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OUTLINE

• Introduction
– Lecture 1: Motivation, examples,  problems to solve

• Modeling and Verication of Timed Systems
– Lecture 2: Timed automata, and timed automata in UPPAAL
– Lecture 3: Symbolic verification: the core of UPPAAL 
– Lecture 4: Verification Options in UPPAAL

• Towards a Unified Framework
– Lecture 5: Modeling, verification, real time scheduling, code synthesis

From UPPAAL to TIMES

2

Unification of Scheduling, Model-
Checking and Code Synthesis:
From UPPAAL to TIMES
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”Who is Who” in Real Time Systems

• Real Time Scheduling [RTSS ...]
– Task models, Schedulability analysis
– Real time operating systems

• Automata/logic-based methods [CAV,TACAS ...]
– FSM, PetriNets, Statecharts, Timed Automata
– Modelling,  Model checking ...

• (RT) Programming Languages [...]
– Esterel, Signal, Lustre, Ada ...

• ... ...
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The Same Goal: Reliable Controllers
(with minimal resource consumption)

plant

Controller

The main components of  a controller
a set of tasks: P1, P2 ... Pn running on
a platform (RTOS: scheduler)

P1 || P2 || ...|| Pn || Scheduler
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The design problem

• A set of computation tasks
– Timing constraints: e.g. Deadlines
– (QoS constraints: 80% of deadlines met, 

liveness?)
– Release patterns i.e Task models

• Design a controller/Schedule
– To ensure the constraints 
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”Classic” Real Time Scheduling

• Periodic tasks

Scheduler/RTOS

P1 P2 Pn

• well-developed techniques e.g. Rate-Monotonic Scheduling
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Rate-Monotonic Scheduling

• P1...Pn arrive at fixed rates
• Fixed Prioirity Order: Higher frequency => Higher priority

• Always run the task with highest priority (FPS)
P1 || P2 || ...|| Pn || FPS

• Schedulability can be tested by utilization bound (or equation 
solving)
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• share many resources (not only CPU time)
• have complex control stuctures and interactions
• have to satisfy mixed logical, temporal & resouce constraints

In real life, tasks may 
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Automata-based Approaches

A controller = a set of timed automata accepting tasks  Pi’s

Scheduler/RTOS

AmA2A1

P2P6

P1 P1P8

P20

How to schedule tasks/automata?  
10

The TIMES project
Tools for Modeling and Implementation of Embedded Systems

Uppsala University
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Vision 
• Timed Model to Executable Code  

Guaranteeing Timing Constraints

• Timing analysis of Concurrent and Time-
Critical Software
– Response time estimation
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Why this work?

• Timed Automata, [Alur&Dill 1990] 
– generated a lot of work on model checking:

M  sat ϕ ?

– Consider M as a design specification

– Construct a program P from M 

P
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OUTLINE

• A  Unified Model for Timed Systems [1998]
– Timed automata with tasks

• Schedulability and Decidability [TACAS 02]
– Timed automata with bounded subtraction

• More Efficient Algoritms [TACAS 03]
– Schedulability analysis using 2 clocks
– (similar to Rate-Monotonic Scheduling)

• Undecidability [TACAS 04]
– The execution times of tasks are intervals
– Task completion times influece task release times

• TIMES demo

Implemented in 
the TIMES tool
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The MODEL
(Timed Automata with Tasks)
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Modelling Real Time Systems

• Events 
– synchronization
– interrupts

• Timing constraints
– specifying event arrivals
– e.g. Periodic and sporadic

• Tasks (executable programs)
– interrupt processing
– Internal computation
– triggered by events and scheduled in the 

reday queue of  RTOS

a
x>10

x:=0

p
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Example: periodic tasks

P

start

c=100

c:=0

c:=0

c: clock
P: task
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Tasks = Executable Programs (e.g. C, Java)

• Task parameters: 
– C: WCET
– D: Relative Deadline 
– (other parameters for schedulling e.g. Priority)

• Task Interface:

Task P
{
v1 := F1(v1...vn)
...  
vn := Fn(v1...vn)
}

(a set of variables updated)
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System’s Processing Unit

Task Queue

P2P3 P2 P1

Task Release

Tasks
(the plant)

Processor

Scheduling Policy
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System’s Processing Unit

Task Queue

P2P3 P2 P1

Task Release

Tasks
(the plant)

Processor 2

Scheduling Policy

Processor 1
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Timed Automata with Tasks (Example)

• Processor 1 (event handler)
– Initially, P in the queue
– Run-to-Completion/Stablization

• Whenever a available and 
x>10, Q is put in the queue 

• Then 
– Whenever b available

and y<=50, P is put in 
the queue

– Whenever f available, R
is put in the queue.

• Processor 2 (task handler)
– Schedule and Compute tasks in 

the queue

………RQQQPP

P            
(1,7)

Q            
(3,9)

R            
(2,2)

x>10

a
y:=0

x:=0
b
y<=50

f

r y=>2

start
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Timed Automata withTasks [1998]

• Assume a set of tasks Pr
• A timed automaton with tasks is a tuple:<N,n0,T,M> 

– <N,n0,T> is a standard timed automaton
• N is a set of nodes 
• n0 is the initial node
• T ⊆ N x (B(C) x Act x 2C ) x N is the set of ’edges’ 

– C is a set of clocks
– Act is a set of actions 
– B(C) is the set of clock constraints e.g. X <10 etc

– M: N 2Pr is a mapping which assigns each node a set of tasks
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States/Configurations of automata

A state is a triple: (m, u, q)

Location
(node)

clock assignment
(valuation)

task queue
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Example

Initial State: (P, x=y=0, [P(1,7)] )

Example transitions:

(P, x=y=0, [P(1,7)] ) –0.6

(P, x=y=0.6, [P(0.4, 6.4)] ) –9.5

(P, x=y=10.1, [] ) –a

(Q, x=10.1,y=0, [Q(3,9)] ) –f

(R, x=10.1,y=0, [Q(3,9),R(2,2)] ) –2

(R, x=12.1,y=2, [Q(3,7)] ) –r

(Q, x=12.1,y=2, [Q(3,7),Q(3,9)] ) –b

(P, x=0,y=2, [Q(3,7),Q(3,9),P(1,7] )   ...

We need to handle the queue by Run and Sch

P            
(1,7)

Q            
(3,9)

R            
(2,2)

x>10

a
y:=0

x:=0
b
y<=50

f

r y=>2

start
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Sch and Run

• Sch is a function sorting task queues according to a given
scheduling strategy e.g FPS,EDF,FIFO etc

Example: EDF [ P(2, 10), Q(4, 7) ]  =   [Q(4, 7), P(2, 10)]

• Run is a function corresponding to running the first task of the
queue for a given amount of time.

Examples: Run(0.5, [Q(4, 7), P(2, 10)]) = [Q(3.5, 6.5), P(2, 9.5)]
Run(5,   [Q(4, 7), P(2, 10)]) = [P(1, 5)] 
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Semantics (as transition systems)

• States: <m,u,q>
– m is a location
– u is a clock assignment (valuation)
– q is a queue of tasks (ready to run)

• Transitions:
1. (m,u,q) –a (n, r(u), Sch[M(n)::q])   if & g(u)

2. (m,u,q) –d (m, u+d, Run(d,q))        where d is a real

OBS: q is growing (by actions) and shrinking (by delays)

m n
g a r
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Zenoness = Non-Schedulability

P

start

x<=1

P=(2,3)

…...P(2,3)P(2,3)P(2,3)P(2,3)P(2,3)

Zeno: ∞ many P’s may arrive within 1 time unit !

But after 2 copies, the queue will be non-schedulable

x:=0
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SCHEDULABILITY

29

Schedulability of automata

a state is a triple: (m, u, q)

location

clock assignment task queue

•A state is schedulable if q is schedulable
•An automaton is schedulable if all reachable states are

30

Schedulability of  Automata

Assume a scheduling policy Sch:

• A state (m,u,q) is schedulable with Sch if
– Sch(q)= [P1(c1,d1)P2(c2,d2)…Pn(cn,dn)] and 
– (c1+…+ci)<=di for all i<=n   (i.e. all deadlines met)

• An automaton is schedulable with Sch if all its reachable states
are schedulable 

• An automaton is schedulable with a class of scheduling policies 
if it is schedulable with every Sch in the class.
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Other verification/scheduling problems

• Location Reachability (just as for timed automata)
– a nice property of the model !

• Boundedness of the task queue lql<M
– memory requirement

• Schedule synthesis

32

DECIDABILITY

33

Schedulability Analysis (Non-preemptive scheduling)

FACT [1998]

For Non-preemptive scheduling strategies, 
the schedulability of an automaton can be checked 
by reachability analysis on ordinary timed automata.  

34

Proof ideas (1):
Size of schedulable queues is bounded

• The maximal number of instances of  Pi in a 
schedulable queue is bounded by  Mi = Di/Ci

• The maximal size of schedulable queues is bounded 
by M1 + M2+...+Mn

• To code the queue/scheduler,  for each task instance, use 2 clocks:
– ci remembers the computing time
– di   remembers the deadline

(ci,di)
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Proof ideas (2): 
The scheduler as an automaton

P2 is running P2 is running P1 is running

released_P1?released_P2?

c2:=0
d2:=0 ...

c2=C2

d2>D2

or d1>D1

Error

d2>D2 d1>D1

d1:=0 c1:=0
START

P1=(C1,D1)
P2=(C2,D2)

36

The scheduler automaton

Schedule Pk is running

Error

Sk:= Running  (if Dk<=Di for all i)

ck:=0

released_Pj?

dj:=0

ck=Ck

released_Pi?

di:=0

(Pk finished)

Start

di>Di (if Pi is released)

SCHEDULER
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Proof Ideas (3)

• Modify the original 
automaton M: adding 
’release!’ to inform 
the scheduler

• Check reachability of 
the error state for 

M’  || SCHEDULER

Pi

X<10

z:=0

Pi

X<10

z:=0

released_Pi!

M M’
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How about preemptive scheduling?

• We may try the same ideas 
– Use clocks to remember computing times and deadlines

• BUT a running task may be stopped to run a more ’urgent’ task
– Thus we need stop-watches to remember computing times
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Conjecture (1998 @ Grenoble, VHS meeting):

• The schedulability problem for Preemptive scheduling 
is undecidable.

• The intuition: we need stop-watch to code the scheduler and 
the reachability problem for stop-watch automata is undecidable

• This is wrong !!!
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Decidability Result  [TACAS 2002]

FACT

For Preemptive scheduling strategies,  the schedulability 
of an automaton can be checked by reachability analysis on 
Bounded Substraction Timed  Automata (BSA).

NOTE
– Reachability for BSA is decidable
– Preemptive EDF is optimal; thus the general schedulability 

checking problem is decidable.
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Timed automata with subtraction 
i.e. Subtraction Automata, [McManis and Varaiya, CAV94] 

• Subtraction automata are 
timed automata 
extended with 
subtraction on clocks

• That is,  in addition to 
reset x:=0, it is also
allowed to update a clock 
x with X:= X-n where n is 
a natural number

x>10
y>10

x:=0
y:=y-10

x:=x-1
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Bounded Subtraction Automata

• A subtraction automaton is bounded if its clocks are 
non-negative and bounded with a  maximal constant
(or subtraction is only allowed in the bounded zone).

M

N

Bounded area allowed 
for subtraction e.g. x:=x-1

u v

u(x-1) v(x-1)

x

y

u~v 
implies 
u(x-1) ~ v(x-1)

FACT:
Location Reachability
checking is decidable!
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Schedulability Checking 
as a reachability problem for
Bounded Subtraction Automata
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Proof ideas  (no stop but subtraction :-)

• Model the scheduler as a subtraction automaton
– Do not stop the computing clock c2 when a new task P1 is released
– Let c2 for P2 (preempted) run until the task P1 (with higher priority) finishes,

then perform c2:=c2-C1 (note: C1 is the computing time for P1).

P2 is running P1 is running P2 is running

released_P1?released_P2?

c2:=0 c1:=0
c2:=c2-C1

cm:=cm-C1 for all Pm

preempted earlier

... ...

c1=C1
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Proof ideas (clocks are bounded):

• c2 can never be negative.
• c2 is bounded by D2.

d1>D1

or dm>Dm

for any
preempted Pm

Error

d2>D2

or dm>Dm

for any 
preempted Pm

d2>D2

or dm>Dm

for any 
preempted Pm

P2 is running P1 is running P2 is running

released_P1?released_P2?

c2:=0 c1:=0
c2:=c2-C1

cm:=cm-C1 for all Pm

preempted earlier

... ...

c1=C1

46

END of proof

47

Complexity

#clocks (needed)
= 2 x #instances (maximal number of schedulable task instances)

= 2 x ΣiDi/Ci

This is a huge number in the worst case 
But the run-time complexity is not so bad!

48

It works anyway !!!

• #active tasks in the queue is normally small, and the 
run-time complexity is only related to #active clocks

• If Too many active tasks in the queue (i.e. Too many 
active clocks), the check will stop sooner and report 
”non-schedulable”

• AND the analysis can be done symbolically!
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Schedulability analysis based on 
Constraints (DBM’s)

Subtraction on Clocks,  added to DBM-library (UPPAAL, Kronos) 

4<= x <=7
2<= y <=4

4<= x <=7
2<= y <=4

x

y

0<= x <=3
2<= y <=4

0<= x <=3
2<= y <=4

x

y
x:=x-4

50

WE CAN DO BETTER ! [TACAS 03]

For fixed priority scheduling strategies (FPS), 
we need only 2 clocks (and ordinary timed automata)!
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The 2-CLOCK ENCODING 

(for fixed-priority scheduling strategies)
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Main Idea

• Check the schedulability of tasks one by one
according to priority order (highest priority first)

• This is similar to response time analysis in RMS

53

To code the queue/scheduler, we need:

• 1 integer variable for Pi:
• r denotes the response time as in RMS 

(the total computing time needed before Pi finishes)

• 2 clocks for Pi:
• c remembers the accumulated computing time 

(so much has been computed so far)
• d remembers the ”deadline”
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Intuition of the encoding:

– Assume: priority(Pj) > priority(Pi)  and Pi is analyzed

time

Pi released:
r:=r+Ci
d:=0

Pj released 

r:=r+Cj

First release of Pj (or Pi)
c:=0,r:=Cj (or r:=Ci)

Pi finished:

c<r,d=Di: error!!
c=r,
d<=Di

Ri = Ci + Σpri(Pj)>pri(Pi) Cj

When Pi finishes, r = Ri
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The ”FPS scheduler”:  analyzing Pi

Waiting for Pi Check Pi

Release_j?

r:=r+Cj

Release_i?

d:=0
r:=r+Ci

Initial

c:=0,r:=Cj
Release_j?

Error

c<r,d=Di
c=r
d<=Di

Note that it is not clear that c and r are not bounded !

Release_j?

r:=r+Cj

c=r

56

The ”FPS scheduler”:  analyzing Pi
(we need the boundedness)

Waiting for Pi Check Pi

Release_j?

r:=r+Cj

Release_i?

d:=0
r:=r+Ci

Initial

c:=0,r:=Cj
Release_j?

Error

c<r,d=Di
c=r
d<=Di

Release_j?

r:=r+Cj

c=r

c:=M
c:=0
r:=r-M

c:=M
c:=0
r:= r-M

OBS: r-c is the only interesting info, so M can be any integer! Let M=Ci

57

c and r are bounded

• c is bounded by M
• r is bounded by rmax + Ci

– Where rmax is the maximal value of r from previous analysis 

for all tasks Pj with higher priority

So the scheduler is a standard TA END

58
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The INPUT LANGUAGE
is very much like  ”guarded commands”

task

guard a! update

• task:     ”asynchronous” computation  whch takes time

• guard, update: ”synchronous”   computation  which takes ”no time”
- we adopt the synchronous hypothesis

OBS:  guard and update may contain data variables (integer, array)
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Tasks = Executable Programs (e.g. C, Java)

• Task Type
– Synchronous or Asynchronous
– Non-Periodic (triggered by events) or Periodic

• Task parameters: C, D etc
– C: Computing time and D: Relative Deadline
– other parameters for schedulling e.g. priority, period

• Task Interface (variables updated ’atomically’)
– Xi :=Fi(X1...Xn)

• Tasks may have shared variables
– with automata
– with other tasks (priority ceiling protocols)

• Tasks with Precedence constraints
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Functionality/Features of TIMES

• GUI 
– Modeling: automata with (a)synchronous tasks
– editing, task library, visualization etc 

• Simulation
– Symbolic execution as MSC’s and Gant Charts

• Verification 
– Safety, bounded liveness properties  (all you do with UPPAAL)
– Schedulability analysis

• Synthesis
– Verified executable code (guaranteeing timing constraints)

• Traces(Code) ⊆ Traces(Model)

– Schedule synthesis (ongoing)

63

CODE SYNTHESIS in TIMES

• Run Time Systems
– Event Handler 

• OS interrupt processing system or Polling

– Task scheduler
• generated from task parameters

• Application Tasks = threads (or processes)
– Already there! (written in C)
– Current version of TIMES support LegoOS !

64

TIMES

65

Conclusions/Remarks

• A unified model for timed systems (can express 
synchronization, computation and complex temporal 
and resource constraints). 

• The first decidability result (and efficient algorithms) 
for preemptive scheduling in dense time models:
– The analysis is symbolic (using DBM’s in the UPPAAL tool)
– The results can be adopted for schedulability analysis of 

message transmission.

• Implementation: TIMES


