
1

A Humble Introduction toA Humble Introduction to
DIJKSTRADIJKSTRA’’SS
““A DISCIPLINE OFA DISCIPLINE OF
PROGRAMMINGPROGRAMMING””

DoDo--Hyung KimHyung Kim

School of Computer Science and EngineeringSchool of Computer Science and Engineering

Sungshin WomenSungshin Women’’s Universitys University

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

CONTENTSCONTENTS
•• Bibliographic Information and Organization of the Bibliographic Information and Organization of the

Book (5 sheets)Book (5 sheets)

•• Introduction and Rationale (6 sheets)Introduction and Rationale (6 sheets)

•• Predicate Transformers (5 sheets)Predicate Transformers (5 sheets)

•• Programming Languages and Programming Languages and DijkstraDijkstra’’ss Mini Mini
Language (7 sheets)Language (7 sheets)

•• Related Theorems (5 sheets)Related Theorems (5 sheets)

•• Examples (42 sheets)Examples (42 sheets)

•• Concluding Remarks (4 sheets)Concluding Remarks (4 sheets)

2

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

BIBLIOGRAPHIC INFORMATION ANDBIBLIOGRAPHIC INFORMATION AND
ORGANIZATION OF THE BOOK (1/5)ORGANIZATION OF THE BOOK (1/5)

•• Library InformationLibrary Information

–– Published in 1976, as a volume of the Published in 1976, as a volume of the ““Series in Series in
Automatic ComputationAutomatic Computation”” by Prenticeby Prentice--Hall, Inc.Hall, Inc.

–– Total 223 pagesTotal 223 pages
•• Foreword 1 pageForeword 1 page
•• Preface 5 pagesPreface 5 pages
•• Main body 217 pagesMain body 217 pages

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

BIBLIOGRAPHIC INFORMATION ANDBIBLIOGRAPHIC INFORMATION AND
ORGANIZATION OF THE BOOK (2/5)ORGANIZATION OF THE BOOK (2/5)

•• Organization of the BookOrganization of the Book

–– Foreword by C. A. R. HoareForeword by C. A. R. Hoare

–– Preface by the authorPreface by the author

–– 28 chapters, semantically grouped into three parts: 28 chapters, semantically grouped into three parts:
I (Ch. 0 to Ch. 11), II (Ch. 12 to Ch. 25), and III I (Ch. 0 to Ch. 11), II (Ch. 12 to Ch. 25), and III
(Ch. 26 & Ch. 27)(Ch. 26 & Ch. 27)

3

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

BIBLIOGRAPHIC INFORMATION ANDBIBLIOGRAPHIC INFORMATION AND
ORGANIZATION OF THE BOOK (3/5)ORGANIZATION OF THE BOOK (3/5)

•• Organization of the Book (Continued)Organization of the Book (Continued)
–– Part I (Framework): Part I (Framework): ExecutionalExecutional Abstraction, Abstraction, The

Role of Programming Languages, States and Their
Characterization, The Characterization of
Semantics, The Semantic Characterization of a
Programming Language, Two Theorems, On the
Design of Properly Terminating Constructs,
Euclid’s Algorithm Revisited, The Formal
Treatment of Some Small Examples, On
Nondeterminacy Being Bounded, An Essay on the
Notion: “The Scope of Variables”, Array Variables

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

BIBLIOGRAPHIC INFORMATION ANDBIBLIOGRAPHIC INFORMATION AND
ORGANIZATION OF THE BOOK (4/5)ORGANIZATION OF THE BOOK (4/5)
•• Organization of the Book (Continued)Organization of the Book (Continued)

–– Part II (Examples): Part II (Examples): The Linear Search Theorem,
The Problem of the Next Permutation, The
Problem of the Dutch National Flag, Updating a
Sequential File, Merging Problems Revisited, An
Exercise Attributed to R. W. Hamming, The
Pattern Matching Problem, Writing a Number as
the Sum of Two Squares, The Problem of the
Smallest Prime Factor of a Large Number, The
Problem of the Most Isolated Villages, The
Problem of the Shortest Subspanning Tree, Rem’s
Algorithm for the Recording of Equivalence
Classes, The Problem of the Convex Hull in Three
Dimensions, Finding the Maximal Strong
Components in a Directed Graph

4

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

BIBLIOGRAPHIC INFORMATION ANDBIBLIOGRAPHIC INFORMATION AND
ORGANIZATION OF THE BOOK (5/5)ORGANIZATION OF THE BOOK (5/5)

•• Organization of the Book (Continued)Organization of the Book (Continued)
–– Part III (Part III (Summary): On Manuals and

Implementations, In Retrospect

• In This Talk,
– Focus on Part I, i.e., the framework or the

(programming) methodology of the author

• Translation of the Book
– (Still!) Ongoing by the talker
– Currently lie in the middle of Chapter 8

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

INTRODUCTION AND RATIONALE (1/6)INTRODUCTION AND RATIONALE (1/6)

•• Why Formal Semantics?Why Formal Semantics?
–– Essential for the design of consistent/unambiguous Essential for the design of consistent/unambiguous

languages, validation of language translators, languages, validation of language translators,
correctness proof of programs, and (automatic?) correctness proof of programs, and (automatic?)
derivation of programsderivation of programs

•• DijkstraDijkstra’’ss Comment on Program TestingComment on Program Testing
–– ““Program testing can be quite effective for showing Program testing can be quite effective for showing

the the presencepresence of bugs, but is hopelessly inadequate for of bugs, but is hopelessly inadequate for
showing their showing their absenceabsence..””

5

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

INTRODUCTION AND RATIONALE (2/6)INTRODUCTION AND RATIONALE (2/6)

•• Historical Background (My Personal Retrospect :Historical Background (My Personal Retrospect :--))))

–– SoSo--called called ““software crisissoftware crisis””

–– Responses of three groupsResponses of three groups
•• The conservatives (?): D. E. Knuth, ...The conservatives (?): D. E. Knuth, ...
•• The progressives (?): E. W. Dijkstra, D. Gries, C. The progressives (?): E. W. Dijkstra, D. Gries, C.

A. R. Hoare, ...A. R. Hoare, ...
•• The radicals (?): J. Backus (!), R. Kowalski, ...The radicals (?): J. Backus (!), R. Kowalski, ...

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

INTRODUCTION AND RATIONALE (3/6)INTRODUCTION AND RATIONALE (3/6)

•• Definition of Axiomatic SemanticsDefinition of Axiomatic Semantics
–– Axiomatic semantics define the semantics of a Axiomatic semantics define the semantics of a

program, statement, or language construct by program, statement, or language construct by
describing the effect its execution has on describing the effect its execution has on ““assertionsassertions””
(or (or ““predicatespredicates””) about the data manipulated by the) about the data manipulated by the
program.program.

–– The term The term ““axiomaticaxiomatic”” is used because elements of is used because elements of
mathematical logic are used to specify the semantics mathematical logic are used to specify the semantics
of programming languages, including logical axioms.of programming languages, including logical axioms.

6

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

INTRODUCTION AND RATIONALE (4/6)INTRODUCTION AND RATIONALE (4/6)

•• Why DijkstraWhy Dijkstra’’s Book?s Book?

–– DijkstraDijkstra’’ss framework (i.e., predicate transformers) framework (i.e., predicate transformers)
cleanly and systematically summarizes research in cleanly and systematically summarizes research in
this field since the seminal paper of Hoarethis field since the seminal paper of Hoare’’s.s.

–– ItIt’’s really great s really great funfun!!

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

INTRODUCTION AND RATIONALE (5/6)INTRODUCTION AND RATIONALE (5/6)

•• PrePre--condition and Postcondition and Post--conditioncondition

–– Assertions associated with language constructs are of Assertions associated with language constructs are of
two kinds: assertions about things that are true just two kinds: assertions about things that are true just
before execution of the construct and assertions about before execution of the construct and assertions about
things that are true just after the execution of the things that are true just after the execution of the
construct.construct.

–– Assertions about the situation just before execution Assertions about the situation just before execution
are called are called prepre--conditionsconditions, and assertions about the , and assertions about the
situation just after execution are called situation just after execution are called postpost--
conditionsconditions..

7

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

INTRODUCTION AND RATIONALE (6/6)INTRODUCTION AND RATIONALE (6/6)

•• Programming as a Programming as a ““GoalGoal--directed Activitydirected Activity””

–– We need a way of associating to a language construct We need a way of associating to a language construct
in concern a general relation between prein concern a general relation between pre--condition condition
and postand post--condition.condition.

–– The way to do this is to use the property that The way to do this is to use the property that
programming is a programming is a goalgoal--directed activitydirected activity: We usually : We usually
know what we want to be true after the execution of a know what we want to be true after the execution of a
language construct, and the question is whether the language construct, and the question is whether the
known conditions before the execution will guarantee known conditions before the execution will guarantee
that this becomes true.that this becomes true.

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

PREDICATE TRANSFORMERS (1/5)PREDICATE TRANSFORMERS (1/5)

•• Weakest PreWeakest Pre--conditioncondition

–– The condition that characterizes the set of The condition that characterizes the set of allall
initial states such that activation will certainly initial states such that activation will certainly
result in a properly terminating happening result in a properly terminating happening
leaving the system in a final state satisfying a leaving the system in a final state satisfying a
given postgiven post--condition is called condition is called ““the weakest the weakest
prepre--condition corresponding to that postcondition corresponding to that post--
condition.condition.””

–– Denoted by wp(Denoted by wp(SS, , R R) where) where SS is a system is a system
(machine, mechanism, construct) and (machine, mechanism, construct) and RR is the is the
desired postdesired post--conditioncondition

8

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

PREDICATE TRANSFORMERS (2/5)PREDICATE TRANSFORMERS (2/5)

•• Semantics of a MechanismSemantics of a Mechanism

–– Given in the form of a rule describing how for any Given in the form of a rule describing how for any
given postgiven post--condition condition RR the corresponding weakest the corresponding weakest
prepre--condition wp(condition wp(SS, , RR) can be derived.) can be derived.

–– When we ask for the definition of the semantics of a When we ask for the definition of the semantics of a
mechanism mechanism S S , what we really ask for is such a rule , what we really ask for is such a rule
for that mechanism.for that mechanism.

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

PREDICATE TRANSFORMERS (3/5)PREDICATE TRANSFORMERS (3/5)

•• Definition of a Predicate TransformerDefinition of a Predicate Transformer

–– For a fixed mechanism For a fixed mechanism SS such a rule, which is fed such a rule, which is fed
with the predicate with the predicate RR denoting the postdenoting the post--condition and condition and
delivers a predicate wp(delivers a predicate wp(SS, , R R) denoting the) denoting the
corresponding weakest precorresponding weakest pre--condition, is called condition, is called ““a a
predicate transformer.predicate transformer.””

9

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

PREDICATE TRANSFORMERS (4/5)PREDICATE TRANSFORMERS (4/5)

•• Properties of Predicate TransformersProperties of Predicate Transformers

–– Property 1 (Law of the Excluded Miracle).Property 1 (Law of the Excluded Miracle).
•• For any mechanism For any mechanism SS we havewe have

wp(wp(SS, , FF) =) = FF

–– Property 2 (Monotonicity).Property 2 (Monotonicity).
•• For any mechanism For any mechanism SS and any postand any post--condition condition QQ

and and RR such thatsuch that
QQ ⇒⇒ RR for all statesfor all states

we also havewe also have
wp(wp(SS, , QQ)) ⇒⇒ wp(wp(SS, , RR) for all states) for all states

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

PREDICATE TRANSFORMERS (5/5)PREDICATE TRANSFORMERS (5/5)

•• Properties of Predicate Transformers (Continued)Properties of Predicate Transformers (Continued)

–– Property 3 (Property 3 (DistributivityDistributivity of Conjunction).of Conjunction).
•• For any mechanism For any mechanism SS and any postand any post--conditions conditions QQ

and and RR , we have, we have
(wp((wp(SS, , Q Q)) ∧∧ wp(wp(SS, , RR)) = wp()) = wp(SS, , QQ ∧∧ RR))

–– Property 4 (Property 4 (DistributivityDistributivity of Disjunction).of Disjunction).
•• For any mechanism For any mechanism SS and any postand any post--conditions conditions QQ

and and RR , we have, we have
(wp((wp(SS, , QQ)) ∨∨ wp(wp(SS, , RR)))) ⇒⇒ wp(wp(SS, , QQ ∨∨ RR))

10

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

PROGRAMMING LANGUAGES ANDPROGRAMMING LANGUAGES AND
DIJKSTRADIJKSTRA’’S MINI LANGUAGE (1/7)S MINI LANGUAGE (1/7)

•• SapirSapir--Whorf HypothesisWhorf Hypothesis

–– A (still controversial) linguistic theoryA (still controversial) linguistic theory

–– ““The structure of language defines the boundaries of The structure of language defines the boundaries of
thought.thought.””

•• L. WittgensteinL. Wittgenstein

–– ““The limits of my language mean the limits of my The limits of my language mean the limits of my
world.world.””

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

PROGRAMMING LANGUAGES ANDPROGRAMMING LANGUAGES AND
DIJKSTRADIJKSTRA’’S MINI LANGUAGE (2/7)S MINI LANGUAGE (2/7)

•• Semantic Characterization of a Programming LanguageSemantic Characterization of a Programming Language

–– We consider the semantic characterization of a We consider the semantic characterization of a
programming language given by the set of rules that programming language given by the set of rules that
associate the corresponding predicate transformer associate the corresponding predicate transformer
with each program written in that language.with each program written in that language.

–– We can regard the program as We can regard the program as ““a codea code”” for a for a
predicate transformer.predicate transformer.

11

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

PROGRAMMING LANGUAGES ANDPROGRAMMING LANGUAGES AND
DIJKSTRADIJKSTRA’’S MINI LANGUAGE (3/7)S MINI LANGUAGE (3/7)

•• skipskip and and abortabort

–– Two very simple predicate transformersTwo very simple predicate transformers

–– skipskip
•• Identity transformerIdentity transformer
•• Semantics:Semantics:

wp(wp(skipskip, , RR) =) = RR for any postfor any post--condition condition RR

–– abortabort
•• Constant transformerConstant transformer
•• Semantics:Semantics:

wp(wp(abortabort, , RR) =) = FF for any postfor any post--condition condition RR

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

PROGRAMMING LANGUAGES ANDPROGRAMMING LANGUAGES AND
DIJKSTRADIJKSTRA’’S MINI LANGUAGE (4/7)S MINI LANGUAGE (4/7)

•• Assignment StatementAssignment Statement

–– Substitution transformerSubstitution transformer

–– Syntax: Syntax: ““xx := := E E ””

–– Semantics:Semantics:

wp(wp(““xx := := E E ””, , RR) =) = R R EE →→ xx for any postfor any post--condition condition RR

12

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

PROGRAMMING LANGUAGES ANDPROGRAMMING LANGUAGES AND
DIJKSTRADIJKSTRA’’S MINI LANGUAGE (5/7)S MINI LANGUAGE (5/7)

•• Composition of StatementsComposition of Statements

–– <mechanism> ::= <primitive mechanism> |<mechanism> ::= <primitive mechanism> |

proper composition of <mechanism>proper composition of <mechanism>’’s>s>

–– ““Functional compositionFunctional composition”” transformertransformer

–– Syntax: Syntax: ““SS1; 1; SS22””

–– Semantics:Semantics:

wp(wp(““SS1; 1; SS22””, , R R) = wp() = wp(SS1, wp(1, wp(SS2, 2, RR))))

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

PROGRAMMING LANGUAGES ANDPROGRAMMING LANGUAGES AND
DIJKSTRADIJKSTRA’’S MINI LANGUAGE (6/7)S MINI LANGUAGE (6/7)

•• ifif--fifi Construct (Guarded if Statement)Construct (Guarded if Statement)

–– Generalized selective statementGeneralized selective statement

–– SyntaxSyntax
•• ifif <guarded command set> <guarded command set> fifi
•• ifif BB11 →→ SLSL11 | | BB22 →→ SLSL22 | | …… | | BBnn →→ SLSLnn fifi

–– Semantics:Semantics:

wp(IF, wp(IF, RR) = () = (∃∃ j j : 1 : 1 ≤≤ jj ≤≤ n n : : BBjj)) ∧∧

((∀∀ j j : 1 : 1 ≤≤ jj ≤≤ n n : : BBjj ⇒⇒ wp(wp(SLSLjj, , RR))))

13

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

PROGRAMMING LANGUAGES ANDPROGRAMMING LANGUAGES AND
DIJKSTRADIJKSTRA’’S MINI LANGUAGE (7/7)S MINI LANGUAGE (7/7)

•• dodo--odod Construct (Guarded do Statement)Construct (Guarded do Statement)

–– Generalized repetitive statementGeneralized repetitive statement

–– SyntaxSyntax
•• dodo <guarded command set> <guarded command set> odod
•• do do BB11 →→ SLSL11 | | BB22 →→ SLSL22 | | …… | | BBnn →→ SLSLnn odod

–– Semantics:Semantics:

wp(DO, wp(DO, RR) = () = (∃∃ kk : : kk ≥≥ 0: 0: HHkk((RR)) where)) where

HH00((RR) =) = RR ∧∧ ¬¬ ((∃∃ jj : 1 : 1 ≤≤ jj ≤≤ nn : : BBjj) and) and

HHkk((R R) = wp(IF,) = wp(IF, HHkk––11((RR)))) ∨∨ HH00((R R) for) for kk > 0> 0

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

RELATED THEOREMS (1/5)RELATED THEOREMS (1/5)

•• Basic Theorem for the Alternative ConstructBasic Theorem for the Alternative Construct

–– Let the alternative construct IF and a predicate pair Let the alternative construct IF and a predicate pair QQ
and and RR be such thatbe such that

QQ ⇒⇒ BB BB where where BBBB = (= (∃∃ jj : 1 : 1 ≤≤ jj ≤≤ nn : : BBjj))

andand

((∀∀ j j : 1 : 1 ≤≤ jj ≤≤ n n : (: (QQ ∧∧ BBjj)) ⇒⇒ wp(wp(SLSLjj, , RR))))

both hold for all states, thenboth hold for all states, then

QQ ⇒⇒ wp(IF, wp(IF, RR))

holds for all states as well.holds for all states as well.

14

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

RELATED THEOREMS (2/5)RELATED THEOREMS (2/5)

•• Basic Theorem for the Repetitive Construct (or Basic Theorem for the Repetitive Construct (or
Fundamental Invariance Theorem for Loops)Fundamental Invariance Theorem for Loops)

–– Let a guarded command set with its derived Let a guarded command set with its derived
alternative construct IF and a predicate alternative construct IF and a predicate PP be such thatbe such that

((PP ∧∧ BBBB)) ⇒⇒ wp(IF, wp(IF, PP))

holds for all states; then for the correspondingholds for all states; then for the corresponding

repetitive construct DO we can conclude thatrepetitive construct DO we can conclude that

((PP ∧∧ wp(DO, wp(DO, TT)))) ⇒⇒ wp(DO, wp(DO, PP ∧∧ ¬¬ BBBB))

for all states.for all states.

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

RELATED THEOREMS (3/5)RELATED THEOREMS (3/5)

•• Theorem for the Design of Properly Terminating Theorem for the Design of Properly Terminating
ConstructsConstructs

–– Let Let PP be the relation that is kept invariant, i.e.,be the relation that is kept invariant, i.e.,

((PP ∧∧ BBBB)) ⇒⇒ wp(IF, wp(IF, PP) for all states,) for all states,

let furthermore let furthermore tt be a finite integer function of the be a finite integer function of the
current state such thatcurrent state such that

((PP ∧∧ BBBB)) ⇒⇒ ((tt > 0) for all states,> 0) for all states,

and furthermore, for any value and furthermore, for any value tt0 and for all states0 and for all states

((PP ∧∧ BBBB ∧∧ tt ≤≤ tt0 + 1) 0 + 1) ⇒⇒ wp(IF, wp(IF, tt ≤≤ tt0).0).

Then we can prove thatThen we can prove that

PP ⇒⇒ wp(DO, wp(DO, TT) for all states.) for all states.

15

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

RELATED THEOREMS (4/5)RELATED THEOREMS (4/5)

•• Basic Theorem for the Alternative Construct withBasic Theorem for the Alternative Construct with

QQ = (= (PP ∧∧ BBBB ∧∧ tt ≤≤ tt0 + 1)0 + 1)

RR = (= (t t ≤≤ tt0)0)

–– ((PP ∧∧ BBBB ∧∧ tt ≤≤ tt0 + 1) 0 + 1) ⇒⇒ wp(IF, wp(IF, tt ≤≤ tt0) holds if0) holds if

((∀∀ j j : 1 : 1 ≤≤ jj ≤≤ n n : (: (PP ∧∧ BBj j ∧∧ tt ≤≤ tt0 + 1) 0 + 1) ⇒⇒

wp(wp(SLSLjj, , tt ≤≤ tt0))0))

≡≡ ((∀∀ j j : 1 : 1 ≤≤ jj ≤≤ n n : (: (PP ∧∧ BBj j)) ⇒⇒

((tt ≤≤ tt0 + 1 0 + 1 ⇒⇒ wp(wp(SLSLjj, , tt ≤≤ tt0)))0)))

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

RELATED THEOREMS (5/5)RELATED THEOREMS (5/5)

•• SummarySummary

–– Let wdec(Let wdec(SLSLjj, , tt) =) = ((tt ≤≤ tt0 + 1 0 + 1 ⇒⇒ wp(wp(SLSLjj, , tt ≤≤ tt0)).0)).

–– The invariance of The invariance of PP and the effective decrease of and the effective decrease of t t
by at least 1 is guaranteed if we have for all by at least 1 is guaranteed if we have for all jj::

((PP ∧∧ BBj j)) ⇒⇒ ((wp(wp(SLSLjj, , PP)) ∧∧ wdec(wdec(SLSLjj, , tt))))

–– Our Our BBjj’’s must be strong enough so as to satisfy the s must be strong enough so as to satisfy the
above implication and as a result the now guaranteed above implication and as a result the now guaranteed
postpost--condition condition PP ∧∧ ¬¬ BBBB might be too weak to imply might be too weak to imply
the desired postthe desired post--condition condition RR. In that case we have not . In that case we have not
solved our problem yet and we should consider other solved our problem yet and we should consider other
possibilities.possibilities.

16

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

EXAMPLE 1 (1/2)EXAMPLE 1 (1/2)

•• Algorithm for Determining the Larger OneAlgorithm for Determining the Larger One

–– Problem: Establish for fixed Problem: Establish for fixed xx and and yy the relationthe relation

R R ((mm): (): (mm = = xx ∨∨ mm = = y y)) ∧∧ mm ≥≥ x x ∧∧ mm ≥≥ yy

–– Massaging operation(s): Massaging operation(s): ““mm := := xx ”” or or ““mm := := y y ””

–– Derivation of guard(s):Derivation of guard(s):
•• wp(wp(““mm := := xx ””, , R R ((mm)) =)) = R R ((xx) =) =

((((xx = = xx ∨∨ xx = = y y)) ∧∧ xx ≥≥ x x ∧∧ xx ≥≥ y y) = () = (x x ≥≥ y y))
•• wp (wp (““mm := := yy ””, , R R ((mm)) =)) = R R ((yy) =) =

((((yy = = xx ∨∨ yy = = y y)) ∧∧ yy ≥≥ x x ∧∧ y y ≥≥ y y) = () = (y y ≥≥ x x))

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

EXAMPLE 1 (2/2)EXAMPLE 1 (2/2)

•• Algorithm for Determining the Larger One (Continued)Algorithm for Determining the Larger One (Continued)

–– Solution:Solution:

ifif x x ≥≥ yy →→ mm := := xx

| | y y ≥≥ xx →→ mm := := yy

fifi

–– Our solution is not necessarily deterministic!Our solution is not necessarily deterministic!

17

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

EXAMPLE 2 (1/4)EXAMPLE 2 (1/4)

•• EuclidEuclid’’s Algorithm (GCD Algorithm)s Algorithm (GCD Algorithm)

–– Problem: Establish for fixed Problem: Establish for fixed XX and and YY the relationthe relation

RR : ((: ((xx > 0 > 0 ∧∧ y y > 0) > 0) ∧∧

(GCD((GCD(XX, , Y Y) = GCD() = GCD(xx, , yy)))) ∧∧ ((xx = = yy))))

–– Weakened relation Weakened relation PP (invariance):(invariance):

((((xx > 0 > 0 ∧∧ yy > 0) > 0) ∧∧ (GCD((GCD(XX, , Y Y) = GCD() = GCD(xx, , yy))))))

–– ¬¬ BB BB : : xx = = yy

–– Initialization: Initialization: ““xx, , yy := := XX, , Y Y ””

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

EXAMPLE 2 (2/4)EXAMPLE 2 (2/4)

•• EuclidEuclid’’s Algorithm (GCD Algorithm) (Continued)s Algorithm (GCD Algorithm) (Continued)

–– Massaging operation(s):Massaging operation(s):

““xx, , yy := := yy, , x x ””, , ““xx := := xx + + y y ””, , ““yy := := yy −− x x ””, , ……

–– Skeleton of the program:Skeleton of the program:

ifif XX > 0 > 0 ∧∧ Y Y > 0 > 0 →→

xx, , yy := := XX, , Y Y ; {; {PP has been established}has been established}

dodo xx ≠≠ yy →→ …… {Massage {Massage xx and and yy under theunder the

invariance of invariance of PP}}

odod; {; {¬¬ BB BB has been established}has been established}

fi fi {{RR has been established}has been established}

18

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

EXAMPLE 2 (3/4)EXAMPLE 2 (3/4)

•• EuclidEuclid’’s Algorithm (GCD Algorithm) (Continued)s Algorithm (GCD Algorithm) (Continued)

–– tt function: function: tt = = xx + + y y (or (or t t = | = | xx –– yy |?)|?)

–– Derivation of guard(s):Derivation of guard(s):
•• wdec(wdec(““xx := := xx −− y y ””, , xx + + y y) = () = (yy > 0)> 0)
•• wp(wp(““xx := := xx −− y y ””, , PP) = (GCD() = (GCD(XX, , Y Y) = GCD() = GCD(xx −− yy, , yy))

∧∧ xx −− y y > 0 > 0 ∧∧ yy > 0)> 0)

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

EXAMPLE 2 (4/4)EXAMPLE 2 (4/4)

•• EuclidEuclid’’s Algorithm (GCD Algorithm) (Continued)s Algorithm (GCD Algorithm) (Continued)

–– The program:The program:

ifif XX > 0 > 0 ∧∧ Y Y > 0 > 0 →→

xx, , yy := := XX, , Y Y ; {; {PP has been established}has been established}

dodo x x > > yy →→ xx := := xx −− yy

| y | y > > xx →→ yy := := yy −− xx

odod; {; {¬¬ BB BB has been established}has been established}

fi fi {{RR has been established}has been established}

19

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

EXAMPLE 3 (1/3)EXAMPLE 3 (1/3)

•• ((Very Simple) Sorting AlgorithmVery Simple) Sorting Algorithm

–– Problem: For fixed Problem: For fixed QQ1, 1, QQ2, 2, QQ3, and 3, and QQ4 it is 4 it is

requested to establish requested to establish RR wherewhere

RR = = RR1 1 ∧∧ RR2,2,

RR1: The sequence of values (1: The sequence of values (qq1, 1, qq2, 2, qq3, 3, qq4) is a4) is a

permutation of the sequence of values (permutation of the sequence of values (QQ1,1,

QQ2, 2, QQ3, 3, QQ4), and4), and

RR2: 2: qq1 1 ≤≤ qq2 2 ≤≤ qq3 3 ≤≤ qq44

–– Weakened relation Weakened relation PP (invariance): (invariance): RR11

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

EXAMPLE 3(2/3)EXAMPLE 3(2/3)

•• ((Very Simple) Sorting Algorithm (Continued)Very Simple) Sorting Algorithm (Continued)

–– ¬¬ BB BB : : RR22

–– Initialization: Initialization: ““qq1, 1, qq2, 2, qq3, 3, qq4 := 4 := QQ1, 1, QQ2, 2, QQ3, 3, QQ44””

–– Massaging operation(s): Massaging operation(s): ““qq1, 1, qq2 := 2 := qq2, 2, qq11””, , ……

–– Skeleton of the program:Skeleton of the program:

qq1, 1, qq2, 2, qq3, 3, qq4 := 4 := QQ1, 1, QQ2, 2, QQ3, 3, QQ4;4;

dodo qq1 > 1 > qq2 2 →→ ……

| | qq2 > 2 > qq3 3 →→ ……

| | qq3 > 3 > qq4 4 →→ ……

odod

20

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

EXAMPLE 3 (3/3)EXAMPLE 3 (3/3)

•• ((Very Simple) Sorting Algorithm (Continued)Very Simple) Sorting Algorithm (Continued)

–– tt function: function: tt = 4 = 4 ∗∗ qq1 + 3 1 + 3 ∗∗ qq2 + 2 2 + 2 ∗∗ qq3 + 3 + qq44

–– The program:The program:

qq1, 1, qq2, 2, qq3, 3, qq4 := 4 := QQ1, 1, QQ2, 2, QQ3, 3, QQ4;4;

dodo qq1 > 1 > qq2 2 →→ qq1, 1, qq2 := 2 := qq2, 2, qq11

| | qq2 > 2 > qq3 3 →→ qq2, 2, qq3 := 3 := qq3, 3, qq22

| | qq3 > 3 > qq4 4 →→ qq3, 3, qq4 := 4 := qq4, 4, qq33

odod

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

EXAMPLE 4 (1/3)EXAMPLE 4 (1/3)

•• Approximate Square Root AlgorithmApproximate Square Root Algorithm

–– Problem: For fixed Problem: For fixed nn ((nn ≥≥ 0) the program should0) the program should

establishestablish

R R : : aa22 ≤≤ nn ∧∧ ((a a + 1)+ 1)22 > > nn

–– Weakened relation Weakened relation P P (invariance): (invariance): aa22 ≤≤ nn

–– ¬¬ BB BB : (: (a a + 1)+ 1)22 > > nn

–– Initialization: Initialization: ““aa := 0:= 0””

–– Massaging operation(s): Massaging operation(s): ““aa := := aa + 1+ 1””

(Why?(Why? aa is too small!)is too small!)

21

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

EXAMPLE 4 (2/3)EXAMPLE 4 (2/3)

•• Approximate Square Root Algorithm (Continued)Approximate Square Root Algorithm (Continued)

–– Skeleton of the program:Skeleton of the program:

ifif nn ≥≥ 0 0 →→

aa := 0; {:= 0; {PP has been established}has been established}

dodo ((a a + 1)+ 1)22 ≤≤ n n →→ aa := := aa + 1+ 1

odod {{¬¬ BBBB has been established}has been established}

fifi {{RR has been established}has been established}

–– tt function: function: tt = = nn −− aa22

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

EXAMPLE 4 (3/3)EXAMPLE 4 (3/3)

•• Approximate Square Root Algorithm (Continued)Approximate Square Root Algorithm (Continued)

–– Derivation of guard(s):Derivation of guard(s):

wp(wp(““aa := := aa + 1+ 1””, , P P) = () = (((a a + 1)+ 1)22 ≤≤ nn) (=) (= BBBB!)!)

wdec(wdec(““aa := := aa + 1+ 1””, , nn −− aa2 2))

= (= (nn −− ((a a + 1)+ 1)22 ≤≤ nn −− aa2 2 −− 1) = (1) = (aa ≥≥ 0)0)

–– The program is not very efficient.The program is not very efficient.

22

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

EXAMPLE 4' (1/6)EXAMPLE 4' (1/6)

•• Approximate Square Root Algorithm (Continued)Approximate Square Root Algorithm (Continued)

–– Weakened relation Weakened relation P P (invariance):(invariance):

aa22 ≤≤ n n ∧∧ bb22 > > n n ∧∧ 0 0 ≤≤ a < ba < b

–– ¬¬ BB BB : (: (a a + 1 = + 1 = bb))

–– Initialization: Initialization: ““aa := 0; := 0; bb := := nn + 1+ 1””

–– Massaging operation(s):Massaging operation(s):

““Reduce (Reduce (bb –– aa) until it reaches 1.) until it reaches 1.””

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

EXAMPLE 4' (2/6)EXAMPLE 4' (2/6)

•• Approximate Square Root Algorithm (Continued)Approximate Square Root Algorithm (Continued)

–– Skeleton of the program:Skeleton of the program:

ifif nn ≥≥ 0 0 →→

aa, , bb := 0, := 0, nn + 1; {+ 1; {PP has been established}has been established}

dodo aa + 1 + 1 ≠≠ bb →→ decrease (decrease (bb –– aa) under) under

invariance of invariance of PP

odod {{¬¬ BBBB has been established}has been established}

fifi {{RR has been established}has been established}

23

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

EXAMPLE 4' (3/6)EXAMPLE 4' (3/6)

•• Approximate Square Root Algorithm (Continued)Approximate Square Root Algorithm (Continued)

–– tt function: function: tt = = bb −− aa

–– Derivation of guard(s):Derivation of guard(s):

wp(wp(““aa := := aa + + dd””, , PP) = () = (aa + + dd))22 ≤≤ nn ∧∧

bb22 > > nn ∧∧ 0 0 ≤≤ aa + + d < bd < b

wp(wp(““b b := := bb −− dd””, , PP) =) = aa22 ≤≤ nn ∧∧ ((b b −− dd))22 > > nn ∧∧

0 0 ≤≤ aa < b < b −− dd

wdecwdec((““aa := := aa + + dd””, , bb −− aa) =) = dd ≥≥ 11

wdecwdec((““bb := := bb −− dd””, , bb −− aa) =) = dd ≥≥ 11

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

EXAMPLE 4' (4/6)EXAMPLE 4' (4/6)

•• Approximate Square Root Algorithm (Continued)Approximate Square Root Algorithm (Continued)

–– Refined skeleton of the program:Refined skeleton of the program:
ifif nn ≥≥ 0 0 →→

aa, , bb := 0, := 0, nn + 1; {+ 1; {PP has been established}has been established}
dodo aa + 1 + 1 ≠≠ bb →→

dd := (a := (a ““suitablesuitable”” value between 0 and value between 0 and bb −− aa););
ifif ((aa + + dd))22 ≤≤ nn →→ aa := := aa + + dd

| | ((b b −− dd))22 > > n n →→ b b := := bb −− dd
fifi

odod {{¬¬ BBBB has been established}has been established}
fifi {{RR has been established}has been established}

24

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

EXAMPLE 4' (5/6)EXAMPLE 4' (5/6)

•• Approximate Square Root Algorithm (Continued)Approximate Square Root Algorithm (Continued)

–– Determination of Determination of dd::

¬¬ ((((aa + + dd))22 ≤≤ nn)) ⇒⇒ ((((b b −− dd))2 2 > > nn))

= (= (((aa + + dd))22 > > nn)) ⇒⇒ ((((b b −− dd))22 > > nn))

= = ((aa + + dd))22 ≤≤ ((b b −− dd))22

= = aa + + d d ≤≤ b b −− dd

∴∴ dd = (= (b b −− aa)) divdiv 22

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

EXAMPLE 4' (6/6)EXAMPLE 4' (6/6)

•• Approximate Square Root Algorithm (Continued)Approximate Square Root Algorithm (Continued)
–– The program:The program:

ifif nn ≥≥ 0 0 →→
aa, , bb := 0, := 0, nn + 1; {+ 1; {PP has been established}has been established}
dodo aa + 1 + 1 ≠≠ bb →→

dd := (:= (b b −− aa)) divdiv 2;2;
ifif ((aa + + dd))22 ≤≤ nn →→ aa := := aa + + dd

| | ((b b −− dd))22 > > n n →→ b b := := bb −− dd
fifi

odod {{¬¬ BBBB has been established}has been established}
fifi {{RR has been established}has been established}

25

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

EXAMPLE 4'' (1/6)EXAMPLE 4'' (1/6)

•• Approximate Square Root Algorithm (Continued)Approximate Square Root Algorithm (Continued)

–– Weakened relation Weakened relation P P (invariance):(invariance):

aa22 ≤≤ n n ∧∧ ((aa + + cc))22 > > n n ∧∧ ((∃∃ ii: : ii ≥≥ 0: 0: cc = 2= 2ii))

–– ¬¬ BB BB : : c c = 1= 1

–– Initialization: Initialization: ““aa := 0; := 0; cc:= 2:= 2k k ”” ((kk ≥≥ 0) (0) (kk = ?)= ?)

–– Skeleton of the program:Skeleton of the program:
ifif nn ≥≥ 0 0 →→

aa, , cc := 0, 1;:= 0, 1;
dodo cc22 ≤≤ nn →→ cc := 2 := 2 ∗∗ cc odod;;
dodo cc ≠≠ 1 1 →→ …… odod

fifi

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

EXAMPLE 4'' (2/6)EXAMPLE 4'' (2/6)

•• Approximate Square Root Algorithm (Continued)Approximate Square Root Algorithm (Continued)

–– Massaging operation(s): Massaging operation(s): ““cc := := cc / 2/ 2””

–– tt function: function: tt = = cc

–– Derivation of guard(s):Derivation of guard(s):

wp(wp(““cc := := cc / 2/ 2””, , PP) =) = aa22 ≤≤ nn ∧∧ ((aa + + cc / 2)/ 2)22 > > nn ∧∧

((∃∃ ii: : ii ≥≥ 0: 0: cc / 2 = 2/ 2 = 2ii))

wdec(wdec(““cc := := cc / 2; / 2; ……””, , cc) = () = (cc / 2 / 2 ≤≤ cc −− 1) = (1) = (cc > 1)> 1)

26

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

EXAMPLE 4'' (3/6)EXAMPLE 4'' (3/6)

•• Approximate Square Root Algorithm (Continued)Approximate Square Root Algorithm (Continued)

–– The program:The program:
ifif nn ≥≥ 0 0 →→

aa, , cc := 0, 1;:= 0, 1;
dodo cc22 ≤≤ nn →→ cc := 2 := 2 ∗∗ cc odod; {; {P P has beenhas been

estaestablished}blished}
dodo cc ≠≠ 1 1 →→ cc := := cc / 2; {/ 2; {PP might have beenmight have been

destroyed}destroyed}
ifif ((aa + + cc))22 ≤≤ nn →→ aa := := aa + + cc

| (| (aa + + cc))22 > > nn →→ skipskip
fi fi {{P P has been recovered}has been recovered}

od od {{¬¬ BBBB has been established}has been established}
fifi {{RR has been established}has been established}

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

EXAMPLE 4'' (4/6)EXAMPLE 4'' (4/6)

•• Approximate Square Root Algorithm (Continued)Approximate Square Root Algorithm (Continued)

–– Transformation of the program:Transformation of the program:

pp = = aa ∗∗ cc

qq = = cc22

rr = = nn –– aa22

–– Abstract variables (Abstract variables (aa, , cc) and concrete variables () and concrete variables (pp, , qq, ,
and and rr))

27

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

EXAMPLE 4'' (5/6)EXAMPLE 4'' (5/6)

•• Approximate Square Root Algorithm (Continued)Approximate Square Root Algorithm (Continued)

–– The transformed program:The transformed program:
ifif nn ≥≥ 0 0 →→

pp, , qq, , rr := 0, 1, := 0, 1, nn;;
dodo qq ≤≤ nn →→ qq, , pp := := qq ∗∗ 4, 4, pp ∗∗ 2 2 odod;;
dodo qq ≠≠ 1 1 →→ qq := := qq / 4; / 4; pp := := pp / 2;/ 2;

ifif rr ≥≥ pp ∗∗ 2 + 2 + qq →→
pp,, rr := := pp + + qq,, r r −− p p ∗∗ 2 2 −− qq

| | rr < < pp ∗∗ 2 + 2 + qq →→ skipskip
fifi

odod
fifi

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

EXAMPLE 4'' (6/6)EXAMPLE 4'' (6/6)

•• Approximate Square Root Algorithm (Continued)Approximate Square Root Algorithm (Continued)

–– The final program after some optimizations:The final program after some optimizations:
ifif nn ≥≥ 0 0 →→

pp, , qq, , rr := 0, 1, := 0, 1, nn;;
dodo qq ≤≤ nn →→ qq := := qq ∗∗ 4 4 odod;;
dodo qq ≠≠ 1 1 →→ qq := := qq / 4; / 4; hh := := pp + + qq; ; pp := := pp / 2;/ 2;

ifif rr ≥≥ h h →→ pp,, rr := := pp + + qq,, r r −− hh
| | rr < < hh →→ skipskip

fifi
odod

fifi {{pp has the value desired for has the value desired for aa}}

28

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

EXAMPLE 5 (1/4)EXAMPLE 5 (1/4)

•• Remainder of Integer DivisionRemainder of Integer Division

–– Problem: For fixed Problem: For fixed aa ((≥≥ 0) and 0) and dd (> 0),(> 0),

establishestablish

R R : 0 : 0 ≤≤ rr < < dd ∧∧ dd | (| (aa −− rr).).

–– Weakened relation Weakened relation P P (invariance):(invariance):

0 0 ≤≤ rr ∧∧ dd | (| (aa −− rr))

–– ¬¬ BB BB : : rr < < dd

–– Initialization: Initialization: ““rr := := aa””

–– Massaging operation(s): Massaging operation(s): ““rr := := rr −− d d ””

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

EXAMPLE 5 (2/4)EXAMPLE 5 (2/4)

•• Remainder of Integer Division (Continued)Remainder of Integer Division (Continued)

–– Skeleton of the program:Skeleton of the program:

ifif aa ≥≥ 0 0 andand dd > 0 > 0 →→

rr := := aa; {; {PP has been established}has been established}

dodo r r ≥≥ d d →→ …… {Massage {Massage rr under theunder the

invariance of invariance of PP}}

odod {{¬¬ BBBB has been established}has been established}

fifi {{RR has been established}has been established}

–– tt function: function: tt = = rr

29

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

EXAMPLE 5 (3/4)EXAMPLE 5 (3/4)

•• Remainder of Integer Division (Continued)Remainder of Integer Division (Continued)
–– Invariance and termination under the Invariance and termination under the operation(soperation(s))

wp(wp(““rr := := rr −− d d ””, , P P))
= (0= (0 ≤≤ rr −− d d)) ∧∧ dd | (| (aa −− rr + + d d))
= (= (rr ≥≥ d d)) ∧∧ dd | (| (aa −− rr + + d d))
(Implied by (Implied by BBBB and and PP))

wdec(wdec(““rr := := rr −− d d ””, , rr))
= = r r −− d d ≤≤ rr −− 1 = 1 = dd ≥≥ 1 = 1 = dd > 0> 0
(Implied by (Implied by PP))

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

EXAMPLE 5 (4/4)EXAMPLE 5 (4/4)

•• Remainder of Integer Division (Continued)Remainder of Integer Division (Continued)

–– The program:The program:

ifif aa ≥≥ 0 0 andand dd > 0 > 0 →→

rr := := aa; {; {PP has been established}has been established}

dodo r r ≥≥ d d →→ rr := := rr −− dd

{{PP kept invariant and termination guaranteed}kept invariant and termination guaranteed}

odod {{¬¬ BBBB has been further established}has been further established}

fifi {{RR has been established}has been established}

30

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

EXAMPLE 5' (1/4)EXAMPLE 5' (1/4)

•• Quotient and Remainder of Integer DivisionQuotient and Remainder of Integer Division

–– Problem: For fixed Problem: For fixed aa ((≥≥ 0) and 0) and dd (> 0),(> 0),

establishestablish

R R : 0 : 0 ≤≤ rr < < dd ∧∧ dd | (| (aa −− rr)) ∧∧ aa = = dd * * qq + + rr..

–– Weakened relation Weakened relation P P (invariance):(invariance):

0 0 ≤≤ rr ∧∧ dd | (| (aa −− rr)) ∧∧ aa = = dd * * qq + + rr

–– ¬¬ BB BB : : rr < < dd

–– Initialization: Initialization: ““rr := := a a ;; q q := 0:= 0””

–– Massaging operation(s): Massaging operation(s): ““rr := := rr −− d d ; ; qq := := q + q + 11””

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

EXAMPLE 5' (2/4)EXAMPLE 5' (2/4)

•• Quotient and Remainder of Integer Division (Continued)Quotient and Remainder of Integer Division (Continued)

–– Skeleton of the program:Skeleton of the program:

ifif aa ≥≥ 0 0 andand dd > 0 > 0 →→

qq, , rr := 0, := 0, aa; {; {PP has been established}has been established}

dodo r r ≥≥ d d →→ …… {Massage {Massage qq and and rr under theunder the

invariance of invariance of PP}}

odod {{¬¬ BBBB has been established}has been established}

fifi {{RR has been established}has been established}

–– tt function: function: tt = = rr

31

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

EXAMPLE 5' (3/3)EXAMPLE 5' (3/3)

•• Quotient and Remainder of Integer Division (Continued)Quotient and Remainder of Integer Division (Continued)
–– Invariance and termination under the Invariance and termination under the operation(soperation(s))

wp(wp(““qq, , rr := := qq + 1, + 1, rr −− d d ””, , P P))
= (= (rr ≥≥ d d)) ∧∧ dd | (| (aa −− rr + + d d)) ∧∧ aa = = dd * * qq + + rr
(Implied by (Implied by BBBB and and PP))

wdec(wdec(““qq, , rr := := qq + 1, + 1, rr −− d d ””, , rr))
= = r r −− d d ≤≤ rr −− 1 = 1 = dd ≥≥ 1 = 1 = dd > 0> 0
(Implied by (Implied by PP))

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

EXAMPLE 5' (4/4)EXAMPLE 5' (4/4)

•• Quotient and Remainder of Integer Division (Continued)Quotient and Remainder of Integer Division (Continued)

–– The program:The program:

ifif aa ≥≥ 0 0 andand dd > 0 > 0 →→

qq, , rr := 0, := 0, aa; {; {PP has been established}has been established}

dodo r r ≥≥ d d →→ qq, , rr := := qq + 1, + 1, rr −− dd

odod {{¬¬ BBBB has been established}has been established}

fifi {{RR has been established}has been established}

32

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

EXAMPLE 5'' (1/6)EXAMPLE 5'' (1/6)

•• Remainder of Integer Division (Continued)Remainder of Integer Division (Continued)

–– Speedup of the first programSpeedup of the first program

–– Weakened relation Weakened relation P P (invariance):(invariance):

0 0 ≤≤ rr ∧∧ dd | (| (aa −− rr))

–– ¬¬ BB BB : (: (rr < < d d))

–– Initialization: Initialization: ““rr := := a a ””

–– Massaging operation(s):Massaging operation(s):

““Reduce Reduce rr by a suitable amount,by a suitable amount,

which is not less than which is not less than dd (for speedup)(for speedup)””

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

EXAMPLE 5'' (2/6)EXAMPLE 5'' (2/6)

•• Remainder of Integer Division (Continued)Remainder of Integer Division (Continued)

–– Skeleton of the program:Skeleton of the program:

ifif aa ≥≥ 0 0 andand dd > 0 > 0 →→

rr := := aa; {; {PP has been established}has been established}

dodo r r ≥≥ d d →→ …… {Massage {Massage rr under theunder the

invariance of invariance of PP}}

odod {{¬¬ BBBB has been established}has been established}

fifi {{RR has been established}has been established}

–– tt function: function: tt = = rr

33

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

EXAMPLE 5'' (3/6)EXAMPLE 5'' (3/6)

•• Remainder of Integer Division (Continued)Remainder of Integer Division (Continued)
–– Invariance and termination under the Invariance and termination under the operation(soperation(s))

wp(wp(““rr := := rr −− (suitable amount)(suitable amount)””, , P P))
= (= (rr ≥≥ (suitable amount)(suitable amount)))
∧∧ dd | (| (aa −− rr + (suitable amount))+ (suitable amount))

(Implied by (Implied by BBBB and and PP,,
if (suitable amount) is a multiple ofif (suitable amount) is a multiple of d d))

wdec(wdec(““rr := := rr −− (suitable amount)(suitable amount)””, , rr))
= (suitable amount)= (suitable amount) > 0> 0
(Implied by (Implied by PP,,
if (suitable amount) is a multiple ofif (suitable amount) is a multiple of d d))

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

EXAMPLE 5'' (4/6)EXAMPLE 5'' (4/6)

•• Remainder of Integer Division (Continued)Remainder of Integer Division (Continued)

–– Invariant relation Invariant relation P' P' for establishing for establishing PP::

0 0 ≤≤ rr ∧∧ dd | (| (aa −− rr)) ∧∧ dd | | dddd ∧∧ dddd ≥≥ dd

–– ¬¬ BB BB : : TT

–– Initialization: Initialization: ““dddd := := d d ””

–– Massaging operation(s):Massaging operation(s):

““rr := := rr −− dddd ; ; dddd := := dddd + + dddd ””

–– tt function: function: rr

34

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

EXAMPLE 5'' (5/6)EXAMPLE 5'' (5/6)

•• Remainder of Integer Division (Continued)Remainder of Integer Division (Continued)
–– Invariance and termination under the Invariance and termination under the operation(soperation(s))

wp(wp(““rr, , dddd := := rr −− dddd, , dddd + + dddd ””, , P' P'))
= (= (rr ≥≥ dddd)) ∧∧ dd | (| (aa −− rr + + dddd))
∧∧ dd | 2 * | 2 * dddd ∧∧ 2 * 2 * dddd ≥≥ dd

(Implied by (Implied by P', P', except for the first term)except for the first term)
wdec(wdec(““rr, , dddd := := rr −− dddd, , dddd + + dddd ””, , rr))

= = dddd > 0> 0
(Implied by (Implied by P'P'))

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

EXAMPLE 5'' (6/6)EXAMPLE 5'' (6/6)

•• Remainder of Integer Division (Continued)Remainder of Integer Division (Continued)

–– The program:The program:

ifif aa ≥≥ 0 0 andand dd > 0 > 0 →→

rr := := a a ; {; {PP has been established}has been established}

dodo r r ≥≥ d d →→

dddd := := d d ; {; {PP'}'}

dodo r r ≥≥ dddd →→ rr, , dddd := := rr −− dddd, , dddd + + dddd odod {{P'P'}}

odod {{¬¬ BBBB has been established}has been established}

fifi {{RR has been established}has been established}

35

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

EXAMPLE 5''' (1/4)EXAMPLE 5''' (1/4)

•• Remainder of Integer Division (Continued)Remainder of Integer Division (Continued)

–– Further speedup of the first programFurther speedup of the first program

–– Weakened relation Weakened relation P P (invariance):(invariance):

0 0 ≤≤ rr < < dddd ∧∧ dddd | (| (aa −− rr))

∧∧ ((∃∃ ii: : ii ≥≥ 0: 0: dddd = = dd * 3* 3ii))

–– ¬¬ BB BB : (: (dddd = = d d))

–– Initialization: Initialization: ““rr,, dddd := := aa,, d * d * 33ii ””

(But, what must be the value of (But, what must be the value of ii? We need a? We need a

dodo--odod construct for this initialization.)construct for this initialization.)

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

EXAMPLE 5''' (2/4)EXAMPLE 5''' (2/4)
•• Remainder of Integer Division (Continued)Remainder of Integer Division (Continued)

–– Skeleton of the program:Skeleton of the program:

ifif aa ≥≥ 0 0 andand dd > 0 > 0 →→

rr,, dddd := := aa,, d d ;;

dodo rr ≥≥ dddd →→ dddd := := dddd * 3 * 3 odod; {; {PP established}established}

dodo dddd ≠≠ d d →→ …… {Massage {Massage dddd under theunder the

invariance of invariance of PP}}

odod {{¬¬ BBBB has been established}has been established}

fifi {{RR has been established}has been established}

–– tt function: function: tt = = dddd

–– Massaging Massaging operation(soperation(s):): dddd :=:= dddd / 3/ 3

36

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

EXAMPLE 5''' (3/4)EXAMPLE 5''' (3/4)

•• Remainder of Integer Division (Continued)Remainder of Integer Division (Continued)
–– Invariance and termination under the Invariance and termination under the operation(soperation(s))

wp(wp(““dddd := := dddd / 3/ 3””, , P P))
= = 0 0 ≤≤ rr < < dddd / 3 / 3 ∧∧ ((dddd / 3) | (/ 3) | (aa −− rr))
∧∧ ((∃∃ ii: : ii ≥≥ 0: 0: dddd / 3 = / 3 = dd * 3* 3ii))

(The 2(The 2ndnd and 3and 3rdrd terms are implied by terms are implied by PP..))
wdec(wdec(““dddd := := dddd / 3; / 3; …… ””, , dddd))

= = dddd > 1> 1
(Implied by (Implied by BBBB and the 3and the 3rdrd term of term of PP))

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

EXAMPLE 5''' (4/4)EXAMPLE 5''' (4/4)
•• Remainder of Integer Division (Continued)Remainder of Integer Division (Continued)

–– The program:The program:

ifif aa ≥≥ 0 0 andand dd > 0 > 0 →→

rr,, dddd := := aa,, d d ;;

dodo rr ≥≥ dddd →→ dddd := := dddd * 3 * 3 odod; {; {PP established}established}

dodo dddd ≠≠ d d →→

dddd := := dddd / 3;/ 3;

dodo rr ≥≥ dddd →→ rr := := rr −− dddd odod

{Recovery of {Recovery of PP may be necessary}may be necessary}

odod {{¬¬ BBBB has been established}has been established}

fifi {{RR has been established}has been established}

37

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

CONCLUDING REMARKS (1/4)CONCLUDING REMARKS (1/4)

•• SummarySummary

–– ““Programs should be composed correctly, not just Programs should be composed correctly, not just
debugged into correctness.debugged into correctness.””

–– Designing algorithms/programs is a goalDesigning algorithms/programs is a goal--directed directed
activity.activity.

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

CONCLUDING REMARKS (2/4)CONCLUDING REMARKS (2/4)

•• Summary (Continued)Summary (Continued)

–– Clear separation between two of the programmerClear separation between two of the programmer’’s s
major concerns, the mathematical correctness major concerns, the mathematical correctness
concerns and the engineering concerns about concerns and the engineering concerns about
efficiency, by means of the predicate transformersefficiency, by means of the predicate transformers

–– Explicit concerns about termination can be of great Explicit concerns about termination can be of great
heuristic value for program design.heuristic value for program design.

38

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

CONCLUDING REMARKS (3/4)CONCLUDING REMARKS (3/4)

•• CommentsComments

–– DijkstraDijkstra’’ss framework looks attractive, but how about framework looks attractive, but how about
its practicality?its practicality?

–– DijkstraDijkstra’’ss style is fascinating: his approach to style is fascinating: his approach to
programming as a high, intellectual challenge; his programming as a high, intellectual challenge; his
illuminating perception of problems at the illuminating perception of problems at the
foundations of program design; his eloquent foundations of program design; his eloquent
presentation and deft demonstration of his own presentation and deft demonstration of his own
opinion.opinion.

–– The importance of culture: letThe importance of culture: let’’s remind ourselves of s remind ourselves of
DijkstraDijkstra’’s comment on the uselessness of program s comment on the uselessness of program
testing.testing.

D.D.--H. Kim, PL Lab., H. Kim, PL Lab., SungshinSungshin W. UniversityW. University

CONCLUDING REMARKS (3/3)CONCLUDING REMARKS (3/3)

•• ReferencesReferences
–– C. A. R. Hoare, C. A. R. Hoare, ““An Axiomatic Basis for Computer An Axiomatic Basis for Computer

Programming,Programming,”” CACMCACM 12(10), 1969.12(10), 1969.
–– E. W. Dijkstra, E. W. Dijkstra, A Discipline of ProgrammingA Discipline of Programming, ,

PrenticePrentice--Hall, 1976.Hall, 1976.
–– D.D.--H. Kim, H. Kim, ““Annotated Translation of Annotated Translation of A Discipline A Discipline

of Programmingof Programming ,,”” Transactions on Programming Transactions on Programming
LanguagesLanguages, KISS SIGPL, 1998, KISS SIGPL, 1998--..

–– http://cs.sungshin.ac.kr/~dkim/tutorial.htmlhttp://cs.sungshin.ac.kr/~dkim/tutorial.html

