
1

Modeling and Verification
of Real Time and Embedded Systems

A tutorial on UPPAAL

Wang Yi
Uppsala University, Sweden, 2005

Here I am
Uppsala (university city) Stockholm

UPPAAL: www.uppaal.com

A model checker for real time systems
developed jointly by Uppsala university
and Aalorg university since 1993

UPPsala + AALborg = UPPAAL
• SWEDEN + DENMARK = SWEDEN
• SWEDEN + DENMARK = DENMARK

TIMES: www.timestool.com

Extended version of UPPAAL, towards a
tool environment for the complete system
development process:
from design to implementation

TIMES = a Tool for Modeling and Implemenation of
Embedded Systems

Main Goal of the tutorial

What is inside the tools
• UPPAAL
• TIMES

The Waterfall Model

Analysis

Design

Implementation

Testing♦Errors are detected late or never:
30-50% of time for testing

♦ Errors detected: the late the more expensive

Problem
Area

Ru
nn

ing

Sy
ste

m

RE
VI

EW
S

RE
VI

EW
S

Traditional software development

2

Introducing, Detecting and Correcting errors
Finding errors as early as possible!

HOW?

Reachable?Reachable?
A simplified version of a fieled bus protocol

A1 B1 CS1
V:=1 V=1

A2 B2 CS2V:=2 V=2

8
´

V
Criticial Section

Example: Fischer’s Protocol

A1 B1 CS1
V:=1 V=1

A2 B2 CS2V:=2 V=2

Init
x=y=0

8
´

V
Criticial Section

Example: Fischer’s Protocol

Y<100

X:=0

Y:=0

X>100

Y>100

X<100

Example: Petersson’s algorithm

Process 1
Loop
flag1:=1; turn:=2
While (flag2 and turn=2) wait
CS1
flag1:=0
End loop

Process 2
Loop
flag2:=1; turn:=1
While (flag1 and turn=1) wait
CS2
flag2:=0
End loop

turn, flag1, flag2: shared variables

Question: no more than one process run in CS?

3

Example: the Soldiers Problem
Real time scheduling

UNSAFE SAFE

5 10 20 25

At most 2
crossing at a time
Need torch

At most 2
crossing at a time
Need torch

Mines

Can they make
it within 60 minutes ?
Can they make
it within 60 minutes ?

Torch What is the shortest time
for getting all soldiers on the

safe side ?

What is the shortest time
for getting all soldiers on the

safe side ?

UPPAAL = UPPsala + AALborg
A tool set for modelling and verification of real-time systems
developed jointly by Uppsala and Aalborg University

UPPAAL

System Model A
network of timed automata

Question Q
(Requirement)

Yes
Debugging Information

Prototypes
Executable Code

TIMES will do this for you!

No!
Debugging Information

Model Checking
in a Nutshell

MODELING
How to construct Model ?

Modeling = programming+abstraction

Program as State Machine!

a

b

x

y
X!

a?

b?

y!

Control states

Input
ports

Output
ports

Construction of Models: Concurrency

Plant
Continuous

Controller Program
Discrete

sensors

actuators

Task
Task

Task
Task

a

cb

1 2

43

a

cb

1 2

43

1 2

43

1 2

43

a

cb

UPPAAL Model

Model
of
environment
(user-supplied)

Model
of
tasks
(automatic)

4

Modeling in UPPAAL: Example

P1 :: while True do
T1 : wait(turn=1)
C1 : CS1; turn:=0
endwhile

||
P2 :: while True do

T2 : wait(turn=0)
C2 : CS2; turn:=1
endwhile

P1 :: while True do
T1 : wait(turn=1)
C1 : CS1; turn:=0
endwhile

||
P2 :: while True do

T2 : wait(turn=0)
C2 : CS2; turn:=1
endwhile

Mutual Exclusion Program

SPECIFICATION
How to ask questions: Specs ?

Specification=Requirement, Lamport 1977

Safety
• Something (bad) will not happen

Liveness
• Something (good) must happen

Realizability (Schedulability)

Specification=Requirement, Lamport 1977

Safety
• Something (bad) will not happen

Liveness
• Something (good) must happen

Realizability (Schedulability etc)
• Can we implement the specs with given resources?

Specification: Examples

AG not (CS1 and CS2)
• never CS1 and CS2
• Safety property

AG (a <=10 b)
• if a then b within 10
• Bounded liveness property

EF p.test
• Useful for debugging

EF false
• Generate the whole state space
• Report deadlocks etc.

AG (try => AF critical-section) (liveness)

5

VERIFICATION
Model meets Specs ?

Verification

Semantics of a system
= all states + state transitions

(all possible executions)

Verification
= state space exploration + examination

Verificatioin = Searching

A

…

...
B

: : :

...

:

(1) Is it possible to fire the bombs?
(2) Is it possible to go from A to B within 10 sec?

State-Space of a Program

Two basic verification algorithms

Reachability analysis
• Checking safety properties

Loop detection
• Checking liveness properties

Modelling in UPPAAL: example

P1 :: while True do
T1 : wait(turn=1)
C1 : CS1; turn:=0
endwhile

||
P2 :: while True do

T2 : wait(turn=0)
C2 : CS2; turn:=1
endwhile

P1 :: while True do
T1 : wait(turn=1)
C1 : CS1; turn:=0
endwhile

||
P2 :: while True do

T2 : wait(turn=0)
C2 : CS2; turn:=1
endwhile

Mutual Exclusion Program

Is it possible that P1 and P2 reach C1 and C2 simultaneously?

Verification: example

I1 I2
t=0

T1 I2
t=0

T1 T2
t=0

I1 T2
t=0

I1 C2
t=0

T1 C2
t=0

C1 I2
t=1

T1 T2
t=1

C1 T2
t=1

T1 I2
t=1

I1 T2
t=1

I1 I2
t=1

(C1 C2) is never reachable!

6

Problem with verification:
‘State Explosion’

a

cb

1
2

43

1,a 4,a

3,a 4,a

1,b 2,b

3,b 4,b

1,c 2,c

3,c 4,c

All combinations = exponential in no. of components

M1 M2

M1 x M2

Provably theoretical

intractable

EXAMPLE

10 components and each with10 states

of control states = 10,000,000,000 =10 G
Each state needs 4*(10 x 10) = 400 B

Worst case memory usage >> 4000 GB

Solutions

Theorem provers
Symbolic Techniques e.g. BDD [Bryant 86]
Abstraction techniques [Cosot and Cosot]
Approximation methods [Holzman, Wang-Toi ...]
On-the-fly verification [Holzman]
Partial order reduction [Wolper et al]
Compositional verification [too many]
Combining theorem provers and model checkers
... ...

Symbolic Techniques:
Compute Sets of States instead of one-by-one

b …...
Initial

set ...

Converge!

Or fire
the bombs

Start

•Overlap with bad states
•or Converge (fixed point)

•Use formulas to represent sets of states
•Compute the fixed point

Dec’96 Sep’98

A Protocol by Philips for Audio Products

-6 months for manual proof in 1993
-24 hours for Hytech in 1994
-50 sec for Uppaal in 1995
-0.2 sec for Uppaal now!

Every 9 month 10 times better performance!

End of INTRODUCTION

7

OUTLINE

Introduction
• Lecture 1: Motivation, examples, problems to solve

Modeling and Verication of Timed Systems
• Lecture 2: Timed automata, and timed automata in UPPAAL
• Lecture 3: Symbolic verification: the core of UPPAAL
• Lecture 4: Verification Options in UPPAAL and/Or Demo

Towards a Unified Framework
• Lecture 5: Modeling, verification, real time scheduling, code synthesis

From UPPAAL to TIMES

