
1

Recursive Functions of Symbolic
Expressions and Their Computation by
Machine Part I

by John McCarthy

Ik-Soon Kim
Winter School 2005

Feb 18, 2005

Overview

Interesting paper with

Good language ideas, succinct presentation

Insight into language design process

Important concepts

Interest in symbolic computation influenced design

Use of simple machine model

Attention to theoretical considerations

Recursive function theory, Lambda calculus

Various good ideas:

Program as data, garbage collection

Interesting paper with

Good language ideas, succinct presentation

Insight into language design process

Important concepts

Interest in symbolic computation influenced design

Use of simple machine model

Attention to theoretical considerations

Recursive function theory, Lambda calculus

Various good ideas:

Program as data, garbage collection

Overview

By John Mitchell

2

Motivation for Lisp

Advice Taker
process declarative and imperative sentences
make logical reasoning

Lisp was designed to facilitate experiments with Advice Taker

Motivating application part of good language design
Lisp symbolic computation, logic, experimental
C Unix O/S
Simula simulation
Java web applet

Advice Taker
process declarative and imperative sentences
make logical reasoning

Lisp was designed to facilitate experiments with Advice Taker

Motivating application part of good language design
Lisp symbolic computation, logic, experimental
C Unix O/S
Simula simulation
Java web applet

Introduction

Lisp implements the following mathematical concepts:

Partial functions
Propositional expressions and predicates
Conditional expressions
Lambda functions and recursive functions

Mathematical concepts in Lisp

Mathematical concepts in Lisp

3

A function defined on a subset of its domain
Common in real computation since

partial operations
ex) division

nontermination
ex) f(x) = if x=1 then 1 else x*f(x-1)

Partial functions

Mathematical concepts in Lisp

Propositional expressions and predicates

Propositional expressions
have T or F as possible values
have logical connectives:
ex)

("and"), ("or") and ("not")¬∧ ∨

A predicate
is a function whose range consists of T or F
ex) prime(x)

Mathematical concepts in Lisp

x y

(x y) (b c)

<

< ∨ =

4

Conditional expressions

Generalized if-then-else

If p1 then e1 otherwise if p2 then e2 ,..., otherwise if pn then en .

ex)

1 1 n n(p e , ,p e)→ →�

Mathematical concepts in Lisp

(1 2 4, 1 2 3) 4

(2 1 4, T 3) 3

0
(2 1 , T 3) 3

0
0

(2 1 3, T) undefin
0

(2 1 3, 4 1 4)

ed

undefined

< → > → =

< → → =

< → → =

< → →

< → < →

Inadequate for naming functions defined recursively

Lambda functions and recursive functions

Express anonymous functions

form x2 +y

function f f(x,y) = x2 +y

anonymous function

Mathematical concepts in Lisp

 (fact, ((x,y) (n 0 1,T n fact(n 1)))a l)l be λ = → → −i

2((x,y) x y)λ +

5

Theoretical consideration

Lisp is “based on scheme for representing the partial recursive
functions of a certain class of symbolic expressions”

Lisp uses

Concept of computable (partial recursive) functions

Want to express all computable functions

Function expressions

known from lambda calculus (developed A. Church)

lambda calculus equivalent to Turing Machines, but provide
useful syntax and computation rules

Mathematical concepts in Lisp

Recursive functions of symbolic expressions

Presents the Lisp syntax and semantics

S-expressions

S-functions

Translation of S-functions into S-expressions
Universal function eval (meta-circular interpter for Lisp)

Recursive functions of symbolic expressions

6

S-expressions

Atoms are distinguishable symbols

Atomic symbols are S-expressions

If e1 and e2 are S-expressions, so is (e1 . e2)

ex) A

(A . B)

((A . B) C)

Lists can be represented by S-expressions

(e) (e . NIL)

(e1 e2 … em) (e1 . (e2 . (… (em . NIL) …)))

(e1 e2 … em . x) (e1 . (e2 . (… (em . x) …)))

Recursive functions of symbolic expressions

S-functions

S-functions are written in M-expressions

fname[arg1;arg2; … ;argn]

Elementary S-functions

atom[x] check whether x is an atomic symbol

eq[x;y] check whether x and y are the same symbol

car[x] car[(e1 . e2)] = e1

cdr[x] cdr[(e1 . e2)] = e2

cons[x;y] cons[x;y] = (x . y)

Recursive functions of symbolic expressions

7

Recursive and Higher-order S-functions

Recursive S-functions

Higher-order functions

takes a function as an argument or

returns a function as a result

compose[f;g] [[x] f[g[x]]]λ=

null[x] atom[x] eq[x;NIL]= ∧

append[x;y] = (null[x] y ,T cons[car[x];append[cdr[x];y]])→ →

Recursive functions of symbolic expressions

maplist[x; f]=(null[x] NIL,T cons[f[car[x]];maplist[cdr[x]; f])→ →

Translating S-functions into S-expressions

Translating an M-expression M into M*

If M is an S-expression, M is (QUOTE M)

Variable and function names are converted into upper case
letters

f[e1; … ; en] is translated into (f* e1
* … en

*)

Regard program as data

1 n n

* * * * *
1 1 n n 1[p e , ,p e] is (COND (p e) (p e))→ →� �

1 n

* * * *
1 n{ [[x ; ;x]; M]} is (LAMBDA (x x) M)λ � �

* * *{label [f;M]} is (LABEL f M)

Recursive functions of symbolic expressions

8

Translation example

(LABEL APPEND

 (LAMBDA (X Y)

 (COND

 ((NULL X) Y)

 (T (CONS (CAR X) (APPEND (CDR X) Y))))))

Recursive functions of symbolic expressions

label[append; [[x;y];(null[x] y ,T cons[car[x];append[cdr[x];y]])]]λ → →

Translation

Program as data

Program and data have same representation
Symbolic computation such as integration and differentiation

Lisp handles program (or functions) as input or output
ex) find integration or differentiation of input funciton

(INTEGRAL (QUOTE (LAMBDA (X) (* 3 SQUARE X)))))

Staged computations
Manipulate code at runtime

Macro processing
Runtime code generation

9

Universal function eval

Recursive functions of symbolic expressions

(eval exp env)

Compute exp under the env environment

exp an S-expression translated from an S-function

env a list of pairs of variable and its value

A Lisp interpreter based on essential S-functions (meta-circular
interpreter)

An operational semantics for Lisp using Lisp

We will skip the detailed code for eval

Lisp programming system

The Lisp Programming System

Present implementation issues for Lisp

Representation of S-expressions

Free Storage List (Garbage Collection)

Public push-down list

10

Representation of S-expressions

Memory cells

Atoms and lists represented by cells

Prohibit circular lists for printing problem (allowed later)

Atom A

The Lisp Programming System

Atom B

0

Address Decrement

Shared lists

The Lisp Programming System

A B A B A B

Both structures could be printed as ((A . B) . (A . B))

Whether lists are shared or not depends on the history of
program execution

(cons (cons 1 2) (cons 1 2))

(cons a a) where a = (cons 1 2)

11

Free-storage list

The Lisp Programming System

Lisp keeps the free-storage list of free cells automatically

Assume tag bits associated with data

Need list of heap locations referred by program

Algorithm:

Set all tag bits to 0.

Start from each location used directly in the program. Follow
all links, changing tag bit to 1

Place all cells with tag = 0 on free-storage list

“Mark-and-sweep” garbage collection algorithm

Public push-down list

The Lisp Programming System

A recursive function uses itself as a subroutine

When a recursive function begins, it saves registers into public
push-down list

When a recursive functions exits, it restores registers from public
push-down list

It is called a stack today

12

Innovation in the Design of Lisp

The Lisp Programming System

Expression-oriented

function oriented

conditional expressions

recursive functions

Abstract view of memory

Cells instead of array of indexed locations

Garbage colletion

Public push-down list (stack) for recursive calls

Programs as data

Higher-order functions

Conclusions

The Lisp Programming System

Successful language

symbolic computation, experimental programming

Specific language ideas
• Expression-oriented: functions and recursion

• Lists as basic data structures

• Programs as data, with universal function eval

• Garbage collection

13

References

McCathy, Recursive functions of symbolic expressions and their
computation by machine, CACM, Vol 3, No 4, 1960

John Mitchell’s CS242 lecture note

McCathy, Recursive functions of symbolic expressions and their
computation by machine, CACM, Vol 3, No 4, 1960

John Mitchell’s CS242 lecture note

