Ik-Soon Kim
Winter School 2005
Feb 18, 2005

= Interesting paper with
o Good language ideas, succinct presentation
o Insight into language design process

= Important concepts
o Interest in symbolic computation influenced design
o Use of simple machine model
o Attention to theoretical considerations
Recursive function theory, Lambda calculus
o Various good ideas:
Program as data, garbage collection

= Advice Taker
o process declarative and imperative sentences
o make logical reasoning

= Lisp was designed to facilitate experiments with Advice Taker

= Motivating application part of good language design
o Lisp symbolic computation, logic, experimental
oC Unix O/S
o Simula simulation
o Java web applet

= Lisp implements the following mathematical concepts:

o Partial functions

o Propositional expressions and predicates
o Conditional expressions

o Lambda functions and recursive functions

= A function defined on a subset of its domain
= Common in real computation since
o partial operations
ex) division

o nontermination
ex) f(x) =if x=1then 1 else x*f(x-1)

= Propositional expressions
o have T or F as possible values
o have logical connectives: U ("and”),0 ("or") and - ("not")
o ex) X<y

(x<y)O(= c)

= A predicate
o is a function whose range consists of T or F
o ex) prime(x)

(pl - el'|:| O en)

= Generalized if-then-else
= If p, then e, otherwise if p, then e, ,..., otherwise if p, then e,

o ex)
1<2-541>2 53) =4
(2<1- 4T -3) =3
(2<1_,9,T -3) =3
0
0 :
(2<1-3 T qa) undefined
(2<1- 3,4 <1 ->4) undefined

= EXxpress anonymous functions
o form X2 +y
o function f f(x,y) = x2 +y
o anonymous function A((x,y) x>+ y)

= |nadequate for naming functions defined recursively
O label (fact, A((x,y) (n= 0 - LT onifact(n 3))))

= Lisp is “based on scheme for representing the partial recursive
functions of a certain class of symbolic expressions”

= Lisp uses
o Concept of computable (partial recursive) functions
Want to express all computable functions
o Function expressions
known from lambda calculus (developed A. Church)

lambda calculus equivalent to Turing Machines, but provide
useful syntax and computation rules

= Presents the Lisp syntax and semantics

o S-expressions

o S-functions

o Translation of S-functions into S-expressions

o Universal function eva/ (meta-circular interpter for Lisp)

= Atoms are distinguishable symbols
= Atomic symbols are S-expressions
= |fe, and e, are S-expressions, sois (e; . €,)

= ex) A
(A.B)
((A.B)C)

= Lists can be represented by S-expressions
o (e) (e . NIL)
© (€18 . &) (& (6. (. (6, NIL))
0 (1€ . €n.X) (€1 (6. (. (€. %))

= S-functions are written in M-expressions
o fname[arg,;arg,; .. ;arg,]

= Elementary S-functions

o atom[x] check whether x is an atomic symbol

o eq[x;y] check whether x and y are the same symbol
o car[x] carl(e; . e))] = e,

o cdr[x] cdr[(e; . e))] =e,

o cons[x;y] cons[x;y] = (x . y)

= Recursive S-functions
o append[x;y] = (nullx] -»y,T - cons[car[x];append[cdr[x];y]])
o null[x]= atom[x] O eq[x;NIL]

= Higher-order functions
o takes a function as an argument or
o returns a function as a result
compoself;g] = [A [x] flg[x]]
maplist[x;f]=(null[x] - NIL, T - cons[f[car[x]];maplist[cdr[x];f])

= Translating an M-expression M into M*
o If M is an S-expression, M is (QUOTE M)

o Variable and function names are converted into upper case
letters

o fle,; ..; e] is translated into (f"e," .. e.")

o[p, ~e,0,p, ~e,] is(COND (p; e }J] (p. €))
© {Allx;0;x,]; M1} is (LAMBDA (xO x") M)

o {label [;M]}" is (LABEL f" M)

= Regard program as data

label[append; A[[x;y];(null[x] - y,T - cons[car[x];append[cdr[x];yI)]]

Translation

(LABEL APPEND
(LAMBDA (X Y)
(COND
((NULL X))
(T (CONS (CAR X) (APPEND (CDR X) Y))))))

= Program and data have same representation
= Symbolic computation such as integration and differentiation
o Lisp handles program (or functions) as input or output
ex) find integration or differentiation of input funciton
(INTEGRAL (QUOTE (LAMBDA (X) (* 3 SQUARE X)))))

= Staged computations
o Manipulate code at runtime
Macro processing
Runtime code generation

(eval exp env)

= Compute exp under the env environment
o exp an S-expression translated from an S-function
o env a list of pairs of variable and its value

= A Lisp interpreter based on essential S-functions (meta-circular
interpreter)

= An operational semantics for Lisp using Lisp
= We will skip the detailed code for eva/

= Present implementation issues for Lisp

o Representation of S-expressions
o Free Storage List (Garbage Collection)
o Public push-down list

= Memorycells | Address |Decrement]

= Atoms and lists represented by cells

| Atom | B |

= Prohibit circular lists for printing problem (allowed later)

L L

|
|:A B -~ A | B A | B

= Both structures could be printed as ((A . B) . (A . B))

= Whether lists are shared or not depends on the history of
program execution

o (cons (cons 1 2) (cons 1 2))
o (consaa) wherea=(cons12)

Lisp keeps the free-storage list of free cells automatically
Assume tag bits associated with data
Need list of heap locations referred by program
Algorithm:

o Set all tag bits to 0.

o Start from each location used directly in the program. Follow
all links, changing tag bitto 1

o Place all cells with tag = 0 on free-storage list
“Mark-and-sweep’ garbage collection algorithm

A recursive function uses itself as a subroutine

When a recursive function begins, it saves registers into public
push-down list

When a recursive functions exits, it restores registers from public
push-down list

Itis called a stacktoday

= Expression-oriented
o function oriented
o conditional expressions
o recursive functions

= Abstract view of memory
o Cells instead of array of indexed locations
o Garbage colletion
= Public push-down list (stack) for recursive calls
= Programs as data
= Higher-order functions

= Successful language
o symbolic computation, experimental programming

= Specific language ideas
- Expression-oriented: functions and recursion
. Lists as basic data structures
. Programs as data, with universal function eva/
. Garbage collection

McCathy, Recursive functions of symbolic expressions and their
computation by machine, CACM, Vol 3, No 4, 1960

John Mitchell's CS242 lecture note

