OUTLINE

= Introduction
= Lecture 1: Motivation, examples, problems to solve
= Modeling and Verication of Timed Systems
= Lecture 2: Timed automata, and timed automata in UPPAAL
‘ Lecture 3: Symbolic verification: the core of UPPAAL
= Lecture 4: Verification Options in UPPAAL
= Towards a Unified Framework
= Lecture 5: Modeling, verification, real time scheduling, code synthesis
From UPPAAL to TIMES

=

Verifying Timed Systems
using Clock Constraints

Reachability Analysis and Constraint solving

i Timed Automata: Semantics

State
X<=5 & y-x>1 (location , clock-assignment)
Transitions
11
x:=0 (m, x=24,y=31415) ———— (m, x=3.5, y=4.241

v

(m, x=1.14, y=3.1415) ——> (n, x=0, y=3.1415)
P T N

i Other Verification Problems

= Timed Language Inclusion ®

= Untimed Language Inclusion ©

= (Un)Timed Bisimulation ©

= Reachability Analysis ©

= Optimal Reachability (synthesis problem) ©

= If a location is reachable, what is the minimal delay
before reaching the location?

i Reachability Problems

n is reachable from m if there is a sequence of transitions:

*

(m, x=r, y=s) (n, x=t', y=s')

Formalizing requirements

= Reachability properties: E<> Q
= E<> P.stop
= E<> (y>200)
= Invariant properties: A[] Q (not E<> not Q)
= A[] not (P1.CS and P2.cs)
« A[] (i < 100)
» A[] (x>10 imply i>100)
= After 10:00AM, i should be larger than 100
= Bounded Liveness Properties: F1-> ... F2
« A[](f1 and x>10 imply 2)

i Infinite State Space!

T >2 . .
o - 1) gives rise to the
- infinite transition system:

However, the reachability problem is decidable © Alur&Dill 1991

>

Finite Partitioning with "Regions”

Alur and Dill 90

Region: From infinite to finite

Concrete State
(n, x=2.2,y=1.5)

Symbolic state (region)

(n, ')

1 2 3 1 2 3
An equivalence class (i.e. a region)
7 8 There are only finite many such!!
Region equivalence: Regions

i Region equivalence (Intuition)

y

2

u = v iff u and v satisfy exactly
the same set of constraints in

| 4

‘ the form of

xi ~mand xi-xj ~ n
where ~ isin {<,>,<>}
and m,n < MAX

This is not quite correct;
we need to consider the MAX
more carefully

Definition zawr and pin 19907

= Uu,v are clock assignments
n Unv iff
= For all clocks x, either both u(x)>Cx and v(x)>Cx
or Lux)J=Lv(x)] (the same integer part)
= For all clocks x, if u(x)<=Cx,
{u(x)}=0 iff {v(x)}=0
= For all clocks x, y, if u(x)<=Cx and u(y)<=Cy
{u()}<= {u(y)} iff {vO)}<= {v(y)}

OBS: there are only
Finite many regions

Finite partitioning of state space

Y en

i An Important Theorem for Region Equivalence

= U=v implies
= U(x:=0) =~ v(x:=0)
= U+n ~ v+n for all natural number n
=« for all d<1: u+d ~ v+d’ for some d'<1

= that is, region equivalence’ is preserved by
"addition” and reset

= in fact, it is also preserved by "subtraction” if
clock values are 'bounded’

Region graph of

i a simple timed automata

A B C
[| 1 o 1 |
z=0 U<zl z=1

!

F E D

I,in} Lt el
|

(b)

AG((CS, A CS,))

i Fischers again O :2'1 e
o Timed case - = ._Y::. o @

Partial
A1,A2,v=1 A1,A2,v=1 A1,A2,v=1 ALA2,v=1 Region Gra
x=y=0 0 <x=y <1 x=y=1 1<xy

;
ALB2v=2 | | ALB2v=2 | | A1B2v=2 | |ALB2v=2
0 <x<1 0<y<x<1fs0<y<x=1fs 0<y<l

y= y=0 1<x

=0
‘ A1,CS2,v=2 S
1 <xy

No further behaviour possible!!

i Problems with Region Partitioning

= Too many ‘regions’
= Sensitive to the maximal constants
= €.g. x>1000000
= The number of regions is highly exponential

in the number of clocks and the maximal
constants (used to compare with clocks)

ZONES

* The more efficient solution [UPPAAL, 1993 ~]

Symbolic Reachability
Using Clock Constraints

i Zones: From infinite to finite

State Symbolic state (zone)
(n, x=3.2, y=2.5) (n, 1<x<4,1<y<3)
Zone:

conjunction of
Yy Yy X-y~n, X~n

Fischer’s Protocol
analysis using zones

8 ki 2 | =
3 - +°
& b
Criticial Section

Initiall X<10 X:=0, X>10
nitially A1 Vi=1 v=1
vet Q 8
Y<10 Y:=0, Y>10
G @

i Fischers cont.) :::0 e
<10 __Y::> - @

Untimed case

[Atazv=1 —— a1B2v=2 F—— atcs2v=2 |—{ Br,cs2,v=1 ——{ cst,cs2,v=1]

i Fischers cont. | @ o (e
@qo __Z‘(::'>10 - @

Untimed case

[Avazv=1 ——{ A1B2v=2 F——] Atcs2,v=2 —] BL,cs2,v=1 |—— cs1,cs2,v=1 |

Taking time into account

%8

22

i Fischers cont.) ;::0 (e
@<10 -—ZY::.> 2

Untimed case

[ALa2v=1 F——{AtB2v=2 —— A1,cs2v=2 — BL,cs2,v=1 |——{ cs1,cs2,v=1 |

Taking time into account

Y Y
10 fmme A 10

<10 n X:=0 >10 _

i Fischers cont. | @ o (e
‘<10 __ZY::' >10 =2

Untimed case @ @ @

[ALa2v=1 F——{ AtB2v=2 —— atcs2v=2 |—{ B1,cs2,v=1 ——{ cst,cs2,v=1]

Taking time into account

i Fischers cont. | @ o (e
@qo __Z‘(::'>10 = @

Untimed case

[ALa2v=1 F——{ A1B2v=2 ——{Atesav=2] BL,cs2,v=1 | —— cs1,cs2,v=1 |

Taking time into account
e Y v

25

i Fischers cont. @) ;::0 (e
@<10 -—ZY::.> 2

Untimed case

[ALa2v=1 F——{ a1B2v=2 ——{Atcsav=2 — BL,cs2,v=1 |——{ cs1,cs2,v=1 |

Taking time into account

v ¥
P

i Symbolic Transitions
y Ty y Bt
- delays to ’

y 3<x, 1<=y
. 2<=xy<=3
conjuncts to

3<x, y=0

@

x

projects to

Thus (n,1<=x<=4,1<=y<=3) =a=>(m,3<x y=0)|

Zones = Conjuctive constraints

= Azone Zis a conjunctive formula:

9, &g, &... &g,

where g; is a clock constraint:

X~ by or xi-x~by;
= Use a zero-clock x, (constant 0)
= A zone can be re-written as a set:

{x%; ~ by | ~is < or<, ij<n}
= This can be represented as a MATRIX, DBM
(Difference Bound Matrices)

28

i Solution set as semantics

= Let Z be a zone (a set of constraints)

= Let [Z]={u | u is a solution of Z}
= The semantics

(We shall simply write Z instead [Z])

Operations on Zones

= Strongest post-condition (Delay): SP(Z) or ZT
« [Z7] = {u+d| d € R, ue[Z]}

= Weakest pre-condition: WP(Z) or Z{ (the dual of ZT)
= [Z)] = {u| u+de[Z] for some deR}

= Reset: {x}Z or Z(x:=0)
= [{x3Z] = {u[0/x] | u [Z]}

= Conjunction
= [28g]= [Z]n[g]

An important theorem on Zones

= The set of zones is closed under all constraint
operations (including x:=x-c or x:=x+c)
= That is, the result of the operations on a zone is a zone
= That is, there will be a zone (a finite object i.e a
zone/constraints) to represent the sets: [Z1], [Z!],

[{x3z]

31

i One-step reachability: Si>S;

= Delay: (n,Z2) > (n,Z2") where Z'= ZT A inv(n)

= Action: (n,Z2) > (m,Z") where Z'= {x}(Z AQ)

= Successors(n,Z)={(m,Z") | (n,Z2) >>(m,Z"), Z'#0}

= Sometime we write: (n,Z)>(m,Z’) if (m,Z’) is a successor of (n,Z)

i Now, we have a search problem

(no/Zo)

*

REACHABILITY ALGORITHM

Init -> Final ?
Forward Rechability
. INITIAL Passed :=@;

Waiting Final Waiting := {(n0,20)}
(o)) REPEAT
O O O - pick (n,Z) in Waiting
I — -ifforsomeZ 2 Z
(n,Z") in Passed then STOP
- else (explore) add
successors(n,Z) to Waiting;
Add (n,Z) to Passed

UNTIL Waiting = @
or
Final is in Waiting

Init -> Final ?

orward Rechability

g—

Waiting

(0 O

Passed /

INITIAL Passed := @;
Waiting := {(n0,20)}

REPEAT
- pick (n,Z) in Waiting
-if forsomeZ' 2 Z
(n,Z') in Passed then STOP

UNTIL Waiting = @
or
Final is in Waiting

Init -> Final ?

Forward Rechability

Waitj .Fina\
0 & 0]

Passed /

INITIAL Passed :=@;
Waiting := {(n0,Z0)}

REPEAT
- pick (n,Z) in Waiting
-if forsomeZ' 2 Z
(n,Z') in Passed then STOP
- else /explore/ add

successors(n,Z) to Waiting;

UNTIL Waiting = @
or
Final is in Waiting

37

Forward Rechability

waiting | O & O .Final
(O ‘ REPEAT

‘O @) O - pick

- if for

Passed /

Init -> Final ?

INITIAL Passed := @;

Waiting := {(n0,20)}

(n,2) in Waiting
someZ' 2 Z

(n,Z') in Passed then STOP
- else /explore/ add

successors(n,Z) to Waiting;
Add (n,Z) to Passed

UNTIL Waiting = @

or
Final is in Waiting

Two more operations on Zones

= Inclusion checking: ZicZ>
= solution sets

= Emptiness checking: Z = @
= No solution

All Operations on Zones
i (needed for reachability analysis)

= Transformation
= Conjunction

= Post condition (delay)

= Reset

= Consistency Checking

= Inclusion
= Emptiness

SN

S2,S3, ..., 5n

NN
/A

40

0

EFFICIENT IMPLEMENTATION

Z1

x<=1 1 \2‘
YX<=2§ Graph 0/

- Y

vy N,
?2€?

22 [x<=2 |) X5
P e 3N,

42

Canonical Dastructures for Zones
Difference Bounded Matrices

Inclusion

x<=1
Z1 |yx<=2
zy<=2
z<=9

e

Z2 |x<=2
y-x<=3

X
1/' \2‘
Graph ¢

o

?2¢?

X
\3
Graph 3/ v
3

0 —

P
™~

Shortest
Path
Closure

Shortest
Path
Closure

Bellman 1958, Dill 1989

X
1 2
3N,
N
Z1 2721
X
FEA
e

N

N

43

Canonical Datastructures for Zones
i Difference Bounded Matrices ~ Be'man 1958, Dill 1989

Emptiness
X
Z x<=1 1 3
y>=5 Graph 0
y-x<=3 ‘> v
Negative Cycle
iff
Compact empty solution set

Canonical Datastructures for Zones
Difference Bounded Matrices

Zrg

’ Conjunction y‘

j Add new edge)X
B fo e
0 rg ;

45

Difference Bounded Matrices

Canonical Dastructures for Zones

4 X
Shortest /;
Path 0
Closure \3
-1

Y

Canonical Datastructures for Zones
i Difference Bounded Matrices

. RTSS 1997
ompact/Minimal Datastructure for Zones

Shortest

Path
Closure

2 0(n~3)

RTSS 1997

All Operations on Zones

Compact/Minimal Data Structure for Zones COM PLEXITY (needed for reachability analysis)
0‘@ st = Computing the shortest pa.th clc3)sure_,_ the , = Transformation s1
et cannonical form of a zone: O(n3) [Dijkstra’s alg.] = Conjunction /I \
w 0(n”3) ’ = Run-time complexity, mostly in O(n) = Post condition (delay) /SZ’ 53’ T sn\
(o) () (when we keep all zones in cannonical form) = Reset i Sj /\
= = Consistency Checking 7 /f\
Shpoar::st () (2) = Inclusion
e ‘ P SRy " Emptiness
Q @ practice n,

49

S

How about termination?

We need the normalization operation
according to the maximal constant

52

