
1

Advanced Computer Systems and
Compiler Laboratory

http://compiler.korea.ac.kr

WIPI 환경을위한
Java-to-C 컴파일러

2004년도프로그래밍언어연구회여름학교
2004. 8.11.

고려대학교전자공학과
김선욱

http://compiler.korea.ac.kr

본주제의기초연구는 2003년전자통신연구원용역과제로수행되었으며, 확장연구는 2004년정보통신연구진흥원
학술용역과제로수행되고있음.

http://compiler.korea.ac.kr 2

Contents

무선인터넷플랫폼

Java-to-C compiler
향후연구방향

2

http://compiler.korea.ac.kr 3

무선인터넷플랫폼

WIPI
BREW
Sun JDK

http://compiler.korea.ac.kr 4

WIPI (Wireless Internet Platform for
Interoperability)

이동통신단말기에탑재되어무선인터넷을통해

다운로드된응용프로그램실행환경을제공하는데

필요한표준규격.

플랫폼과어플리케이션은하드웨어에독립적인구현이

가능하도록 설계.

어플리케이션이정보를마음대로접근할수없도록

하는보안규격포함.
이동통신사업자및단말기제조사비밀.

단말기사용자개인정보.

지원언어는 C, Java.

3

http://compiler.korea.ac.kr 5

WIPI 플랫폼의전체적인시스템구조

A PI
M anager

이 동 통 신 단 말 기 Hardware

LCD D rive r

A pplication
M anager

KPD D rive r 단말기 기본 SOFTWARE Seria l D rive r

H AL (단 말 기 Adapta tion Layer)

Extended
A PI

Runtim e Eng ine

Java, C Basic AP I

http://compiler.korea.ac.kr 6

Performance Issues on WIPI

Support interoperability!
Several layers, i.e. HAL.
Supporting Java.

JVM
JIT (Just-In-Time) compiler.
Java processor.
AOT (Ahead-of-Time) compiler

Java-to-C compiler.

4

http://compiler.korea.ac.kr 7

Java-to-C Translator

Building a Java-to-C (Java2C) compiler that is still
preserving Java semantics

Inheritance
Method overloading
Virtual method invocation

Fully supports CLDC (Connected Limited Device
Configuration) 1.0 API.
Performance improvement in terms of execution time
and code size over the other methods.

http://compiler.korea.ac.kr 8

Overall Structure

Application Manager

Java-to-C compiler

Bytecode to C Translator

Runtime Libraries

Java APIs

Classfile Reader

Garbage
Collector

Thread
Package

5

http://compiler.korea.ac.kr 9

Components

Classfile reader
Each classfile is translated into class blocks.
Class blocks to maintain information such as fields,
methods, and a super class.
All associated class blocks are also translated
together.

Bytecode-to-C translator
Actual code generator

Build CFG.
Assign temporal variables by stack tracing.
C code generation.

http://compiler.korea.ac.kr 10

Overview of bytecode-to-C translation
process

handler
Prologue

BB2 BB3

BB4

BB5

Epilogue

handlerhandler

handler

handler

handler

handler
BB1

Symtab
Initialization

Bytecode
Translation

Finalize
Code emission

Basic Block 1

iload_2
iload_3
iadd
istore_1

Basic Block 2

iload_3
istore_1

Basic Block 3

i0 = Lvi3
if(i0 <= 0) goto _L14;

_L10: pc = 10;
i0 = Lvi2;
i1 = Lvi3;
i0 = i0 + i1;
Lvi1 = i0;

_L14: pc = 14;
i0 = Lvi3;
Lvi1 = i0;

In C code

iload_3
ifle

BB1
:
BB2
:

BB3
:

6

http://compiler.korea.ac.kr 11

Components (cont)

Application manager
Generates a complete C program
The manager has prototypes for Java runtime data
structures, class initialization, method invocation,
garbage collection and a main method to start up
translated C programs.

Runtime libraries
Native methods depend on a target system.
Currently fully supports CLDC 1.0 API.
Supports garbage collection and thread management.

http://compiler.korea.ac.kr 12

Runtime Structures

When our Java-to-C compiler translates a Java
application into C codes, it needs such runtime
structures to conserve Java's object-oriented
features such as inheritance, method
overloading and virtual method invocation.
Considerations

Naming convention
Data layout
Method invocation

7

http://compiler.korea.ac.kr 13

Naming Convention

Java entities such as a class and a method are
uniquely identified by their names and an
additional hash-code suffix for avoiding any
naming conflict in a global namespace of C
program.
The name of each Java method is also mapped
to a different C name, and therefore an
additional Java feature such as method
overloading is naturally supported.

http://compiler.korea.ac.kr 14

Data Layout

Java primitive types are translated into primitive C types
of the same data size.

Java's character type → an unsigned short type in C.
The reference type → a C pointer type.

Java objects and arrays are reference types that extend
java.lang.Object class.
Each reference points to the runtime data structure for an
object or an array in C.

The data structure has a pointer to a common class
structure which is constructed with the following three
components:

a class descriptor table: contains general information needed for
all classes
a methods table
a static variables table.

8

http://compiler.korea.ac.kr 15

Class Descriptor Table

Pointer to the default constructor.void (*def_const_)()

Pointer to the static class initializer.void (*static_const_)()

Pointer to the function for finalization.void (*finalize_)()

The number of methods in the class.int method_num

Contains hash codes for each method.ihash *method_hash

Pointer to element class, if the class
is array class.

j_class elem_class

Pointer to array class of the class.j_class array_class

Pointer to the parent class.j_class super

The byte size of the class.int instance_size

Contains access information of the class.int flag

The flag contains whether the class was
already initialized or not.

int need_init

http://compiler.korea.ac.kr 16

Method Table

Contains several function pointers to the invoked
actual methods.
During the Java-to-C compilation, the pointers
are overwritten according to the inheritance
relation.

9

http://compiler.korea.ac.kr 17

Inheritance between Classes

Common Part

Method i

Class A

Method j

Common Part

Method i

Class B
extends Class A

Method j

Method k

Method m

Common Part

Method i

Method j

Method k

Method m

Method n

New Methods
for Class B

New Methods
for Class C

Class C
extends Class B

http://compiler.korea.ac.kr 18

Method Invocation

Java methods can be invoked in several ways according
to how the methods are referenced.
The static methods including constructors are always
invoked without reference to a particular object but a
class.

The methods should guarantee that the class includes pointers
to themselves that has been already initialized before invocation.

Instance methods are referenced by a specific object,
and it is determined by runtime symbolic link.
When an interface method is invoked, our Java-to-C
compiler performs exhaustive search to find the method
that will be invoked.

10

http://compiler.korea.ac.kr 19

Method Invocation (cont)

http://compiler.korea.ac.kr 20

Etc.

Exception handling
Garbage collection
Thread management

11

http://compiler.korea.ac.kr 21

Performance evaluation

Benchmark
Java SciMark 2.0

Platforms
JDK 1.2.2.
Tya 1.7 JIT
ShuJIT.

Machines
Zeon 2.0GHz
512MB memory
Linux/Redhat 9.0

http://compiler.korea.ac.kr 22

Java SciMark 2.0

12

http://compiler.korea.ac.kr 23

Performance with Exception Handling

0

2

4

6

8

10

12

FFT SOR Monte Carlo SparseMM LU

Benchmarks

A
v
e
r
a
g
e

S
p
e
e
d
u
p
(
/
J
D
K
1
.
2
.
2
)

Tya1.7

Shujit

Java2C

http://compiler.korea.ac.kr 24

Performance without Exception Handling

0

0.5

1

1.5

2

2.5

3

3.5

FFT SOR Monte Carlo SparseMM LU

Benchmarks

R
e
la

ti
v
e
 S

p
e
e
d
u
p

Normal

Aggressive

13

http://compiler.korea.ac.kr 25

추후연구방향

Code size reduction
Interprocedural analysis.

Code optimization
Many pointers prevent a backend compiler from
optimizing the generated C codes.

Interoperability with native methods
Different data layouts.

http://compiler.korea.ac.kr 26

질의응답

