Modeling and Verification
of Real Time and Embedded Systems

A tutorial on UPPAAL

Wang Yi
Uppsala University, Sweden, 2005

Here I am

UPPSQIG (university city) Stockholm
\ V4

4
ATanmic
oy of §
CCEAN £

UPPAAL: www.uppaal.com

A model checker for real time systems
developed jointly by Uppsala university
and Aalorg university since 1993

UPPsala + AALborg = UPPAAL
SWEDEN + DENMARK = SWEDEN
SWEDEN + DENMARK = DENMARK

TIMES: www.timestool.com

Extended version of UPPAAL, towards a
tool environment for the complete system
development process:

from design to implementation

TIMES = a Tool for Modeling and Implemenation of
Embedded Systems

Main Goal of the tutorial

What is inside the tools
UPPAAL
TIMES

Traditional software development

)
X
&

Problem % & The Waterfall Model
Area Ana|si<‘

o

Design

AN _a
Implen\n\entatlon &

¢ Errors are detected late or never: Testin g
30-50% of time for testing
¢ Errors detected: the late the more expensive
s




Introducing, Detecting and Correcting errors

Finding errors as early as possible!

snalysis | S pepmming | Desgn Teat ‘ SystemTest | Opsmtion ‘
Design
0% == B O™
detected B .
;gzd:ﬁ) errors (in®) . o costef
-t 2 .+ cormction T20EDM
7 peremr
S n D)
30% : ~1-15kDM
0% - [~3 kDM
LLJ T T T T T apw
Time (non-fineat)
. Ei ,
. Example: Fischer’s Protocol
Reachable?

A simplified version of a fieled bus protocol

‘ P
[ ] +
l:%'; / l Y Criticial Section

@ Vst @ V=1

e

Example: Fischer’s Protocol

. .
&\8»

c . lV

+

Criticial Section

Init <100v:=1 ><:=0/\<(> IOOV:1
e A1 B1

Y<100V 2Y::O >100v )
A2 = B2 = ‘
O ° 7
.

Example: Petersson’s algorithm

turn, flagl, flag2: shared variables

Process 1 Process 2

Loop Loop

flagl:=1; turn:=2 flag2:=1; turn:=1

While (flag2 and turn=2) wait 1 While (flagl and turn=1) wait
Cs1 Ccs2

flagl:=0 flag2:=0

End loop End loop

Question: no more than one process run in CS?




Example: the Soldiers Problem

UPPAAL = UPPsia + AALborg

A tool set for modelling and verification of real-time systems

Real time scheduling developed jointly by Uppsala-and Aalborg-University:
UNSAFE SAFE System Model A
network of timed automata No!
M/nes Debugging Information
&& 7'% UPPAAL [ —
- Yes
uestion . .
* ?Requireernt) Debugging Information
Prototypes
Atmost2 Torch What is the shortest time Executable Code
fvg:glrggrsrt] @ fme for gettmga:: ssiodlgl'frs on the TIMES will do this for you!
in a Nutshell How to construct Model ?
Modelmg = programming-+abstraction Construction of Models: Concurrency
. Plant Controller Program
Program as State Machine! Continious Discrete
actuators ‘ :IdeEI
tasks
Input ap ® x Oc;thtDSUt (automatic)
ports P
b ® Py Model
of -
environmenty
(user-suppligd)
Control states @ -
NG UPPAAL Model :




Modeling in UPPAAL: Example

process Proc?
]
Pl :: while True do

Tl : wait(turn=1)
Cl : CS1; turn:=0
endwhile um =0

process Proct

P2 :: while True do
T2 : wait(turn=0)
C2 : CS2; turn:=1

endwhile \m(b

Mutual Exclusion Program

arconoi mana 1, Cochranet}

S S——

]

1kl

SPECIFICATION

How to ask questions: Specs ?

Specification=Requirement, Lamport 1977

Safety
Something (bad) will not happen

Liveness
Something (good) must happen

Specification=Requirement, Lamport 1977

Safety

Something (bad) will not happen
Liveness

Something (good) must happen
Realizability (Schedulability etc)

Can we implement the specs with given resources?

Specification: Examples

AG not (CS1 and CS2)
never CS1 and CS2
Safety property

AG (a <10 b)
if a then b within 10
Bounded liveness property

EF p.test
Useful for debugging

EF false
Generate the whole state space
Report deadlocks etc.

AG (try => AF critical-section) (liveness)




VERIFICATION

Model meets Specs ?

Verification

Semantics of a system

= all states + state transitions
(all possible executions)

Verification
= state space exploration + examination

Verificatioin = Searching

State-Space of a Program

(1) Is it possible to fire the bombs?
(2) Is it possible to go from A to B within 10 sec?

Two basic verification algorithms

Reachability analysis
Checking safety properties

Loop detection
Checking liveness properties

Modelling in UPPAAL: example

process Proc?

Pl :: while True do :_..@'""

Tl : wait(turn= )

process Proc1 o} mmes
Cl : Csl; turn:90 |y -
endwhile

P2 :: while True do | = O
T2 : wait(turn=0f “)Of_":’
C2 : CS2; turn:4 B
endwhile oo ™

Mutual Exclusion Program

Is it possible that P1 and P2 reach C1 and C2 simultaneously?

Verification: example

(C1 C2) is never reachable!




* Problem with verification: *

‘State Explosion’ EXAMPLE

10 components and each with10 states

M1 x M2 # of control states = 10,000,000,000 =10 G
x Each state needs 4*(10 x 10) =400 B

Worst case memory usage >> 4000 GB

‘ All combinations = exponential in no. of compon#nts

Solutions Symbolic Techniques:

Compute Sets of States instead of one-by-one

Theorem provers e e of et
Symbolic Techniques e.g. BDD [Bryant 86]

Abstraction techniques [Cosot and Cosot]
Approximation methods [Holzman, Wang-Toi ...]
On-the-fly verification [Holzman]

Partial order reduction [Wolper et al]
Compositional verification [too many]
Combining theorem provers and model checkers

eOverlap with bad states
eor Converge (fixed point)

T T T
Audio with Collision ~—
B&O —+-

ST et End of INTRODUCTION

A Protocol by Philips for Audio Products

ool Y o 1 -6 months for manual proof in 1993
-24 hours for Hytech in 1994

-50 sec for Uppaal in 1995

-0.2 sec for Uppaal now!

Time (s)

Every 9 month 10 times better performance!

! i
210 212 214 216 218

L L L ! i
200 202 204 206 208 il
Version
Dec’96 Sep’98




OUTLINE

Introduction
Lecture 1: Motivation, examples, problems to solve
Modeling and Verication of Timed Systems
Lecture 2: Timed automata, and timed automata in UPPAAL
Lecture 3: Symbolic verification: the core of UPPAAL
Lecture 4: Verification Options in UPPAAL and/Or Demo
Towards a Unified Framework
Lecture 5: Modeling, verification, real time scheduling, code synthesis
From UPPAAL to TIMES




