
1

SIGPL Summer School 2004

임베디드프로세서구조와프로그래밍

서울대학교 전기컴퓨터공학부

소프트웨어 최적화 및 재구성 (SO&R) 연구실
백윤흥

2004년 8월 11일

임베디드 프로세서 구조및 프로그래밍2

Topics

Basic ideas and notions of embedded applications
– digital signal processing
– (media processing, network processing)

Embedded processors
– off-the shelf DSPs, DSP core, ASIP
– data path, registers, memory, instruction sets, pipelining, VLIW…
– (media processors, network processors)

Outstanding features of embedded code
– numeric representations
– ALU operations
– data access patterns

임베디드 프로세서 구조및 프로그래밍3

Embedded S/W development issues

Embedded systems are now hot…getting even hotter!!
– telecommunications, multimedia, and more…
– More and more vendors, even now Intel, produce processors.
– GPPs like Pentiums and PowerPC are not effective for embedded

applications like digital signal processing and network processing.

S/W and F/W development with assembly for embedded
processors is extremely difficult and too much costly.
As embedded processors become more sophisticated, the
amount of legacy code grows too large to maintain it
effectively.
High-level languages (esp. C) are good alternatives to
assembly.
– excellent portability, low cost for development, etc…

임베디드 프로세서 구조및 프로그래밍4

High-level languages for embedded S/W?

No serious embedded programmer uses high-level
languages.
Why?
– Terrible performance of machine code generated

Who are responsible?
– Embedded processors are not compiler-friendly.
– Compilers are not smart enough to generate optimal machine code

compatible with hand-written code in terms of performance.

2

임베디드 프로세서 구조및 프로그래밍5

Embedded processing ≈ Signal processing

No interface to human being
Processing elements in an embedded system communicate
each other through signals.
Most embedded systems are designed to process signals.

임베디드 프로세서 구조및 프로그래밍6

Signal processing in embedded systems

Signal
Mathematical
representations
Analog signal processing
Digital signal processing
DSP operations
FIR filters
IIR filters
FFT
Programming examples

aliasing in DSP

임베디드 프로세서 구조및 프로그래밍7

Signal?

Definition in the American Heritage(r) Dictionary

patterns of variations in time that represent or encode
information
carry information (e.g., audio, video) through an electronic
circuit to be used in measuring or probing other physical
systems
The pattern of variations forms a time waveform.

An impulse or a fluctuating electric quantity, such as voltage, current,
or electric field strength, whose variations represent coded information

Time t

임베디드 프로세서 구조및 프로그래밍8

Contiguous-time (analog) signals

Mathematical representations of sinusoidal signals
– cosine (or equivalently, sine) signals
– the most basic signals in the theory of signal processing
– a signal:

Mathematical representations of complex exponential
signals
– the form:

– Extraction of a sinusoidal signal after processing is done

)2cos()cos()(0 φπφω +=+= ftAtAtx

Time t (sec)

)(0)(φω += tjAetx

)()}sin()cos(Re{}Re{)}(Re{ 00
)(0 txtjAtAAetx tj =+++== + φωφωφω

more convenient to analyze and
handle signals mathematically

f
1

A
φ

3

임베디드 프로세서 구조및 프로그래밍9

Signal Processing…

analyzes and modifies the information conveyed in signals
speech synthesis/recognition, audio amplification, noise
reduction, high-speed modems w/ error correction, …
indispensable for embedded system
Analog signal processing
– Signals from the real world are analog.
– Such natural signals can be processed directly using analog

electronic devices such audio amplifiers (w/ resistances, conductors,…)
– Generally too expensive or often even impossible to process signals

using analog electronics.

Signal Processing
Operation Tx(t) y(t) = T {x(t)}

임베디드 프로세서 구조및 프로그래밍10

Digital Signal Processing

Signals can be processed by digital devices instead.
Simplicity, cost-effectiveness
– Tasks that would be difficult or even impossible can be

accomplished at much lower cost.
– The size of digital components is small & consistent unlike analog

counterparts whose sizes vary with their values.

Versatility
– A digital device like a programmable DSP processor can perform

other tasks by simply reprogramming it. (no physical changes)

Predictability, repeatability
– considerably less insensitive to environment like temperature and to

component tolerances.
– easily duplicated and ported to other H/W, while having exact

known responses that do not vary.

임베디드 프로세서 구조및 프로그래밍11

Digital Signal for DSP

A digitized form of an analog signal
– a series of discrete numbers representing a sequence of the samples

of the analog signal
– generated by sampling the analog signal at intervals of T seconds.
– held in memory and processed by a DSP processor.

A digital signal:

Conversion bet’n analog and digital signals in a DSP system

DSP
Operation T

x(t) y[n]A-to-D
converter

D-to-A
converter

x[n] y(t)

),...]2(),(),0([)(][TxTxxnTxnx ==

][nx

)(tx

T

Aliasing distortion Sampling frequency/2 = nyquist frequency

임베디드 프로세서 구조및 프로그래밍12

DSP operation T
A typical DSP linear transfer function T

The time delay D implemented with a latch or register gives a delay of
a unit sample period T.

∑∑
−

=

−

=

−+−=
1

1

1

0

][][][
P

p
p

Q

q
q pnyaqnxbny

x[n] y[n]Σ Σ
D

D D

D

… …

b0

b1

b2
a2

a1

… …

4

임베디드 프로세서 구조및 프로그래밍13

Common functions in DSP

FIR filters
IIR filters
z-transform
Fourier transform

임베디드 프로세서 구조및 프로그래밍14

FIR filters

For FIR(finite impulse response) filters, each output signal
y[n] is the sum of a finite number of weighted samples of
the input signal sequence x[n].

∑
−

=

−=
1

0

][][
Q

q
q qnxbny

x[n] y[n]Σ
D

D

…

b0

b1

b2

…

임베디드 프로세서 구조및 프로그래밍15

The running average filter

A FIR filter that computes a running (moving) average of
several consecutive numbers of the input sequence, and
produce a new sequence of the average values.

])2[]1[][(
3
1

3
][][

2

0
−+−+=

−
=∑

=

nxnxnxqnxny
q

ex) a difference equation for
3-point averaging method

Make the output signal smoother than the input signal

임베디드 프로세서 구조및 프로그래밍16

IIR filters

A difference equation:

IIR filters involves previously computed values of the output
signal as well as values of the ‘recent’ input signal in the
computation of the present output.
important to model ‘resonance’ such as would occur in a
speech synthesizer.
Ex:

∑∑
−

=

−

=

−+−=
1

1

1

0

][][][
P

p
p

Q

q
q pnyaqnxbny

][2]1[
2
1][nxnyny +−=

amplifying &
echoing

coefficients: 0.5 and 2

effects of
feedback

5

임베디드 프로세서 구조및 프로그래밍17

Domains of signal representation

A difficult analysis and process in the time domain is often
easier in different domains.
three domains
– time domain (n-domain)
– frequency domain (ω0-domain)
– z-domain

Transformation between domains

n-domain
ω -domain

z-domain

Discrete Fourier transform

z-transform

inverse discrete Fourier transform

inverse z-transform

임베디드 프로세서 구조및 프로그래밍18

Fourier transform

The frequency domain is useful to analyze sound.
the Discrete Fourier Transform of a signal x[n]:

FFT (Fast FT)

∑
−

=

−=
1

0

/2][)(
N

n

NknjenxkX π∑
−

=

−=
1

0
0

0][)(
N

n

njenxX ωω or

∑∑
−

=

−

=

+=
12/

0
2/2/

12/

0
2/][][)(

N

n

nk
Nod

k
N

N

n

nk
Nev WnxWWnxkX

where Nknjnk eW /2π−=

O(n2)

O(nlog2n)

임베디드 프로세서 구조및 프로그래밍19

Examples of DSP programming

FFT, IFFT
– An extremely important algorithm in DSP that is used to convert DSP

problems between the time and the frequency domains.
– FFT (time complexity = O(NlogN)) is much faster than DFT (= O(N2))

in that FFT reuses the existing results computed for a node in the
computations for other nodes.

Audio equalization
– A music processing technique that filters a music signal such that

the frequency contents of the signal is adjusted to improve the
input sound as the audience desire, or remove noise that may be in
a frequency band different from the desired signal.

– 16 ~ 24 bits to represent each sample with 40 ~ 50 kHz sampling
rate

임베디드 프로세서 구조및 프로그래밍20

FFT

taking N signal samples (x[0],…,x[N-1]) in the time domain
to produce N samples (X[0],…,X[N-1]) in the frequency
domain
A divide-and-conquer method

)()(

][][

]12[]2[

][][)(

2/2/2/

12/

0
2/2/

12/

0
2/

12/

0

)12(
12/

0

2

1

0

1

0

2

kXWkX

WnxWWnx

WnxWnx

WnxenxkX

od
N

k
N

ev
N

N

n

nk
N

odk
N

N

n

nk
N

ev

N

n

kn
N

N

n

nk
N

N

n

nk
N

n

N
nk

j

+=

+=

++=

==

∑∑

∑∑

∑∑

−

=

−

=

−

=

+
−

=

−

=

−

=

−
π

XN

Xee
N/4 Xoo

N/4Xeo
N/4

Xo
N/2Xe

N/2

…

…… …

≡ X(k)

6

임베디드 프로세서 구조및 프로그래밍21

The Cooley-Tukey FFT algorithm

Iterative, in-place FFT
the most efficient, thus common, FFT algorithm used in
practice
Each butterfly is visited only once

no redundant computations

An iterative method is used
no extra time for procedure calls or space for subarrays for the
input

The storage is performed in-place
no extra storage for the output

임베디드 프로세서 구조및 프로그래밍22

The Cooley-Tukey FFT algorithm

fft(int n, float* x) {
… /* declarations */
…
for (k = 0; n > 0; k++, n/=2) {

…
for (j = 0; j < n; j++) {
for (i = j; i < n; i += 2*n) {

x1 = x + i; /* lower input leg of a butterfly */
x2 = x1 + n; /* upper input leg of a butterfly */
tmp = *x1 + *x2;
*x2 = w * (x1 – x2); /* upper output leg */
x1 = tmp; / lower output leg */

}
…

}
…

}
}

At every iteration k, the
contents of the array x
are completely updated.

x2in

x1out

x2out

x1in
w

임베디드 프로세서 구조및 프로그래밍23

A trajectory of computations in FFT

i loop
j loop
k loop

임베디드 프로세서 구조및 프로그래밍24

Bit-reversing

A problem with the in-place FFT algorithm?
The order of the values stored in the output array is scrambled.

x0 x1 x6 x7x4 x5x2 x3
input x

before FFT

x0 x4 x5 x7x1 x3x2 x6
output x

after FFT

float *x;
…
for (i=0; i<n; i++)

printf(“%f%”,x[i]);
fft(n,x);
for (i=0; i<n; i++) {

j=bit_reverse(i);
printf(“%f%”,x[j]);

}

input print

output print

How to find index j of the array x
such that xj = FFT (xi)?

Luckily, there is a simple function that
maps bet’n input & output. That is, j is a
bit-reversed form of i (if i = b1b2…bn in a
binary notation, then j = bn…b2b1).

7

임베디드 프로세서 구조및 프로그래밍25

A 4-band equalizer

IIR
bandpass

filter

a signal at 150Hz

a signal at 1kHz

a signal at 2.4kHz

a signal at 15kHz

g0

g1

g2

g3

Σ

x[n]
y[n]

임베디드 프로세서 구조및 프로그래밍26

IIR bandpass filter

Σ Σ

D

D

c1

c4c2

c3

c0
x z

y1

y0

y2

임베디드 프로세서 구조및 프로그래밍27

Code for the bandpass filter

float iir_bpf(float x, float* c, float* yold) {
float z;
float y2 = x * c[0];
float y1 = yold[1];
float y0 = yold[0];
y2 = y2 – y1 * c[1];
y2 = y2 – y0 * c[2];
yold[0] = y1;
yold[1] = y2;
y2 = y2 + y1 * c[3];
z = y2 + y0 * c[4];
return(z);

}

임베디드 프로세서 구조및 프로그래밍28

Code for the 4-band equalizer

void equalizer() {
int i;
float y, x;
static float coeff[4][5] = {

/* initialize the coefficients */
};
static float yold[4][2] = {

/* initialize two recent outputs */
};

for (;;) {
y = x = read_input();
for (i = 0; i < 4; i++)
y += g[i] * iir_bpf(x,coeff[i],yold[i]);

print_output(y);
}

}

8

임베디드 프로세서 구조및 프로그래밍29

Embedded processor for signal processing

Overview of embedded
systems
General-purpose vs. DSP
processors
Instruction sets
Data path
Memory

performance comparison of commercial microprocessors

임베디드 프로세서 구조및 프로그래밍30

DSP systems

DSP algorithm
– a series of mathematical operations that are applied to process a

sequence of digital signals sampled from the real world, and to
respond to the input appropriately.

– filtering, FFT, noise cancellation, spectral processing, multirate
signal processing, audio/speech encoding/decoding, …

CPU core

RAM

Accelerator1

Accelerator2

ROM

Embedded (real time?) DSP system
 the embedded system (?) in which DSP

algorithms are performed.
 can be implemented by desktop computers
 modems, printers, digital A/Vs

(cd/dvd/mp3 players), cellular phones,
cars, radar systems, flight navigation
systems, house appliances (microwave
ovens, refrigerators, TVs…)

임베디드 프로세서 구조및 프로그래밍31

When DSP systems are implemented

… they are tailored to run DSP algorithms efficiently by
meeting the demands from the algorithms:
– Unique data access patterns

• streams of bulky data that require high data bandwidth
• low locality of data reference, but some program locality

– Heavy number crunching
– Real-time constraints
– Constraints on power consumption and size
– Often strict cost requirements
– Attention to subtle numeric effects (in fixed-point

implementations)
– Specialized peripherals or I/O interfaces

임베디드 프로세서 구조및 프로그래밍32

Implementing an embedded DSP system

Fixed-function solutions
– custom integrated circuits or FPGAs
– the smallest size and fastest running
– prohibitively high initial development costs for each system
– cost-effective for high-volume products

Programmable microprocessors
– off-the-shelf DSP processors or general-purpose processors
– easy changes, upgrades or fixes of product functionalities
– cost-effective and less risky for low-volume products
– GPPs are usually costlier and less energy efficient (also often

slower) than DSP processors, which are optimized specifically for
DSP algorithms.

9

임베디드 프로세서 구조및 프로그래밍33

Network
Processors

Application
Specific Instruction-set

Processors

Implementing an embedded DSP system

Performance

low high

Flexibility

high

low

General
Purpose

Processors

Media
Processors

Digital
Signal

Processors

Field
Programmable

Devices Application
Specific

ICs
Physically
Optimized

ICs

임베디드 프로세서 구조및 프로그래밍34

Are GPPs a solution for DSP?

Maybe, yes…(becu’z GP means …'can do anything'…)
– Diverse, versatile SW development environment of desktops
– Ok for some PC-based applications (telephony, videoconferencing,

music play, divx movie play…)

Maybe not…
– Few H/W features implemented having DSP in mind
– High cost/performance ratio (2~ 5 times faster but 10 ~ 20 times

more expensive than mid-range fixed-point DSP processors)
– Often too big to fit into some embedded systems
– Difficult to predict execution time

• complex hardware (data caches, dynamic branch prediction,
and instruction scheduling, …)

• lack of powerful profiling tools
• a drawback in DSP applications with real time constraints

임베디드 프로세서 구조및 프로그래밍35

BDTi benchmark scores

commercial
microprocessors

임베디드 프로세서 구조및 프로그래밍36

Signal processing with GPPs

GPPs target desktop/mobile computing and embedded
systems like automotive control and communications.
GPPs lack hardware features intended for DSP. But…
Many GPPs achieve good execution time performance on
(esp., floating-point) DSP applications through …
– much higher clock frequency (usually above 1 GHz)
– a few special instructions (like mac) or addressing modes that are

extended from the original GPPs (e.g., Pentium MMX)
– sophisticated memory hierarchy including data caches, and
– other excellent H/W supports (deep pipelining, advanced branch

prediction, ILP exploitation with multi-issue architecture)

Recently, more and more GPPs include DSP features
(e.g., Anti-Vec for PowerPC G4 and MMX, SSE for Pentium)

Two examples of GPPs: PowerPC 604, Intel MMX

10

임베디드 프로세서 구조및 프로그래밍37

Pentium MMX

32-bit, two-issue superscalar CISC processor formally
introduced in 1997 (at an initial price of $550 in quantity 1000)

Generally CISC processors have less fancy H/W features
for DSP than RISC counter parts (e.g., lower clock rates, less
deeper pipelines, a less number of issues for superscalar, …).
– Intel overcomes the limitations in the traditional CISC way (that

is, by introducing more H/W instructions!)

Intel added to her the original 80x86 architecture …
– 57 new MMX instructions intended for DSP ISA, and a SIMD-style

MMX data path for fast vector operations, which are common in
DSP (multimedia, communications, …) applications.
A similar approach for PowerPC G4: Anti-Vec (graphic instructions
in a dedicated pipeline running at speeds of 0.5~1GHz)

Embedded Pentium MMX outperforms most DSP processors.

임베디드 프로세서 구조및 프로그래밍38

The Pentium MMX data path

Two 64-bit ALU(integer)
pipelines, a floating-
point pipeline and an
MMX pipeline
A barrel shifter (useful to
many DSP applications)
Two 16 KB on-chip
caches for instructions &
data each with TLBs
The data cache allows
two loads/stores of
integers or a single
load/store of floating-
point operand in a cycle

임베디드 프로세서 구조및 프로그래밍39

Energy efficiency

0 1 2 3 4

Hita
ch

i S
H-D

SP

Ti M
TS320C5

4x

ID
T R

465
0

voltage (V)

power (W)

speed (100MHz)

Energy efficiency is
important for many DSP
systems.
DSPs or other embedded
processors are designed
with energy efficiency
taken into account.
In general, their power
consumption rates are
much lower than GPPs.

임베디드 프로세서 구조및 프로그래밍40

What constitute a DSP processor?

Strictly speaking, …
microprocessor that can operate on digitally represented signals

In practice, however, …
microprocessor that is specifically designed to perform DSP

Special features to characterize a DSP processor
– multiple-access memory architectures e.g. Harvard architecture
– special circuitry to rapidly perform repetitive, numerically intensive

calculations e.g., MAC, vector processing units, …
– special memory addressing modes e.g., bit reversed mode, …
– no data cache as a low cost solution for DSP w/ low data locality
– special program control features e.g, zero-overhead loop, …
– specialized on-chip peripherals or I/O interfaces w/ other system

components like A/D converters or host computers

11

임베디드 프로세서 구조및 프로그래밍41

Important factors in DSP

Several important factors that affect the selection of a
processor for the DSP system
1. Performance (execution time)
2. Cost
3. Energy efficiency
4. Real-time suitability
5. DSP application development time and cost

The order of importance of each factor varies depending
on the requirements from the system.

To meet a great variety of the requirements from DSP systems, the
industry introduced numerous types of processors with minor
variations (ex: Lucent DSP16xx)

DSP processors can be classified largely into two classes.
fixed-point and floating-point processors

임베디드 프로세서 구조및 프로그래밍42

Architectural features of DSP processors

Architectural features common to virtually all DSP
processors
– Harvard architecture coupled with some RISC properties
– Address generators
– On-chip addressable memory

Features unique to most fixed-point processors
– no data caches (some have instruction caches)
– a rich variety of word-lengths (typically 8, 16, 20 and 24 bits)
– hardware support for floating-point operations, called block

floating-point operations

임베디드 프로세서 구조및 프로그래밍43

Two memory architecture designs

The Princeton
architecture

design

The Harvard
architecture

design

임베디드 프로세서 구조및 프로그래밍46

Impact of Harvard architecture on ALU ops

The operations requiring many operands from memory (e.g.,
MAC) benefit from the Harvard architecture.

Some GPPs (PowerPC, PA-RISC & MIPS) support limited MAC
operations based on the Princeton architecture.
– Their sustained throughput is two cycles per MAC at maximum.

– DSP processors can achieve a sustained throughput of one cycle per
MAC.

Ex) PowerPC code Lucent StarCore code

MTSPR CTR,R0
L: LFD F1,0(R2)

LFD F2,4(R2)
FMADD F5,F5,F1,F2
ADDIC R2,R2,4
BDNZ CTR

…
L: mac d0,d1,d2 move.f (r0)+,d0 move.f (r1)+,d1

…

3 cycles per MAC

1 cycle per MAC

12

임베디드 프로세서 구조및 프로그래밍47

FIR filters on the Harvard design

The memory operations
during each cycle of
the FIR filtering
– a MAC instruction fetch
– a read for bq

– a read for x[n-q]
– a write to shift x[n-q] along the

delay line
(Can this write be saved if a
circular buffer is used?)

x[n] y[n]Σ
D

D

…

b0

b1

b2

…

∑
−

=

−=
1

0

][][
Q

q
q qnxbny

bq x[n-q]

accumulator

multiplier

Three memory accesses are needed per tap.
- three cycles per tap on Princeton
- 1.5 cycles per tap on Harvard w/ two memory banks

(1 cycle per tap on Harvard w/ three banks)

임베디드 프로세서 구조및 프로그래밍48

Common instruction sets for DSP processor

DSP algorithms mold the ISA of a DSP processor.
all the memory addressing modes typically supported by
GPPs + special modes useful to important DSP algorithms
parallel moves (multiple loads/stores in a cycle) for high
bandwidth data access
special ALU operations for DSP
H/W looping constructs for loop-based DSP algorithms.
other special instructions (like vectors)
many high-level language features in the assembly code

임베디드 프로세서 구조및 프로그래밍49

Memory addressing

Common to all types of
modern microprocessors
– register (direct)
– immediate
– register deferred (or

indirect)
– displacement
– indexed
– absolute (or memory direct)
– memory indirect
– auto-increment/decrement

Additionally common to
DSP processors
– short immediate
– short memory direct
– implied
– bit-reversed
– circular

임베디드 프로세서 구조및 프로그래밍50

Implied and bit-reversed addressing

Implied addressing
– Special registers (multipliers, accumulators, …) dedicated to

functional units are implicitly addressed by the instruction.
– e.g., add P (A P + A) A: accumulator

mpy (P X * Y) P: product, X/Y: multiplier registers

Bit-reversed addressing
– specialized for some DSP processors that are designed to efficiently

run the FFT algorithm.
– The output of the address (or index) register is bit-reversed and

applied to the memory address bus.
– e.g., BITREV(I,n): I I + n where I is an index register and

: n is a 32-bit number

an ADSP210XX instruction

13

임베디드 프로세서 구조및 프로그래밍51

Circular (modulo) addressing

A circular data buffer
– an important data structure (= a set of memory locations + an

index pointer that steps thru them) to many DSP algorithms that
handle continuous, long data streams like FIR/IIR filters

– basic operations to manage the buffer
1. updates the index pointer by adding the value,
2. check if the pointer falls outside the buffer
3. if yes, then it is adjusted back to the start of the buffer

The circular addressing helps the user to manage a
circular buffer efficiently and fast in hardware.
ex) Analog Devices

initialization L the buffer length; I, B the base address
buffer operation I B + (I + M - B) % L modulo address arithmetic

step size

임베디드 프로세서 구조및 프로그래밍52

ALU operations

Most ALU instructions in DSP processors are commonly
found in other types of microprocessors except a few
exceptions.
Specialized arithmetic operations
– dual add/subtract, MAC
– square: SQR R0,R1 (= MULT R0,R0,R1)
– vector: ADDV V2,V1,V0

Shift operations
– Most processors provide instruction to shift a word by 1 ~ 2 bits.
– Many DSP algorithms requires shifting by any number of bits.
– DSP processors often features a barrel shifter for this.

임베디드 프로세서 구조및 프로그래밍53

lc 20
la end2-1
ssh pc
lf 1
…

do #10,end1
do #20,end2
inst1
inst2
…

end2 instn
end1 instn+1

rc 10
st(rm) 1
s 1
rs pc + 1
re pc + 1

H/W control flow instructions

Multiply-nested small loops are quite common in DSP
algorithms. The loop overhead is significant!
Hardware loops, called zero-overhead loops, are provided
by virtually all DSP processors.
ex) TMS320C3x/4x Motorola DSP5600x

rpts 10
inst

rc 10
st(rm) 1
rs pc + 1
re pc +n

rptb 10,n
inst1
inst2

…
instn

ssh: system stack high
ssl: system stack low

임베디드 프로세서 구조및 프로그래밍54

Memory operations

The majority of DSP processors support parallel moves
(multiple memory accesses per instruction cycle) in H/W.
Thus, they provide instructions that read/write multiple
memory locations.
– no load-store architecture style

ex) MPY (R0),(R4) : P (R0) * (R4)
“implied + register indirect addressing”

– load-store architecture style
ex) MPY X0,Y0 LD (R0),X0 LD (R4),Y0

Some processors allow multiple instructions to access
memory simultaneously.
ex) MOV (R0),X0 MOV (R4),Y0 : (R0) X0, (R4) Y0

“parallel moves”

14

임베디드 프로세서 구조및 프로그래밍55

Address generation units

dedicated to calculate data addresses
c.f.) a program sequencer for instruction address calculation

Why address generation units?
– The Harvard architecture provides parallel moves.

– Memory throughput is compatible with ALU speed

– The AGU relieves the burden of address calculation from the ALU

Address registers
– attached to the AGU (typically 2 ~ 20 registers)

– store addresses used for fast register-indirect / indexed(with index
registers) / circular(with modulo registers) addressing

– often also used as data registers for the ALU (e.g., Zoran)

임베디드 프로세서 구조및 프로그래밍56

On-chip memory units

RAM
Two RAMs are common. One is exclusively
for data. To allow multiple data accesses per
cycle while saving cost, the other is often
shared by program and data

ROM
mainly for bootstrapping code (loading
operational code & communicating with
the host) or kernel code for DSP

Cache
To utilize the locality of program on external
memory, small (16~32 words) instruction
caches are commonly provided. Virtually all
fixed-point DSPs have no data caches due to
complex coherence H/W. Memory map of ZR38601

Typical size for GPPs
is 256 or larger…

code = 32 bit, data = 20 bit

임베디드 프로세서 구조및 프로그래밍57

Instruction encoding

DSP processors employ radical, irregular architectures
specialized for each DSP application domain.

Irregular data path w/ small, heterogeneous, distributed registers

Non-orthogonal ISAs are common in DSP processor design.

They suffer tight encoding constraints.
– severe restrictions on code size
– maximum parallelism & pipelining exploitation for performance
– complex application-specific instructions for performance
– What do these imply?

RISC-style fixed address form + CISC-style R-M/R+M ISA
opcodes of different widths, variable numbers of operands

FU1ALU FU2 …

임베디드 프로세서 구조및 프로그래밍58

Non-orthogonal instruction encoding

The SGS-Thomson D950
DSP processor imposes
restrictions on source or
destination operands as is
the case with the multiply
instructions shown here.

typically found in DSP processors

15

임베디드 프로세서 구조및 프로그래밍59

Code quality of C compilers on DSPs

DSPStone benchmarking [ISS]
Due to such complexities in DSP processors, compiled code f
or DSPs often shows very high overhead (speed, code size,
memory consumption) versus hand-written assembly code

Manual postpass optimization of hot spots still required

0

100
200
300
400
500
600
700

performance
overhead [%]

DSP56001TI-C51 AD-2101

임베디드 프로세서 구조및 프로그래밍60

What the compiler prefers for
the features of ISAs are …

Low-level expressiveness of instructions …
– gives more room for code optimizations.

– Recall the examples of code optimizations for the load-store ISA
and the register+memory ISA.

Easy predictability of performance …
– is possible by simple, straightforward hardware, and

– allows the compiler to have simple trade-offs among alternative
instructions, which helps improving code quality and meeting real
time constraints.

Orthogonality, regularity
– Orthogonal ISAs support all addressing modes which apply to all

instructions that transfer data.

– Simpler optimization techniques will do with orthogonal ISAs

임베디드 프로세서 구조및 프로그래밍61

An orthogonal instruction set …
– simplifies code generation,

ex)

– but, requires wider instruction words.
wider bus, memory widths increased system costs

ADD R0,R3
MUL R0,R1 careful register
AND R1,R2 allocation required!
ADD R3,R1

relatively simple!

Impact of orthogonality of instruction set

R0

R1

R2

R3

ADD

AND

MUL

R0

R1

R2

R3

ADD

AND

MUL

intermediate code
ADD T1,T2 : T2 T1+T2
MUL T1,T3 : T3 T1+T3
AND T3,T4 : T4 T3&T2
ADD T2,T3 : T3 T2+T3

ADD R0,R2
MUL R0,R1
AND R1,??
ADD R2,R1

ADD R0,R1
MUL R0,R2
AND R2,R3
ADD R1,R2

임베디드 프로세서 구조및 프로그래밍62

Soft-ways to enhance performance

Traditional ways to improve the performance of
applications were time-consuming and expensive.
– hard-way: build faster, powerful hardware.
– manually optimize machine code

As compiler technology has advanced, compilers provide
cheap, efficient solutions to code optimization.
– Why to choose hard-ways while there are soft-ways?
– soft-way: little hardware enhancement, and mainly exploiting

already-existing hardware features
– little support from the programmers: saving time and providing

more performance-portability of existing programs

Simple, regular ISAs (like load-store ISAs) facilitate
compiler optimizations.

16

임베디드 프로세서 구조및 프로그래밍63

Components of a DSP program
Data types
Fixed vs. floating point data
formats
Operations
Assembly languages
Imperative languages
Object-oriented languages
Dataflow languages

Programming on embedded systems

CPCI C6400

임베디드 프로세서 구조및 프로그래밍64

Components of a DSP program

Representations
– data types to represent signal samples and other numbers

• integers, real numbers, complex numbers
• scalars, arrays (for sequences of data values)

– numeric data formats for signal processing/computation
• fixed-point
• floating-point

Operations to be performed on the data
– Arithmetic
– Logical and relational
– Program control flow
– Calls to mathematical library functions

임베디드 프로세서 구조및 프로그래밍65

ALU operations

Some logical operations are often used to substitute for
expensive arithmetic operations.
– shift operations << and >> for multiplication/division operations
– bit-wise logical operations |, & and ~ for error correction and

decision processing (coupled with compare instructions) and bit
manipulation (bit set/reset/toggle).

C/C++ support a variety of low-level, bit-wise logical and
relation operations which are directly implemented in a
DSP processor.

임베디드 프로세서 구조및 프로그래밍66

Control flow statements

Reactive control (choosing proper DSP algorithms
responding to external input or interrupts) is an important
functionality required by DSP applications.
Programming constructs provided in high-level languages
for reactive control
– if-then-else, goto, do/for/while loops
– Are these sufficient for DSP in terms of performance?

DSP processors have many special instructions for efficient
program control.
Several extension to existing languages have been
proposed (mostly by the vendors) to help programmers to
exploit such instructions in their high-level programs.

17

임베디드 프로세서 구조및 프로그래밍67

Numeric C

Extensions to ANSI C proposed by NCEG
The Iter operator for looping

e.g.,

The sum operator
– calculate the sum of values of the argument computed from values

within a loop very common in DSP algorithms
– e.g. 1,

– e.g. 2, multiplication of 10x20 and 20x30 matrices

iter i=n, j=m
y[i] = 0.0
for (j) {

y[i] = y[i]+b[i][j]*x[i]
y[i] = y[i]+z[j]

}

∑
−

=

+=
1

0

][][],[][
m

j

jznxjnbny

…
for (j) {

y[i] = sum(b[i][j]*x[i])
y[i] = y[i]+z[j]

}

iter i=10, j=30, k=20
c[i,j] = sum(a[i][k]*b[k][j])

임베디드 프로세서 구조및 프로그래밍68

Extensions of Numeric C for control flow

Rationales for the extensions
– Typical DSP programs contain multiply-nested loops. vector

operators
– A high-level description of a loop increases the chance for the

compiler to translate the loop into more efficient looping
instructions implemented in H/W

• zero-overhead loops
• SIMD functional units
• hardware conditional instructions

임베디드 프로세서 구조및 프로그래밍69

The languages of choice for DSP

Assembly
Imperative languages (e.g., C)
Object-oriented languages (e.g., C++, Ada95)
Applicative languages rooted in dataflow principles (e.g.,
Silage, DFL, SDF, Id, Sisal, Lucid, Lustre)

임베디드 프로세서 구조및 프로그래밍70

Assembly languages

guarantee to produce the most efficient code
– THE…E… most important factor in DSP programming with strict

performance and real-time constraints
– So, up to now, have been the most popular in DSP programming

directly support all data formats specified by H/W.
expensive to maintain
becoming more difficult to read and write as DSP
algorithms and state-of-the-art DSP architectures get more
complex and sophisticated
legacy code problem
– not portable to other architectures
– hardly reusable or extensible on the change of design requirements

18

임베디드 프로세서 구조및 프로그래밍71

ANSI C

imperative programming
– relatively straightforward to generate target code for existing DSP

processors, which are Von-Neumann or its variations based

most widely recognized and used
– flexible enough to describe any known DSP algorithms
– having most nice features of high-level languages such as

readability, portability and extensibility
– yet, semantically close to assembly languages with a variety of

low-level H/W operations
– freely available compilers (e.g., GNU C and LCC)

A great volume of legacy code has been standardized in C
or C-like languages.
limited data type support (e.g., complex numbers, word-length)

임베디드 프로세서 구조및 프로그래밍72

FIR filter in C

float x[Q],y;
float b[Q] = { 1.5, …

/* initialization
of coefficients */
… };

main() {
for (;;) { /* 0 < n < ∞ */

y = 0; /* implicit time step n */
x[Q-1] = receive_input();
for (q = 0; q < Q; i++) {

x[q] = x[q+1];
y = y + x[q] * b[q];

}
send_output(y);

}
}

x[n] y[n]Σ

D

D
…

b0

b1

b2
…

∑
−

=

−=
1

0

][][
Q

q
q qnxbny

임베디드 프로세서 구조및 프로그래밍73

Data types in C

C supports all numeric types needed in a DSP program
except the type for complex numbers.
Complex numbers are ubiquitous in DSP algorithms.

complex exponential signal

How then to represent complex numbers in C?
– No magic. Use the struct construct.

– Operations can be defined in the form of functions or macros.

ex) typedef struct {
float real;
float imag;

} complex;

#define cmult(x,y) (Z.real = x.real*y.real-x.imag*y.imag, \
Z.imag = x.real*y.imag+x.imag*y.real, \
Z)

)(0)(φω += tjAetx

임베디드 프로세서 구조및 프로그래밍74

Limitations of complex type in C

Incomplete data abstraction
– The complex type in C is not a true abstract data type.

(object + operation) .
– No encapsulation of the details of representations for the complex

type is guaranteed with structs and macros.
– No operations are incorporated in the definition of the data type

Any change in the representation of complex may affect
the definitions of its operations
Awkward to use them

w = cmult(x,cmult(y,z)) ? … compiler error!

19

임베디드 프로세서 구조및 프로그래밍75

Numeric C for the complex type

Numeric C extends ANSI C for complex
– Built-in 6 integer and 3 floating-point complex types

TYPE complex

where TYPE = short int, int, long int, float, double, long double

ex: complex int m = 3 + 5i; complex float n = 3.2 + .12i;

– All but logical and relational operations are defined
– Coercion to complex from all other numeric types
– Additional functions

• TYPE creal/cimag(complex)
• complex conj(complex)

It is still C, offering all of the nice advantages of ANSI C for
DSP, yet more efficient due to other extensions of control
flow statements like the iter operator.

An alternative solution? … object-oriented languages!

임베디드 프로세서 구조및 프로그래밍76

Object-oriented programming

An object-oriented language like C++/Ada95 allows each
object of the same type to have the autonomy to select
representations suitable for its purpose.
ex)

Subtypes polar & rectangle are included in type complex.
Any variables declared as complex can have access to both
subtypes and operations. type inheritance

rectangular extra code for
rectangular form

polar extra code for
polar form

complex base code

complex A complex B complex C

임베디드 프로세서 구조및 프로그래밍77

Data abstraction in C++

An abstract data type complex w/ type inheritance

Disadvantages to DSP applications?
– extra pointers for type redirection (bad for embedded systems)
– extra time for level of indirection to invoke code (maybe critical to

real-time applications commonly found in DSP)

class complex {
public:

virtual float real() {}
virtual float imag() {}
virtual float magni() {}
virtual float angle() {}
…
virtual operator+ …

}
class rcomplex : public complex {

float r,i;
public:

float real() { return r; }
…

}

class pcomplex : public complex {
float m,a;

public:
float real() { return m*cos(a); }

…
} …
complex *c1 = rcomplex(…);
complex *c2 = pcomplex(…);
complex *c3 = pcomplex(…);
…
… c1->angle() …
… *c2 + *c3 …
…

dynamic binding

임베디드 프로세서 구조및 프로그래밍78

Implementations of filters in C++

template <class Type>
class Filter {

protected:
Type* b, x;
…

public:
Filter () {…}
virtual Type* filter(Type* xlist) {…}
…

};
class FIR: public Filter<Type> {

public:
FIR (…) {…}
virtual Type* filter(…) {…}
…

};
class IIR: public Filter<Type> {

…
};

Filter

FIR IIR

……

derived
types of FIR

main() {
Filter* ftr;
Type* x, y;
…
switch (filtertype) {
case FIR_TYPE: ftr = new FIR(…);

…
case IIR_TYPE: ftr = new IIR(…);

…
}
y = ftr->filter(x) …

}

a template for the data
type (int,float,complex)

of signal samples

taking a sequence of input samples
produce a sequence of the output

20

임베디드 프로세서 구조및 프로그래밍79

Dataflow approach for DSP programming

of applicative nature
– behavior specification of reactive systems (produce the output

reacting to the, usually unbounded, input stream)
– a natural paradigm to describe the reactive system like DSP

a programming paradigm the least familiar (thus possibly
difficult) to average programmers
Computation can be described in a graphical form, called
the dataflow graph G = (N,E)
– E = a set of (semi-infinite streams of) values, called tokens
– N = a set of actors, objects each of which receives input tokens (if

any), performs operations on the tokens, and fires the token at the
next actors waiting for it.

임베디드 프로세서 구조및 프로그래밍80

Computation in a dataflow model

Ex) out = (z – FIR(x)) * x + z;

+

-

*
FIR

ld

st

x

ld z

out

• A dataflow machine has a unique structure fundamentally different
from traditional Von-Neumann machines.

• Typically, it consists of a network of actors that exchange tokens
with each other and memory where tokens are temporarily stored.

• The computation automatically starts by providing the initial input
tokens to the network.

• Theoretically, this type of machines is suitable to model parallel &
distributed systems and reactive systems.

임베디드 프로세서 구조및 프로그래밍81

Dataflow languages for DSP

provide textual notations to describe DSP algorithms in
dataflow style
a single assignment form an arbitrary order of statements

flexible data type support (dynamic type binding!)
usually crafted for specific domains of DSP, so not as
versatile as imperative languages (e.g., limited to describe
program control flow)
provide a construct for time delay required in DSP.

x[n]
D

Σ
y[n]

Flow graph structure
for an example of DSP

ld +x sty

dataflow graph
for the example

임베디드 프로세서 구조및 프로그래밍82

Silage

A dataflow language specifically designed for signal
processing
Represents dataflow graphs in a textual form
ex) S1: out = tmp * x + z;

S2: tmp = z – FIR(x);

The symbol @ is reserved to represent the time delay

+

*

stx

ld

z
out

ld
ld

tmp

-
FIR

ld z

tmp
ld x st

Two actors are connected thru the data
dependence on the location temp
regardless of the order of S1 and S2

21

임베디드 프로세서 구조및 프로그래밍83

FIR filter in Silage

#define word fix<48>
b = [word(1.5), …];
func main(x: word): word =
begin

y[upb(b)+1] = 0;
(i: lwb(b) .. upb(b)) ::

y[i] = y[i+1] + x@i * b[i];
return = y[lwb(b)];

end;

*
bQ-1

ld

yQ-1

yQ

+ st

ld
st

yQ
0

…

*
b1

ld

y1

y2

+

…

ld

st

The actors are waiting until all
their input tokens arrive.

The loop does not impose any order on the
execution of each iteration unlike C-loop.
The execut ion order is rather determined
by data dependencies between actors.

x y
b0= x@0

*

ld

ld st
y1

+

ld

= y0

ld
y

rt

임베디드 프로세서 구조및 프로그래밍84

Conclusion

Embedded systems are subject to strict performance and
cost constraints.
Embedded processors are often designed very irregularly to
meet these constraints.
Various programming language paradigms have been
applied to programming embedded systems.
Imperative programming languages dominate embedded
system programming.
– Strong C-affinity/loyality of EE engineers
– Poor optimization
– Limited versatility in non-imperative programming languages

So, major efforts go into..
– Leveling up assembly languages
– Further extending C to other applications: SystemC
– improving C compiler optimizations

