SigPL Winter School 2005

An Axiomatic Basis for
Computer Programming

C. A. R. HOARE
OCTOBER, 1969

Computer Programming and Science

Computer Programming = Exact Science

e What 1s Programming

Programming: The writing of a computer program

Program: A set of coded instructions that enables a machine, espe-
cially a computer, to perform a desired sequence of operations

e What i1s Science

Science: The observation, identification, description, experimental in-

vestigation, and theoretical explanation of phenomena

Reasoning on a Program

Computer
Input Data — , — Result
Operations

e Reasoning on What?

— Reasoning on the relations between the involved entities

— The involved entities are the input data and the result

Computer Arithmetic

(Pure) Arithmetic # Computer Arithmetic

e Computer Arithmetic

— T'ypically supported by a specific computer hardware
— Could only deal with some finite subsets of integers (or real numbers)
— Overflow

e Overflow Handling Examples (for Integer Operations)

— Strict Interpretation: an overflow operation never completes
— Firm Boundary: take the maximum or the minimum

— Modulo Arithmetic: modulo n, where n is the size of the set

Strict Interpretation

1. Striet Interpretation

-+ 0 2 3
0 01 2 3
1 1 2 3 =
2 9 3 * %
3 3 * % ¥

¥ nonexistent

X 0O 1 2 3
0 0 0 0 O
1 0 1 2 3
2 0 2 == =x
S 0 3 %= =

Firm Boundary

2. Firm Boundary

() L ange T on e S s s T o g
o | o N ¢ oD
™ e B S B vt [e
— o I e B e I
VA S vl 0N OO
LYY ¢ O M oD
oy | o ¢ Mo
Lo — N M M
e o ™ N oD
|_| S o~ 0N o0

Modulo Arithmetic

3. Modulo Arithmetic

0 1 2 3

< oo &N

< 6
— ™

oo

e

0 3 2 1

X

0 1 2 3

o O

[B A

~

I |

2 3 01

3

3 0 1 2

+

2
3

A Selection of Axioms for Integers

Al
A2
A3
A4
A5
A6
AT
A8
A9

X+y=y-+x
XXY=Y XX
(x+y)+z=x+ (y+2z)
(x xy)xz=xx(y X z)
XX (Y+z)=xXy+xxz
ys<x D (x—yJ+ty=x
Xx+0=x

xx0=0

X X1=x

An Example of Theorem

x=Xx+Yy X0
Proof.
x=%x+0 (A7)
=x+y x0 (A8)

Another Example of Theorem

y<r Dr+yxqg=(r—y)+uyx(l+q)

Proof.

(r—y)+yx(1+q)

~
~
~

r—y)+(yx1l4+yxaq)
r—y)+(y+uxq)
—y)+y)+yxg

T+yxq providedy<r

10

Some Remarks

e The premise (y < r) is required because the addition is defined for

non-negative integers

e In this respect, additional restrictions are needed for the previous the-
orems
0<x<N AOLKyYys<noO>x=x+y x0

11

Axioms for Finiteness

e The 10th Axiom for Infinite Arithmetic
A10; —Ix Yy (y <x)

e The 10th Axiom for Finite Arithmetic
Al10r Vx (x < max)

But, what about co?

12

Axioms for Overflow Handling

Allg —Ix (x =max+1)
Allg max+ 1= max
Allyy max+1=0

13

Modelling of Program Execution

“If P 1s true before initiation of a program Q,
then R will be true on its completion.”

P{QIR

where
P : precondition (predicate)

Q : program (sequence of statements)
R : postcondition (predicate)

cf. If no preconditions are imposed,

true{QR

14

An Axiomatic System

e An axiomatic system for program verification will be developed
e The axiomatic system consists of:

— Axioms which are true without any premises

— Rules which are used to derive a theorem from existing theorems

15

Axiom of Assignment (DO)

Plf/x] {x :=1} P
where
x 1s a variable identifier
f is an expression without side effects
Plf/x] is obtained from P by substituting f for all occurrences
of x

16

Rules of Consequences (D1)

e Weakening the postcondition

If P{QJR and R O S then P{Q}S

e Strengthen the precondition
If P{QJR and S D P then S{Q}R

Another notation:
P{QIR, RDS SDOP, P{QJR

P{QJS S{QJR

17

Rule of Composition (D2)

If P{Q1}R; and R;{Q2}R then P{Q1; Q2}R
e Sequencing the Statements

P{Q I}Rla RI{Q2}R

1Q1; Q2JR

e Zero Composition (empty statement)

P{skip}P

18

Rule of Iteration

If P A B{S!P then P{while B do S}~B AP

Another notation:
P A B{S}P

P{while B do S}-B AP
e P is called a loop tnvariant.

— P is true on initiation of the loop (or of S)
— P 1s true on completion of the loop

— P is true on completion of S

19

An Example

Program

Compute the quotient and the remainder when we divide x by y.

Q: | ((r:==x;9:=0);
whiley <rdo (tr:=1—y;q:=1+q))

Program Property
true {Q} y<r A x=r4+yxg

Lemma 1.

true O x=x+y x0

Lemma 2.

x=r+yxqg Ny<r D x=(r—y)+yx(1+q)

Proving Steps (1/3)

true D x=x+4+y x0
x=x4+yx0 {r:=x} x=r+yx0
x=T4+yx0 {g:=0} x=r+y x(
true {r:=x} x=r+y x0

ot B~ W NN

true {r:=x;9:=0} x=7r+1y X q

Lemma 1
DO
DO
D1 (1,2)
D2 (4,3)

21

Proving Steps (2/3)

6 x=r4+yxq A y<r
O x=(r—y)+yx(l+q)

7 x=(r—-y)tyx(1+q)
fr=r—y} x=r4+y x(1+4+q)

8 x=r4+yx(1+4+4q)
{g:=1+q} x=r+yxq

9 x=(—-y)+tyx(1+q)
{(r=r—vy;q:=14+q} x=1rv+y xq

10 x=r4+yxqg ANy<r
{(r=r—vy;q:=14+q} x=1rv+y xq

Lemma?2
DO
DO
D2 (7,8)

D1 (6,9)

22

Proving Steps (3/3)

11 x=r+vy xX(q
{(whiley <rdo (r:=71r—y;q:=1+4q)}
“Yy<r A x=r+yx(

12 true {((r:=x;q:=0);
whiley <rdo (ri=1—y;q:=1+q))}
Yy<r A x=r+yx(

D3 (10)

D2 (5,11)

23

Additional Rules

e Conditional 1

e Conditional 2

PAB S Q
P {if B then S} Q

PAB{51; Q, PATB (S5} Q

P {if B then S; elseS;} Q

24

25

Proving During Coding

input variables — [PROGRAM

e Think of Assertions

— output variables

— The assertions (including preconditions and postconditions) are de-

scribed in terms of variables

— The PROGRAM may defines additional intermediate variables

e Kinds of Assertions

— The input variables should satisfy some preconditions.

— The output variables should satisfy some postconditions.

— The intermediate variables should satisfy some invariants.

Coding and Proving Steps

Coding

Proving

determining input/output vari-

ables

determining precondi-
tions/postconditions (problem

specification)

determining intermediate vari-

ables

formulating assertions on the
intermediate variables (the pur-
pose of the variables)

determining the initial values

for the intermediate variables

checking the assertions

refinement

26

The Program “Find”

e F'ind an element of an array A[l..N] whose value is f-th in order of
magnitude, 1.e.:

AlL],Al2],...,Alf —1] < A[fl| <A[f+1],...,A[N]

e An Algorithm for Find
1. For a specific element r (say, Alf]), split Alm..n] into two parts:

Alml,... Ak, Ak+1],...AMn]

where Aim/J,... Akl <rand Alk+1],...An] >
2.If f € [m, k], n:=k and continue.
3.If fe[k+1,n], m:=k+ 1 and continue.

4. If m = n = k, terminates.

27

28

The Algorithm (1/2)

1 N
(a)
mave small values left
-
move large values right
=
1 N
(b)
L A ./
v i
rightward scan has leftward scan has
covered these elements, covered these
and they are all small. elements, and they

are all targe.

The Algorithm (2/2)

1 f array is split here N
(c) 3N711]916§1{7111{7(6]912{2117[20]30]25[19]17 [30
\ A J

Y Y

the n smatlest values of all elements here
the array are in this are greater than

part; including the f th any to the left.
largest value.

] f

(d)

__.Y ! + ~— A ‘ Y J
left part:] middle part: right part:
all ele- |{urther scans arejall elements > those

ments < |confined to this |[of middle part
those of . part.
middle [— o
part

Stage 1: Problem Definition

e (Precondition) Given A[1..N] and 1 <f <N
e (Postcondition) Make A into

Vp,q(l <p<f<qg<N D Alp] <AIfl <Alq])

(FOUND)

30

Stage 2: Finding the Middle Part (1/4)

e [dentifying intermediate variables m and n
where A[m] is for the first element of the middle part
and A[n] is the last element of the middle part

e The purpose of m and n

m<f A Vp,q(l

<p<mg
f<m A Vp,q(l<p

qJ

<d

e Determining the initial values for m and n:
m:=1n:=N

(m-inv.)

(n-inv.)

31

Stage 2: Finding the Middle Part (2/4)

e Check the invariants for the initial values
1<f A ¥p,q(l<p<l1<qg<N D Alp] <Alq])
(Lemma 1 = m-inv.[1/m]|)
f<N A Vp,g(l<p<N<g<N D Alp] <Aldq])
(Lemma 2 = n-inv.[N/n])

Lemma 1 and Lemma 2 are trivially true because 1 < f < N

32

Stage 2: Finding the Middle Part (3/4)

e Refine further (identifying a loop)
while m < n do “reduce the middle part”

e Does the loop accomplishes the objective of the program?

m-inv. A n-inv. A —(m<n)
SDm=n=f A ¥p,q1<p<f<qg<N O Alp] <A[fl <Alq])
(Lemma 3)

33

Stage 2: Finding the Middle Part (4/4)

e The current program structure:

m:=1n:=N
while m < n do

“reduce the middle part”

34

Stage 3: Reduce the Middle Part (1/6)

e Variables

1, j : the pointers for the scanning

T : an discriminator

e Invariants

m<i A Vp(l<p<i D Alp] <)
j<m A Vgi<qg<N D r<A[ql)

e Initial values

(i-inv.)

(j-inv.)

35

36

Stage 3: Reduce the Middle Part (2/6)

e Check the Invariants
m-inv. O i-inv.[m/i]
n-inv. O j-inv.[n/i]

Specifically,
1<t A Vp,q(l<
O m<m A Vp(l

f<N A Vp,q(l1<
On<n A Vgn

D Alp] < Alql)
]

Stage 3: Reduce the Middle Part (3/6)

e Changing 1 and j (Scanning)
while 1 <j do
“Increase 1 and decrease j”
e Updating m and n
if f <j thenn =
else if 1 < f then m:=1

else go to L

37

Stage 3: Reduce the Middle Part (4/6)

e Checking the Invariants

j<i A ii1nv. /A j-inv.
O (f<j A n-anv.)j/n]) V A<t A m-inv.i/m])

Specifically,

O (f<) A Vp,al<p<j<qg<N D Alpl]<Alq])) V
A<t A Vp,ql<p<i<g<N D Afp] <Alq]))

(Lemma 6)

38

39

Stage 3: Reduce the Middle Part (5/6)

The Destination of go to

e When the loops terminates, j < f <1

e This means that ‘FOUND’ is satisfied:
I<fSN A j<f<i A iinv. A j-inv. O FOUND
Specifically,

I<EfSN A j<f<i A Vp(l<p<i D Alp] <1)
AN Vq(i<qg<N D r<Alql)

¥p,q(l<p<f<q<N D Afpl <Al <Algl) (FOUND)

Stage 3: Reduce the Middle Part (6/6)

e The Resulting Program:
r:=Alfl;i:=m;j:=n
while 1 <j do
“increase 1 and decrease j”
if f <j then n:=j
else if i < f then m:=1
else go to L

40

Stage 4: Increase i and Decrease j (1/4)

e Increase 1
while A[il] < rdoi:=1+1
e Check the 1-inv.

Alil<r A i-inv. D i-inv.[i+ 1/i]

Specifically,

Alil<r A m<i A ¥pl<p<i D Alpl < 1)

O m<i+l N Vp(l<p<i+1l DO Alpl <)

(Lemma 8)

41

Stage 4: Increase i and Decrease j (2/4)

e Decrease]
while r < Afjldoj:=j—1
e Check the j-inv.

r<Aj] A j-inv. D j-inv.[j — 1/j]

Specifically,

r<Afll A ji<n A Vqi<qg<N > r<Alq])

S j—1<n A VYqi—1<q<N >

<

Alq])

(Lemma 9)

42

Stage 4: Increase i and Decrease j (3/4)

e On termination of the loops,
Aljl <7 <Al

e If i and j have not crossed over (i < j), Ali] and A[j] should be ex-
changed

e That means:
if 1 <j then
“exchange A[i] and Alj]”

43

Stage 4: Increase i and Decrease j (4/4)

e The Resulting Program:
while Ali] <rdoi:=i+1
while r < Afjldoj:=j—1
if 1 < j then

“exchange Ali] and Al[j]”

44

Stage 5: Exchange Ali] and Alj] (1/3)

e The code for the exchange:
w = Alil; Alil := Afjl; Aljl :=w
e Let A’ stands for the array A after exchange, then
A'lil=A[l A Al =AL] A
VK(I<KkSN A k#i A k#j

N A'[K]

= Alk])

45

Stage 5: Exchange Al[i]

e Checking the i-inv.: 1 <j

and Alj]

A i-inv. D i-inv.[A’/A] i.e:

A Vp(l
p<i D> A'lp] <

A j-inv. D j-inv.[A'/A] i.e:

Vq(j < q <
N D r<A'q])

1(2/3)

<p<i D Alpl<

T) (Lemma 10)

N D r < Alq])
(Lemma 11)

46

Stage 5: Exchange Al[i]

e Checking the m-inv.: 1 <j

m<i<j A Vp,q(l
D Vp,q(l<p<1g

e Checking the n-inv.: 1 <j

and Alj]

A n-inv. O n-inv.[A’/A] i.e:

i<js<n A Vp,q(1<

D Vp,ql<p<N<q<

<p<lK
qg<N D A'l[pl <A

1(3/3)

A m-inv. O m-inv.[A’/A] i.e:

q<

<N<gg
N D> Allp] <

N D Alp] <
(Lemma 12)

N O Alp] <

< A'lq]) (Lemma 13)

47

The Whole Program

m:=1n:=N
while m < n do
r=A[f;i:=m;j:=n
while 1 <j do
while A[i] <rdoi:=1+1
while r < Afjl doj:=j—1
if i <j then

w:= Ali]; Ali] .= Afj; Afj]

if f <j then n:=j
else if 1 < f then m:=1

else go to L

w

48

Summary

e Axiomatic system is constructed
— The relation between the precondition the postcondition of a pro-
gram fragments can be exactly constructed
— The program proof can be constructed using the axioms and rules
which prescribes these relations
e Proving during Coding
— Observe the nature of data
— Formulate invariants for the data (or variables)
— Coding (altering variables)
— Proving that the invariants are preserved

— Reconsidering the earlier decisions if the assertions cannot be proved

49

References and ...

e References

—C. A. R. Hoare, “An Axiomatic Basis for Computer Programming,”,
CACM, 12(10), 1969.

—C. A. R. Hoare, “Proof of a Program: FIND,”, CACM, 14(1), 1971.
e Further References

— Axiomatic Semantics Section of Various Programming Language Text-
book

—H. R. Nielson and F. Nielson, Semantics with Applications: A
Formal Introduction, John Wiley & Sons, 1992.

— D. Gries, The Science of Programmaing, Springer, 1981.

50

