
1

Program Monitoring

2004 SIGPL 여름학교
2004. 08. 13 
부산대학교

창 병모
숙명여대 컴퓨터과학과

Based on Enforcing Security through Execution Monitoring
Úlfar Erlingsson, 2004 Summer School on Software Security

2

Outline

Execution Monitoring 

Security Policy as Security Automata

Inlined Reference Monitors

Further works



2

Execution Monitoring

4

Execution Monitoring

Observe program execution
Look at a program’s execution on a given input as a 
sequence of runtime events 

(e.g., the A, B, and C below)

Possibly do “something” on each event



3

5

What is EM good for?

Debugging, tracing, breakpoints, etc.

Auditing and Logging

Software testing
memory leaks,

out-of-bounds array accesses,

race conditions, atomicity, etc.

Security 
buffer overflow prevention etc.

6

In particular



4

7

Program as Sets of Execution Traces

View a program as defining an (infinite) set of 
(possibly infinite) execution traces

All executions on all possible inputs

8

Security Policies as Traces

Define security policies as a subset of 
possible program execution traces

Security policy set defines a predicate S



5

9

Enforcing Security Policies

Allows some traces that satisfy security policy

Enforcement mechanism M is a concrete 
implementation that defines a subset of S

10

Desirable Security Mechanisms

Don’t want enforcement to be vacuous 

(e.g. defining the empty set or disallowing all)

Want enforcement to be exact (M == S)



6

11

Execution Monitoring

Focusing on one Execution Trace

Easy to do (just observe and constrain)

EM can often approximate desired policy

EM closely related to safety properties

12

EM Security Policies[Schneider00]

Define acceptable/unacceptable execution
EM observes execution (and truncates it)

EM-enforceable part of safety properties

Safety property
access control

integrity

Not Safety Property
information flow
liveness
availability



7

13

Characteristics of EM

EM enforcement mechanism 
Analyzes the single (current) execution

Must truncate execution as soon as prefix violates policy

Must detect violations after a finite time

EM Enforceable policy implies safety property
EM ⊂ safety properties

Why EM ≠ Safety Properties
EM can only use bounded memory

Safety properties can use infinite state

14

What EM can & can’t do

EM *can* do access control
DAC, MAC, MLS, …

EM can’t do information flow

InfoFlow depends on other traces

EM can’t do Liveness/Availability



8

Security Policy as Security 
Automata

16

Specifying Security Policies

One way is as Security Automata

Formalism expresses the right properties
SA ≡ safety properties ⊃ EM-enforceable

Simple to specify, interpret, and compile

Good for analysis, emulation, testing



9

17

Security Automata

Buchi Automata with all states accepting

Fail if no transition is possible

Can accept infinite inputs

Simple Example: simple access control

18

Examples



10

Inlined Reference Monitor

20

Reference Monitors[Anderson72]

Execution monitor that forwards events to 
security-policy-specific validity checks

Implementing RMs
Capture all policy-relevant events

Protect RM from subversion



11

21

Validity Checks

Triggered by RM on each event

Encodes the security policy

Perform arbitrary computation to decide whether 
to allow event or halt

Can have side effects? (Not if EM)

Can change program flow? (Not if EM)

22

Inlined Reference Monitors
[Erlingsson Schneider 99]

IDEA: Use 3rd type of RM implementations
Use Security Automata to specify security policy

Policy specifies both RM and Validity Checks

Permanently embed security into application



12

23

IRM Implementation

Implement RMs by program modification

IRMs have access to program abstractions
Capture all potentially security-relevant events

Rewriter works on machine language programs

Issues
How to capture all relevant events

Prevent application subverting inserted RM

Preserve application behavior

24

IRM Enforcement Advantages

Can enforce policies on application abstractions
E.g., Restrict MSWord macros and documents

Mechanism is simple and efficient
Rewrites machine code

Kernel is unaware of security enforcement

No enforcement overhead from context switches



13

25

Efficient IRM Enforcement

Evaluate SA policy at every point in program

Often no need to check at a machine instruction
“No div zero”: Only check before “div” instructions

Simplify SA by partial evaluation
Insert security policy checking code before every instruction

Use static knowledge of insertion point to simplify the check

26

Example IRM Rewriting



14

27

Example:
No message sent after reading a file

SAL specification for “No messages sent after reading a file.”
/* Macro definitions */
MethodCall(name) ::= op=="invokevirtual"

&& param[1]==name;
FileRead() ::= MethodCall("java/io/FileInputStream/read()I");
Send() ::= MethodCall("java/net/SocketOutputStream/write(I)V");

/* The Security Automaton */
start ::=

!FileRead() -> start
FileRead() -> noSnd

;
noSnd ::=

!Send() -> noSnd
;

JVML enforcement of “no messages sent after reading a file.”
...
ldc 1 ; noSnd state number
putstatic SASIJVML/state ; change state to noSnd
invokevirtual java/io/FileInputStream/read()I ; read file
...
getstatic SASIJVML/state ; get current state number
ifeq SUCCEED ; if state = start goto SUCCEED
invokestatic SASIJVML/ABORT()V ; else violation
SUCCEED:
invokevirtual java/net/SocketOutputStream/write(I)V ; send msg
...

Security Automata

28

Further Works

Monitoring Machine Code Execution
Software Fault Isolation

Buffer Overflows and Mitigations

Advanced IRMs
Low-level Actions 

Event Synthesis

Static Analysis


