
Execution Paradigms in
Mobile Computing

Computer Science, KAIST
Hwansoo Han

SIGPL Winter School 2006

2

Mobile Computer?

3

High-end PDA

CPU: Intel PXA270 624MHz
RAM: 64M DRAM

4

My Desktop

CPU: AMD Athlon64 X2 4400+ 2.21GHz
RAM: 1G DRAM

5

<<

Gap in Experience

6

Goal

Give mobile users desktop experience

7

Goal

Sorry, nearly desktop experience

8

How?

Call for Help through Wireless Network

9

Future of Mobile DevicesFuture of Mobile Devices

Increasingly, people expect more…
More than just voice from their phone
More than just schedule management from their PDA
Consistent experiences across stationary and mobile devices

Obstacle: Resource constraints
CPU, memory, battery, storage, etc.
Hardly upgradeable
It makes mobile applications rather primitive

Mobile devices need leverage to meet the expectation

10

Execution ParadigmsExecution Paradigms

Surrogate computing
Computation & data offloading

AIDE-ChaiVM [DCS’02], LSCF [WMCSA’04], SlimExecution [ISWPC’06]

Multiple surrogate servers including home server across WAN
Slingshot [MobiSYS’05]
Replicate all execution/events at multiple servers
Clients select the fastest updates

Thin-client computing
Remote execution on server
Focus on user I/O (display updates & user interaction)
Adopt techniques in VNC, SUN Ray, Microsoft RDP, X windows
MobiDesk [MobiCom’04], THINC [SOSP’05]

11

InternetInternet

WiFi HotspotOutdoor
Outdoor

Surrogate ComputingSurrogate Computing

12

IssuesIssues
Partitioning

Granularity
Code (class vs. method)
Data (class vs. object)

Function calls & data references
Beneficial offloading

Transparency
Application development
User experience

Session continuation
Surrogate changes & hotspot changes
Suspend and continue

13

Slim Execution Slim Execution [ISWPC’06]

Idea: Call for Help through Wireless Network
Offload intensive computations to surrogate server
Augment the resources of mobile devices

Slim Execution
Transparent Method Offloading

14

Transparent Method OffloadingTransparent Method Offloading

Send(method_descriptor,
serialized_args)

Heavy
Method

Dispatcher

Code
Repository

SlimMethod on Client

Surrogate Server

Check exception

Restore
objects

Return
return_value

Read(method_descriptor,
serialized_args)

Load the method_code

Invoke the method

Send return_value
or exception

Throw
exception

N Y

Offload computations at method level
Without any customization on JVM
Partition monolithic applications automatically

Need a “partitioning tool”

15

Partitioning Tool: Partitioning Tool: DiET

Distributed Execution Transformer (DiET)
Automatic distributed code generation tool

Statically partitions java applications
Resource-intensive parts are left on server
Using bytecode engineering library (BCEL)

1. Identifying
Target Methods 2. Preprocessing 3. Generating

Distributed Code

DiET

16

Beneficial OffloadingBeneficial Offloading

Profiling
Data size
Computation time: Torigin and Tcomp

Network throughput

Method selection guide
Required bandwidth test

Reduce networking overhead
Communication aggregation
Send only necessary fields not the whole object

17

Transformed
application

Memory

Object
Manager

Surrogate server

Secondary storage

Object VirtualizationObject Virtualization
Object management on MMU-less devices

Object on secondary storage and local server
Global ID and reference management
ChaiVM implemted with object handle

GC can intervene when needed objects are not on memory

Application Memory

Can not allocate !!

Global ID /
reference

reference

18

Choices for object placement
Fix objects at home (client or server)
Distribute objects on clients and servers

Resolve remote references
Copy necessary objects back and forth
Use proxy objects

Object Consistency
Restore the objects updated
in the server side
Copy-back updated fields

updated

client server

copy

Object ConsistencyObject Consistency

19

Experiment with SciMark2Experiment with SciMark2

Scimark2
Five kernels for intensive
floating-point computations
Similar to multimedia data
processing code

Configuration

65536
256x256
65536

256x256
256x256

Fast Fourier Transform
Jacobi Successive Over-relaxation
Monte Carlo integration
Sparse matrix Multiply
Dense LU matrix factorization

FFT
SOR
MC
SM
LU

Input SizeNameID

20

Execution Time

Code Size (Byte)

0.003 + 6.075

0.004 + 4.378

0.066 + 0.016

0.473 + 10.764

0.745 + 17.618

-2746 %6 sec 0.2 secSM

-886 %4 sec0.4 secSOR

92 %0.082 sec1 secMC

67 %11 sec35 secLU

17 %18 sec 22 secFFT

ImprovedSlim (Tcomp+Ttrans)ToriginKernel

10 KB 13 KB (-50%)15.9 KB26.9 KB

Server bytecodeSlim bytecodeSootOriginal

Experimental ResultsExperimental Results

21

Required Throughput

3 MB
2 MB

29 B

6 MB

8 MB

15,222 KBps6 MB0.2 secSM
4,773 KBps4 MB0.4 secSOR
0.03 KBps81 B0.9 secMC

185 KBps8 MB34 secLU

394 KBps8 MB21 secFFT

Required
Throughput

Transferred Data Size
(org vs. minimized)

Time
(Torig - Tcomp)

Kernel

(Network Throughput: 400 ~ 500KBps)

Experimental ResultsExperimental Results

22

Experiment with Experiment with BiomerBiomer

Biomer: bio-molecular modeling package
Interactive modeling and simulated annealing

Memory-intensive Java application

23

Execution Time (sec)
JVM heap size: 64 MB
Transferred data size: 7 MB 6.9 MB
Required throughput: 38 KBps
Network throughput: 400 ~ 500 KBps

79 %44 (29 + 15) sec213 sec

ImprovedSlim (Tcomp + Ttrans)Original (Torigin)

Code Size (Byte)

40.5 KB 481 KB (-24%)476 KB636 KB

Server bytecodeSlim bytecodeSootOriginal

Experimental ResultsExperimental Results

24

Garbage collection time (sec) and frequency

2
1320

543
4396

29 sec0.1 sec2 secDiET
213 sec104 sec30 secAlone

Total comp.FullMinor

Component ratio

91.9 %0.1 %8 %DiET

37 %49 %14 %Alone

Pure comp.FullMinor

Experimental ResultsExperimental Results

213 sec

29 sec

25

Conclusions for Surrogate ComputingConclusions for Surrogate Computing

Transparent Method offloading
Relieves mobile devices of resource constraints

43~79% performance improvement for heavy computations
24~50% reduction in code size

Enables more various services for mobile devices

Transparency provided by
Automatic distributed code generation
For performance boost, many necessary analyses needed

26

ThinThin--Client ComputingClient Computing

WAN / LANWAN / LAN

CDMACDMA Applications and data
reside in servers
in data center

display updates

user inputs

27

THINC THINC [SOSP’05]

Benefits of THINC (Thin-client Internet Computing)
Good solution to management and security issues

Almost no maintenance to clients
Not storing sensitive data on mobile clients

Stateless client can provide persistent, personalized computing
environment
Sharing computing resources among many users
Adopt techniques in Microsoft RDP, Sun Ray, VNC, X windows,

High fidelity visual and interactive experience
Previous goal was running office productivity tools in LAN
Current goal is web browsing, video application in WAN
In the future, interactive 3D graphics in LAN/WAN

28

Execution of GUI ApplicationsExecution of GUI Applications

High level GUI APIs on client
UI and application logic need synch.
GUI system is large and complex
Could be bandwidth efficient

Using rich, complex display primitives

Lower level APIs on client
No synchronization overhead
No GUI software on clients
Could be bandwidth intensive

Display command compression on servers

applications

windows
system

display device
driver

framebufferclient

server

29

Variety of Thin ClientsVariety of Thin Clients

RDP, MetaFrame, Tarantella
Use rich sets of low-level graphics commands (similar to X)
Not necessarily provide substantial gains in bandwidth

Particularly on multimedia content
Complexity results in slower responsiveness, performance
degradation in WAN

Sun Ray, THINC
Translate into simple 2D drawing primitives
Difficult to translate effectively

VNC, GoToMyPC, PC Anywhere
Reduce everything to raw pixel
Need encoding or compression

30

THINC Architecture and ProtocolTHINC Architecture and Protocol
Virtualize video device layer

Intercept applications’ drawing commands, encode them using
THINC display commands , and send them over the network
Can use existing display system functionality
Seamlessly work with existing applications, window systems, and OS
Support for graphics acceleration architectures (XAA, KAA, EXA)

THINC Display Commands (similar to SUN Ray)

Fill a region using a bitmap imageBITMAP

Tile an area with a given pixel patternPFILL

Fill an area with a given pixel color valueSFILL

Copy frame buffer area to specified coordiantesCOPY

Display raw pixel data at a given locationRAW

descriptioncommand

31

Translation LayerTranslation Layer
Translates display commands as they occur and efficiently
encode them into THINC’s commands

More efficient translation than raw pixel transfer

Decouple display command translation and network
transmission

Aggregate small display updates to large one
Take advantage of communication aggregation

Maintain a command queue for a display region
Can process multiple updates to the same region as a single entity
Can evict irrelevant updates due to overwriting updates

Distinguish them as complete, partial, transparent overwrites

Support for offscreen drawing, audio/video applications

32

Command DeliveryCommand Delivery

Command buffer per-client consists of command queues
10 queues with power of 2 data sizes
Shortest-Remaining-Size-First for minimum mean response time
Preemptive schedule based on remaining size to send
Real-time queue for high interactivity needs

Client-side need correct display updates
Update commands are delivered out of order
Dependency checks

with consideration of full/partial/transparent overlaps

Server-push compared to client-pull
No round trip delay for minimum display response time
Could congest network

Servers need to block sending but buffer updates

33

Experimental ResultsExperimental Results
THINC server (Linux, virtual video device driver in X)
THINC client

X application, Java client, window client, window PDA client
Three configurations for clients

LAN Desktop: 1024*768, 100Mbps network
WAN Desktop: 1024*768, 100 Mbps with 66ms RTT network
802.11g PDA: 320*240, 24Mbps network

34

Experimental Results (Web)Experimental Results (Web)
Browse a sequence of 54 web
pages

Client processing time (slant
pattern)
Download time (solid)

Data transferred
GoToMyPC use aggressive
compression sacrificing long
latency
VNC, Sun Ray use adaptive
compression scheme

35

Experimental Results (A/V app)Experimental Results (A/V app)

Video quality preserved only
in THINC

Other thin-clients cannot
distinguish video updates
THINC uses YUV encoding that
can be directly handed to
client video H/W

YV12 encoding in MPEG
efficiently compress RGB data
w/o loss of quality for human
eyes
No color space conversion in S/W
No scaling in S/W

36

Thin-client computing is one way to provide better
computing experience in network computing

Including mobile network, WAN, as well as LAN

Sophisticated decision needed where we separate
graphic-rich applications

Window system vs. device driver vs. framebuffer
Hybrid approach depends on applications?

E.g. special treatment to distinguish video data

Still need more study for 3D interactive
applications

Conclusions for ThinConclusions for Thin--Client Comp.Client Comp.

