File Systems for
Flash Memories

(Jinsoo@cs.kaist.ac.kr)

" Introduction to Flash Memories

" File Systems for Flash Memories

= JFFS/JFFS2

" LFFS

Introduction to
Flash Memories

KAIST

EPROM

« Non-volatile

FLASH e High-density
» High-density » Ultraviolet light for erasure
> LRET EPROM EEPROM
e High-speed

E‘PROM * Non-volatile

e Lower reliability
, e Higher cost
Updateable Monvolatile . Lo?/vest density

e Electrically byte-erasable

e Low-power
e High reliability

FLASH
DRAM ROM
- High-density H'!T « High-density
- Low-cost Density - Reliable
. H!gh—speed e Low-cost
» High-power « Suitable for high production

with stable code

Source: Intel Corporation.

= Operations
e Read

e Write or Program — change state
from1to0

e Erase — change state from O to 1

= Unit

e Page (sector) — management or
program unit

e Block — erase unit

Random, direct access
Interface

Fast random reads
Slow erase and write

Mainly for code
storage

Intel (28%), Spansion
(25%), STMicro (13%),
Samsung (7%),
Toshiba (5%), ...

Source: iSuppli Corp. (Q2/2005)

/0O mapped access
Smaller cell size

Lower cost
Smaller size erase blocks

Better performance for
erase and write

Mainly for data storage
Samsung (55%) , Toshiba
(23%), Hynix (10%), Renesas
(6%), STMicro (2%), Infineon
(2%), Micron (2%)

Mass Storage-NAND Code Memory-NOR

I |
o Memory Cards # BIOS/Networking
(mobile computers) = (PClrouter/hub)
Solid-State Disk - | Telecommunications

(rugged & reliable storage)

Digital Camera
(still & moving pictures)

_\ Voice/Audio Recorder

(switcher)

Cellular Phone
(code & data)

2 POS/PDA /PCA

S (near CD quality) (code & data)
e Low Cost and High Density e Fast Random Access
» Good P/E Cycling Endurance « XIP

Source: Samsung Electronics

= Access times comparison

Media Read Write Erase

DRAM 60ns (2B) 60ns (2B) _
2.56us (512B) 2.56us (512B)

NOR 150ns (2B) 211ns (2B) 1.2s

Flash 14.4us (512B) 3.53ms (512B) (128KB)

NAND 10.2us (2B) 201us (2B) 2ms

Flash 35.9us (512B) 226us (512B) (16KB)

: 12.4ms (512B) 12.4ms (512B)
Disk -
(average) (average)

= Flash memory is a beauty.

e Small, light-weight, robust, low-cost, low-power non-
volatile device

= Flash memory is a beast.
e Much slower program/erase operations
e No in-place-update
e Erase unit > write unit
e Limited lifetime (100K~1M program/erase cycles)
e Bad blocks (for NAND), ...

= Software support for flash memory is very
Important for performance & reliability.

e Small Block NAND: (512+16)B/page, 32pages/block
e Large Block NAND: (2K+64)B/page, 64pages/block
e Limited NOP (Number of Programming): Usually 4

" Flash cards

e CompactFlash, MMC, SD/miniSD, Memory Stick, xD, ...

ERMEUNG

212MB

"" Mesmory STiCk Duo

Projected sales in 2007: 315 million cards

E

4 64ms FXAR,

minisD 48%

Memory Stick Duo ~ 29%

Secure Digital 8%
F
55 FUJIFIEM

e

=D .

Memory Stick Pro 6%

CompactFlash 4%

MultiMediaCard
(MMC) 2%

T

X e
256 mB

~ XD-Picture Card 2%

Smart Media 0.01%
Others 1%

Source: IDC (from http://www.bitmicro.com)
S sk 2

St Miadia =

=

= Flash SSDs (Solid State Disks)

e M-Systems FFD (Fast Flash Disk) 2.5
— Solid-state flash disk in a 2.5” disk
— Up to 90GB
— ATA-6: interface speed of 100MB/s
— 40MB/s sustained read/write rates
— Released: March 10, 2004
— ~$40,000 for 90GB

e BITMICRO E-Disk
— Battery-backed DRAM + NAND Flash

e Samsung Flash SSDs

.-1: _H.
P‘ilhlﬂ]l-l-l;_
Sarnis EarEara A
i
[l.l..:..l.ul.

ortel Networks
Optical Switches

B —
- Eurocopter AS 532U2 Cougar

= Flash-embedded devices

Handheld phones

MP3 players

PMPs

PDAs

Digital TVs

Set-top boxes

Car navigation & entertainment systems

File Systems for
Flash Memories

KAIST

e ——— e,

= Abstraction given by block device drivers:

0 1 N-1

= Operations
e |dentify(): returns N
e Read(start sector #, # of sectors)
e Write(start sector #, # of sectors)

Source: Sang Lyul Min (Seoul National Univ.)

" For each file, we have
e File contents (data)
— Nobody cares what they are.

e File attributes (metadata)
— File size
— Owner, access control lists
— Creation time, last access time, last modification time, ...

e File name

= File access begins with...

 File name
— open (“/etc/passwd”, O_RDONLY);

_

= File system: A mapping problem
e <filename, data, metadata> - <a set of blocks>

dog.jpg
meta2
.
w

= Goals
e Performance + Reliability

= Design Issues
e What information should be kept in metadata?

e How to locate metadata?
— Mapping from pathname to metadata

e How to locate data blocks?

e How to manage metadata and data blocks?
— Allocation, reclamation, free space management, etc.

e How to recover the file system after a crash?

= Ext2 file system
e A disk-based file system for Linux

— Similar to UNIX Fast File System (FFS)
— Evolved to Ext3 File system (with journaling)

e Directory: pathname - metadata (i-node)
e Direct/indirect block pointers: i-node - data blocks

Boot
Block Block group O S S Block group n
| Super Group Data block i-node | i-node
Block Descriptors Bitmap Bitmap | Table DELE lege
1 block n blocks 1 block 1 block n block n blocks

 No seek time

e Asymmetric read/write cost
e No in-place-update

e Wear-leveling

= Approaches to flash file systems

e Layered approach
— Block device emulation using FTL (Flash Translation Layer)

e Native (or cross-layer) approach

= Flash Translation Layer (FTL)
e A software layer to make NAND flash fully emulate
magnetic disks.

[Applications]
= Sector mapping

e Garbage collection ; _ _
 Power-off recovery | e :
e Bad block management !_ FTL (Flash Translation Layer) |
e Wear-leveling S _

.
e Error correction code (ECC)
e Power management

sector 6

Logical
Sector
Number

Physical

Sector Flash
Number
(-1-1) Block 0 | PageO
1,2) Page 1
(1,0) » Page 2
(0,0) Page 3
(-1,-1)
(1,3) Block 1 | PageO
0.,2) Page 1
(-1,-1) Page 2

Page 3

sector 6

Logical Physical
Block Block Flash

Number Number

Block O Page O
of1||1|o0
0 -1 Page 1
> 1 0 »| Page 2
Page 3
Block 1 Page O
Page 1
.] . Page 2
Logical _ Physical

offset offset Page 3

e ——— e,

» Benefits

e Easy to deploy.
— No modification is required for upper layers.
— Legacy file systems or swap space can be built.

e Flash cards or flash SSDs already come with FTL.

= Limitations
e Most FTLs are patented.
e FTL can not make use of kernel-level information.
e Kernel is not aware of the presence of flash memory.

= What happens on file deletion?

File: abc.txt

Datablock
bitmap

v

i-node for “abc.txt”

Superblk

01[0o
00|10
10[11

Logical blocks

T

i-node
bitmap

1

Raw NAND Flash Memory

Nat vﬁ_ﬁ__\@

_‘l—'ﬂ-—

= Cross-layer optimization
e Kernel manages raw flash memory directly.
e More opportunities to optimize the performance.

e Kernel is involved in some FTL functionalities.

— Sector mapping, garbage collection, wear-leveling, power-off
recovery, etc.

e Example:
— Flash-aware file systems: JFFS/JFFS2, YAFFS

e Limitations

— Need to change the host operating system
— Only applicable Flash-embedded devices

JFFS/JFFS2

e

e e —

= JFFS (Journaling Flash File Systems)
e Developed by Axis Communications, Sweden in 1999.
e Released under GNU GPL
e Designed for small NOR flashes

e A log-structured file system
— Any file system modification is appended to the log.

— The log is the only data structure on the flash media.
Log = <metadata, (name), (data)>

— A file is obsoleted by a later log in whole or in part.
— Obsoleted logs are reclaimed via garbage collection.

e Rely on special in-core data structures for
flename->metadata, metadata->data mappings.

_

= JFFS architecture

5
S g g
£ s 8
<1} c
S
A 4
jffs_raw_inode magic : magic number
ino : inode number
pino : parent inode number
version > version number
mode : file’s type or mode
uid gid : file’s owner and group
atime : last access time
mtime : last modification time
ctime : creation time
offset : where to begin to write
dsize : size of the node’s data
rsize : how much are going to be replaced?
nsize [nlink flags : name length, number of links, flags for rename/deleted/accurate
dchksum : checksum for the data
nchksum chksum : checksums for the name and the raw inode

_

= Garbage collection
e The free space Is eventually exhausted. Now what?
e Erase the oldest block in the log.

f f t t

head head tail tail

e Live nodes should be moved.
e Perfectly wear-leveled.

" JFFS limitations

e Poor garbage collection performance

— A block is garbage collected even if it contains only clean
nodes.

— In many cases, there are static data. (libraries, program
executables, etc.)

e No compression support
— Flash memories are expensive.

e No support for hard links
— File name and parent i-node are stored in each i-node.

e No support for NAND flashes

= Node types
e JFFS2 NODETYPE_INODE
— Similar to jffs_raw_inode
— No filename, no parent i-node number
— Compression support

e JFFS2_NODETYPE_DIRENT

— Represent a directory entry, or a link
— File name, I-node, parent i-node (directory’s i-node), etc.
— File name with i-node = 0O: deleted file

e JFFS2_NODETYPE_CLEANMARKER

— To deal with the problem of partially-erased blocks due to the
power failure during erase operation

_

» JFFS2 architecture

jffs2_inode_cache

— raw | — raw < scan_dents
next_in_ino ¢4 | next_in_ino [« |
— next - = next next
next_phys version next_phys version RS
offset ino = 10 offset ino = 20 ino =3
totlen ntt;?)seh totlen "t';?)zh nlink
jffs2_raw_node_ref “g” by status
jffs2_full_dirent
— — scan_dents
next_in_ino next_in_ino -
next_phys next_phys nodes
] offset offset ino = 20
totlen totlen nlink
status
a ae
next_in_ino next_in_ino next_in_ino _
next_phys next_phys next_phys ode
offset offset offset 0 0
totlen totlen totlen

= What happens on mount:

e Physically scan the whole flash media
— Check CRC

— Build in-core data structures
» Jffs2_raw_node_ref, jffs2_inode cache, jffs2_full_dirent, etc.

e Scan the directory tree, calculating nlink for each inode
e Scan for inodes with nlink == 0 and remove them

e Free temporary data structures
— e.g., Jffs2_full_dirent

A
Ll
D
N
||”|| |l |.|u|||

= Block lists
e free_list: empty blocks
e clean_list: blocks full of valid nodes
e dirty list: blocks containing at least one obsoleted node

= Garbage collection

e Invoked Iif the size of free_list is less than the threshold.

e Which blocks?
— 99% from dirty_list (jiffies % 100 != 0)
— 1% from clean_list (for wear-leveling)

« Small nodes can be merged by GC.

_

" JFFS2 limitations

e Large memory consumption
— In-core data structures
» |ffs2_raw_node_ref (16bytes/node), jffs2_inode_cache
e Slow mount time
— 4 sec for 4MB!
e Runtime overheads (space & time)
— Build child directory entries from flash on directory access

— Build node fragments on file access
— All the inode’s nodes should be examined (with CRC checked)

e Do not utilize NAND OOB area

= JFFS2 memory consumption example
e JFFS2 with 64MB NAND flash

— Typical Linux root FS: 2.2MB
(719 directories, 2995 reqgular files)

— 64MB file with 512bytes/node: 6.7MB

— 64MB file with 10bytes/node: 47.6MB

e JFFS2 with 1GB NAND flash (estimated)

— Typical Linux root FS: 34.7MB
— 64MB file with 512bytes/node: 104.2MB
— 64MB file with 10bytes/node: 7/43.6MB

(Source: JFFS3 Design Issues, June 4, 2005)

_

LFFS

KAIST

e

e e —

" |FFS (Log-structured Flash File System)

e A file system for large block NAND flash memories
running over Linux MTD

e Scalable file system
— Supporting up to several GB

e Fast mount
e Small memory footprint

e Comparable performance to JFFS2

e VFS-compliant metadata structure and caching
e Fast mount and recovery using checkpoints

" | FFS differences

e Use multiple checkpoint blocks
— LFS: small (two) fixed checkpoint slots
— Avoid wear-out of checkpoint region

e Introduce Indirect inode map block

— Points to the locations of inode map blocks
— Reduces the size of checkpoint data

e Make use of OOB area in NAND flash
— Segment summary info.

Checkpoint
Block

= | FFS data structures

Indirect

"| Inode map

Indirect

“| Inode map

A 4

.| Inode Map > Inode
Block
» Inode
Inode Map
Block I Inode
File
Information
Direct
Pointer
Indirect
Double
Triple

Indirect
Block

Data
Block

Data
Block

_ 2% % ~Nrs A A L~ A!l

" Blocks in LFFS

e Inode block
e Indirect block
e Data (directory) block

e Inode map
— Points to inode positions within flash memory

e Indirect inode map
— Points to inode map blocks (fully cached, 128KB)

e Checkpoint block

e OOB data
— Bad block indicator, next log block, ECC
— Inode number and offset for recovery

_

y T e
— R ——

ultiple checkpoint blocks

e Checkpoint area
— Recovery data and file system metadata
— 256KB or 512KB

) Log Area U Checkpoint Area -
Super Flash Flash Flash Flash Flash Flash Flash Flash
Block Block Block Block Block Block Block Block Block

e Total lifetime (checkpointing at every 15sec)
— 15sec * (512KB/1KB * 100,000) = 24 years

Mount time

Mount time (sec)

16

14

JFFS OMB
| —— JFFS 20MB

—&— JFFS 40MB
- LFFS 40MB

/
_—"
//

64 128 256
Flash Memory Size (MB)

Mount Time (sec)

[EY
o

30

N
(621

N
o

[uny
ol

—8— JFFS2

LFFS

20 40
Data Size (MB)

60 80
(256MB total)

100

=" File read and write performance

e Raw performance
with nandsim
— Read: 4.51MB/s
— Write: 2.02MB/s

e LFFS performance
— Read: 4.31MB/s
— Write: 1.98MB/s

Bandwidth (MB/s]

2.5

N

Read

O JFFS2
B LFFS

Write

opportunities.

" JFFS2 has drawbacks.

e Large memory footprints
e Slow mount time

= No clear winner, yet.

" |s an LFS-style file system the answer?

