OUTLINE

¢ Introduction
— Lecture 1: Motivation, examples, problems to solve

* Modeling and Verication of Timed Systems
— Lecture 2: Timed automata, and timed automata in UPPAAL
— Lecture 3: Symbolic verification: the core of UPPAAL
— Lecture 4: Verification Options in UPPAAL

‘ Towards a Unified Framework
— Lecture 5: Modeling, verification, real time scheduling, code synthesis
From UPPAAL to TIMES

Unification of Scheduling, Model-
Checking and Code Synthesis:
From UPPAAL to TIMES

"Who is Who" in Real Time Systems

¢ Real Time Scheduling [RTSS ...]
— Task models, Schedulability analysis
— Real time operating systems
¢ Automata/logic-based methods [CAV,TACAS ...]
— FSM, PetriNets, Statecharts, Timed Automata
— Modelling, Model checking ...
e (RT) Programming Languages |[...]
— Esterel, Signal, Lustre, Ada ...

The Same Goal: Reliable Controllers

(with minimal resource consumption)

x>

l I The main components of a controller
a set of tasks: P1, P2 ... Pn running on
a platform (RTOS: scheduler)

P1 || P2 || ...[| Pn || Scheduler

The design problem

o A set of computation tasks
— Timing constraints: e.g. Deadlines
— (QoS constraints: 80% of deadlines met,
liveness?)
— Release patterns i.e Task models
¢ Design a controller/Schedule
— To ensure the constraints

"Classic” Real Time Scheduling

¢ Periodic tasks

» well-developed techniques e.g. Rate-Monotonic Scheduling

Rate-Monotonic Scheduling

e P1...Pn arrive at fixed rates

o Fixed Prioirity Order: Higher frequency => Higher priority

¢ Always run the task with highest priority (FPS)
P1 || P2 || ..|| Pn || FPS

e Schedulability can be tested by utilization bound (or equation
solving)

In real life, tasks may

¢ share many resources (not only CPU time)
« have complex control stuctures and interactions
¢ have to satisfy mixed logical, temporal & resouce constraints

Automata-based Approaches

A controller = a set of timed automata accepting tasks Pi’s

P20

*® - &

I How to schedule tasks/automata? I

The TIMES project

Tools for Modeling and Implementation of Embedded Systems

Uppsala University

Vision

e Timed Model to Executable Code
Guaranteeing Timing Constraints

¢ Timing analysis of Concurrent and Time-
Critical Software
— Response time estimation

Why this work?

e Timed Automata, [Alur&Dill 1990]

— generated a lot of work on model checking:

P M sat ¢ ?

~ Consider M as a design specification

— Construct a program P from M

An Overview of TIMES

System Specification System Analysis

Editor Analyser
| Yes, scnecuiaie

[T No, not schedulable

XML
Simulator H—# D

Exacution Trace
Scheduler| | | /" Controller |
generator | Synthesizer | -

—»

OUTLINE

e A Unified Model for Timed Systems [1998]
— Timed automata with tasks

e Schedulability and Decidability [TACAS 02]
— Timed automata with bounded subtraction

« More Efficient Algoritms [TACAS 03] Implemented in
— Schedulability analysis using 2 clocks the TIMES tool
— (similar to Rate-Monotonic Scheduling)

e Undecidability [TACAS 04]
— The execution times of tasks are intervals
— Task completion times influece task release times

¢ TIMES demo

The MODEL

(Timed Automata with Tasks)

15

Modelling Real Time Systems

¢ Events
— synchronization
— interrupts x>10

o Timing constraints a Timed

Aondd
— specifying event arrivals

- e.g. Periodic and sporadic x=0 + tas
e Tasks (executable programs)
— interrupt processing

— Internal computation

— triggered by events and scheduled in the
reday queue of RTOS

Example: periodic tasks

c: clock
start P: task

c=100

Tasks = Executable Programs (e.g. C, Java)

e Task parameters:
- C: WCET
— D: Relative Deadline
— (other parameters for schedulling e.g. Priority)

e Task Interface:

Task P
{
vy 1= Fy(vyaavy)

Vo 1= Fo(V3euy)

(a set of variables updated)

System'’s Processing Unit

Task Queue

P P, P, i P,

J

Processor

(the plant) Scheduling Policy

.Task Releas

System'’s Processing Unit

Task Queue

P
Processor 1 3 P, Py P2

N\ _

Processor 2

Tasks

(the plant) Scheduling Policy

20

Timed Automata with Tasks (Example)

e Processor 1 (event handler)
— Initially, P in the queue
— Run-to-Completion/Stablization
* Whenever a available and
x>10, Q is put in the queue
e Then
— Whenever b available
and y<=50, P is put in
the queue

f — Whenever f available, R
is put in the queue.
e Processor 2 (task handler)
ry=>2 — Schedule and Compute tasks in

the queue

21

Timed Automata withTasks [199s]

e Assume a set of tasks Pr

¢ A timed automaton with tasks is a tuple:<N,no, T,M>
— <N,no, T> is a standard timed automaton
¢ Nis a set of nodes
e npis the initial node
e T Nx(B(C)xAct x 2¢) x N is the set of ‘edges’
— Cis a set of clocks
— Act is a set of actions
— B(C) is the set of clock constraints e.g. X <10 etc
- M: N—)ZPr is @ mapping which assigns each node a set of tasks

22

States/Configurations of automata

A state is a triple: (m, u, Q)

Location
(node)

clock assignment task queue
(valuation)

23

Example

Initial State: (P, x=y=0, [P(1,7)])

Example transitions:

(P, x=y=0, [P(1,7)]) 0.6
x:=0
b

y<=50 (P, x=y=10.1, []) -a>

1
ry=>2

(P, x=y=0.6, [P(0.4, 6.4)]) -9.5>

(Q, x=10.1,y=0, [Q(3,9)]) —F>
(R, x=10.1,y=0, [Q(3,9),R(2,2)]) -2~
(R, x=12.1,y=2, [QB3,7)]) -r>
(Q x=12.1y=2, [Q(3,7),Q(,9)]) -b~>

(P, x=0,y=2, [Q(3,7),QB,9),P(1,7]) ...

We need to handle the queue by Run and Sch 2

Sch and Run

e Sch is a function sorting task queues according to a given
scheduling strategy e.g FPS,EDF,FIFO etc

Example: EDF [P(2, 10), Q(4,7) 1 = [Q(4, 7), P(2, 10)]

¢ Run is a function corresponding to running the first task of the
queue for a given amount of time.

Examples: Run(0.5, [Q(4, 7), P(2, 10)]) = [Q(3.5, 6.5), P(2, 9.5)]
Run(5, [Q(4, 7), P(2, 10)]) = [P(1, 5)]

25

Semantics (as transition systems)

e States: <m,u,q>
— miis a location
— U is a clock assignment (valuation)
— q is a queue of tasks (ready to run)

e Transitions: gar
1. (m,u,q) =a=> (n, r(u), Sch[M(n)::q]) if @—'@ & g(u)
2. (m,u,q) —d=> (m, u+d, Run(d,q)) where d is a real

OBS: q is growing (by actions) and shrinking (by delays)
26

Zenoness = Non-Schedulability

start P=(2,3)

x<=1

Zeno: C0 many P’s may arrive within 1 time unit !
[re3 [Pe3) [Pe3) [Pe3) [Pe3) [TTIT]
But after 2 copies, the queue will be non-schedulable

SCHEDULABILITY

Schedulability of automata

a state is a triple: (m, u, CI)

location

clock assignment task queue

*A state is schedulable if (is schedulable

*An automaton is schedulable if all reachable states are
29

Schedulability of Automata

Assume a scheduling policy Sch:

e A state (m,u,q) is schedulable with Sch if
= Sch(@)= [P;(c;,d;)Py(Cydy)-.Py(Cy,d,)] and
= (¢;+...+¢)<=d; for alli<=n (i.e. all deadlines met)

e An automaton is schedulable with Sch if all its reachable states
are schedulable

e An automaton is schedulable with a class of scheduling policies
if it is schedulable with every Sch in the class.

Other verification/scheduling problems

¢ Location Reachability (just as for timed automata)
— a nice property of the model !

¢ Boundedness of the task queue Igl<M
— memory requirement

e Schedule synthesis

DECIDABILITY

32

Schedulability Analysis (Non-preemptive scheduling)

FACT [1998]

For Non-preemptive scheduling strategies,
the schedulability of an automaton can be checked
by reachability analysis on ordinary timed automata.

Proof ideas (1):

Size of schedulable queues is bounded

e The maximal number of instances of P;in a
schedulable queue is bounded by Mi = [Di/Cil

e The maximal size of schedulable queues is bounded
by M1 + M2+...+Mn

* To code the queue/scheduler, for each task instance, use 2 clocks:
— ¢ remembers the computing time
- d, remembers the deadline

) (c,d) o o o

Proof ideas (2):
The scheduler as an automaton

released_P2? released_P1? c,=C2

START dy:=

P1=(C1,D1)
P2=(C2,D2)

The scheduler automaton

€, =C, (P« finished)

SCHEDULER

Proof Ideas (3)

¢ Modify the original
automaton M: adding X<10 X<10

' "toi leased_P}
release!” to inform o :> release

z:=0
the scheduler

e Check reachability of
the error state for

M’ || SCHEDULER

How about preemptive scheduling?

¢ We may try the same ideas
— Use clocks to remember computing times and deadlines

e BUT a running task may be stopped to run a more ‘urgent’ task
— Thus we need stop-watches to remember computing times

38

Conjecture (1998 @ Grenoble, VHS meeting):

e The schedulability problem for Preemptive scheduling
is undecidable.

¢ The intuition: we need stop-watch to code the scheduler and
the reachability problem for stop-watch automata is undecidable

e This is wrong !!!

Decidability Result [TACAS 2002]

FACT

For Preemptive scheduling strategies, the schedulability
of an automaton can be checked by reachability analysis on
Bounded Substraction Timed Automata (BSA).

NOTE
— Reachability for BSA is decidable
— Preemptive EDF is optimal; thus the general schedulability
checking problem is decidable.

40

Timed automata with subtraction

i.e. Subtraction Automata, [McManis and Varaiya, CAV94]

e Subtraction automata are
timed automata
extended with
subtraction on clocks

x>10 10
e Thatis, in addition to y::y_1;‘=° xi=x-1
reset x:=0, it is also
allowed to update a clock . .

X with x:= x-n where n is
a natural number

41

Bounded Subtraction Automata

¢ A subtraction automaton is bounded if its clocks are
non-negative and bounded with a maximal constant
(or subtraction is only allowed in the bounded zone).

X Bounded area allowed

for subtraction e.g. x:=x-1 FACT'
"

Location Reachability

N
?u OV ey checking is decidable!
implies
S 4 u(x-1) ~ v(x-1)
u(¥-1) \fx-1

42

Schedulability Checking
as a reachability problem for
Bounded Subtraction Automata

43

Proof ideas (no stop but subtraction :-)

cm:=cm-C1 for all Pm
reempted earlier

released_P2? released_P1?

c,=C1

¢ Model the scheduler as a subtraction automaton
— Do not stop the computing clock ¢, when a new task P: is released

— Let, for P2 (preempted) run until the task P1 (with higher priority) finishes,
then perform c,:=c,-C1 (note: C: is the computing time for P1).

44

Proof ideas (clocks are bounded):

cm:=cm-C1 for all Pm
reempted earlier

released_P2? released_P1? ¢=C1

or dm> r dm>Dm
for any

preempted

e C,can never be negative.
* ¢, is bounded by Do.

45

END of proof

46

Complexity

#clocks (needed)
= 2 X #instances (maximal number of schedulable task instances)
= 2 x X/ Di/Ci]

This is a huge number in the worst case
But the run-time complexity is not so bad!

47

It works anyway !!!

o #active tasks in the queue is normally small, and the
run-time complexity is only related to #active clocks

o If Too many active tasks in the queue (i.e. Too many
active clocks), the check will stop sooner and report
"non-schedulable”

¢ AND the analysis can be done symbolically!

48

Schedulability analysis based on
Constraints (DBM's)

Subtraction on Clocks, added to DBM-library (UPPAAL, Kronos)

[T

4<=x<=7 O<=x<=31
2<=y <=4 2<:y<:4§
SRR R RRERRGRRG

49

WE CAN DO BETTER ! [TACAS 03]

For fixed priority scheduling strategies (FPS),
we need only 2 clocks (and ordinary timed automata)!

50

The 2-CLOCK ENCODING

(for fixed-priority scheduling strategies)

Main Idea

¢ Check the schedulability of tasks one by one
according to priority order (highest priority first)

e This is similar to response time analysis in RMS

52

To code the queue/scheduler, we need:

¢ 1 integer variable for Pi:
« r denotes the response time as in RMS
(the total computing time needed before Pi finishes)
e 2 clocks for Pi:
* c remembers the accumulated computing time

(so much has been computed so far)
¢ d remembers the “deadline”

Intuition of the encoding: Ri=Ci+ = G

— Assume: priority(Pj) > priority(Pi) and Pi is analyzed

Pi released: Pi finished:

ri=r4Ci o,
d:=0 d<=Di

R

First release of Pj (or Pi) Pj released
€:=0,r:=(j (or r:=Ci) r=r4G

c<r,d=Di: error!

When Pi finishes, r = Ri
54

The "FPS scheduler”: analyzing Pi

Release_j? Release_j?

ri=r+Q e

Release_i?

a=0,n=(j
Release_j?

c<r,d=Di

Note that it is not clear that ¢ and r are not bounded !

The "FPS scheduler”: analyzing Pi

(we need the boundedness)

Release_j? Release_j?

ri=r+Q e

Release_i?

a=0,n=(j
Release_j?

c<r,d=Di

56
0BS: r-c is the only interesting info, so M can be any integer! Let M=Ci

c and r are bounded

e cis bounded by M
o ris bounded by rmax + Ci

— Where 'max is the maximal value of r from previous analysis
for all tasks Pj with higher priority

So the scheduler is a standard TA EN D

An Overview of TIMES

System Specification System Analysis

Editor Analyser

XML
Simulator

Schedu‘ler Ll | Convoler | i
generator A _Synthesizer_I | o i Shedute

Code
Generator

The INPUT LANGUAGE
is very much like ”"guarded commands”

OBS: guard and update may contain data variables (integer, array)

/ /

guard al update

e guard, update: "synchronous” computation which takes “no time”
- we adopt the synchronous hypothesis

e task: "asynchronous” computation whch takes time
60

Tasks = Executable Programs (e.g. C, Java)

e Task Type
— Synchronous or Asynchronous
— Non-Periodic (triggered by events) or Periodic
e Task parameters: C, D etc
— C: Computing time and D: Relative Deadline
— other parameters for schedulling e.g. priority, period
o Task Interface (variables updated ‘atomically”)
— Xi :=Fi(X1...Xn)
e Tasks may have shared variables
- with automata
— with other tasks (priority ceiling protocols)
¢ Tasks with Precedence constraints

61

Functionality/Features of TIMES

e GUI

— Modeling: automata with (a)synchronous tasks
— editing, task library, visualization etc

¢ Simulation
— Symbolic execution as MSC's and Gant Charts
o Verification
— Safety, bounded liveness properties (all you do with UPPAAL)
— Schedulability analysis
¢ Synthesis
— Verified executable code (guaranteeing timing constraints)

« Traces(Code) < Traces(Model)
— Schedule synthesis (ongoing)

62

CODE SYNTHESIS in TIMES

¢ Run Time Systems

— Event Handler
« OS interrupt processing system or Polling

— Task scheduler
* generated from task parameters

¢ Application Tasks = threads (or processes)
— Already there! (written in C)
— Current version of TIMES support LegoOS !

63

1 exany
1 A b

Conclusions/Remarks

¢ A unified model for timed systems (can express
synchronization, computation and complex temporal
and resource constraints).
¢ The first decidability result (and efficient algorithms)
for preemptive scheduling in dense time models:
— The analysis is symbolic (using DBM's in the UPPAAL tool)
— The results can be adopted for schedulability analysis of
message transmission.

o Implementation: TIMES

65

