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Polymorphism in OOL
� Means that a single method definition is used for 

multiple types. 
� Current technology: subtyping, type testing, type 

casting.
class Y { Object m(Object s) {

if (s instanceof Int) { return(2); } 
return(s); } }

Y y; 4 + ((Int)y.m(3)); ”Ba” + ((String)y.m(“Bo”));

� Coming technology: generics.
class Y { C m<C>(C s) { return(s); } }
Y y; 4 + (y.m<int>(3)); ”Ba” + (y.m<string>(“Bo”));

� Question: 
1. Can you implement the above generic method in Java?
2. What are so special about generic methods?
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Strachey and Reynolds’s answer for 
the second question

� Strachey classifies polymorphic methods (or 
functions) into two categories:
� Parametrically polymorphic method: behaves the same 

for all types.
� Ad-hoc polymorphic method: behaves differently 

depending on types.
� Strachey’s answer: generic methods are 

precisely parametrically polymorphic ones.
� Reynolds formalized Strachey’s intuition using 

relational parametricity in his 1974,1983 papers.
� Goal: to understand Reynolds’s formal answer.

Polymorphic Type  

� Language for constructing “sets.”
t ::= int | t!t | X | 8X. t | ΠX. t

� «int!int¬: functions from integers to integers.
� «ΠX. X!X¬: all polymorphic functions from X to X.

� Given a set S, f(S) is a function from S to S.
� E.g.  ΛS. λs. if (S = int) then 2 else s

ΛS. λs. s 
� Formally, «ΠX. X!X¬ = ΠS2SET(S!S).

� «8X. X!X¬: parametrically polymorphic functions from X 
to X.

� Fact: «8X. X!X¬ is a subset of «ΠX. X!X¬.
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Relational Parametricity

� Ex: Define a parametricity condition for f 2 «ΠX. X!X¬.
� Hint1: Use the below examples.

� non-parametric fn: adhoc = ΛS. λs. if (S = int) then 2 else s
� parametric fn: id = ΛS. λs. s 

� Hint2: Parametric fns do not look at the set parameter 
X.  Formalize this using relations between sets.

� Relational parametricity: preservation of all relations.  
8S,S’2SET. 8R:S$S’. 

8s2S,s’2S’. (s[R]s’ ) f(S)(s)[R]f(S’)(s’))
� Ex: Show that id is parametric, but adhoc is not.
� «8X. X!X¬ = { f2«ΠX. X!X¬ | f is rel. parametric }

Benefits of Parametricity

� Free theorem: id is the only element.
«8X. X!X¬ = { id }

� The compilers can use such a fact:
� Every generic method “X m<X>(X x)” immediately 

returns the parameter.  (Slight exaggeration ☺)
� Thus, “m<C>(o)” can be optimized by “o”. 
� No need to look at the implementation of m.

� Ex: Prove the free theorem.
� Given f 2 «8X. X!X¬,  set S, and element s2S.
� Need to show f(S)(s) = s.
� Now, it is your turn.
� Hint: Use the relation R:S${0} = {(s,0)}.
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Parametricity for Other Types

� f2«ΠX. X!int¬: Given a set S, f(S) is a function 
from S to integers.
� E.g. “ΛS.λs. 3”,  “ΛS.λs. if (S=int) then s+1 else 4”.
� Ex: Define the para. condition for «8X.X!int¬.
� Hint: Use the identity relation {(n,n)| n2int} for int.

� f2«ΠX. X!(X!X)¬: Given a set S, f(S) take two 
values from S, and returns an integer.
� E.g “ΛS. λs1. λs2. s1”, “ΛS. λs1. λs2. s2”
� Ex: Define the para. condition for «8X.X!(X!X)¬.

� HW: 
� Define the para. condition for «8X. (int!X)!X¬.
� Show that «8X. (int!X)!X¬ = { ΛS.λk.(k n) j n 2 int}

Polymorphic Lambda Calculus

� Invented by Girard and Reynolds independently.
t ::= X | t!t | 8X.t | int
M ::= x | M M | λx:t. M | M[t] | ΛX. M | n 

� Contains type abstraction and type application.
� Does not include type test and type casting.
� Its type system ensures that only parametrically 

polymorphic functions are definable in the language.
� E.g.

� (ΛX. λx:X. x) : 8X.X!X 
� (λf: (8X.X!X). f[int!int] (f[int] 3) ) : int

� Forms the basis of generics in the coming Java and C#, 
and polymorphism in ML and HASKELL.
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Theoretical Results

Core polymorphic lambda calculus (AKA system F):
t ::= X | t!t | 8X.t 
M ::= x | M M | λx:t. M | M[t] | ΛX. M

� Strongly normalizing: all terms terminate no 
matter how you evaluate them.

� Very expressive: 
� Intergers can be encoded by Church numerals.
� In that encoding,  most of the “useful” total recursive 

functions can be expressed in the language.
� All primitive recursive functions. 
� Ackerman functions.

Further Development

� Rel. parametricity as a device for ensuring independence: 
� Haskell: used to safely incorporate imperative computation:

runST t: (8s. ST s t) ! t
� Information flow: used to formalize that high-level security 

values are not used in a computation. [Abadi et. al]. 
� Data abstraction by the “dual” of rel. parametricity:

� Abstract data type by existential type (9X. t) [Plotkin&Mitchell].
� The dual of rel. param. ensures the soundness of simulation.

� Type inference of system F: Almost done.
� undecidable, but when limited to let-polymorphism, decidable. 

� Parametricity semantics of system F: Still active.
� No easy set-theoretic semantics [Plotkin&Reynolds].
� Various category-theoretic semantics [Birkedal&Rasmus, 

Dunphy&Reddy, etc].
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Conclusion

� Explained parametric polymorphism, relational 
parametricity, and system F.

� Instance of Reynolds’s comment about what a type 
system is:
“A type system is a syntactic discipline for ensuring a 
level of abstraction.”

� The type system of system F ensures that only param. 
polymorphic fns can be defined.

� Param. polymorphic fns maintain the abstraction of type 
parameter X:
� Never ask what a type (or set) parameter X is.
� Formally, satisfy relational parametricity.


