Advanced Computer Systems and

Compiler Laboratory

WIPI
Java-to-C

2004
2004. 8.11.

http://compiler.korea.ac.kr

2003) 2004

http://compiler.korea.ac.kr

Contents

m Java-to-C compiler
|

http://compiler.korea.ac.kr 2

m WIPI
= BREW
m Sun JDK

http://lcompiler.korea.ac.kr 3

WIPI (Wireless Internet Platform for
Interoperability)

|

|

|

n C, Java.

http://compiler.korea.ac.kr 4

WIPI

Application
Manager

Java, C Basic API

HAL (Adaptation Layer) '

LCD Driver KPD Driver SOFTWARE Serial Driver

Hardware '

http://lcompiler.korea.ac.kr 5

Performance Issues on WIPI

m Support interoperability!
Several layers, i.e. HAL.
Supporting Java.

oJVM
0JIT (Just-In-Time) compiler.
OJava processor.

OAOT (Ahead-of-Time) compiler
Java-to-C compiler.

http://lcompiler.korea.ac.kr 6

Java-to-C Translator

Building a Java-to-C (Java2C) compiler that is still
preserving Java semantics

Olnheritance

oMethod overloading

o Virtual method invocation
Fully supports CLDC (Connected Limited Device
Configuration) 1.0 API.
Performance improvement in terms of execution time
and code size over the other methods.

http://compiler.korea.ac.kr 7

Overall Structure

Java-to-C compiler

Classfile Reader

v

Application Manager

Bytecode to C Translator

Runtime Libraries

! ! !

Garbage Thread
Collector Package

Java APIs

http://lcompiler.korea.ac.kr 8

Components

m Classfile reader
Each classfile is translated into class blocks.

Class blocks to maintain information such as fields,
methods, and a super class.

All associated class blocks are also translated
together.
m Bytecode-to-C translator
Actual code generator
oBuild CFG.
oAssign temporal variables by stack tracing.
oC code generation.

http://lcompiler.korea.ac.kr 9

Overview of bytecode-to-C translation
process

Prologue Basic Block 1
Symtab -
handler [« nitializatio iload_3
I ifle
BB1 44 \
Bytecode Basic Block 2 Basic Block 3
handler [Translation fToad 2
iload_3 iload_3
iadd istore_1
BB2 BB3 istore_1
handler handler

BB4
handier In C code
BB1 i0 = Lvi3
A : if(i0<=0) goto_L14;
_LI0T pc=10;
BBS E_BBZ i0 = Lvi2;
handler . il = Lvi3;

i0=i0+i1;
I Lvil = i0;
BB3

Epilogue _L14: pc=14;
piog Finalize : i0 = Lvi_3;
handler =" ode emissiop Lvil = i0;

http://lcompiler.korea.ac.kr 10

Components (cont)

m Application manager
Generates a complete C program
The manager has prototypes for Java runtime data
structures, class initialization, method invocation,
garbage collection and a main method to start up
translated C programs.

m Runtime libraries
Native methods depend on a target system.
Currently fully supports CLDC 1.0 API.
Supports garbage collection and thread management.

http://compiler.korea.ac.kr 11

Runtime Structures

m When our Java-to-C compiler translates a Java
application into C codes, it needs such runtime
structures to conserve Java's object-oriented
features such as inheritance, method
overloading and virtual method invocation.

m Considerations
Naming convention
Data layout
Method invocation

http://compiler.korea.ac.kr 12

Naming Convention

m Java entities such as a class and a method are
uniquely identified by their names and an
additional hash-code suffix for avoiding any
naming conflict in a global namespace of C
program.

m The name of each Java method is also mapped
to a different C name, and therefore an
additional Java feature such as method
overloading is naturally supported.

http://lcompiler.korea.ac.kr 13

Data Layout

m Java primitive types are translated into primitive C types
of the same data size.
Java's character type - an unsigned short type in C.
The reference type - a C pointer type.

o Java objects and arrays are reference types that extend
java.lang.Object class.

o Each reference points to the runtime data structure for an
object or an array in C.
m The data structure has a pointer to a common class
structure which is constructed with the following three
components:

a class descriptor table: contains general information needed for
all classes

a methods table
a static variables table.

http://compiler.korea.ac.kr 14

Class Descriptor Table

int need_init

The flag contains whether the class was
already initialized or not.

int flag

Contains access information of the class.

int instance_size

The byte size of the class.

J_class super

Pointer to the parent class.

j_class array_class

Pointer to array class of the class.

j_class elem_class

Pointer to element class, if the class

is array class.

ihash *method_hash

Contains hash codes for each method.

int method_num

The number of methods in the class.

void (*static_const)()

Pointer to the static class initializer.

void (*def_const)()

Pointer to the default constructor.

void (*finalize)()

Pointer to the function for finalization.

http://compiler.korea.ac.kr

15

Method Table

m Contains several function pointers to the invoked

actual methods.

m During the Java-to-C compilation, the pointers
are overwritten according to the inheritance

relation.

http://compiler.korea.ac.kr

Inheritance between Classes

Class B
extends Class A
Common Part Common Part Common Part
Method i < P Method i < > Method i
Method j Method j Method j
New Methods Method k < P> Method k
for Class B

Method m Method m
New Methods Method n

for Class C

http://compiler.korea.ac.kr 17

Method Invocation

m Java methods can be invoked in several ways according
to how the methods are referenced.

m The static methods including constructors are always
invoked without reference to a particular object but a
class.

The methods should guarantee that the class includes pointers
to themselves that has been already initialized before invocation.

m Instance methods are referenced by a specific object,
and it is determined by runtime symbolic link.

m When an interface method is invoked, our Java-to-C
compiler performs exhaustive search to find the method
that will be invoked.

http://lcompiler.korea.ac.kr 18

Method Invocation (cont)

";l.-rlu-.:l-‘ -I-.:i|||‘|-| -'jrlu-lul'
= restn). prind | |--I:||' W et o] -|:rr|||1 SMBFFIEH)
wertoroh) sized) jinstanee mechod |{jovn il Vector jad)
P =hsiae (M T ER nid)
lthrendoblrun{) finterface meshed|[Tvadd (1] abkct])
fimd dnterfnoe] nl, Cheddiiedh)iiai)

http://lcompiler.korea.ac.kr 19

Etc.

m Exception handling
m Garbage collection
m Thread management

http://lcompiler.korea.ac.kr 20

Performance evaluation

m Benchmark
= Java SciMark 2.0

m Platforms
= JDK 1.2.2.
» Tyal.7 JIT
= ShuJIT.

m Machines
m Zeon 2.0GHz
= 512MB memory
» Linux/Redhat 9.0

http://compiler.korea.ac.kr

Java SciMark 2.0

1 Applcation [Tt Tl i

FFT Fast Fourier Transform exerciss comples arithmetic, sSbaflling. mon-
constant Eemnory references and Lig P it iiE e g e funciions
SOR Jarckd Surcessive Ohver-relaxation exercises typical arcessms padterns in

finite difference applicsiions, for example, solving Laplace’s equation in
I} wicth Dirichlei boandary condizions

Monte Carlol Monte Cardo insegration exercises random-wamber generstors, synchro
nized funoisom calls, and fenction inlinmg

-5|th.'l'..'l: SparEe mniT Ealviply svercsss mdirection aoddressing amd mon-regular
memoTy refereaces

L dense LU msirix foctorization exercises: Bwear slgebra kermels (BLAS)
amd dense matrix operations

http://compiler.korea.ac.kr

Average Speedup(/JDK1.2.2)
(2]

FFT

SOR

Monte Carlo
Benchmarks

SparseMM

B Tyal.7
O Shuijit
@ Java2C

LU

http://compiler.korea.ac.kr

Performance without Exception Handling

3.5 1

25 r

15

Relative Speedup

0.5

B Normal

| O Aggressive

FFT

SOR

Monte Carlo
Benchmarks

SparseMM

LU

http://compiler.korea.ac.kr

m Code size reduction
Interprocedural analysis.
m Code optimization

Many pointers prevent a backend compiler from
optimizing the generated C codes.

m Interoperability with native methods
Different data layouts.

http://lcompiler.korea.ac.kr 25

http://lcompiler.korea.ac.kr 26

