LiComR 2003 Summer

Visuall Formal Methods: Survey

AFE S AY7E

jhkim@formal.korea.ac.kr

2003. 8.19

Contents

S
= Introdunction
= What is Visual Formalism?
= Pros vs Cons
= State-based Specification.
= Statecharts

= SyncCharts
= GCSR(Graphical Communication Shared Resource)

= UPPAL

2003-08-25 deitietl 80|y dA 2

= Class

Visual Formalism(1/2)

= Visual Formalism

= Graphical notations
= Formal semantics
= Formal specification
= Formal verifications

= State-based specification

= Communication-based specification

« Etc

2003-08-25

Nt F8O|8 o4 3

= Merit

= Readability
= Demerit
= Complexity...
= Verifiability
2003-08-25

Visual Formalism(2/2)

= Merit vs demerit

= Comprehensive
« Effectiveness

sty Yoy Aa 4

State-based Specification(1/2)

L
= Describe behavior of a system in terms of
possible states and transitions
= Capture the condition of a system in terms of its state
= State-based specification techniques have:

= Explicit description and complete coverage of states and
transitions

= Specification language and formal reasoning
= Precise mathematics
= Analysis tools

2003-08-25 DiiEn FE0|Y o4 5

State-based Specification(2/2)

B]
= Benefits

= Objectives
= Clarify requirements
= Locate and correct inconsistency and non-determinism
= Refine requirements consistently into design
= Decomposition of system
= Prove or disprove assertions about system behavior
= End Result
= Predictably safe systems, more deterministic behavior
= Links between customer needs and system design

2003-08-25 deitietl 80|y dA 6

State-based Specification-
_Concepts(1/2)
State

= A state represents the computational readiness of a
system at that instance of time during its lifetime

Initial state

= The state in which a system starts
Condition

= Represents an existing on—-going state of the system
Quantification

= The application of a condition over more than one variable

2003-08-25 DiiEn FE0|Y o4 7

State-based Specification -
Concepts (2/2)
Transition

= Atransition is a change in the state of the system
Event

= An event is an instantaneous change in the environmental
or internal condition of a system.

Action/activity

= The function that is carried out or the event that is emitted
upon the transition of the system from one state to
another

Invariant

= A global or local property that holds true for the duration
of the system lifetime

2003-08-25 deitietl 80|y dA 8

State-based Specification-
Techniques and Methods

N
Finite state machines

= Augmented transition networks
= SDL

= Petri nets

= Sequence diagrams

= Statecharts

= SyncCharts

= GCSR

= UPPAAL

= Computational tree logic

= UML state diagrams

2003-08-25 DNejisn 38|y A4 9

Statecharts

Intro. to Statecharts(1/3)

= Developed by David.Harel in 1987
= “Statecharts: A Visual Formalism for Complex Systems”
(1987)
= Provide behavioral description of reactive
systems

= Specification and design of discrete—event systems
= Hardware, Instrument and Control system, Embedded
Systems, Automobile, Cellular phone,Missile, Avionics...

SWHeRreveniorocCUiSHRFSIatEnA;

and cenailien EAstirtie; iansier

+at 1)
StENONE

2003-08-25 DiiEn FE0|Y o4

Intro. to Statecharts(2/3)

[T
= Features

= An Extension of State Transition Diagram
= Hierarchy, concurrency and communication
= Uses area and location of graphical objects

Statecharts = State diagrams +
Hierarchy +
Orthogonality +
Broadcast-communication

2003-08-25 deitietl 80|y dA

Intro. to Statecharts(3/3)

= Clustering and refinement

= States and transitions

= Arrow- labeled event
and optionally a
parenthesized condition

= Clustered two events
to one

= D is an abstraction of
Aand C

= D can be refined to
consist of A and C

= Zooming in and out of
D (in latter A and C
are not shown)

2003-08-25 DiiEn FE0|Y o4 13

Syntax of Statecharts(1/6)

B

States: Represent the mode of operation of an
activity

= Hierarchy of states is represented y encapsulation of

states.

Connectors

= Conditional : Shows branches to various possible states.

= History: Remembers previously visited state.

Default transitions

= Specifies the initial state at each hierarchical
level(assuming that an explicit transition was not taken).

Transition: Shows the possible paths from one
state to another state.

2003-08-25 deitietl 80|y dA 14

Syntax of Statecharts(2/6)

B —]
= Transitions Labels.
= Define the criteria needed for a transition to be taken from
one state to another.
= Specifies what action to perform when taking the transition

= Trigger/Action syntax

= Trigger: causes the movement from one state to anther
= Syntax of trigger:
Event_expression and/or[condition_expression]
= Action: specifies what to do as a result of moving from
one state to another.
= Syntax of Action
Action_expressionl; Action_expression2;...

2003-08-25 DiiEn FE0|Y o4 15

Syntax of Statecharts(3/6)

= Basic State = AND State
[state_name]
= Default Transition = Transition
transition_label
o —_—)
= Conditional = History = Deep History
Connector Connector Connector

2003-08-25 deitietl 80|y dA 16

= Default states

= Equivalent to start states
for FSM

= History
= (H) Record of the last state
at the current level

= (H=*) Deep history stores
last state at all levels
current and below

Syntax of Statecharts(4/6)

(@rl{]'ll

AN

alarm1
H

off

dd

——

2003-08-25 DiiEn FE0|Y o4

—
G

A

)
(« @)

O ——

-

o)
H

B
i

_J/

17

= Orthogonality

= Independence

Syntax of Statecharts(5/6)

= AND combination of states

= Concurrency and synchronization
= Simultaneous transitions in component states

= Orthogonality = concurrency + independence

= Communication among states by common events

= Exits

= Synchronized, independent and e-transition exit

2003-08-25 deitietl 80|y dA

= Independent transition in one of the component state

Syntax of Statecharts(6/6)

= Orthogonality

y
1
A | b)
B I G m /
|
|
a lin (&)] 9 e L
|
|
c I E T ¢
|
N\ ! J
2003-08-25 Dotistn 38|y 324 19

Semantic Characteristics of
Statecharts(1/3)
]

B
= Semantics of Statecharts in STATEMATE.

= how the model is executed.

= Step semantics

step _ step step step _ step
o> 00— 0— > 0—>

status status status status status

= Aun. a set of possible behavior

= A series of snapshots of system responses to external
environment stimuli

= Slatus. a snapshot of system situation
= Step: transition between two snapshots

2003-08-25 deitietl 80|y dA 20

Semantic Characteristics of
Statecharts(2/3)
B — |
= Events are sensed one step after it happened
= Ex(S) is sensed one step after S was existed
= Reactions to events, and changes occurred within a step,
can be sensed only after the step
= Events live in the step following their occurrence, for one
step only.
= Calculations are based on situation at the beginning of the
step
= A maximal subset of nonconflicting transactions and SRs
is always executed

2003-08-25 DiiEn FE0|Y o4 21

Semantic Characteristics of
Stgt_e_chartss 3/3 2

= Time Scheme

s Synchronous time scheme

= assumes that the system executes a single step every time unit.

= modeling electronic digital systems, where execution is
synchronized with clock signals,

= external changes can occur between any two steps. The execution

= Asynchronous time scheme

= allows several steps to take place within a single point in time.

= In general, external changes can occur at any moment between
steps and several such changes can occur simultaneously

2003-08-25 deitietl 80|y dA 22

Verification in STATEMATE

B —]
= Tools for validation

= Simulation
= Tools for verification
= ModelChecker

= ModelCertifier
= which includes the whole functionality of ModelChecker.

= Verification properties
= Non-Determinism
= Write—-Write Race
= Write—Write Race (different values)
= Read-Write Race
= Drive—to State
= Drive—to Configuration
= Drive-to Property

2003-08-25 Dotistn 38|y 324 23
ModelChecker
T
LX)
Main Meny ST B Sebs |

NS e E

=

Hierarchical
Chart View
MaodelChecker (Create A
' YELLOWSIBCTRL
e Mame [Name
. AnpyiE Dictlonary: VELLOVIEE Type Non-Determinism 7
Dictionary and [W= B Mon-Determinism
Execution Quistey | Desired Scope |Writenirite Race
“WiriteMrite Race (Different Values)
Read/\Write Race
Message aren Drive to State
i OK_|Drive to Config
| H Drive to Property
] v

2003-08-25 deitietl 80|y dA 24

SyncCharts

Intro. to SyncCharts

-
= Specification and design of large and complex
reactive systems
= Telephone, Automobiles, Communication, SOC...
= Provides for hierarchy, orthogonality, Synchrony
hypothesis

SyncChartsi = ESM +

Depth(hierarchy) =

Concurrency(orthogonality)l+

Broadcasi=communicaiion

2003-08-25 deitietl 80|y dA 26

Syntax of SyncCharts(1/7)

B]
= Hierarchy
= State—levels
= State : basic state, macro state

=] 9
Graphic Textual
macro-state Macro-state

2003-08-25 27

Syntax of SyncCharts (2/7)

B |
= Concurrency
= Synchronization and independence.

2003-08-25 deitietl 80|y dA 28

Syntax of SyncCharts(3/7)

e —
= Sequential Automata = Trigger event

Sl fusliealin) — 5
? | TpFip S
‘I\\ =t Yam
(5) .\' il JL‘
,SI,)/ = Effect: signal emission
s o)
FrequencyDimi2 =)
)]
.—-(Tst d g /:/ 2
4 A
2003-08-25 DNejisn 38|y A4 29

Syntax of SyncCharts(4/7)

S
= Halt points (remembering state)

= Halt, await S, pause

@
; gﬂf
Q

= Signal emission and test

= emit S, present S

OO)|
(. %
45 Femit 57 ¥
A
) Y -l [e E)
L ‘ ‘

2003-08-25 deitietl 80|y dA 30

Syntax of SyncCharts(5/7)

B]
= Control flow

= ; (sequence) and || (parallel)

<inst1>

<inst1> <inst2>

¥

<inst?>

= loop, sustain, every

|
)] .
|

2003-08-25 DiiEn FE0|Y o4 31

Syntax of SyncCharts(6/7)

T
= Control flow(cont'd)
= abort, weak abort, suspend

2003-08-25 deitietl 80|y dA 32

Syntax of SyncCharts(7/7)

[m()

= when a state is being executed
= en(), ex()

S

e B

l ’ - /,E:I
R

en(A) ex(A) PN

2003-08-25 DiiEn FE0|Y o4 33

Verification of SyncCharts

S ——
Pl verification of profect: DUT =[O x]| " ver'f.ca‘r'on
ey righitclek buatton 0 st e nput sgreh e skt thr ouguts and propertes | - Model Checking

= The Design Verifier using
Model Checking validates
the design by proving that
the required system
properties and assertions
hold in all the possible

cases.
o Assertions

“a FIFO full never
I ssisa "
S DU ORE Wt overflows

TR, (i SO "Bus access can be

(5 “Design for Verification and g;ﬂ?;ﬁgrr,)..l only
o) Save Verification Time & Effort

With Esterel Studio”

2003-08-25 deitietl 80|y dA 34

GCSR

Intro. to GCSR

I
= Features
= Graphical notations

= Scalability
= Modular and hierarchical structures through nesting and
modularity.

= Resource
= Priority
= Formal Semantics

= Equivalence
= ACSR equivalence relation

= Executable

2003-08-25 deitietl 80|y dA 36

GCSR Language

lower?.1)

I

GD
GD,

\I\ (Down!, 1)
o ADte
ste".ll

Gu
(&
o lower?.1
C\\ (lower?, 1) an
@ 20 up 1y fdonel, 1)
(dome?, 1)
O— Gae
Restrict={} Close={}
2003-08-25 DNejisn 38|y A4 37
ST
= Node execution
instantaneous : time-consuming
undelayed communication Action nodes
.
instantaneons IIIDB-CDI'IS'IJI'DIHS Pﬂl“dllel
halﬁng Process nodes
process | \
! 1
! 1
. | name ! h—"lj L_ i]_:l_—_*_-l;l_ i
' ! ‘OO
O
Restrict=F Cloge=l Reatrict=F Cloge=l
reference examples of compor
refer to process Reference:events

Close:resource

2003-08-25 deitietl 80|y dA 38

GCSR Syntax(2/2)

Normal edges " Edge
The circle node is any node. [] Normal Edge

(E 3 C D That is externally
unlabeled edge controlled by an
interacting process
(event-narme, priority)
(% J et et %) event-labeled edge - Exoeptional Edge
That is triggered
M time-labeled edge internally through
voluntary release of

control by raising an
Exception edges excepﬁon.

(event-name, priotity)
The source nade is a compound node

2003-08-25 DiiEn FE0|Y o4 39

GCSR Process

ST
= GCSR process
= is atuple <N,lLE,L.A>
= Lis aset of event names
= Ris aset of resource names
= (NE) is directed graph with initial node I O N
= Eisaset of labeled edges ON x L x N
= L is set of labels O {e}0(L x M) O(ND»)
= Hierarchical
= hierarchical function : p
= p(n)={6,6,,.6.}

the processes 6,,6,,...,6,inside node n

2003-08-25 deitietl 80|y dA 40

GCSR Semantics(1/3)

I
= Informal Semantics

= a GCSR process represents a system.

= A system can sequentially execute communication events or
time and resource consuming actions

= execution with instantaneous communication events
= execution with resource and time consuming
= execution with compound nodes

2003-08-25 DiiEn FE0|Y o4 41

GCSR Semantics(2/3)

I
= Informal Semantics(cont'd) SR

" consuming node
instantaneous t:time

node A:resource

no time consume .% ®;)®
(a) (b)

t C i)
STOP by P Fl (s --- oA
1.after PRGEIN | = Q. Synchronizing
t-time | W[VS Lo mEsol their e.x:cuflon
2.external \767: (a%.p) R&.&. :::Ln
events - P
3.internal Restrict={} Close={} Restrict={s} Close={r} events
events (© (@

2003-08-25 deitietl 80|y dA 42

GCSR Semantics(3/3)

I
= Simple GCSR to ACSR process

= T represents translation form GCSR specification to ACSR

processes
v
1 \/\-'.J__ PTGl
") 2 ¥ 1
i A A TG 118 G2V
J €T
T TGl + TG
5 . i, L
2003-08-25 Dotistn 38|y 324 43

Analysis Techniques

S e
= ACSR has operational semantics that make GCSR
possible to execute a GCSR specification.

= This allows designers to test a GCSR
specification for unintended behaviors before
attempting to prove correctness.

= with algebraic semantics of GCSF, we can verify

the strong and weak equivalence of two GCSR
specification,

2003-08-25 deitietl 80|y dA 44

Example : Airport with taxi-way

Myeo-ale, oo dekangaden) LEBOY | rng telasaGeantil

" LandBusy

i) (aedGearet,l)

Jardeny. elandivisLandCs

‘epact Avk Aepaniicar e panihersy £ eroms |
Chose = |acrivalAW Leniway L oxiwey T mniway L
R R Ao okt

| teTmi

et | [o Wan !

[o iy

Rennci={] Clom=(1

Wkt By TROM
!

' - . b S
2003-08-25 Ea=h L pow— ettty

Timed Automata using UPPAAL

Intro. to UPPAAL(1/3)

B
= Developed by Kim Larsen,Wang Yi and Paul
Petterssoon ... in 1996
= Real-Time Verification and Validation Tools.
= RT-SPIN — Real-Time extensions to SPIN.
= UPPAAL - Toolbox for validation and verification of real—
time systems.

= Real-Time Communication.

2003-08-25 DiiEn FE0|Y o4 47

Intro. to UPPAAL (2/3)

S
= UPPAAL consists of three main parts:
= a description language,
= a simulator, and
= a model checker.
= The description language is a non-deterministic guarded
command language with data types.

= describe a system as a network of timed automata
= The simulator enables examination of possible dynamic
executions of a system during the early modeling stages.

= The model checker exhaustively checks a// possible states.

2003-08-25 deitietl 80|y dA 48

Intro. to UPPAAL(3/3)

UPPAAL Model =

Networks of himed" Automata

P: x==1, j<50 yi=0, ji=j+2 o
T TN ‘ O i<10
10 Ou, w00
—-—_— y==3
x:=0, y:=0 al
2003-08-25 ntistn Iy AR4A 49
Intro. to UPPAAL
C I e
.'f
{
|. verifyta
| [——
g /I In.gzul__: ilmm|~
=
|
\ Fome--
| stgaby f--------- * Bydech »

= checkta — syntax checker
= simta — simulator
= verifyta — model checker

2003-08-25 deitietl 80|y dA 50

process B {

state BO { x<=4 },

commit BI,;

init BO;

trans BO -> Bl {
guard x>=2;
sync a?;
assign n:

.

Bl -> B2 {
assign n:

H

B2 -> B3 {

}, B3 -> BO;

=n+1;

system A, B;
2003-08-25

=5, x: =0;

Example (cont.)

(from UPPAAL in a Nutshell)
T

Bl, B2, BS3;

n:=n+l

51

3 C:\uppaal-3.2 G\uppaalN utshell xml -

Templates iew Queries

Optians:

Example (cont.)

B
-(of x|

Help

UPPAAL2K

e e

Drag out

|

Enabied Transitions

Hext Resst

Simulation Trace

Trace File:

Prev.

process A

Xeoo

process B

2003-08-25

sty Yoy Aa

52

Timed Automata(1/2)

x<=5 && y>3

Action
used
for synchronization

Y
“

2003-08-25

Nt F8O|8 o4

Clocks: x,y

Guard
Boolean combination of comp with
integer bounds

Reset
Action perfomed on clocks
State
(location, x=v , y=u) where v,u arein R
Transitions
(n,x=2.4,y=3.1415) —a—>
(m, x=0, y=3.1415)

1.1
(n,x=24, y=3.1415) —F1 5

(n, x=3.5, y=4.2415)

53

= Invariants

pe

x<=5 & y>3

Location
Invariants

2003-08-25

Timed Automata(2/2)

Clocks: x,y

Transitions

%

e(l.1

(n,x=2.4,y=3.1415)

(n, x=2.4, y=3.1415)
(n, x=3.5, y=4.2415)

Invariants ensure progress!!

F80|Yg ¢4 54

UPPAAL Specification Language

= Temporal Logic

Al p =2 (AGp)
E<>p 2> (EF p)

a.l | gd| gc| pand p | por p| not p |

pinply p| (p)

2003-08-25 DiiEn FE0|Y o4 55

Syntax of UPPAAL(1/2)

I
= Labels and Transitions

= The edges of the automata can be labeled with three
different types of labels:
= a guard expressing a condition on the values of clocks and
integer variables that must be satisfied in order for the edge
to be taken,
= a synchronization action which is performed when the edge is
taken

= a number of clock resets and assignments to integer variables.
= Nodes may be labeled with invariants

= Conditions expressing constraints on the clock values in order
for control to remain in a particular node

2003-08-25 deitietl 80|y dA 56

Syntax of UPPAAL(2/2)

I
« Committed Locations

+ A committed location must be left immediately.
*+ A broadcast can be represented by two transitions with a
committed state between sends.

sl R11L

52 ml?

53 RIZ

2003-08-25 DiiEn FE0|Y o4 57

Semantics of UPPAAL(1/5)

C T e

= Transitions

= Delay transitions

= Action transitions
= The above tow types of transitions may be

overruled by presence of urgent channels and

committed locations in the following ways

= Urgent channels

= Committed locations

2003-08-25 deitietl 80|y dA 58

Semantics of UPPAAL(2/5)

L
= Delay transitions — if none of the invariants of the nodes in
the current state are violated, time may progress without

making a transition: e.g., from ((A,,B,).x=0,y=0,n=0),
time may elapse 3.5 units to ((A,,B,).x=3.5,y=3.5,n=0),
but time cannot elapse 5 time units because that would
violate the invariant on B,.

2003-08-25 DiiEn FE0|Y o4 59

Semantics of UPPAAL(3/5)

L
= Action transitions - if two complementary edges of two
different components are enabled in a state, then they can
synchronize; also, if a component has an enabled internal edge,
the edge can be taken without any synchronizaton; e.g., from
((Ag,Bp),x=0,y=0,n=0) the two components can synchronize to
((A;,B;),x=0,y=0,n=5).

2003-08-25 deitietl 80|y dA 60

Semantics of UPPAAL(4/5)

L
= When two components can synchronize on an urgent channel,
no further delay is allowed: e.g., if channel a is urgent,
time could not elapse beyond 3, because in state
((Ao.Bp).x=3,y=3,n=0), synchronization on channel a is
enabled.

15}

[o i1
x==2

2003-08-25 DiiEn FE0|Y o4 61

Semantics of UPPAAL(5/5)

L
= If one of the components is in a committed node, no delay
is allowed to occur and any action transition must involve
the component committed to continue: e.g., in state
((A,.B,),x=0,y=0,n=5), B, is committed, so the next state
of the network is ((A,,B,),x=0,y=0,n=6).

A3 Bz

2003-08-25 deitietl 80|y dA 62

Construct

model of

environment
(user-supplied'

@_
@_

UPPAAL Model Construction

B
Controller
(Control Program)

i

Discrete

actuators

Construct model
of tasks

UPPAAL Model
2003-08-25 Dneiisn Y|y ey 63
Translation to UPPAAL
ST
PL :: while True do Heaatian
T1 : wait(turn=1) ™ g
Cl : turn:=0 =
endwhi | e ? &
|| o
P2 while True do —®
T2 : wait(turn=0)
C2 : turn:=1 D
endwhi | e {
Mutual Exclusion Program % :
2003-08-25 nEiiEn ZYI|Y 9N 64

Conclusion

B ——]
= Visual Formalism
= State—based specification and its verification
= Statecharts
= SyncCharts
= GCSR
= UPPAAL
= Verification methods
= Model Checking
= Bi-simulation

= Future...

= Real-time
= Time, Resource, Priority, Concurrency
= ..You..

2003-08-25 DiiEn FE0|Y o4 65

