KIISE / SIGPL Summer School 2018
Aug. 20" (Day 1/3)

Ahn, KiYung
M7]Q (LA
kya@hnu.kr

1. General Introduction OUTLINE

2. Specifying m-calculus Op. Sem. using AProlog
= opam install elpi

- (source files)

3. Formal Reasoning about 1t-calc. spec. 1n Abella
= opam install abella

= git clone
cd PG && git checkout abella && make

https://bit.ly/2MDXjo4
https://github.com/abella-prover/PG

Labeled
Transition
System

(LIS)
Nondeterministic
Finite Automata

@ || c@E Labeled
Transition

System
(LT'S)

@ (aP ” {Z@ @ Nondeterministic
R— — - Infinite States

State = Process Term

Cca Z T

» Y r < | 2R o

mt-calculus syntax

P ::=0 stuck (no further action)
xXy.P output y on x then P
x(y).P bind y to input from x then P

T.P internal action then P

P, |l P, parallel composition
P+ P nondeterministic choice
vz.P Z 1s a fresh name

|x = y]| P match (equality guard)
|x # y| P mismatch (inequality guard)
| P infinite parallel comp. of P

Sub-calculi of above

=Finite m-calcull
=Finite t-calculus with Match only

=Finite mt-calc. with both Match and Mismatch

Syntactically Distinct but

Equivalent tr-calculus Processes

PO ~O0IP~P~P+0~0+P

=P ~ [x =x]|P

=0 ~ vz.|z =x]|P

=vz.P ~ vz.|z # x]|P

«vz.7.(P Il {a/x}Q) ~ vz.(Za.P |l z(x).Q)

Barbed Congruence/Equivalence

a natural obvservational equivalence

=Various Bisimulations

- computatoinally effective

(can write programs following the definitions)

Simulation and Bisimulation

Q simulates P P and Q are bisimilar
= For every leading step from P = For every leading step from any side
there exists a following step from Q there exists a following step from the
with the same label other side with the same label
(P, Q) (P, Q)
(P1, Q) (P2, Q) (P1, Q) (P, Q) (P2, Q) (P, Q2)

i YARRY:

(P1, Q1) (P2, Q2) (P1, Qi) (P2, Q2)

=Barbed Congruence/Equivalence
- Equivalent processes have same barbs,i.e.,P l aiff Q | a for any a

- Pl a (P has barb a) when P can do input/output step on a
- Equivalence relation is preserved under internal actions
i.e.,Let R be barbed eq.rel.; if PR(Q then
- for any P—P' there exists Q;Q’ s.t. P'RQ'’

T T
- for any Q— Q' there exists P—P’' s.t. P'RQ’
- Closed version patches up R afterwards to make it congruent

- Open version additionally requires the definition R to be
Contextual (close under all process contexts) at every step

Closed World / Classical Logic Open World / Intuitionistic Logic

NOT preserved under substitutions Preserved under (respectful) substitutions
NOT good for modular verification Good for modular verification
= Barbed Congruence = Barbed Equivalence (open ver.)
= Bisimulation relations (variations = Bisimulation relations (variations
on bindings of input variables) on bindings of input variables)
= Early Bisimilarity / M 1./ M= Quasi-Open Bisimilarity
= coincides with Barbed Cong. = coincides with Barbed Equiv.
« Late Bisimilarity £ /M () M= Open Bisimilarity
= sub-relation of Early Bisimilarity = sub-relation of Quasi-Open Bisim.

Modal Logics characterizing Bisimulations

= (Milner 1980) A Calculus of Communicating Systems HISTORY

= (Hennessy and Milner 1980) On Observing Nondeterminism and Concurrency
= Hennessy—Milner Logic

= (Milner, Parrow, and Walker 1992) A Calculus of Mobile Processes (Part I, Il)
= Early and Late bisimulations for the m-calculus with match only
= Modal Logics categorizing finite m-calculus with match only

= (Sangiorgi 1996) A Theory of Bisimulation for the m-Calculus

= Open bisimulation (for the m-calculus with match only)

= (Sangiorgi and Walker 2001) On Barbed Equivalences in m-Calculus

= Quasi-Open bisimulation (with match only)

= (Ahn, Horne, and Tui 2017) A Characterisation of Open Bisimilarity using an
Intuitionistic Modal Logic

= (Horne, Ahn, Lin and Tiu 2018) Quasi-Open Bisimilarity with Mismatch is
Intuitionistic

Rpplied Tr-calculus
P ::=

‘ S

=Richer term structure (M, N)

M N.P not J'U.St names (X, Y, Z)
M(x).P -

. D =E.g., symbolic crypto.

P, Il P, 1 Z(enc(N, k)).P |

p Y2\ Z(a). dee(a. k) = N1.Q
M =N]P

M # N]P

P

Prolog vs. AProlog

Prolog

= Classical

= Predicates defined by
First-order Horn clauses

= First-order Unification
over untyped terms

AProlog

= Intuitionistic

= Predicates defined by
Higher-order Hereditary
Harrop formulae

= Higher-order Unification
over simply-typed terms

= 1.e., unification over
simply-typed HOAS (aka.
A-tree syntax)

= modulo affn-equivalence

AProlog term syntax

*X\Y\X means Ax.Ay.x

'X\M X means AX.M x

=X cannot appear free in M
(including any instantiation of M)
because the scope of M is larger than X.

T['C&ICHIIIS symax sig pic. %% file “pic.sig”

kind n type. % name
kind p type. % process
kind a type. % label

P =0 type null p.
Xy.P type out n-n-p - p.
x(y).P type inp n - (n - p) - p.
T.P type taup p - p.
Py Il P, type par p - p - p.
Py + P, type plus p » p - p.
vz. P type nu (n - p) > P
[x=y]P type mat n - n - p.
[x#y]P type mis n - n - p.

pic.sig (continued)
% constants for labels (actions)
type dn, up n - n - a. % 1nput, output

type tau a. % internal action
% type sig for labelled transition relations
type one p - a - p - 0.

type oneb p-» (n->a) - (n~->p) - 0.

module pic. %% file “pic.mod”

one
one
one
one
one
one

one

one
one
one
one

Transition Rules

(out XY P) (up XY) P.

(znp XP) (@@nXY) (PY). %P :n-p

(taup P) tau P.

(par P Q) A (par P1 Q) :- one P A P1.

(par P Q) A (par P Q1) :- one Q A Q1.

(par P Q) tau (par P1 Q1) :- one P (up X Y) P1,

one Q (dn X Y) Q1.

(par P Q) tau (par P1 Q1) :- one P (dn X Y) P1,

one Q (up X Y) Q1.

(plus P Q) A P1 :- one P A P1.
(plus P Q) A Q1 :- one Q A Q1.
(nu P) A(huQ) :-p1x\one (Px)A@X). %P,Q :n->p
(mat X X P) AQ :- one P A Q.

Related Tools (and we need more ...)

= Teyjus
= De facto standard implementation of lambda-Prolog
= Development frozen, annoying to install. (Github src fails to build with recent Ocaml)

= Difficult to encode constructive inequality judgment for open terms
(common problem in majority of logic programming languages including Prolog)

= Difficult to encode bisimuation for open terms

= Bedwyr
= Freshness, Nominal conditions natively supported via \V (nabla) quantifier
= Easy to encode bisimulation for open terms

= Automatic proof searching theorem prover (or model checker)
Supporting sublanguage of Abella proof assistant

= Still difficult to encode constructive inequality

= Abella
= Not difficult to encode bisimulation of open terms with constructive inequality
= Not an automatic solver

