
Ahn, Ki Yung

안기영(安基榮)

kya@hnu.kr

KIISE / SIGPL Summer School 2018

Aug. 20th (Day 1/3)

1. General Introduction

2. Specifying π-calculus Op. Sem. using λProlog

 opam install elpi # assuming you have opam

 https://bit.ly/2MDXjo4 (source files)

3. Formal Reasoning about π-calc. spec. in Abella

 opam install abella

 git clone https://github.com/abella-prover/PG

cd PG && git checkout abella && make

assuming you have running emacs

https://bit.ly/2MDXjo4
https://github.com/abella-prover/PG

Nondeterministic

Finite Automata

Nondeterministic

Infinite States

State = Process Term

𝑃 ∷= ҧ𝑐 𝑎 . 𝑃
| 𝑐 𝑥 . 𝑃
| 𝑃 ∥ 𝑃
|⋯

𝑃 ∷= 0 stuck (no further action)
| ഥ𝑥 𝑦 . 𝑃 output 𝑦 on 𝑥 then 𝑃
| 𝑥(𝑦). 𝑃 bind 𝑦 to input from 𝑥 then 𝑃
| 𝜏 . 𝑃 internal action then 𝑃
| 𝑃1 ∥ 𝑃2 parallel composition
| 𝑃1 + 𝑃2 nondeterministic choice
| 𝜈𝑧. 𝑃 𝑧 is a fresh name
| 𝑥 = 𝑦 𝑃 match (equality guard)
| [𝑥 ≠ 𝑦] 𝑃 mismatch (inequality guard)
| ! 𝑃 infinite parallel comp. of 𝑃

Finite π-calculi

Finite π-calculus with Match only

Finite π-calc. with both Match and Mismatch

 𝑃 ∥ 0 ∼ 0 ∥ 𝑃 ∼ 𝑃 ∼ 𝑃 + 0 ∼ 0 + 𝑃

 𝑃 ∼ 𝑥 = 𝑥 𝑃

 0 ∼ 𝜈𝑧. 𝑧 = 𝑥 𝑃

 𝜈𝑧. 𝑃 ∼ 𝜈𝑧. 𝑧 ≠ 𝑥 𝑃

 𝜈𝑧. 𝜏. 𝑃 ∥ {𝑎/𝑥}𝑄 ∼ 𝜈𝑧. ҧ𝑧𝑎. 𝑃 ∥ 𝑧 𝑥 . 𝑄

 𝑃

 𝑥 = 𝑦 𝑃 + 𝑥 ≠ 𝑦 𝑃

Barbed Congruence/Equivalence

•a natural obvservational equivalence

Various Bisimulations

•computatoinally effective

(can write programs following the definitions)

Q simulates P

 For every leading step from P
there exists a following step from Q
with the same label

P and Q are bisimilar

 For every leading step from any side
there exists a following step from the
other side with the same label

𝑎

𝑎

𝑎 𝑎𝑏

𝑏

𝑏 𝑏

𝑏 𝑏𝑎 𝑎

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Barbed Congruence/Equivalence
• Equivalent processes have same barbs, i.e., 𝑃 ↓ 𝑎 iff 𝑄 ↓ 𝑎 for any 𝑎

• 𝑃 ↓ 𝑎 (𝑃 has barb 𝑎) when 𝑃 can do input/output step on 𝑎

• Equivalence relation is preserved under internal actions

i.e., Let 𝑹 be barbed eq. rel.; if 𝑃𝑹𝑄 then

• for any 𝑃
𝜏
𝑃′ there exists 𝑄

𝜏
𝑄′ s.t.𝑃′𝑹𝑄′

• for any 𝑄
𝜏
𝑄′ there exists 𝑃

𝜏
𝑃′ s.t.𝑃′𝑹𝑄′

• Closed version patches up 𝑹 afterwards to make it congruent

• Open version additionally requires the definition 𝑹 to be

Contextual (close under all process contexts) at every step

Closed World / Classical Logic

NOT preserved under substitutions

NOT good for modular verification

 Barbed Congruence

 Bisimulation relations (variations
on bindings of input variables)

 Early Bisimilarity

 coincides with Barbed Cong.

 Late Bisimilarity

 sub-relation of Early Bisimilarity

Open World / Intuitionistic Logic

Preserved under (respectful) substitutions

Good for modular verification

 Barbed Equivalence (open ver.)

 Bisimulation relations (variations
on bindings of input variables)

 Quasi-Open Bisimilarity

 coincides with Barbed Equiv.

 Open Bisimilarity

 sub-relation of Quasi-Open Bisim.

Modal Logics characterizing Bisimulations

 (Milner 1980) A Calculus of Communicating Systems

 (Hennessy and Milner 1980) On Observing Nondeterminism and Concurrency

 Hennessy—Milner Logic

 (Milner, Parrow, and Walker 1992) A Calculus of Mobile Processes (Part I, II)

 Early and Late bisimulations for the π-calculus with match only

 Modal Logics categorizing finite π-calculus with match only

 (Sangiorgi 1996) A Theory of Bisimulation for the π-Calculus

 Open bisimulation (for the π-calculus with match only)

 (Sangiorgi and Walker 2001) On Barbed Equivalences in π-Calculus

 Quasi-Open bisimulation (with match only)

 (Ahn, Horne, and Tui 2017) A Characterisation of Open Bisimilarity using an
Intuitionistic Modal Logic

 (Horne, Ahn, Lin and Tiu 2018) Quasi-Open Bisimilarity with Mismatch is
Intuitionistic

𝑃 ∷= 0
| 𝑀 𝑁 .𝑃
| 𝑀(𝑥). 𝑃
| 𝜏 . 𝑃
| 𝑃1 ∥ 𝑃2
| 𝑃1 + 𝑃2
| 𝜈𝑧. 𝑃
| 𝑀 = 𝑁 𝑃
| [𝑀 ≠ 𝑁] 𝑃
| ! 𝑃

Richer term structure (M, N)

not just names (x, y, z)

E.g., symbolic crypto.

Prolog

Classical

Predicates defined by
First-order Horn clauses

First-order Unification
over untyped terms

λProlog

 Intuitionistic

Predicates defined by
Higher-order Hereditary
Harrop formulae

Higher-order Unification
over simply-typed terms

 i.e., unification over
simply-typed HOAS (aka.
λ-tree syntax)

 modulo 𝛼𝛽𝜂-equivalence

x\y\x means 𝜆𝑥. 𝜆𝑦. 𝑥

x\M x means 𝜆𝑥.𝑀 𝑥
x cannot appear free in M
(including any instantiation of M)
because the scope of M is larger than x.

𝑃 ∷= 0
| ഥ𝑥 𝑦 . 𝑃
| 𝑥(𝑦). 𝑃
| 𝜏 . 𝑃
| 𝑃1 ∥ 𝑃2
| 𝑃1 + 𝑃2
| 𝜈𝑧. 𝑃
| 𝑥 = 𝑦 𝑃
| [𝑥 ≠ 𝑦] 𝑃

sig pic. %% file “pic.sig”

kind n type. % name
kind p type. % process
kind a type. % label

type null p.
type out n → n → p → p.
type inp n → (n → p) → p.
type taup p → p.
type par p → p → p.
type plus p → p → p.
type nu (n → p) → p.
type mat n → n → p.
type mis n → n → p.

% constants for labels (actions)

type dn, up n → n → a. % input, output
type tau a. % internal action

% type sig for labelled transition relations

type one p → a → p → o.
type oneb p → (n → a) → (n → p) → o.

module pic. %% file “pic.mod”

one (out X Y P) (up X Y) P.
one (inp X P) (dn X Y) (P Y). % P : n → p
one (taup P) tau P.
one (par P Q) A (par P1 Q) :- one P A P1.
one (par P Q) A (par P Q1) :- one Q A Q1.
one (par P Q) tau (par P1 Q1) :- one P (up X Y) P1,

one Q (dn X Y) Q1.
one (par P Q) tau (par P1 Q1) :- one P (dn X Y) P1,

one Q (up X Y) Q1.
one (plus P Q) A P1 :- one P A P1.
one (plus P Q) A Q1 :- one Q A Q1.
one (nu P) A (nu Q) :- pi x\ one (P x) A (Q x). % P,Q : n → p
one (mat X X P) A Q :- one P A Q.

 Teyjus
 De facto standard implementation of lambda-Prolog

 Development frozen, annoying to install. (Github src fails to build with recent Ocaml)

 Difficult to encode constructive inequality judgment for open terms
(common problem in majority of logic programming languages including Prolog)

 Difficult to encode bisimuation for open terms

 Bedwyr
 Freshness, Nominal conditions natively supported via ∇ (nabla) quantifier

 Easy to encode bisimulation for open terms

 Automatic proof searching theorem prover (or model checker)
Supporting sublanguage of Abella proof assistant

 Still difficult to encode constructive inequality

 Abella
 Not difficult to encode bisimulation of open terms with constructive inequality

 Not an automatic solver

