
Ahn, Ki Yung

안기영(安基榮)

kya@hnu.kr

KIISE / SIGPL Summer School 2018

Aug. 20th (Day 1/3)

1. General Introduction

2. Specifying π-calculus Op. Sem. using λProlog

 opam install elpi # assuming you have opam

 https://bit.ly/2MDXjo4 (source files)

3. Formal Reasoning about π-calc. spec. in Abella

 opam install abella

 git clone https://github.com/abella-prover/PG

cd PG && git checkout abella && make

assuming you have running emacs

https://bit.ly/2MDXjo4
https://github.com/abella-prover/PG

Nondeterministic

Finite Automata

Nondeterministic

Infinite States

State = Process Term

𝑃 ∷= ҧ𝑐 𝑎 . 𝑃
| 𝑐 𝑥 . 𝑃
| 𝑃 ∥ 𝑃
|⋯

𝑃 ∷= 0 stuck (no further action)
| ഥ𝑥 𝑦 . 𝑃 output 𝑦 on 𝑥 then 𝑃
| 𝑥(𝑦). 𝑃 bind 𝑦 to input from 𝑥 then 𝑃
| 𝜏 . 𝑃 internal action then 𝑃
| 𝑃1 ∥ 𝑃2 parallel composition
| 𝑃1 + 𝑃2 nondeterministic choice
| 𝜈𝑧. 𝑃 𝑧 is a fresh name
| 𝑥 = 𝑦 𝑃 match (equality guard)
| [𝑥 ≠ 𝑦] 𝑃 mismatch (inequality guard)
| ! 𝑃 infinite parallel comp. of 𝑃

Finite π-calculi

Finite π-calculus with Match only

Finite π-calc. with both Match and Mismatch

 𝑃 ∥ 0 ∼ 0 ∥ 𝑃 ∼ 𝑃 ∼ 𝑃 + 0 ∼ 0 + 𝑃

 𝑃 ∼ 𝑥 = 𝑥 𝑃

 0 ∼ 𝜈𝑧. 𝑧 = 𝑥 𝑃

 𝜈𝑧. 𝑃 ∼ 𝜈𝑧. 𝑧 ≠ 𝑥 𝑃

 𝜈𝑧. 𝜏. 𝑃 ∥ {𝑎/𝑥}𝑄 ∼ 𝜈𝑧. ҧ𝑧𝑎. 𝑃 ∥ 𝑧 𝑥 . 𝑄

 𝑃

 𝑥 = 𝑦 𝑃 + 𝑥 ≠ 𝑦 𝑃

Barbed Congruence/Equivalence

•a natural obvservational equivalence

Various Bisimulations

•computatoinally effective

(can write programs following the definitions)

Q simulates P

 For every leading step from P
there exists a following step from Q
with the same label

P and Q are bisimilar

 For every leading step from any side
there exists a following step from the
other side with the same label

𝑎

𝑎

𝑎 𝑎𝑏

𝑏

𝑏 𝑏

𝑏 𝑏𝑎 𝑎

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Barbed Congruence/Equivalence
• Equivalent processes have same barbs, i.e., 𝑃 ↓ 𝑎 iff 𝑄 ↓ 𝑎 for any 𝑎

• 𝑃 ↓ 𝑎 (𝑃 has barb 𝑎) when 𝑃 can do input/output step on 𝑎

• Equivalence relation is preserved under internal actions

i.e., Let 𝑹 be barbed eq. rel.; if 𝑃𝑹𝑄 then

• for any 𝑃
𝜏
𝑃′ there exists 𝑄

𝜏
𝑄′ s.t.𝑃′𝑹𝑄′

• for any 𝑄
𝜏
𝑄′ there exists 𝑃

𝜏
𝑃′ s.t.𝑃′𝑹𝑄′

• Closed version patches up 𝑹 afterwards to make it congruent

• Open version additionally requires the definition 𝑹 to be

Contextual (close under all process contexts) at every step

Closed World / Classical Logic

NOT preserved under substitutions

NOT good for modular verification

 Barbed Congruence

 Bisimulation relations (variations
on bindings of input variables)

 Early Bisimilarity

 coincides with Barbed Cong.

 Late Bisimilarity

 sub-relation of Early Bisimilarity

Open World / Intuitionistic Logic

Preserved under (respectful) substitutions

Good for modular verification

 Barbed Equivalence (open ver.)

 Bisimulation relations (variations
on bindings of input variables)

 Quasi-Open Bisimilarity

 coincides with Barbed Equiv.

 Open Bisimilarity

 sub-relation of Quasi-Open Bisim.

Modal Logics characterizing Bisimulations

 (Milner 1980) A Calculus of Communicating Systems

 (Hennessy and Milner 1980) On Observing Nondeterminism and Concurrency

 Hennessy—Milner Logic

 (Milner, Parrow, and Walker 1992) A Calculus of Mobile Processes (Part I, II)

 Early and Late bisimulations for the π-calculus with match only

 Modal Logics categorizing finite π-calculus with match only

 (Sangiorgi 1996) A Theory of Bisimulation for the π-Calculus

 Open bisimulation (for the π-calculus with match only)

 (Sangiorgi and Walker 2001) On Barbed Equivalences in π-Calculus

 Quasi-Open bisimulation (with match only)

 (Ahn, Horne, and Tui 2017) A Characterisation of Open Bisimilarity using an
Intuitionistic Modal Logic

 (Horne, Ahn, Lin and Tiu 2018) Quasi-Open Bisimilarity with Mismatch is
Intuitionistic

𝑃 ∷= 0
| 𝑀 𝑁 .𝑃
| 𝑀(𝑥). 𝑃
| 𝜏 . 𝑃
| 𝑃1 ∥ 𝑃2
| 𝑃1 + 𝑃2
| 𝜈𝑧. 𝑃
| 𝑀 = 𝑁 𝑃
| [𝑀 ≠ 𝑁] 𝑃
| ! 𝑃

Richer term structure (M, N)

not just names (x, y, z)

E.g., symbolic crypto.

Prolog

Classical

Predicates defined by
First-order Horn clauses

First-order Unification
over untyped terms

λProlog

 Intuitionistic

Predicates defined by
Higher-order Hereditary
Harrop formulae

Higher-order Unification
over simply-typed terms

 i.e., unification over
simply-typed HOAS (aka.
λ-tree syntax)

 modulo 𝛼𝛽𝜂-equivalence

x\y\x means 𝜆𝑥. 𝜆𝑦. 𝑥

x\M x means 𝜆𝑥.𝑀 𝑥
x cannot appear free in M
(including any instantiation of M)
because the scope of M is larger than x.

𝑃 ∷= 0
| ഥ𝑥 𝑦 . 𝑃
| 𝑥(𝑦). 𝑃
| 𝜏 . 𝑃
| 𝑃1 ∥ 𝑃2
| 𝑃1 + 𝑃2
| 𝜈𝑧. 𝑃
| 𝑥 = 𝑦 𝑃
| [𝑥 ≠ 𝑦] 𝑃

sig pic. %% file “pic.sig”

kind n type. % name
kind p type. % process
kind a type. % label

type null p.
type out n → n → p → p.
type inp n → (n → p) → p.
type taup p → p.
type par p → p → p.
type plus p → p → p.
type nu (n → p) → p.
type mat n → n → p.
type mis n → n → p.

% constants for labels (actions)

type dn, up n → n → a. % input, output
type tau a. % internal action

% type sig for labelled transition relations

type one p → a → p → o.
type oneb p → (n → a) → (n → p) → o.

module pic. %% file “pic.mod”

one (out X Y P) (up X Y) P.
one (inp X P) (dn X Y) (P Y). % P : n → p
one (taup P) tau P.
one (par P Q) A (par P1 Q) :- one P A P1.
one (par P Q) A (par P Q1) :- one Q A Q1.
one (par P Q) tau (par P1 Q1) :- one P (up X Y) P1,

one Q (dn X Y) Q1.
one (par P Q) tau (par P1 Q1) :- one P (dn X Y) P1,

one Q (up X Y) Q1.
one (plus P Q) A P1 :- one P A P1.
one (plus P Q) A Q1 :- one Q A Q1.
one (nu P) A (nu Q) :- pi x\ one (P x) A (Q x). % P,Q : n → p
one (mat X X P) A Q :- one P A Q.

 Teyjus
 De facto standard implementation of lambda-Prolog

 Development frozen, annoying to install. (Github src fails to build with recent Ocaml)

 Difficult to encode constructive inequality judgment for open terms
(common problem in majority of logic programming languages including Prolog)

 Difficult to encode bisimuation for open terms

 Bedwyr
 Freshness, Nominal conditions natively supported via ∇ (nabla) quantifier

 Easy to encode bisimulation for open terms

 Automatic proof searching theorem prover (or model checker)
Supporting sublanguage of Abella proof assistant

 Still difficult to encode constructive inequality

 Abella
 Not difficult to encode bisimulation of open terms with constructive inequality

 Not an automatic solver

