reference implementation of iter.

Fig 2(b) shows a program written by a student, which has a tricky bug that is hard to anticipate
when manually designing test cases. Note that the student implementation is very similar to the
reference implementation. If n is no greater than 0, the result is the identity function (line 4).
Otherwise, at line 5, it evaluates iter (n-1, f) y, where y is the result of the single application of
f to x. The overall logic is correct and therefore the program works well in most cases. For example,
it correctly evaluates (iter (5, fun x -> 1 + x) 2) to 7. However, the program runs into
trouble if n is 0 and f is unde�ned on x because it attempts to evaluate the function application (f
x) even when n is 0 at line 3. For example, evaluating (iter (0, fun x -> 1 mod x) 0) causes a
division-by-zero error while the reference implementation produces 0 without any runtime errors.
We found that this submission also received the full credit as our manually crafted test cases could
not check this corner case.

On the other hand, our technique quickly detects the bug in 0.2 seconds. Given the two (correct
and incorrect) programs, our technique generates (0, fun x -> 1 mod x) for the �rst argument,
i.e., (n, f), and 0 for the second argument, i.e., x. Note that our technique is able to generate test
cases for high-order functions; that is, it can synthesize the function (fun x -> 1 mod x) as the
input of iter.

Example 3. In this example, we demonstrate another promising application of our technique;
it can resolve a common problem in automatic program repair, called test-suite-over�tted patches
[Smith et al. 2015]. In recent years, several techniques have been proposed for automatic program
repair systems that use test cases for checking the correctness of the repaired programs. However,
these systems often produce test-suite-over�tted patches which retain some bugs but satisfy the
given test cases. We show that our technique can enhance the performance of an existing program
repair system, F��ML [Lee et al. 2018b], for functional programming assignments.

Proc. ACM Program. Lang., Vol. , No. OOPSLA, Article . Publication date: October 2019.

Division-by-zero

Return 0 as an output

• Applying a function ‘f ’ to ‘x’ ‘n’ times :

• For example, (iter (5, fun x -> 1 + x) 2) evaluates to 7.

• Counter-example : (n, f) = (0, fun x -> 1 mod x) and x = 0

Automatically generate counter-example for each submission!

Running Example: List map

!57

Correct Program

Buggy Program

• Applying a function to all elements of given integer list

let rec map : (int -> int) -> int list -> int list
= fun f lst ->
 match lst with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)

let rec map : (int -> int) -> int list -> int list
= fun f lst ->
 match lst with
 | [] -> []
 | hd::tl -> if hd > 0 then (f hd)::(map f tl)
 else hd::(map f tl)

Baseline1: Enumerative Search

!58

let rec map : (int -> int) -> int list -> int list
= fun f lst ->
 match lst with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)

let rec map : (int -> int) -> int list -> int list
= fun f lst ->
 match lst with
 | [] -> []
 | hd::tl -> if hd > 0 then (f hd)::(map f tl)
 else hd::(map f tl)

Correct Program

Buggy Program

fun x -> ?f:

• Enumerate all possible test cases from the smallest one until
we find one causing different outputs.

Baseline1: Enumerative Search

!59

let rec map : (int -> int) -> int list -> int list
= fun f lst ->
 match lst with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)

let rec map : (int -> int) -> int list -> int list
= fun f lst ->
 match lst with
 | [] -> []
 | hd::tl -> if hd > 0 then (f hd)::(map f tl)
 else hd::(map f tl)

Correct Program

Buggy Program

fun x -> ?f: fun x -> ?+?

fun x -> ?-?

…

fun x -> x

…

• Enumerate all possible test cases from the smallest one until
we find one causing different outputs.

Baseline1: Enumerative Search

!60

let rec map : (int -> int) -> int list -> int list
= fun f lst ->
 match lst with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)

let rec map : (int -> int) -> int list -> int list
= fun f lst ->
 match lst with
 | [] -> []
 | hd::tl -> if hd > 0 then (f hd)::(map f tl)
 else hd::(map f tl)

Correct Program

Buggy Program

fun x -> ?f: fun x -> ?+?

fun x -> ?-?

…

fun x -> x

…

fun x -> 2+?

fun x -> 3+?

…

fun x -> 1+?

…

fun x -> 4+?

• Enumerate all possible test cases from the smallest one until
we find one causing different outputs.

Baseline1: Enumerative Search

!61

let rec map : (int -> int) -> int list -> int list
= fun f lst ->
 match lst with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)

let rec map : (int -> int) -> int list -> int list
= fun f lst ->
 match lst with
 | [] -> []
 | hd::tl -> if hd > 0 then (f hd)::(map f tl)
 else hd::(map f tl)

Correct Program

Buggy Program

lst:

fun x -> ?f: fun x -> ?+?

fun x -> ?-?

…

fun x -> x

…

fun x -> 2+?

fun x -> 3+?

…

fun x -> 1+?

…

? [?;?]

[?;?;?]
…

[?]
[]

fun x -> 4+?

[0]

[1]

…

[-1]

…

[2]

• Enumerate all possible test cases from the smallest one until
we find one causing different outputs.

Baseline1: Enumerative Search

!62

let rec map : (int -> int) -> int list -> int list
= fun f lst ->
 match lst with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)

let rec map : (int -> int) -> int list -> int list
= fun f lst ->
 match lst with
 | [] -> []
 | hd::tl -> if hd > 0 then (f hd)::(map f tl)
 else hd::(map f tl)

Correct Program

Buggy Program

lst:

fun x -> ?f: fun x -> ?+?

fun x -> ?-?

…

fun x -> x

…

fun x -> 2+?

fun x -> 3+?

…

fun x -> 1+?

…

? [?;?]

[?;?;?]
…

[?]
[]

fun x -> 4+?

[0]

[1]

…

[-1]

…

[2]

Inefficient to search infinite values!

• Enumerate all possible test cases from the smallest one until
we find one causing different outputs.

Baseline2: Symbolic Execution

!63

let rec map : (int -> int) -> int list -> int list
= fun f lst ->
 match lst with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)

let rec map : (int -> int) -> int list -> int list
= fun f lst ->
 match lst with
 | [] -> []
 | hd::tl -> if hd > 0 then (f hd)::(map f tl)
 else hd::(map f tl)

Correct Program

Buggy Program

lst= f= α𝗅𝗌𝗍α𝖿

• Systematically compare two programs by executing them
symbolically.

Baseline2: Symbolic Execution

!64

let rec map : (int -> int) -> int list -> int list
= fun f lst ->
 match lst with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)

let rec map : (int -> int) -> int list -> int list
= fun f lst ->
 match lst with
 | [] -> []
 | hd::tl -> if hd > 0 then (f hd)::(map f tl)
 else hd::(map f tl)

Correct Program

Buggy Program

lst= f= α𝗅𝗌𝗍α𝖿

α𝗅𝗌𝗍 = []

r2 = []
r1 = []

• Systematically compare two programs by executing them
symbolically.

Baseline2: Symbolic Execution

!65

let rec map : (int -> int) -> int list -> int list
= fun f lst ->
 match lst with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)

let rec map : (int -> int) -> int list -> int list
= fun f lst ->
 match lst with
 | [] -> []
 | hd::tl -> if hd > 0 then (f hd)::(map f tl)
 else hd::(map f tl)

Correct Program

Buggy Program

lst= f= α𝗅𝗌𝗍α𝖿

α𝗅𝗌𝗍 = [α𝗁𝖽]

α𝗅𝗌𝗍 = []

r2 = []
r1 = []

• Systematically compare two programs by executing them
symbolically.

Baseline2: Symbolic Execution

!66

let rec map : (int -> int) -> int list -> int list
= fun f lst ->
 match lst with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)

let rec map : (int -> int) -> int list -> int list
= fun f lst ->
 match lst with
 | [] -> []
 | hd::tl -> if hd > 0 then (f hd)::(map f tl)
 else hd::(map f tl)

Correct Program

Buggy Program

lst= f=

1. Path explosion

α𝗅𝗌𝗍α𝖿

α𝗅𝗌𝗍 = [α𝗁𝖽; α𝗍𝗅]

…

α𝗅𝗌𝗍 = [α𝗁𝖽]

α𝗅𝗌𝗍 = []

α𝗁𝖽 > 0

…

r2 = []
r1 = []

r2 = [(α𝖿 α𝗁𝖽)]
r1 = [(α𝖿 α𝗁𝖽)]

r2 = [α𝗁𝖽]
r1 = [(α𝖿 α𝗁𝖽)]

• Systematically compare two programs by executing them
symbolically.

Baseline2: Symbolic Execution

!67

let rec map : (int -> int) -> int list -> int list
= fun f lst ->
 match lst with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)

let rec map : (int -> int) -> int list -> int list
= fun f lst ->
 match lst with
 | [] -> []
 | hd::tl -> if hd > 0 then (f hd)::(map f tl)
 else hd::(map f tl)

Correct Program

Buggy Program

lst= f=

1. Path explosion
2. Hard to handle non-primitive symbols

α𝗅𝗌𝗍α𝖿

α𝗅𝗌𝗍 = [α𝗁𝖽; α𝗍𝗅]

…

α𝗅𝗌𝗍 = [α𝗁𝖽]

α𝗅𝗌𝗍 = []

α𝗁𝖽 > 0

…

r2 = []
r1 = []

r2 = [(α𝖿 α𝗁𝖽)]
r1 = [(α𝖿 α𝗁𝖽)]

r2 = [α𝗁𝖽]
r1 = [(α𝖿 α𝗁𝖽)]

• Systematically compare two programs by executing them
symbolically.

Key Idea

!68

• Combine enumerative search and symbolic execution to overcome
the key limitations of each other.

• Enumerative search

 - Effectively generate small code snippet such as non-primitive  
 values (e.g. function type value)

 - Hard to enumerate infinite number of primitive values

• Symbolic execution

 - Easy to deduce specific primitive values using constraint solving

 - Heavy to apply to non-primitive values

�69

Our Approach

ML
Correct

Incorrect
ML

Generator Verifier

Counter-example

Symbolic Test Case

Fail to Verify

x = 1
y = 0

…

• Given a reference program and a buggy program, generate
a counter-example without any human effort.

Symbolic Test Case Generation

!70

let rec map : (int -> int) -> int list -> int list
= fun f lst ->
 match lst with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)

let rec map : (int -> int) -> int list -> int list
= fun f lst ->
 match lst with
 | [] -> []
 | hd::tl -> if hd > 0 then (f hd)::(map f tl)
 else hd::(map f tl)

Correct Program

Buggy Program

lst:

fun x -> ?f: fun x -> ?+?

fun x -> ?-?

…

fun x -> x

…

fun x -> 2+?

fun x -> 3+?

…

fun x -> 1+?

…

? [?;?]

[?;?;?]
…

[?]
[]

fun x -> 4+?

[0]

[1]

…

[-1]

…

[2]

• Instead of generating concrete ones, synthesizing symbolic test
cases by representing primitive values as symbols.

Symbolic Test Case Generation

!71

let rec map : (int -> int) -> int list -> int list
= fun f lst ->
 match lst with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)

let rec map : (int -> int) -> int list -> int list
= fun f lst ->
 match lst with
 | [] -> []
 | hd::tl -> if hd > 0 then (f hd)::(map f tl)
 else hd::(map f tl)

Correct Program

Buggy Program

lst:

fun x -> ?f: fun x -> ?+?

fun x -> ?-?

…

fun x -> x

…

fun x -> +?

…

…

? [?;?]

[?;?;?]
…

[?]
[]

[]

α1

α2

• Instead of generating concrete ones, synthesizing symbolic test
cases by representing primitive values as symbols.

Reduce the search space

Bounded Symbolic Execution

!72

let rec map : (int -> int) -> int list -> int list
= fun f lst ->
 match lst with
 | [] -> []
 | hd::tl -> if hd > 0 then (f hd)::(map f tl)
 else hd::(map f tl)

Buggy Program

(𝖿𝗎𝗇 𝗑 − > 𝗑 + α𝟣)
[α2]

Symbolic test cases:
 - f =
 - lst =

let rec map : (int -> int) -> int list -> int list
= fun f lst ->
 match lst with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)

Correct Program

• Compute a set of all possible outputs and paths by running two
programs with symbolic test cases.

Bounded Symbolic Execution

!73

let rec map : (int -> int) -> int list -> int list
= fun f lst ->
 match lst with
 | [] -> []
 | hd::tl -> if hd > 0 then (f hd)::(map f tl)
 else hd::(map f tl)

Buggy Program

let rec map : (int -> int) -> int list -> int list
= fun f lst ->
 match lst with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)

Correct Program

• Compute a set of all possible outputs and paths by running two
programs with symbolic test cases.

(𝖿𝗎𝗇 𝗑 − > 𝗑 + α𝟣)

Symbolic execution result:
 - Correct :
 - Buggy :

Φc = {(𝗍𝗋𝗎𝖾, [α𝟤 + α𝟣])}
Φb = {(α2 > 0,[α2 + α1]), (α2 ≤ 0,[α2])}

[α2]

Symbolic test cases:
 - f =
 - lst =

Validation

!74

let rec map : (int -> int) -> int list -> int list
= fun f lst ->
 match lst with
 | [] -> []
 | hd::tl -> if hd > 0 then (f hd)::(map f tl)
 else hd::(map f tl)

Buggy Program

(𝖿𝗎𝗇 𝗑 − > 𝗑 + α𝟣)

Symbolic execution result:
 - Correct :
 - Buggy :

Φc = {(𝗍𝗋𝗎𝖾, [α𝟤 + α𝟣])}
Φb = {(α2 > 0,[α2 + α1]), (α2 ≤ 0,[α2])}

[α2]

Verification condition:

Symbolic test cases:
 - f =
 - lst =

let rec map : (int -> int) -> int list -> int list
= fun f lst ->
 match lst with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)

Correct Program

• Automatically infer specific values by solving the resulting
verification condition.

⋀
(πc,vc)∈Φc

πc ⟹ ⋁
(πb,vb)∈Φb

πb ∧ vc = vb

Validation

!75

let rec map : (int -> int) -> int list -> int list
= fun f lst ->
 match lst with
 | [] -> []
 | hd::tl -> if hd > 0 then (f hd)::(map f tl)
 else hd::(map f tl)

Buggy Program

(𝖿𝗎𝗇 𝗑 − > 𝗑 + α𝟣)

Symbolic execution result:
 - Correct :
 - Buggy :

Φc = {(𝗍𝗋𝗎𝖾, [α𝟤 + α𝟣])}
Φb = {(α2 > 0,[α2 + α1]), (α2 ≤ 0,[α2])}

[α2]

Verification condition:
(𝗍𝗋𝗎𝖾 ⟹ (α2 > 0 ∧ [α2 + α1] = [α2 + α1]) ∨

(α2 ≤ 0 ∧ [α2 + α1] = [α2]))

Symbolic test cases:
 - f =
 - lst =

let rec map : (int -> int) -> int list -> int list
= fun f lst ->
 match lst with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)

Correct Program

• Automatically infer specific values by solving the resulting
verification condition.

Validation

!76

let rec map : (int -> int) -> int list -> int list
= fun f lst ->
 match lst with
 | [] -> []
 | hd::tl -> if hd > 0 then (f hd)::(map f tl)
 else hd::(map f tl)

Buggy Program

(𝖿𝗎𝗇 𝗑 − > 𝗑 + α𝟣)

Symbolic execution result:
 - Correct :
 - Buggy :

Φc = {(𝗍𝗋𝗎𝖾, [α𝟤 + α𝟣])}
Φb = {(α2 > 0,[α2 + α1]), (α2 ≤ 0,[α2])}

[α2]

Verification condition:
(𝗍𝗋𝗎𝖾 ⟹ (α2 > 0 ∧ [α2 + α1] = [α2 + α1]) ∨

(α2 ≤ 0 ∧ [α2 + α1] = [α2]))

Symbolic test cases:
 - f =
 - lst =

let rec map : (int -> int) -> int list -> int list
= fun f lst ->
 match lst with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)

Correct Program

• Automatically infer specific values by solving the resulting
verification condition.

Validation

!77

let rec map : (int -> int) -> int list -> int list
= fun f lst ->
 match lst with
 | [] -> []
 | hd::tl -> if hd > 0 then (f hd)::(map f tl)
 else hd::(map f tl)

Buggy Program

(𝖿𝗎𝗇 𝗑 − > 𝗑 + α𝟣)

Symbolic execution result:
 - Correct :
 - Buggy :

Φc = {(𝗍𝗋𝗎𝖾, [α𝟤 + α𝟣])}
Φb = {(α2 > 0,[α2 + α1]), (α2 ≤ 0,[α2])}

[α2]

Verification condition:
(𝗍𝗋𝗎𝖾 ⟹ (α2 > 0 ∧ [α2 + α1] = [α2 + α1]) ∨

(α2 ≤ 0 ∧ [α2 + α1] = [α2]))

Symbolic test cases:
 - f =
 - lst =

let rec map : (int -> int) -> int list -> int list
= fun f lst ->
 match lst with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)

Correct Program

• Automatically infer specific values by solving the resulting
verification condition.

When , the VC is false.α1 = 1 ∧ α2 = 0

Counter Example :
 - f =
 - lst =

(𝖿𝗎𝗇 𝗑 − > 𝗑 + 𝟣)
[0]

Evaluation

!78

• Implemented our approach in a tool, TestML.

• Evaluated it on 4,060 submissions from 10 problems used in
our functional programming course.

• Research questions:

• How effectively does TestML detect erroneous submissions
than manual test cases?

• Is TestML more effective than property-based testing?

• Can TestML enhance automatic program repair system?

Effectiveness

• For comparison, we used 10 manual test cases which have been
continually refined.

• TestML found 88 more errors than human-provided test cases.

!79

19

Table 1. Comparison with the instructor-generated test cases. ‘T���ML 3’, ‘Manual 3’, ‘T���ML 7’, and
‘Manual 7’ indicate whether an erroneous program is found or not by T���ML or the manual test cases,
respectively.

No Problem Description
Error Programs

T���ML 3 T���ML 3 T���ML 7 TotalManual 3 Manual 7 Manual 3
1 Finding a maximum element in a list 35 10 0 45
2 Filtering a list 5 4 0 9
3 Mirroring a binary tree 9 0 0 9
4 Checking membership in a binary tree 19 0 0 19
5 Computing

Õk
i=j f (i) for j, k , and f 32 0 0 32

6 Composing functions 46 3 0 49
7 Adding numbers in user-de�ned number system 14 4 0 18
8 Evaluating expressions and propositional formulas 105 7 0 112
9 Deciding lambda terms are well-formed or not 116 25 0 141
10 Di�erentiating algebraic expressions 162 35 0 197

Total 543 88 0 631

column. Furthermore, there are no errors which are detected only by the human-provided test cases
but missed by T���ML (the third sub-column of ‘# Error Programs’). This is remarkable because
the test cases are not a strawman; we have re�ned them several times over the past three years.
Despite of this e�ort, the latest version of our test cases for Problem 10 found only 7 more error
programs (162) compared to the oldest one (155). T���ML, however, found 42 more programs (197)
than the �rst version of test suite. In conclusion, T���ML found 631 erroneous submissions in total,
yet the manually-designed test cases only found 543.
The e�ectiveness of our technique comes from the ability to automatically examine numerous

submissions one by one. Because the instructor cannot predict the behaviors of divergent imple-
mentations or examine a huge set of programs individually, it is impossible to manually construct
a test set which includes all corner cases. We found that the students’ submissions are usually very
complex to understand and relatively sizable compared to instructor’s solution, which makes the
manual investigation more di�cult. However, as our technique is able to automatically generate a
counter-example of each submission without any manual e�ort, it can detect errors more precisely
than manually-designed test cases. We manually con�rmed that all erroneous programs newly
detected by our technique have actual errors.

Importance of Concise Test Cases. We also analyzed the experimental results qualitatively
as well as quantitatively. An interesting observation is that the counter-examples generated by
our technique are signi�cantly more concise than the manually-designed test cases. Consider the
following erroneous implementation of Problem 10.

1 let rec diff (e, var) =

2 match e with

3 | Times [hd] -> diff (hd, var)

4 | Times (hd::tl) ->

5 (match hd with

6 | Const a -> Times (hd::[diff (Times tl, var)])

7 | Var a ->

8 if (a = var) then Sum (hd::(diff (Times tl, var)::[diff (Times tl, var)]))

9 else Times (hd::[diff (Times tl, var)])

Proc. ACM Program. Lang., Vol. , No. OOPSLA, Article . Publication date: October 2019.

Comparison with property-based testing

• Used QCheck, a property-based testing tool for OCaml.

• Manually designed well-tuned test generator and shrinker for QCheck.

• TestML outperforms QCheck without any human effort.

!80

21

Table 2. Comparison with QCheck. ‘#E’ reports the number of detected erroneous programs and ‘Time’
reports the total amount of time to produce all the counter-examples.

No Problem Description QCheck1 QCheck2 T���ML
#E Time # E Time #E Time

1 Finding a maximum element in a list 45 86.0 38 72.6 45 0.5
3 Mirroring a binary tree 9 0.0 9 0.0 9 0.3
4 Checking membership in a binary tree 19 0.0 19 0.0 19 0.5
7 Adding numbers in user-de�ned number system 18 0.8 18 0.8 18 0.3
8 Evaluating expressions and propositional formulas 112 3.7 112 10.5 112 6.5
9 Deciding lambda terms are well-formed or not 139 110.4 130 555.8 141 10.4
10 Di�erentiating algebraic expressions 186 390.1 182 318.6 197 86.6

Total 528 592.0 508 958.4 541 105.1

The result also shows that T���ML is far more e�cient than QCheck in time cost. Because
QCheck basically performs random testing, it has some di�culties in �nding a speci�c counter-
example within a short time. Even it successfully generates a counter-example, QCheck often
produces multiple lines of long test cases which are hard to understand. As we mentioned in
the paragraph “Importance of Concise Test Cases” in Section 6.1, generating concise test cases is
important in logical error detection; thus, it is very natural for programmers to build an additional
input shrinker to simplify the test cases generated by QCheck. However, we found that the input
shrinker often degrades the performance as it spends more time shortening the test cases. The
evaluation results show that QCheck without any shrinkers took about 592.0 seconds in total
for generating 528 counter-examples, and 958.4 seconds for 508 counter-examples otherwise. In
contrast, T���ML generated 541 concise test cases with no needs for shrinking algorithm, and it
only took 105.1 seconds in total.

QCheck Requires Signi�cant Manual E�ort. The most important point is that our technique
outperforms the property-based test generator without anymanual e�ort such as an implementation
of a test generator or a shrinker. We found that the performance of QCheck heavily depends on
the given generator. For a proper experiment, we have built the generators and shrinkers as
well-designed as possible to generate counter-examples in reasonable time. For instance, if a
program does not need a large integer value, we designed a generator to only produce the small
unsigned integers (e.g. integers between 0 and 100). Without this optimization, we observed that
the performance of�ickCheck is seriously degraded. In an extreme case, it failed to detect a single
counter-example for some problems even with a 20-minute time budget. Thus, developers should
carefully design generators and shrinkers to use QCheck e�ectively; it, however, requires a lot of
e�ort and intuition to do so. Indeed, to achieve the result of the columns ‘QCheck1’ and ‘QCheck2’
in Table 2, we tried several experiments with a number of generators and shrinkers (more than 5
for each problem) and reported the best performance among the several trials. Unlike QCheck, our
technique does not require any such human e�ort for e�ective testing.

Di�culty of Testing Higher-order Functions. Since QCheck does not support a function
generator, we were not able to evaluate it on the three higher-order problems which take a function
as an input. To design a test generator and an input shrinker for functional test cases manually is
challenging as they require programmers to design grammar for an input function. Some researches
focus on addressing the problem of testing higher-order function in property-based testing (e.g.,
[Koopman and Plasmeijer 2006]).

Proc. ACM Program. Lang., Vol. , No. OOPSLA, Article . Publication date: October 2019.

Test-suite Overfitted Patch
• Test-case-based program repair sometimes produces test-suite

overfitted patches which satisfy only given test cases.

!81

let rec eval_exp e =
 match e with
 | Num n -> n
 | Add (e1, e2) -> (eval_exp e1) + (eval_exp e2)
 | Sub (e1, e2) -> (eval_exp e1) + (eval_exp e2)

let rec eval f =
 match f with
 | True -> true
 | False -> false
 | Not f -> not (eval f)
 | AndAlso (f1, f2) -> (eval f1) && (eval f2)
 | OrElse (f1, f2) -> (eval f1) || (eval f2)
 | Imply (f1, f2) -> not (eval f1) || (eval f2)
 | Less (e1, e2) -> (eval_exp e1) < (eval_exp e2)

Input Output

Less (Num 1, Num 2) true

Less (Sub (Num 1, Num 2), Num 4) true

Less (Add (Num 1, Num 3), Sub (Num 2, Num 3)) false

Buggy Program

Test Cases

Test-suite Overfitted Patch
• Test-case-based program repair sometimes produces test-suite

overfitted patches which satisfy only given test cases.

!82

let rec eval_exp e =
 match e with
 | Num n -> n
 | Add (e1, e2) -> (eval_exp e1) + (eval_exp e2)
 | Sub (e1, e2) -> (eval_exp e1) + (eval_exp e2)

let rec eval f =
 match f with
 | True -> true
 | False -> false
 | Not f -> not (eval f)
 | AndAlso (f1, f2) -> (eval f1) && (eval f2)
 | OrElse (f1, f2) -> (eval f1) || (eval f2)
 | Imply (f1, f2) -> not (eval f1) || (eval f2)
 | Less (e1, e2) -> (eval_exp e1) < (eval_exp e2)

Input Output

Less (Num 1, Num 2) true

Less (Sub (Num 1, Num 2), Num 4) true

Less (Add (Num 1, Num 3), Sub (Num 2, Num 3)) false

Buggy Program

Test Cases

1+3 < 2+3 => true

Test-suite Overfitted Patch
• Test-case-based program repair sometimes produces test-suite

overfitted patches which satisfy only given test cases.

!83

let rec eval_exp e =
 match e with
 | Num n -> n
 | Add (e1, e2) -> (eval_exp e1) + (eval_exp e2)
 | Sub (e1, e2) -> (eval_exp e1) + (eval_exp e2)

let rec eval f =
 match f with
 | True -> true
 | False -> false
 | Not f -> not (eval f)
 | AndAlso (f1, f2) -> (eval f1) && (eval f2)
 | OrElse (f1, f2) -> (eval f1) || (eval f2)
 | Imply (f1, f2) -> not (eval f1) || (eval f2)
 | Less (e1, e2) -> (eval_exp e1) < (eval_exp e2)

let rec eval_exp e =
 match e with
 | Num n -> n
 | Add (e1, e2) -> (eval_exp e2) + (eval_exp e2)
 | Sub (e1, e2) -> (eval_exp e1) + (eval_exp e2)

let rec eval f =
 match f with
 | True -> true
 | False -> false
 | Not f -> not (eval f)
 | AndAlso (f1, f2) -> (eval f1) && (eval f2)
 | OrElse (f1, f2) -> (eval f1) || (eval f2)
 | Imply (f1, f2) -> not (eval f1) || (eval f2)
 | Less (e1, e2) -> (eval_exp e1) < (eval_exp e2)

Input Output

Less (Num 1, Num 2) true

Less (Sub (Num 1, Num 2), Num 4) true

Less (Add (Num 1, Num 3), Sub (Num 2, Num 3)) false

Buggy Program

Test Cases

Overfitted Patch

Test-suite Overfitted Patch
• Test-case-based program repair sometimes produces test-suite

overfitted patches which satisfy only given test cases.

!84

let rec eval_exp e =
 match e with
 | Num n -> n
 | Add (e1, e2) -> (eval_exp e1) + (eval_exp e2)
 | Sub (e1, e2) -> (eval_exp e1) + (eval_exp e2)

let rec eval f =
 match f with
 | True -> true
 | False -> false
 | Not f -> not (eval f)
 | AndAlso (f1, f2) -> (eval f1) && (eval f2)
 | OrElse (f1, f2) -> (eval f1) || (eval f2)
 | Imply (f1, f2) -> not (eval f1) || (eval f2)
 | Less (e1, e2) -> (eval_exp e1) < (eval_exp e2)

let rec eval_exp e =
 match e with
 | Num n -> n
 | Add (e1, e2) -> (eval_exp e2) + (eval_exp e2)
 | Sub (e1, e2) -> (eval_exp e1) + (eval_exp e2)

let rec eval f =
 match f with
 | True -> true
 | False -> false
 | Not f -> not (eval f)
 | AndAlso (f1, f2) -> (eval f1) && (eval f2)
 | OrElse (f1, f2) -> (eval f1) || (eval f2)
 | Imply (f1, f2) -> not (eval f1) || (eval f2)
 | Less (e1, e2) -> (eval_exp e1) < (eval_exp e2)

Input Output

Less (Num 1, Num 2) true

Less (Sub (Num 1, Num 2), Num 4) true

Less (Add (Num 1, Num 3), Sub (Num 2, Num 3)) false

Buggy Program

Test Cases

Overfitted Patch

3+3 < 2+3 => false

Counter-example Guided Repair

• Verify the correctness of generated patch by generating
counter-example.

• Supplement the given test suite with newly found counter
examples, and try to fix the error again.

!85

23

Repair Candidate

Counter-example Incorrect Program

fail

Fail to Repair

Patch
Generator

Correct Program

fail

Repaired Program

Counter-Example
Generator

Fig. 8. Overall workflow of Counter-Example Guided Repair System

generates a patch by correcting the error in the given incorrect program and validates the patch
by counter-example generation. If the counter-example generator produces a counter-example of
the generated repair candidate, the system enriches the test suite by adding the newly discovered
counter-example and tries to repair the original error program again. It repeats this procedure until
there is no counter-example found by the counter-example generator. In this case, it concludes that
the patch is correct and returns it. If the patch generator fails to generate a repair candidate, the
system reports that generating a patch is failed.

Experimental Se�ing. For evaluation, we implemented a counter-example guided repair system
based on F��ML [Lee et al. 2018b], a state-of-the-art feedback generator for functional programming
assignments. As F��ML requires a reference implementation to e�ectively repair a buggy program,
we provided a solution program implemented by an instructor as a reference code. The benchmark
set is the same with the one used in the Table 1. To run F��ML, we provided 10 manually-designed
test cases used in Experiment 1 for each problem while the counter-example guided repair system
did not take any test cases beforehand. We set the timeouts for both the patch generation and
counter-example generation to 60 seconds. To identify the test-suite-over�tted patch problems
generated by F��ML, we manually con�rmed the correctness of all generated patches one by one
thoroughly. We classi�ed a patch as correct one when its semantics is the same with the one
of the solution code (i.e., it always returns the same output as the correct answer), and did as a
test-suite-over�tted patch otherwise.

Result. In Table 3, we present the number of detected error programs (#E), the number of correct
patches generated by F��ML (#P), the number of test-suite-over�tted patches (#O), and the ratio
of successfully repaired programs with respect to the entire programs (Rate). We compare the
performance of F��ML when using manual-test-cases (Manual Test Suite) with the one enhanced
by our counter-example generation algorithm (Our Technique). The result in Table 3 shows that the
counter-example guided approach dramatically improved the performance of F��ML. The number
of test-suite-over�tted patches notably decreased from 58 to 1 as the counter-example guided repair
system veri�es the correctness of patch candidates by generating counter-examples. As a result,
the patch rate eventually increased from 29% (156/543) to 38% (237/631) as well as the total number
of patches.

Even if our counter-example guided repair approach signi�cantly reduces the number of incorrect
patches, there was still an incorrect patch in Problem 5. Our technique failed to generate a counter-
example because its performance depends on SMT solver in symbolic veri�cation step and the
given solving time (50 milliseconds) was not enough to solve it. Because the insu�cient time is the
only reason for failure, this problem can be easily addressed by giving the solver more time. We

Proc. ACM Program. Lang., Vol. , No. OOPSLA, Article . Publication date: October 2019.

Usefulness in Automatic Program Repair

• Applied our counter-example generation algorithm to FixML.

• Significantly reduce the number of test-suite overfitted patches
(58 to 1).

• The patch rate eventually increased (from 29% to 38%).
!86

24 Dowon Song, Myungho Lee, and Hakjoo Oh

Table 3. Enhancement in automatic program repair. The column ‘#E’ indicates the number of detected error
programs, ‘#P’ reports the number of correct patches , ‘#O’ shows the number of test-suite-overfi�ed patches,
‘Rate’ represents the ratio of correctly patched programs to the erroneous programs.

No Problem Description Manual Test Suite Our Technique
#E #P #O Rate #E #P #O Rate

1 Finding a maximum element in a list 35 32 0 90% 45 42 0 93%
2 Filtering a list 5 3 0 60% 9 6 0 67%
3 Mirroring a binary tree 9 7 1 78% 9 8 0 89%
4 Checking membership in a binary tree 19 11 1 58% 19 12 0 63%
5 Computing

Õk
i=j f (i) for j, k , and f 32 11 6 34% 32 16 1 50%

6 Composing functions 46 17 0 37% 49 20 0 41%
7 Adding numbers in user-de�ned number system 14 4 2 29% 18 9 0 50%
8 Evaluating expressions and propositional formulas 105 29 12 28% 112 45 0 40%
9 Deciding lambda terms are well-formed or not 116 16 29 14% 141 33 0 23%
10 Di�erentiating algebraic expressions 162 26 7 16% 197 46 0 23%

Total/Average 543 156 58 29% 631 237 1 38%

observed that this incorrect patch also can be �xed when changing the timeout for solver from 50
milliseconds to 2 seconds.

7 RELATEDWORK
In this section, we discuss the researches closely related to our work. The existing works are
classi�ed into �ve categories according to their research �eld.

Property-based Testing. The property-based testing is a well-known approach for testing func-
tional programs. It aims to �nd test cases which fail to satisfy the prede�ned property, and
�ickCheck [Claessen and Hughes 2000] is the most famous framework for the property-based
testing. It, however, has a di�culty in generating function type test cases and requires users to build
test generators manually. To address these limitations, several researches have been proposed [Koop-
man and Plasmeijer 2006; Lampropoulos et al. 2017; Löscher and Sagonas 2017]. Koopman and
Plasmeijer [2006] improved property-based testing to test higher-order function more easily by
representing functions’ AST as a data type format and generating instances of this data type
using property-based testing tool. As constructing a test case generator is a burdensome task for
users, Lampropoulos et al. [2017] demonstrated Luck, a language which allows users to easily build,
read, and maintain the property-based test generators. Löscher and Sagonas [2017] proposed an
enhanced property-based testing called targeted property-based testing and implemented T�����
which uses a search strategy based guidance rather than completely random testing to generate
test cases more e�ectively. These recent works, however, still have the same limitation addressed
above; they basically require manual human e�ort, which is particularly undesirable when testing
numerous programs.

Symbolic Execution. Symbolic execution [Cadar et al. 2011; Khurshid et al. 2003; King 1976]
is another approach which is widely used in program testing. For example, it is used to check
the correctness of students’ program for providing an appropriate feedback [Phothilimthana and
Sridhara 2017; Singh et al. 2013]. It, however, has a well-known problem called path explosion
as it basically collects all execution paths of a program. Despite the modern high-performance
SAT and SMT solvers make symbolic execution practical by eliminating infeasible paths [Cadar
et al. 2008a,b], it is still hard to symbolically execute functional programs. In Section 6.3, we brie�y

Proc. ACM Program. Lang., Vol. , No. OOPSLA, Article . Publication date: October 2019.

Summary

• We proposed a novel technique for detecting logical errors in
functional programming assignments without any human effort.

• Combining enumerative search and symbolic execution in a
synergistic way

• The evaluation results show that our technique is useful for
error detection and program repair.

• Code and our data: https://github.com/kupl/TestML

!87

Summary

• We proposed a novel technique for detecting logical errors in
functional programming assignments without any human effort.

• Combining enumerative search and symbolic execution in a
synergistic way

• The evaluation results show that our technique is useful for
error detection and program repair.

• Code and our data: https://github.com/kupl/TestML

!88

Thank you for listening!

Supplementary

Supplementary

Supplementary

Supplementary

Supplementary

Supplementary

Example3: Append Lists

• Stackoverflow example

!95

(* check whether the element e is in list l *)
let rec find e l =
 match l with
 | [] -> false
 | h::t -> if h = e then true else find e t

(* append l1’s elements not in l2 *)
let rec helper l1 l2 =
 match l1 with
 | [] -> l2
 | h::t ->
 if find h l2 = false then helper t (l2@[h])
 else helper t l2

let append_list x y = helper x y

Test cases :
append_list [1;3] [3;4;5] = [3;4;5;1]
append_list [1] [3;3;4] = [3;4;1]

Example3: Append Lists

• Stackoverflow example

!96

(* check whether the element e is in list l *)
let rec find e l =
 match l with
 | [] -> false
 | h::t -> if h = e then true else find e t

(* append l1’s elements not in l2 *)
let rec helper l1 l2 =
 match l1 with
 | [] -> l2
 | h::t ->
 if find h l2 = false then helper t (l2@[h])
 else helper t l2

let append_list x y = helper x y

Test cases :
append_list [1;3] [3;4;5] = [3;4;5;1]
append_list [1] [3;3;4] = [3;4;1]

append_list [1] [3;3;4] = [3;3;4;1]

Do not check the duplication in list y

(* check whether the element e is in list l *)
let rec find e l =
 match l with
 | [] -> false
 | h::t -> if h = e then true else find e t

(* append l1’s elements not in l2 *)
let rec helper l1 l2 =
 match l1 with
 | [] -> l2
 | h::t ->
 if find h l2 = false then helper t (l2@[h])
 else helper t l2

let append_list x y = helper x y

Example3: Append Lists

• Stackoverflow example

!97

FixML: (helper y [])

Time: 43 sec

Test cases :
append_list [1;3] [3;4;5] = [3;4;5;1]
append_list [1] [3;3;4] = [3;4;1]

Do not check the duplication in list y

Technique Utility

• Only statistical fault localization with enumerative search

!98

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120 140 160 180 200 220

Re
pa
ir-
Ti
m
e-
(s)

Benchmarks-solved

Localize

Technique Utility

• Statistical fault localization + type-directed search

!99

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120 140 160 180 200 220

Re
pa
ir-
Ti
m
e-
(s)

Benchmarks-solved

Localize

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120 140 160 180 200 220

Re
pa
ir-
Ti
m
e-
(s)

Benchmarks-solved

Localize Type

Technique Utility

• Localization + type-directed search + component reduction

!100

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120 140 160 180 200 220

Re
pa
ir-
Ti
m
e-
(s)

Benchmarks-solved

Localize

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120 140 160 180 200 220

Re
pa
ir-
Ti
m
e-
(s)

Benchmarks-solved

Localize Type

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120 140 160 180 200 220

Re
pa
ir-
Ti
m
e-
(s)

Benchmarks-solved

Localize Type Comp

Failure reasons
1. Multiple error

2. Scalability issues

3. Cannot fix by replacing expressions

!101

Results: Similarity

• Calculate the top-1 similarity among the correct programs.

=> Providing feedback by detecting most similar solution is not
much helpful.

!102

158:22 Junho Lee, Dowon Song, Sunbeom So, and Hakjoo Oh

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Si
m
ila
rit
y3S

co
re
3(%

)

Lines3of3Code

Fig. 11. Similarity between correct and incorrect submissions

Given f, a, and b, sigma f a b should compute
Õ

b

i=a f(i). The implementation works correctly as
long as f is injective (e.g. f = fun x -> x*x). However, it becomes incorrect when, for example, f
is (fun x -> x mod 3). The bug is at line 2, where the condition f a != f bmust be replaced by a
!= b. At an early stage of this work, F��MLwas not able to �nd this error, as such a counterexample
was missing in our testcases. We plan to automatically generate high-quality testcases, which then
enables F��ML not to miss tricky bugs.

Scalability. Although we have improved scalability signi�cantly, F��ML still needs more ad-
vanced program synthesis techniques to generate complex repairs. For instance, F��ML could not
�x the student’s submission below (Problem 13 in Table 1):
1 let rec diff (e, x)=

2 match e with

3 | Times lst ->

4 (match lst with

5 | [] -> Const 0

6 | hd::tl -> Times [diff (hd,x); diff (Times tl,x)]) |...

where a desirable �x is to replace Times [diff (hd,x); diff (Times tl,x)] (i.e., (f �)0 = f 0�0)
at line 6 with Sum [Times ((diff (hd,x))::tl); Times [hd; diff (Times tl,x)]] (i.e.,
(f �)0 = f 0� + f �0). However, F��ML failed to produce the correction even after 15 minutes. We
plan to develop more powerful synthesis techniques to generate sizable repairs.

5.5 Discussion 2: Similarity between Correct and Incorrect Submissions
A recent trend in automatic feedback generation systems is data-driven approach [Gulwani et al.
2018; Pu et al. 2016; Wang et al. 2018], where a number of correct implementations that are similar
to a given buggy program are exploited to �nd appropriate candidates for corrections. Readers
might wonder F��ML can bene�t from this promising and complementary approach. To answer
this question, we analyzed similarities between correct and incorrect programs submitted for our
13 benchmark problems in Table 1.

The analysis result in Fig. 11 implies that although the data-driven approach can be e�ective
for introductory-level problems, it would be unsuitable for more complex programs. In this study,
we checked whether we could �nd any similar programs for each incorrect submission using
M��� [Schleimer et al. 2003], a system for quantifying similarities between programs.5 For each
5For OCaml, we used the implementation available at https://github.com/Chris00/ocaml-moss

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 158. Publication date: November 2018.

60% benchmarks

• Evaluation of programming assignment heavily relies on given
test cases.

• To properly evaluate students’ submissions, instructors manually
design these test cases.

• However manually designed test cases sometimes miss some
incorrect submissions.

Motivation

!103

• Evaluation of programming assignment heavily relies on given
test cases.

• To properly evaluate students’ submissions, instructors manually
design these test cases.

• However manually designed test cases sometimes miss some
incorrect submissions.

Motivation

!104

Solve this problem by
generating counter-example automatically

Example1: Lambda Calculus

• Check all variables in given lambda calculus is bounded

!105

type var = string
type lambda =
 | V of var
 | P of var * lambda
 | C of lambda * lambda

let rec remove (var,p) =
 match p with
 | V x -> if x = var then V “f” else V x
 | P (x,p) -> P (x,remove (var,p))
 | C (p1,p2) -> C (remove (var,p1),remove (var,p2))

let rec check p =
 match p with
 | V x -> if x = “f” then true else false
 | P (x,p) -> check (remove (x,p))
 | C (p1,p2) -> (check p1) && (check p2)

Test cases :
check (V “x”) = false
check (P (“y”, = false
check (P (“x”, C (P true

𝖼𝗁𝖾𝖼𝗄(x) = 𝖿𝖺𝗅𝗌𝖾

𝖼𝗁𝖾𝖼𝗄(λx . ((λy . y) x)) = 𝗍𝗋𝗎𝖾
𝖼𝗁𝖾𝖼𝗄(λx . y) = 𝖿𝖺𝗅𝗌𝖾

Example1: Lambda Calculus

• Check all variables in given lambda calculus is bounded

!106

type var = string
type lambda =
 | V of var
 | P of var * lambda
 | C of lambda * lambda

let rec remove (var,p) =
 match p with
 | V x -> if x = var then V “f” else V x
 | P (x,p) -> P (x,remove (var,p))
 | C (p1,p2) -> C (remove (var,p1),remove (var,p2))

let rec check p =
 match p with
 | V x -> if x = “f” then true else false
 | P (x,p) -> check (remove (x,p))
 | C (p1,p2) -> (check p1) && (check p2)

λx . x → λx . f

Test cases :
check (V “x”) = false
check (P (“y”, = false
check (P (“x”, C (P true

𝖼𝗁𝖾𝖼𝗄(x) = 𝖿𝖺𝗅𝗌𝖾

𝖼𝗁𝖾𝖼𝗄(λx . ((λy . y) x)) = 𝗍𝗋𝗎𝖾
𝖼𝗁𝖾𝖼𝗄(λx . y) = 𝖿𝖺𝗅𝗌𝖾

Example1: Lambda Calculus

• Check all variables in given lambda calculus is bounded

!107

type var = string
type lambda =
 | V of var
 | P of var * lambda
 | C of lambda * lambda

let rec remove (var,p) =
 match p with
 | V x -> if x = var then V “f” else V x
 | P (x,p) -> P (x,remove (var,p))
 | C (p1,p2) -> C (remove (var,p1),remove (var,p2))

let rec check p =
 match p with
 | V x -> if x = “f” then true else false
 | P (x,p) -> check (remove (x,p))
 | C (p1,p2) -> (check p1) && (check p2)

λx . x → λx . f

𝖼𝗁𝖾𝖼𝗄(f) = 𝗍𝗋𝗎𝖾

Test cases :
check (V “x”) = false
check (P (“y”, = false
check (P (“x”, C (P true

𝖼𝗁𝖾𝖼𝗄(x) = 𝖿𝖺𝗅𝗌𝖾

𝖼𝗁𝖾𝖼𝗄(λx . ((λy . y) x)) = 𝗍𝗋𝗎𝖾
𝖼𝗁𝖾𝖼𝗄(λx . y) = 𝖿𝖺𝗅𝗌𝖾

Example1: Lambda Calculus

• Check all variables in given lambda calculus is bounded

!108

type var = string
type lambda =
 | V of var
 | P of var * lambda
 | C of lambda * lambda

let rec remove (var,p) =
 match p with
 | V x -> if x = var then V “f” else V x
 | P (x,p) -> P (x,remove (var,p))
 | C (p1,p2) -> C (remove (var,p1),remove (var,p2))

let rec check p =
 match p with
 | V x -> if x = “f” then true else false
 | P (x,p) -> check (remove (x,p))
 | C (p1,p2) -> (check p1) && (check p2)

Test cases :
check (V “x”) = false
check (P (“y”, = false
check (P (“x”, C (P true

Counter Example : V “f” = false

𝖼𝗁𝖾𝖼𝗄(x) = 𝖿𝖺𝗅𝗌𝖾

𝖼𝗁𝖾𝖼𝗄(λx . ((λy . y) x)) = 𝗍𝗋𝗎𝖾
𝖼𝗁𝖾𝖼𝗄(λx . y) = 𝖿𝖺𝗅𝗌𝖾

λx . x → λx . f

𝖼𝗁𝖾𝖼𝗄(f) = 𝗍𝗋𝗎𝖾

Example2: Differentiation

• Generate more complicated input

!109

type aexp =
 | Const of int
 | Var of string
 | Power of string * int
 | Times of aexp list
 | Sum of aexp list

let rec diff (exp, var) =
 match exp with
 | Const n -> Const 0
 | Var str -> if str = var then Const 1 else Const 0
 | Power (str, n) -> if str = var && n > 0 then Times [Const n; Power (str, n-1)] else Const 0
 | Times lst ->
 (match lst with
 | [] -> Const 0
 | [hd] -> diff (hd, var)
 | hd::tl -> Sum [Times (diff (hd, var)::tl); Times [hd; diff (Times tl, var)]])
 | Sum lst ->
 (match lst with
 | [] -> Const 0
 | [hd] -> diff (hd, var)
 | hd::tl -> Sum [diff (hd, var); diff (Times tl, var)])

Test cases :
diff (Const 1,“x”) = Const 0
diff (Var “x”,“x”) = Const 1
diff (Power (“x”, 3),“x”) = Times[Const 3; Power (“x”, 2)]

Example2: Differentiation

• Generate more complicated input

!110

type aexp =
 | Const of int
 | Var of string
 | Power of string * int
 | Times of aexp list
 | Sum of aexp list

let rec diff (exp, var) =
 match exp with
 | Const n -> Const 0
 | Var str -> if str = var then Const 1 else Const 0
 | Power (str, n) -> if str = var && n > 0 then Times [Const n; Power (str, n-1)] else Const 0
 | Times lst ->
 (match lst with
 | [] -> Const 0
 | [hd] -> diff (hd, var)
 | hd::tl -> Sum [Times (diff (hd, var)::tl); Times [hd; diff (Times tl, var)]])
 | Sum lst ->
 (match lst with
 | [] -> Const 0
 | [hd] -> diff (hd, var)
 | hd::tl -> Sum [diff (hd, var); diff (Times tl, var)])

(f(x) + h(x) + g(x))′� = f′�(x) + (g(x)h(x))′�

Test cases :
diff (Const 1,“x”) = Const 0
diff (Var “x”,“x”) = Const 1
diff (Power (“x”, 3),“x”) = Times[Const 3; Power (“x”, 2)]

Example2: Differentiation

• Generate more complicated input

!111

type aexp =
 | Const of int
 | Var of string
 | Power of string * int
 | Times of aexp list
 | Sum of aexp list

let rec diff (exp, var) =
 match exp with
 | Const n -> Const 0
 | Var str -> if str = var then Const 1 else Const 0
 | Power (str, n) -> if str = var && n > 0 then Times [Const n; Power (str, n-1)] else Const 0
 | Times lst ->
 (match lst with
 | [] -> Const 0
 | [hd] -> diff (hd, var)
 | hd::tl -> Sum [Times (diff (hd, var)::tl); Times [hd; diff (Times tl, var)]])
 | Sum lst ->
 (match lst with
 | [] -> Const 0
 | [hd] -> diff (hd, var)
 | hd::tl -> Sum [diff (hd, var); diff (Times tl, var)])

Counter Example :
Sum[Var “x”; Var “x”;Const -1] => 2

(f(x) + h(x) + g(x))′� = f′�(x) + (g(x)h(x))′�

Test cases :
diff (Const 1,“x”) = Const 0
diff (Var “x”,“x”) = Const 1
diff (Power (“x”, 3),“x”) = Times[Const 3; Power (“x”, 2)]

Example1: Lambda Calculus

• It is impossible for instructors to inspect every corner-cases for
evaluation.

!112

type var = string
type lambda =
 | V of var
 | P of var * lambda
 | C of lambda * lambda

let rec remove (var,p) =
 match p with
 | V x -> if x = var then V “f” else V x
 | P (x,p) -> P (x,remove (var,p))
 | C (p1,p2) -> C (remove (var,p1),remove (var,p2))

let rec check p =
 match p with
 | V x -> if x = “f” then true else false
 | P (x,p) -> check (remove (x,p))
 | C (p1,p2) -> (check p1) && (check p2)

Example1: Lambda Calculus

• It is impossible for instructors to inspect every corner-cases for
evaluation.

!113

type var = string
type lambda =
 | V of var
 | P of var * lambda
 | C of lambda * lambda

let rec remove (var,p) =
 match p with
 | V x -> if x = var then V “f” else V x
 | P (x,p) -> P (x,remove (var,p))
 | C (p1,p2) -> C (remove (var,p1),remove (var,p2))

let rec check p =
 match p with
 | V x -> if x = “f” then true else false
 | P (x,p) -> check (remove (x,p))
 | C (p1,p2) -> (check p1) && (check p2)

Example1: Lambda Calculus

• It is impossible for instructors to inspect every corner-cases for
evaluation.

!114

type var = string
type lambda =
 | V of var
 | P of var * lambda
 | C of lambda * lambda

let rec remove (var,p) =
 match p with
 | V x -> if x = var then V “f” else V x
 | P (x,p) -> P (x,remove (var,p))
 | C (p1,p2) -> C (remove (var,p1),remove (var,p2))

let rec check p =
 match p with
 | V x -> if x = “f” then true else false
 | P (x,p) -> check (remove (x,p))
 | C (p1,p2) -> (check p1) && (check p2) Counter Example : V “f” => false

Example2: Differentiation

• It is hard to identify error in complicated programs and
generating error-triggering input is also nontrivial.

!115

type aexp =
 | Const of int
 | Var of string
 | Power of string * int
 | Times of aexp list
 | Sum of aexp list

let rec diff (exp, var) =
 match exp with
 | Const n -> Const 0
 | Var str -> if str = var then Const 1 else Const 0
 | Power (str, n) -> if str = var && n > 0 then Times [Const n; Power (str, n-1)] else Const 0
 | Times lst ->
 (match lst with
 | [] -> Const 0
 | [hd] -> diff (hd, var)
 | hd::tl -> Sum [Times (diff (hd, var)::tl); Times [hd; diff (Times tl, var)]])
 | Sum lst ->
 (match lst with
 | [] -> Const 0
 | [hd] -> diff (hd, var)
 | hd::tl -> Sum [diff (hd, var); diff (Times tl, var)])

Example2: Differentiation

• It is hard to identify error in complicated programs and
generating error-triggering input is also nontrivial.

!116

type aexp =
 | Const of int
 | Var of string
 | Power of string * int
 | Times of aexp list
 | Sum of aexp list

let rec diff (exp, var) =
 match exp with
 | Const n -> Const 0
 | Var str -> if str = var then Const 1 else Const 0
 | Power (str, n) -> if str = var && n > 0 then Times [Const n; Power (str, n-1)] else Const 0
 | Times lst ->
 (match lst with
 | [] -> Const 0
 | [hd] -> diff (hd, var)
 | hd::tl -> Sum [Times (diff (hd, var)::tl); Times [hd; diff (Times tl, var)]])
 | Sum lst ->
 (match lst with
 | [] -> Const 0
 | [hd] -> diff (hd, var)
 | hd::tl -> Sum [diff (hd, var); diff (Times tl, var)])

(f(x) + h(x) + g(x))′� = f′�(x) + (g(x)h(x))′�

Example2: Differentiation

• It is hard to identify error in complicated programs and
generating error-triggering input is also nontrivial.

!117

type aexp =
 | Const of int
 | Var of string
 | Power of string * int
 | Times of aexp list
 | Sum of aexp list

let rec diff (exp, var) =
 match exp with
 | Const n -> Const 0
 | Var str -> if str = var then Const 1 else Const 0
 | Power (str, n) -> if str = var && n > 0 then Times [Const n; Power (str, n-1)] else Const 0
 | Times lst ->
 (match lst with
 | [] -> Const 0
 | [hd] -> diff (hd, var)
 | hd::tl -> Sum [Times (diff (hd, var)::tl); Times [hd; diff (Times tl, var)]])
 | Sum lst ->
 (match lst with
 | [] -> Const 0
 | [hd] -> diff (hd, var)
 | hd::tl -> Sum [diff (hd, var); diff (Times tl, var)])

Counter Example :
Sum[Var “x”; Var “x”;Const -1] => 2

(f(x) + h(x) + g(x))′� = f′�(x) + (g(x)h(x))′�

