An Axiomatic Basis for Computer Programming

C. A. R. Hoare October, 1969

Computer Programming and Science ___

Computer Programming = Exact Science

• What is Programming

Programming: The writing of a computer program

Program: A set of coded instructions that enables a machine, especially a computer, to perform a desired sequence of operations

• What is Science

Science: The observation, identification, description, experimental investigation, and theoretical explanation of phenomena

Reasoning on a Program

$$\begin{array}{c} \text{Input Data} \to \begin{bmatrix} \text{Computer} \\ \text{Operations} \end{bmatrix} \to \text{Result} \end{array}$$

- Reasoning on What?
 - Reasoning on the relations between the involved entities
 - The involved entities are the input data and the result

Computer Arithmetic _____

(Pure) Arithmetic \neq Computer Arithmetic

- Computer Arithmetic
 - Typically supported by a specific computer hardware
 - Could only deal with some finite subsets of integers (or real numbers)
 - \rightarrow Overflow
- Overflow Handling Examples (for Integer Operations)
 - -Strict Interpretation: an overflow operation never completes
 - -Firm Boundary: take the maximum or the minimum
 - Modulo Arithmetic: modulo n, where n is the size of the set

Strict Interpretation _____

1. Strict Interpretation

+	0	1	2	3	_	×	0	1	2	3
0	0	1	2	3		0	0	0	0	0
1	1	2	3	*		1	0	1	2	3
2	2	3	*	*		2	0	2	*	*
3	3	*	*	*		3	0	3	*	*

^{*} nonexistent

Firm Boundary _____

2.	Firm	Bound	arv
<i>~</i> ·	~ ~	- Cuxu	~~ y

+	0	1	2	3	 ×	0	1	2	3
	0				0	0	0	0	0
	1				1	0	1	2	3
2	2	3	3	3	2	0	2	3	3
3	3	3	3	3	3	0	3	3	3

Modulo Arithmetic _____

3. Modulo Arithmetic

+	0	1	2	3	 X	0	1	2	3
0	0 1	1	2	3	0	0	0	0	0
1	1	2	3	0	1	0	1	2	3
	2				2	0	2	0	2
3	3	0	1	2	3	0	3	2	1

A Selection of Axioms for Integers

A1
$$x + y = y + x$$

A2 $x \times y = y \times x$
A3 $(x + y) + z = x + (y + z)$
A4 $(x \times y) \times z = x \times (y \times z)$
A5 $x \times (y + z) = x \times y + x \times z$
A6 $y \le x \supset (x - y) + y = x$
A7 $x + 0 = x$
A8 $x \times 0 = 0$
A9 $x \times 1 = x$

An Example of Theorem _____

$$x = x + y \times 0$$

Proof.

$$x = x + 0 \tag{A7}$$

$$= x + y \times 0 \tag{A8}$$

Another Example of Theorem

$$y \leqslant r \supset r + y \times q = (r - y) + y \times (1 + q)$$

Proof.

$$(r-y) + y \times (1+q) = (r-y) + (y \times 1 + y \times q)$$
 (A5)
= $(r-y) + (y+y \times q)$ (A9)

$$= ((r - y) + y) + y \times q \tag{A3}$$

$$= r + y \times q$$
 provided $y \leqslant r$ (A6)

Some Remarks

- The premise $(y \le r)$ is required because the addition is defined for non-negative integers
- In this respect, additional restrictions are needed for the previous theorems

$$0 \leqslant x \leqslant n \land 0 \leqslant y \leqslant n \supset x = x + y \times 0$$

Axioms for Finiteness _____

• The 10th Axiom for Infinite Arithmetic

$$\mathbf{A}\mathbf{10}_{\mathrm{I}}$$
 $\neg \exists x \ \forall y \ (y \leqslant x)$

• The 10th Axiom for Finite Arithmetic

$$A10_F \quad \forall x \ (x \leq max)$$

But, what about ∞ ?

Axioms for Overflow Handling _____

$$\begin{aligned} \mathbf{A}\mathbf{1}\mathbf{1}_S & \neg \exists x & (x = max + 1) \\ \mathbf{A}\mathbf{1}\mathbf{1}_B & max + 1 = max \\ \mathbf{A}\mathbf{1}\mathbf{1}_M & max + 1 = 0 \end{aligned}$$

Modelling of Program Execution

```
"If P is true before initiation of a program Q,
 then R will be true on its completion."
     P{Q}R
 where
     P: precondition (predicate)
     Q: program (sequence of statements)
     R: postcondition (predicate)
cf. If no preconditions are imposed,
     true{Q}R
```

An Axiomatic System _____

- An axiomatic system for program verification will be developed
- The axiomatic system consists of:
 - -Axioms which are true without any premises
 - -Rules which are used to derive a theorem from existing theorems

Axiom of Assignment (D0)

```
P[f/x] \ \{x := f\} \ P where x \ \text{is a variable identifier} f \ \text{is an expression without side effects} P[f/x] \ \text{is obtained from P by substituting f for all occurrences} of x
```

Rules of Consequences (D1)

- Weakening the postcondition If $P{Q}R$ and $R \supset S$ then $P{Q}S$
- Strengthen the precondition If $P\{Q\}R$ and $S \supset P$ then $S\{Q\}R$

Another notation:

$$\frac{P\{Q\}R,\ R\supset S}{P\{Q\}S}\ \frac{S\supset P,\ P\{Q\}R}{S\{Q\}R}$$

Rule of Composition (D2)

If
$$P{Q_1}R_1$$
 and $R_1{Q_2}R$ then $P{Q_1; Q_2}R$

• Sequencing the Statements

$$\frac{P\{Q_1\}R_1,\ R_1\{Q_2\}R}{\{Q_1;\,Q_2\}R}$$

• Zero Composition (empty statement)

Rule of Iteration

If
$$P \land B\{S\}P$$
 then $P\{\text{while } B \text{ do } S\} \neg B \land P$

Another notation:

$$\frac{P \land B\{S\}P}{P\{\mathbf{while}\ B\ \mathbf{do}\ S\} \neg B \land P}$$

- P is called a *loop invariant*.
 - P is true on initiation of the loop (or of S)
 - P is true on completion of the loop
 - P is true on completion of S

An Example _____

Program

Compute the quotient and the remainder when we divide x by y.

Q:
$$((r := x; q := 0);$$

while $y \le r$ do $(r := r - y; q := 1 + q))$

Program Property

true
$$\{Q\} \neg y \leqslant r \land x = r + y \times q$$

Lemma 1.

true
$$\supset x = x + y \times 0$$

Lemma 2.

$$x = r + y \times q \land y \leqslant r \supset x = (r - y) + y \times (1 + q)$$

Proving Steps (1/3) ____

```
1 true \supset x = x + y \times 0 Lemma 1

2 x = x + y \times 0 \quad \{r := x\} \quad x = r + y \times 0 D0

3 x = r + y \times 0 \quad \{q := 0\} \quad x = r + y \times q D0

4 true \{r := x\} \quad x = r + y \times 0 D1 (1,2)

5 true \{r := x; q := 0\} \quad x = r + y \times q D2 (4,3)
```

Proving Steps (2/3)_

6
$$x = r + y \times q \wedge y \leqslant r$$

 $\supset x = (r - y) + y \times (1 + q)$ Lemma2
7 $x = (r - y) + y \times (1 + q)$ D0
8 $x = r + y \times (1 + q)$ D0
9 $x = (r - y) + y \times (1 + q)$ D0
9 $x = (r - y) + y \times (1 + q)$ D0
10 $x = r + y \times q \times q$ D2 (7,8)
10 $x = r + y \times q \wedge y \leqslant r$ $\{r := r - y; q := 1 + q\} \ x = r + y \times q$ D1 (6,9)

Proving Steps (3/3) ___

```
11 x = r + y \times q

{while y \le r do (r := r - y; q := 1 + q)}

\neg y \le r \wedge x = r + y \times q D3 (10)

12 true {((r := x; q := 0);

while y \le r do (r := r - y; q := 1 + q))}

\neg y \le r \wedge x = r + y \times q D2 (5,11)
```

Additional Rules _____

• Conditional 1

$$\frac{P \wedge B \{S\} Q}{P \{ \mathbf{if} B \mathbf{then} S \} Q}$$

• Conditional 2

$$\frac{P \wedge B \{S_1\} \ Q, \ P \wedge \neg B \{S_2\} \ Q}{P \{ \mathbf{if} \ B \ \mathbf{then} \ S_1 \ \mathbf{else} S_2 \} \ Q}$$

Proving During Coding

input variables \rightarrow PROGRAM \rightarrow output variables

Think of Assertions

- The assertions (including preconditions and postconditions) are described in terms of variables
- The PROGRAM may defines additional intermediate variables

Kinds of Assertions

- The input variables should satisfy some *preconditions*.
- The output variables should satisfy some *postconditions*.
- The intermediate variables should satisfy some *invariants*.

Coding and Proving Steps _____

Coding	Proving						
determining input/output vari-	determining precondi-						
ables	tions/postconditions (problem						
	specification)						
determining intermediate vari-	formulating assertions on the						
ables	intermediate variables (the pur-						
	pose of the variables)						
determining the initial values	checking the assertions						
for the intermediate variables							
refinement							

The Program "Find" _____

• Find an element of an array A[1..N] whose value is f-th in order of magnitude, i.e.:

$$A[1], A[2], \dots, A[f-1] \leq A[f] \leq A[f+1], \dots, A[N]$$

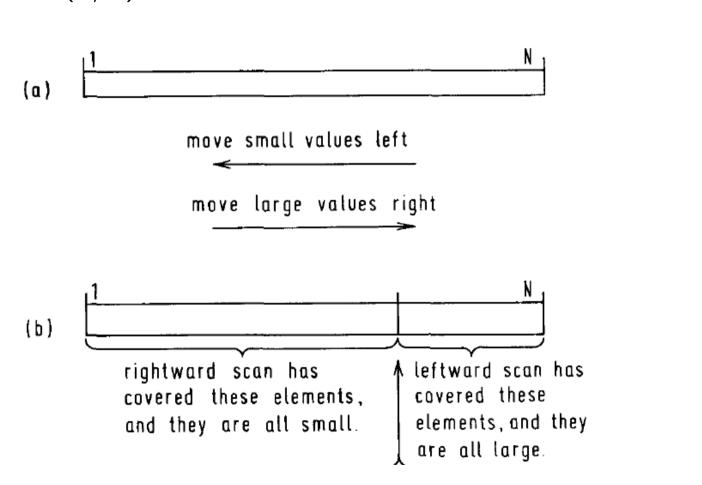
- An Algorithm for Find
 - 1. For a specific element r (say, A[f]), split A[m..n] into two parts:

$$A[m], \ldots, A[k], A[k+1], \ldots A[n]$$

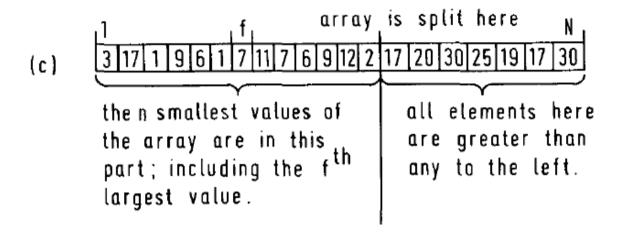
where $A[m], \ldots, A[k] \leq r$ and $A[k+1], \ldots A[n] \geq r$

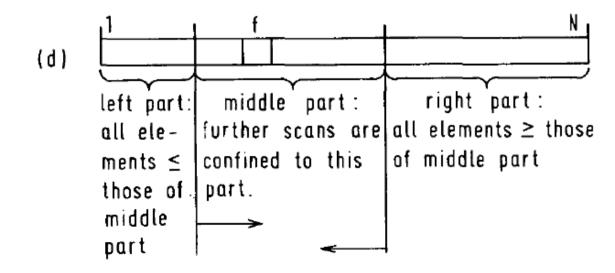
- 2. If $f \in [m, k]$, n := k and continue.
- 3. If $f \in [k+1, n]$, m := k+1 and continue.
- 4. If m = n = k, terminates.

The Algorithm (1/2) _____



The Algorithm (2/2)





Stage 1: Problem Definition

- (Precondition) Given A[1..N] and $1 \le f \le N$
- (Postcondition) Make A into

$$\forall p, q (1 \leqslant p \leqslant f \leqslant q \leqslant N \supset A[p] \leqslant A[f] \leqslant A[q])$$
 (FOUND)

Stage 2: Finding the Middle Part (1/4) _____

- Identifying intermediate variables m and n
 where A[m] is for the first element of the middle part
 and A[n] is the last element of the middle part
- The purpose of m and n

$$m \leqslant f \wedge \forall p, q (1 \leqslant p < m \leqslant q \leqslant N \supset A[p] \leqslant A[q])$$
 (m-inv.)
$$f \leqslant n \wedge \forall p, q (1 \leqslant p \leqslant n < q \leqslant N \supset A[p] \leqslant A[q])$$
 (n-inv.)

• Determining the initial values for m and n:

$$m := 1; n := N$$

Stage 2: Finding the Middle Part (2/4) _____

• Check the invariants for the initial values

$$1\leqslant f \wedge \forall p, q (1\leqslant p < 1\leqslant q\leqslant N \supset A[p]\leqslant A[q])$$

$$(Lemma\ 1=m\text{-inv.}[1/m])$$

$$f\leqslant N \wedge \forall p, q (1\leqslant p\leqslant N < q\leqslant N \supset A[p]\leqslant A[q])$$

$$(Lemma\ 2=n\text{-inv.}[N/n])$$

Lemma 1 and Lemma 2 are trivially true because $1 \leq f \leq N$

Stage 2: Finding the Middle Part (3/4) _____

- Refine further (identifying a loop)

 while m < n do "reduce the middle part"
- Does the loop accomplishes the objective of the program?

Stage 2: Finding the Middle Part (4/4) _____

• The current program structure:

```
m := 1; n := N
while m < n do
"reduce the middle part"
```

Stage 3: Reduce the Middle Part (1/6) _____

Variables

i, j: the pointers for the scanning

r: an discriminator

Invariants

$$m \leq i \land \forall p (1 \leq p < i \supset A[p] \leq r)$$
 (i-inv.)

$$j \leqslant n \land \forall q (j < q \leqslant N \supset r \leqslant A[q])$$
 (j-inv.)

• Initial values

$$i := m; j := n$$

Stage 3: Reduce the Middle Part (2/6) _____

• Check the Invariants

m-inv.
$$\supset$$
 i-inv.[m/i]
n-inv. \supset j-inv.[n/i]

Specifically,

Stage 3: Reduce the Middle Part (3/6) _____

Changing i and j (Scanning)
 while i ≤ j do
 "increase i and decrease j"

• Updating m and n if $f \le j$ then n := j else if $i \le f$ then m := i else go to L

Stage 3: Reduce the Middle Part (4/6) _____

• Checking the Invariants

$$j < i \land i-inv. \land j-inv.$$

$$\supset (f \leqslant j \land n-inv.[j/n]) \lor (i \leqslant f \land m-inv.[i/m])$$

Specifically,

$$\begin{split} j < i \ \land \ \ \forall p (1 \leqslant p < i \ \supset \ A[p] \leqslant r) \\ & \land \ \ \forall q (j < q \leqslant N \ \supset \ r \leqslant A[q]) \\ & \supset \ (f \leqslant j \ \land \ \ \forall p, q (1 \leqslant p \leqslant j < q \leqslant N \ \supset \ A[p] \leqslant A[q])) \ \lor \\ & (i \leqslant f \ \land \ \ \forall p, q (1 \leqslant p < i \leqslant q \leqslant N \ \supset \ A[p] \leqslant A[q])) \end{split} \tag{Lemma 6}$$

Stage 3: Reduce the Middle Part (5/6) _____

The Destination of go to

- When the loops terminates, j < f < i
- This means that 'FOUND' is satisfied:

$$1\leqslant f\leqslant N\quad \wedge\quad j< f< i\quad \wedge\quad i\text{-inv.}\quad \wedge\quad j\text{-inv.}\quad \supset \ FOUND$$
 Specifically,

$$1 \leqslant f \leqslant N \quad \land \quad j < f < i \quad \land \quad \forall p (1 \leqslant p < i \quad \supset \quad A[p] \leqslant r)$$

$$\land \quad \forall q (j < q \leqslant N \quad \supset \quad r \leqslant A[q])$$

$$\forall p, q (1 \leqslant p \leqslant f \leqslant q \leqslant N \quad \supset \quad A[p] \leqslant A[f] \leqslant A[q]) \qquad \text{(FOUND)}$$

Stage 3: Reduce the Middle Part (6/6) _____

• The Resulting Program:

```
\begin{split} r := & A[f]; i := m; j := n \\ \text{while } i \leqslant j \text{ do} \\ \text{"increase } i \text{ and decrease } j \text{"} \\ \text{if } f \leqslant j \text{ then } n := j \\ \text{else if } i \leqslant f \text{ then } m := i \\ \text{else go to } L \end{split}
```

Stage 4: Increase i and Decrease j (1/4) _____

- Increase i while A[i] < r do i := i + 1
- Check the i-inv.

$$A[i] < r \land i-inv. \supset i-inv.[i+1/i]$$

Specifically,

$$\begin{array}{lll} A[i] < r & \wedge & m \leqslant i & \wedge & \forall p (1 \leqslant p < i \ \supset \ A[p] \leqslant r) \\ \\ \supset & m \leqslant i+1 & \wedge & \forall p (1 \leqslant p < i+1 \ \supset \ A[p] \leqslant r) \end{array} \quad \text{(Lemma 8)} \end{array}$$

Stage 4: Increase i and Decrease j (2/4) _____

- Decrease j while r < A[j] do j := j 1
- Check the j-inv.

$$r < A[j] \land j-inv. \supset j-inv.[j-1/j]$$

Specifically,

Stage 4: Increase i and Decrease j (3/4) _____

• On termination of the loops,

$$A[j] \leqslant r \leqslant A[i]$$

- \bullet If i and j have not crossed over (i \leqslant j), A[i] and A[j] should be exchanged
- That means:

if
$$i \le j$$
 then "exchange A[i] and A[j]"

Stage 4: Increase i and Decrease j (4/4) _____

• The Resulting Program:

```
while A[i] < r \text{ do } i := i + 1
while r < A[j] \text{ do } j := j - 1
if i \le j then
"exchange A[i] and A[j]"
```

Stage 5: Exchange A[i] and A[j] (1/3) ______

• The code for the exchange:

$$w := A[i]; A[i] := A[j]; A[j] := w$$

• Let A' stands for the array A after exchange, then

$$A'[i] = A[j] \land A'[j] = A[i] \land$$

$$\forall k (1 \le k \le N \land k \ne i \land k \ne j \land A'[k] = A[k])$$

Stage 5: Exchange A[i] and A[j] (2/3) ______

• Checking the i-inv.: $i \le j \land i$ -inv. $\supset i$ -inv.[A'/A] i.e.

$$\begin{split} m \leqslant i \leqslant j & \wedge & \forall p (1 \leqslant p < i \supset A[p] \leqslant r) \\ \supset & \forall p (1 \leqslant p < i \supset A'[p] \leqslant r) \end{split} \tag{Lemma 10}$$

• Checking the j-inv.: $i \le j \land j$ -inv. $\supset j$ -inv.[A'/A] i.e.

$$\begin{split} m \leqslant j \leqslant n & \wedge \ \, \forall q (j < q \leqslant N \ \supset \ r \leqslant A[q]) \\ \supset \ \, \forall q (j < q \leqslant N \ \supset \ r \leqslant A'[q]) \end{split} \tag{Lemma 11}$$

Stage 5: Exchange A[i] and A[j] (3/3) ______

• Checking the m-inv.: $i \le j \land m$ -inv. $\supset m$ -inv.[A'/A] i.e.

$$m \leqslant i \leqslant j \quad \land \quad \forall p, q (1 \leqslant p < 1 \leqslant q \leqslant N \supset A[p] \leqslant A[q])$$

$$\supset \forall p, q (1 \leqslant p < 1 \leqslant q \leqslant N \supset A'[p] \leqslant A'[q])$$
 (Lemma 12)

• Checking the n-inv.: $i \le j \land n$ -inv. $\supset n$ -inv.[A'/A] i.e.

$$\begin{split} &i\leqslant j\leqslant n \quad \wedge \quad \forall p, q (1\leqslant p\leqslant N < q\leqslant N \ \supset \ A[p]\leqslant A[q]) \\ &\supset \ \forall p, q (1\leqslant p\leqslant N < q\leqslant N \ \supset \ A'[p]\leqslant A'[q]) \end{split} \tag{Lemma 13}$$

The Whole Program

```
m := 1; n := N
while m < n do
   r := A[f]; i := m; j := n
   while i \leq j do
      while A[i] < r \text{ do } i := i + 1
      while r < A[j] do j := j - 1
      if i \leq j then
         w := A[i]; A[i] := A[j]; A[j] := w
   if f \leq j then n := j
   else if i \le f then m := i
   else go to L
L:
```

Summary _____

- Axiomatic system is constructed
 - The relation between the precondition the postcondition of a program fragments can be exactly constructed
 - The program proof can be constructed using the axioms and rules which prescribes these relations
- Proving during Coding
 - Observe the nature of data
 - Formulate invariants for the data (or variables)
 - Coding (altering variables)
 - Proving that the invariants are preserved
 - Reconsidering the earlier decisions if the assertions cannot be proved

References and ...

References

- C. A. R. Hoare, "An Axiomatic Basis for Computer Programming,", *CACM*, 12(10), 1969.
- C. A. R. Hoare, "Proof of a Program: FIND,", CACM, 14(1), 1971.

• Further References

- Axiomatic Semantics Section of Various Programming Language Textbook
- H. R. Nielson and F. Nielson, Semantics with Applications: A Formal Introduction, John Wiley & Sons, 1992.
- D. Gries, The Science of Programming, Springer, 1981.