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OUTLINE
� Introduction

� Lecture 1: Motivation, examples,  problems to solve

� Modeling and Verication of Timed Systems
� Lecture 2: Timed automata, and timed automata in UPPAAL
� Lecture 3: Symbolic verification: the core of UPPAAL 
� Lecture 4: Verification Options in UPPAAL

� Towards a Unified Framework
� Lecture 5: Modeling, verification, real time scheduling, code synthesis

From UPPAAL to TIMES
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Verifying Timed Systems 
using Clock Constraints

Reachability Analysis and Constraint solving
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Timed Automata: Semantics

m

n

x<=5 & y-x>1

x := 0

Transitions

( m , x=2.4 , y=3.1415 )

( m , x=1.14 , y=3.1415 )

State
( location , clock-assignment )

(n , x=0 , y=3.1415 )

( m, x=3.5 , y=4.2415 )
1.1
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Other Verification Problems
� Timed Language Inclusion /
� Untimed Language Inclusion ☺
� (Un)Timed Bisimulation ☺
� Reachability Analysis ☺
� Optimal Reachability (synthesis problem) ☺

� If a location is reachable, what is the minimal delay 
before reaching the location?

5

Reachability Problems

n is reachable from m if there is a sequence  of transitions:

(m, x=r, y=s ) (n , x=r’ , y=s’ )*
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Formalizing requirements 
� Reachability properties: E<> Q

� E<> P.stop
� E<> (y>200)

� Invariant properties: A[] Q  (not E<> not Q)
� A[] not (P1.CS and P2.cs)
� A[] (i < 100)
� A[] (x>10 imply i>100)

� After 10:00AM, i should be larger than 100

� Bounded Liveness Properties: F1Æ<=10 F2
� A[](f1 and x>10 imply f2)
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Infinite State Space!

However, the reachability problem is decidable ☺ Alur&Dill 1991
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Finite Partitioning with ”Regions”

Alur and Dill 90
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Region: From infinite to finite

Concrete State
(n, x=2.2, y=1.5 )

Symbolic state (region)
(n,                      )

x

y

An equivalence class (i.e. a region)
There are only finite many such!!

1 2 3

1

2

x

y

1 2 3

1

2
∞
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u ≅ v iff u and v satisfy exactly 
the same set of constraints in
the form of 

xi ~ m and  xi-xj ~ n
where ~ is in {<,>,≤,≥}  
and m,n < MAX

u ≅ v iff u and v satisfy exactly 
the same set of constraints in
the form of 

xi ~ m and  xi-xj ~ n
where ~ is in {<,>,≤,≥}  
and m,n < MAX

Region equivalence (Intuition)

x

y

1 2 3

1

2

This is not quite correct;
we need to consider the MAX
more carefully
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Region equivalence: 
Definition [Alur and Dill 1990]

� u,v are clock assignments
� u≈v iff

� For all clocks x,   either both  u(x)>Cx and v(x)>Cx 
or  u(x)=v(x)  (the same integer part)

� For all clocks x, if u(x)<=Cx, 
{u(x)}=0  iff {v(x)}=0

� For all clocks x, y, if u(x)<=Cx and  u(y)<=Cy
{u(x)}<= {u(y)} iff {v(x)}<= {v(y)} 
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Regions
Finite partitioning of state space

x

y

1 2 3

1

2

(n, ) (n, ) ...

(m, )

x:=0

(m, )

...

OBS: there are only
Finite many regions

...
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An Important Theorem for Region Equivalence

� u≈v implies
� u(x:=0) ≈ v(x:=0)
� u+n ≈ v+n for all natural number n
� for all d<1:  u+d ≈ v+d’ for some d’<1

� that is, ’region equivalence’ is preserved by 
”addition” and reset

� in fact, it is also preserved by ”subtraction” if 
clock values are ’bounded’
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Region graph of 
a simple timed automata

l

X>=2

X:=0

X:=0
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Fischers again A1 B1 CS1V:=1 V=1

A2 B2 CS2V:=2 V=2Y<1

X:=0

Y:=0

X>1

Y>1

X<1

( )( )21 CSCS ∧¬AG

A1,A2,v=1

A1,B2,v=2

A1,CS2,v=2

B1,CS2,v=1

CS1,CS2,v=1

Untimed case

A1,A2,v=1
x=y=0

A1,A2,v=1
0 <x=y <1

A1,A2,v=1
x=y=1

A1,A2,v=1
1 <x,y

A1,B2,v=2
0 <x<1

y=0

A1,B2,v=2
0 <y < x<1

A1,B2,v=2
0 <y < x=1

y=0

A1,B2,v=2
0 <y<1

1 <x

A1,B2,v=2
1 <x,y

A1,B2,v=2
y=1
1 <xA1,CS2,v=2

1 <x,y

No further behaviour possible!!

Timed case
Partial
Region Graph
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Problems with Region Partitioning

� Too many ’regions’
� Sensitive to the maximal constants

� e.g. x>1000000

� The number of regions is highly exponential 
in the number of clocks and the maximal 
constants (used to compare with clocks)
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ZONES

18

The more efficient solution [UPPAAL, 1993 ~]

Symbolic Reachability
Using Clock Constraints
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Zones: From infinite to finite

State
(n, x=3.2, y=2.5 )

x

y

x

y

Symbolic state (zone)
(n,                      )

Zone:
conjunction of
x-y~n, x~n

 3y4,1x1 ≤≤≤≤

∞
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A1 B1 CS1
V:=1 V=1

A2 B2 CS2V:=2 V=2

Initially
V=1

2
�´

V
Criticial Section

Fischer’s Protocol
analysis using zones

Y<10

X:=0

Y:=0

X>10

Y>10

X<10
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Fischers cont. B1 CS1V:=1 V=1

A2 B2 CS2V:=2 V=2Y<10

X:=0

Y:=0

X>10

Y>10

X<10

A1,A2,v=1 A1,B2,v=2 A1,CS2,v=2 B1,CS2,v=1 CS1,CS2,v=1

Untimed case

A1
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Fischers cont. B1 CS1V:=1 V=1

A2 B2 CS2V:=2 V=2Y<10

X:=0

Y:=0

X>10

Y>10

X<10

A1,A2,v=1 A1,B2,v=2 A1,CS2,v=2 B1,CS2,v=1 CS1,CS2,v=1

Untimed case

Taking time into account

X

Y

A1
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Fischers cont. B1 CS1V:=1 V=1

A2 B2 CS2V:=2 V=2Y<10

X:=0

Y:=0

X>10

Y>10

X<10

A1,A2,v=1 A1,B2,v=2 A1,CS2,v=2 B1,CS2,v=1 CS1,CS2,v=1

Untimed case

Taking time into account

X

Y

A1

10
X

Y
1010
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Fischers cont. B1 CS1V:=1 V=1

A2 B2 CS2V:=2 V=2Y<10

X:=0

Y:=0

X>10

Y>10

X<10

A1,A2,v=1 A1,B2,v=2 A1,CS2,v=2 B1,CS2,v=1 CS1,CS2,v=1

Untimed case

Taking time into account

A1

10
X

Y
10

X

Y
10
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Fischers cont. B1 CS1V:=1 V=1

A2 B2 CS2V:=2 V=2Y<10

X:=0

Y:=0

X>10

Y>10

X<10

A1,A2,v=1 A1,B2,v=2 A1,CS2,v=2 B1,CS2,v=1 CS1,CS2,v=1

Untimed case

Taking time into account

A1

10
X

Y
10

X

Y
10

10
X

Y
10
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Fischers cont. B1 CS1V:=1 V=1

A2 B2 CS2V:=2 V=2Y<10

X:=0

Y:=0

X>10

Y>10

X<10

A1,A2,v=1 A1,B2,v=2 A1,CS2,v=2 B1,CS2,v=1 CS1,CS2,v=1

Untimed case

Taking time into account

A1

10
X

Y
10

X

Y
10

10
X

Y
10
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Symbolic Transitions

n

m

x>3

y:=0

x

y
delays to

conjuncts to

projects to

x

y

1<=x<=4
1<=y<=3

x

y
1<=x, 1<=y
-2<=x-y<=3

x

y 3<x, 1<=y
-2<=x-y<=3

3<x, y=0

Thus  (n,1<=x<=4,1<=y<=3)  =a=> (m,3<x, y=0)Thus  (n,1<=x<=4,1<=y<=3)  =a=> (m,3<x, y=0)

a
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Zones = Conjuctive constraints
� A zone Z is a conjunctive formula:

g1 & g2 & ... & gn

where gi is a clock constraint:
xi ~ bi or  xi-xj~bij

� Use a zero-clock x0 (constant 0)
� A zone can be re-written as a set:

{xi-xj ~ bij | ~ is < or ≤, i,j≤n}
� This can be represented as a MATRIX, DBM

(Difference Bound Matrices)
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Solution set as semantics 

� Let Z be a zone (a set of constraints)

� Let [Z]={u | u is a solution of Z}
� The semantics

(We shall simply write Z instead [Z] )

30

Operations on Zones
� Strongest post-condition (Delay): SP(Z) or Z↑

� [Z↑] = {u+d| d ∈ R, u∈[Z]}

� Weakest pre-condition: WP(Z) or Z↓ (the dual of Z↑)
� [Z↓] = {u| u+d∈[Z] for some d∈R}

� Reset: {x}Z or Z(x:=0)
� [{x}Z] = {u[0/x] | u ∈[Z]}

� Conjunction
� [Z&g]= [Z]∩[g]
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An important theorem on Zones
� The set of zones is closed under all  constraint 

operations (including x:=x-c or x:=x+c)
� That is, the result of the operations on a zone is a zone
� That is, there will be a zone (a finite object i.e a 

zone/constraints) to represent the sets: [Z↑],  [Z↓], 
[{x}Z]
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One-step reachability: SiÆSj

� Delay:  (n,Z) Æ (n,Z’) where Z’= Z↑ ∧ inv(n)

� Action: (n,Z) Æ (m,Z’) where Z’= {x}(Z ∧g)

� Successors(n,Z)={(m,Z’) | (n,Z) ÆÆ(m,Z’), Z’≠Ø}
� Sometime we write: (n,Z)Æ(m,Z’) if (m,Z’) is a successor of (n,Z)

n m
g x:=0if
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Now, we have a search problem

(n0,Z0)

S2, S3  ......   Sn

T2                 

/

T1

…
..
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REACHABILITY ALGORITHM
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Forward Rechability

Passed

Waiting
Final

Init

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
- pick  (n,Z) in Waiting
- if for some Z’ ⊇ Z

(n,Z’) in Passed then STOP
- else (explore) add

successors(n,Z) to Waiting;
Add  (n,Z)  to Passed

UNTIL Waiting = Ø
or
Final is in Waiting

Init -> Final ?
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Forward Rechability

Passed

Waiting Final

Init

n,Z

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
- pick  (n,Z) in Waiting
- if for some Z’ Z

(n,Z’) in Passed then STOP
- else (explore) add

successors(n,Z) to Waiting;
Add  (n,Z)  to Passed

UNTIL Waiting = Ø
or
Final is in Waiting

⊇

n,Z’

Init -> Final ?
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Forward Rechability

Passed

Waiting Final

Init

n,Z

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
- pick  (n,Z) in Waiting
- if for some Z’ Z

(n,Z’) in Passed then STOP
- else /explore/ add

successors(n,Z) to Waiting;
Add  (n,Z)  to Passed

UNTIL Waiting = Ø
or
Final is in Waiting

⊇

n,Z’

m,U

Init -> Final ?
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Forward Rechability

Passed

Waiting Final

Init

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
- pick  (n,Z) in Waiting
- if for some Z’ Z

(n,Z’) in Passed then STOP
- else /explore/ add

successors(n,Z) to Waiting;
Add  (n,Z)  to Passed

UNTIL Waiting = Ø
or
Final is in Waiting

⊇

n,Z’

m,U

n,Z

Init -> Final ?
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Two more operations on Zones
� Inclusion checking: Z1⊆Z2

� solution sets
� Emptiness checking: Z = Ø

� no solution
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All Operations on Zones
(needed for reachability analysis)

� Transformation
� Conjunction
� Post condition (delay)
� Reset

� Consistency Checking
� Inclusion
� Emptiness

S1

S2, S3, ... , Sn

Si    Sj                 
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EFFICIENT IMPLEMENTATION
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Canonical Datastructures for Zones
Difference Bounded Matrices Bellman 1958, Dill 1989

x<=1
y-x<=2
z-y<=2
z<=9

x<=1
y-x<=2
z-y<=2
z<=9

x<=2
y-x<=3
y<=3
z-y<=3
z<=7

x<=2
y-x<=3
y<=3
z-y<=3
z<=7

Z1

Z2

Inclusion

0

x

y

z

1 2

29

0

x

y

z

2 3

37

3

? ?   

Graph

Graph

⊆
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Bellman 1958, Dill 1989

x<=1
y-x<=2
z-y<=2
z<=9

x<=1
y-x<=2
z-y<=2
z<=9

x<=2
y-x<=3
y<=3
z-y<=3
z<=7

x<=2
y-x<=3
y<=3
z-y<=3
z<=7

Z1

Z2

Inclusion

0

x

y

z

1 2

29

Shortest
Path

Closure

Shortest
Path

Closure

0

x

y

z

1 2

25

0

x

y

z

2 3

37

0

x

y

z

2 3

36

3

3 3

Graph

Graph

? ?   ⊆

Canonical Dastructures for Zones
Difference Bounded Matrices

Z1 ⊆ Z2 !
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Bellman 1958, Dill 1989

x<=1
y>=5
y-x<=3

x<=1
y>=5
y-x<=3

Z

Emptiness

0
y

x
1

3

-5

Negative Cycle
iff
empty solution set

Graph

Canonical Datastructures for Zones
Difference Bounded Matrices

Compact
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Canonical Datastructures for Zones
Difference Bounded Matrices

x

y

Z
1<=x, 1<=y
-2<=x-y<=3

1<=x, 1<=y
-2<=x-y<=3

y

x

-1

-1

3

2

0

Add new edge
for g

Z∧g

Conjunction

y

x

-1

-1

3

2

0

1<=x, 1<=y
-2<=x-y<=3
3<=x

1<=x, 1<=y
-2<=x-y<=3
3<=x

x

y

-3

y

x

-1

3

2

0

-3
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1<= x <=4
1<= y <=3

1<= x <=4
1<= y <=3

Z
x

y

x

y

Z ↑

0

y

x4

-1

3

-1

Shortest
Path 

Closure

Remove
upper

bounds
on clocks

1<=x, 1<=y
-2<=x-y<=3

1<=x, 1<=y
-2<=x-y<=3

y

x

-1

-1

3

2

0

y

x

-1

-1

3

2

0

4

3

Canonical Dastructures for Zones
Difference Bounded Matrices

Delay

47

Canonical Datastructures for Zones
Difference Bounded Matrices

x

y

Z
1<=x, 1<=y
-2<=x-y<=3

1<=x, 1<=y
-2<=x-y<=3

y

x

-1

-1

3

2

0

Remove all
bounds 

involving y
and set y to 0

x

y

{y}Z

y=0, 1<=xy=0, 1<=x

Reset

y

x

-1

0

0 0

48

Compact/Minimal Datastructure for Zones

x1-x2<=-4
x2-x1<=10
x3-x1<=2
x2-x3<=2
x0-x1<=3
x3-x0<=5

x1-x2<=-4
x2-x1<=10
x3-x1<=2
x2-x3<=2
x0-x1<=3
x3-x0<=5

x1 x2

x3x0

-4

10

2
2

5

3

x1 x2

x3x0

-4

4

2
2

5

3 3 -2 -2

1

Shortest
Path

Closure
O(n^3)

RTSS 1997
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Compact/Minimal Data Structure for Zones

x1-x2<=4
x2-x1<=10
x3-x1<=2
x2-x3<=2
x0-x1<=3
x3-x0<=5

x1-x2<=4
x2-x1<=10
x3-x1<=2
x2-x3<=2
x0-x1<=3
x3-x0<=5

x1 x2

x3x0

-4

10

2
2

5

3

x1 x2

x3x0

-4

4

2
2

5

3

x1 x2

x3x0

-4

2
2

3

3 -2 -2

1

Shortest
Path

Closure
O(n^3)

Shortest
Path

Reduction
O(n^3) 3

Canonical wrt =
Space worst O(n^2)

practice O(n)

RTSS 1997
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COMPLEXITY
� Computing the shortest path closure, the 

cannonical form of a zone: O(n3) [Dijkstra’s alg.]
� Run-time complexity, mostly in O(n)

(when we keep all zones in cannonical form) 
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All Operations on Zones
(needed for reachability analysis)

� Transformation
� Conjunction
� Post condition (delay)
� Reset

� Consistency Checking
� Inclusion
� Emptiness

S1

S2, S3, ... , Sn

Si    Sj                 
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How about termination?

We need the normalization operation
according to the maximal constant


