Semantics of Prioritized Default Rules System

Theory & Formal Methods Lab.
Dept. of CSE, Korea University
Hee-Jun Yoo
hyoo@formal.korea.ac.kr
LiComR, SongGwangSa, August 2003
Introduction

Background
- Extended Logic Programs
- Default Rules
- Prioritized Default Rules

Previous Approach for Prioritized Defaults Rules

Motivated Example

Our Approach

Conclusion and Future Works

Reference
Introduction

Extended Logic Program is *contradictory* if it has inconsistent answer set.
- Answer Set is *inconsistency* if it contains a pair of complementary literals.

- Default Rules are described by extended logic notation.
- Most of Default Rules Semantics deal with such a inconsistency as this.

Problem
- Default Rules could have another inconsistency during making the consistent answer set.

- We suggest that example occurs a problem.
- We define a new semantics for solving above problem.
Background

negation as failure - not

- \neg Q \leftarrow \textit{not} P
- Q is false, if there is is no evidence that P is true.

Extended logic Program (\(\Pi\)) (Baral's Representation)

- A collection of rules of the form
 \[L_0 \leftarrow L_1, \ldots, L_m, \textit{not} L_{m+1}, \ldots, \textit{not} L_n \]
 - \(L\): literals, i.e. formulas of the form \(p\) or \(\neg p\)
 - \(p\) is an atom.
- \(\text{Lit}\): the set of all literals in the language of \(\Pi\).
- \(\text{Lit}(p)\): the collection of ground literals formed by the predicate \(p\).
Background (cont’d)

Answer sets

: sets of literals corresponding to beliefs which can be built by a rational reasoner on the basis of Π.

The answer set of Π not containing *not* is the smallest subset S of Lit such that

- For any rule $L_0 \leftarrow L_1, \ldots, L_m$ from Π, if $L_1, \ldots, L_m \in S$, then $L_0 \in S$;
- If S contains a pair of complementary literals, then $S = \text{Lit}$.
Background (cont’d)

Default Reasoning

- Defaults are statements containing words “normally, typically, as a rule”.
- A large part of our education seems to consists of learning various defaults, their exceptions, and the skill of reasoning with them.
- Defaults do not occur in the language of mathematics, and therefore were not studied by classical mathematical logic.
- Reiter’s notation

\[BIRD(x) \land \neg PENGUIN(x) \land \neg OSTRICH(x) \land ... \supset FLY(x) \]

\[\text{BIRD}(x) : M \text{FLY}(x) \]

\[\text{FLY}(x) \]

“M” is to be read as “it is consistent to assume”.

2003-08-11
Prioritized Default Reasoning (Gelfond’s Representation)

- Language $L_\sigma(\sigma)$
 - parameterized by a multi-sorted signature σ.
 - containing names for objects, functions, and relations of the user’s domain.
- σ contains two special collections of terms of the language
 - name defaults.
 - strict(non-defeasible) rules.
- d_i: defaults of $L_\sigma(\sigma)$
- r_i: rules of $L_\sigma(\sigma)$
Prioritized Default Reasoning (Gelfond’s Representation)

- d, d_1, d_2 are defaults names, l_0, \ldots, l_n are literals of $L_0(\sigma)$ and $[]$ is the list operator

\[
\text{rule}(r, l_0, [l_0, \ldots, l_m]); \\
\text{default}(d, l_0, [l_0, \ldots, l_m]); \\
\text{conflict}(d_1, d_2); \\
\text{prefer}(d_1, d_2);
\]

are literals of $L_0(\sigma)$.

\[\Rightarrow \text{if } g \]
Prioritized Default Reasoning Example

- defaults
 \[
 \text{default}(d_1, p, [\];)
 \]
 \[
 \text{default}(d_2, q, [r];)
 \]
- rules
 \[
 \text{rule}(r_1, \neg p, [q];)
 \]
 \[
 \text{rule}(r_2, \neg q, [p];)
 \]
- fact
 \[
 r
 \]
- conflict
 \[
 \text{conflict}(d_1, d_2)
 \]
- prefer
 \[
 \text{prefer}(d_1, d_2)
 \]

\[
\equiv \exists \neg p \rightarrow \top \equiv \bot \equiv \exists \neg q \rightarrow \top \equiv \bot \equiv \exists \neg p \rightarrow \top \equiv \bot
\]
Previous Approach (by Gorosof)

Augment ELP syntax and modify ELP semantics:
- Add optional label (name) to each rule.
- Include prioritization facts of form $\text{Overrides}(i, j)$.
 - Overrides is a special reserved predicate.
 - $\text{Overrides}(i, j)$ means i has higher priority than j.
 - Overrides is a strict partial order on labels.
- Locale is “definition” of one ground atom.

 $\text{Locale}(p) = \{\text{all rules whose head is } p \text{ or } \neg p\}$
- Stratify the CLP into locales. (Dependency graph)
 - The answer set is defined via constructive induction along the stratification.
- Prioritization Sub-Program is defined as set of positive ground facts about Overrides.
Previous Approach (Cont’d)

Syntax

- **DLP**: Default Logic Program
 - \(DLP = DLP_{\text{main}} \cup DLP_{\text{Overrides}} \)
 - \(DLP \) is required to be **acyclic**.

- \(DLP^{\text{instd}} \)
 - \(DLP \) that results when rule in \(DLP \) having variables has been replaced by set of all its possible ground instantiations.

- \(\rho = p_1, \ldots, p_m \)
 - \(\rho \) be a sequencing of all the ground atoms of \(DLP^{\text{instd}} \).
 - \(\rho \) be a total stratification of the atoms when \(\rho \) is a reverse-direction topological sort of atom dependency graph.
 - \(p_i \) stand for the \(i^{\text{th}} \) (ground) atom in this sequence \(\rho \).
Previous Approach (Cont’d)

Semantics

- The answer set is constructed iteratively:

\[S_0 = \emptyset \]

\[S_i = \bigcup_{j=1}^{i} T_j, \quad i \geq 1 \]

\[S = \bigcup_i T_i \]

\[T_i = \left\{ \sigma p_i \mid \exists j \in \text{Cand}_i \left(\sigma \neq \emptyset, \forall k \in \text{Cand}_i \exists j \in \text{Cand}_i : S_{i-1} \models \text{Overrides}(j, k) \right) \right\} \]

\[\text{Cand}_i^\sigma = \{ j \mid \text{label}(j, r), \text{Head}(r) = \sigma p_i, S_{i-1} \models \text{Body}(r) \} \]
Motivated Example

Some Definition by International Agreement

- One creature has exactly one species name.
- There are no life on this planet that has two species name.
- Two different species has no same name.

Motivated Example

\[\text{\$Wat\$} \quad \text{Fishes(ani) } \leftarrow \text{LiveInWater(ani)} \]
\[\text{\$Pla\$} \quad \text{Mammal(ani) } \leftarrow \text{HasPlacenta(ani)} \]

Overrides (Pla, Wat) \leftarrow
LiveInWater(whale) \leftarrow
HasPlacenta(whale) \leftarrow
Our approach

Object of Approach
- Ensure consistency
- Unique answer set; thus conceptually simple
- Simple to specify override (priorities)
- Inferencing tractable
- Include consistent “extended” LP and “general” LP (acyclic)
Our approach (Cont’d)

Definition

A partition \(\pi_0, \ldots, \pi_k \) of the set of all predicate symbols of a default logic program DLP is a stratification of DLP, if for any rule of the definite type and for any \(p \in \pi_s \), \(0 \leq s \leq k \) if \(L_0 \in \text{atoms}(p) \), then:

1. for every \(1 \leq i \leq m \) there is \(q \) and \(j \leq s \) such that \(q \in \pi_j \) and \(L_i \in \text{atoms}(q) \)
2. for every \(m+1 \leq i \leq n \) there is \(q \) and \(j < s \) such that \(q \in \pi_j \) and \(L_i \in \text{atoms}(q) \)

A program is called stratified if it has a stratification.
Our approach (Cont’d)

Dependency graph (D_{DLP}) is consist of
- Vertices: predicate names.
- Labeled edge: $\langle P_i, P_j, s \rangle$
 - P_i: head of rule
 - P_j: body of rule
 - s: label $s \in \{+, -\}$
 - denoting whether P_j appears in positive or a negative literal in the body of r.
- Negative cycle
 - Dependency graph has cycle if it contains at least one edge with negative label.
Our approach (Cont’d)

Some Definitions

- **Ground**: Formulas and rules not containing variables.
- **$HB(DLP)$**: Herbrand base of program (DLP)
 - Set of all ground atoms in the language of a program (DLP).
- **Stable model of a definite program DLP**
 - is the smallest subset S of HB such that for any rule $L_0 \leftarrow L_1, \ldots, L_m$ from Π, if $L_1, \ldots, L_m \in S$, then $L_0 \in S$.
- DLP^S be a program obtained from DLP by deleting
 1. each rule that has a formula *not* L in its body with $L \in S$.
 2. all formulas of the form *not* L in the bodies of the remaining rules.
- The programs are called **categorical**, if it have a unique stable model.
Our approach (Cont’d)

Proposition 1
- A default logic program is stratified iff its dependency graph D_{DLP} does not contain any negative cycles.

Proposition 2
- Any stratified default logic program is categorical.

Theorem 3
- A consistent logic program whose dependency graph does not have a cycle with only positive edges has at least one stable model.

Lemma 4
- For any stable model S of a default logic program DLP.
 1. For any ground instance of a rule of the definite type from DLP, if $\{L_1, \ldots, L_m\} \subseteq \{L_{m+1}, \ldots, L_n\} \cap S = \emptyset$ then $L_0 \in S$.
 2. If S is stable model of DLP and $L_0 \in S$, then there exists a ground instance of a rule of the definite type from DLP such that $\{L_1, \ldots, L_m\} \subseteq \{L_{m+1}, \ldots, L_n\} \cap S = \emptyset$ then $L_0 \in S$.
Our Approach (Cont’d)

Syntax

- **DLP**: Default Logic Program
 - \(DLP = DLP_{main} \cup DLP_{Overrides} \)
 - DLP is required to be acyclic.

- **\(DLP^{instd} \)**
 - DLP that results when rule in DLP having variables has been replaced by set of all its possible ground instantiations.

- \(\rho = p_1, ..., p_m \)
 - \(\rho \) be a sequencing of all the ground atoms of \(DLP^{instd} \).
 - \(\rho \) be a total stratification of the atoms when \(\rho \) is a reverse-direction topological sort of atom dependency graph.
 - \(p_i \) stand for the \(i^{th} \) (ground) atom in this sequence \(\rho \).
Our approach (Cont’d)

Semantics

- The answer set is constructed iteratively:

\[
S_0 = \emptyset \\
S_i = \bigcup_{j=1,...,i} T_j, \ i \geq 1 \\
S = \bigcup_i T_i
\]

\[
Cand_i^\sigma = \{ j \mid label(j, r), Head(r) = \sigma p_i, S_{i-1} \models Body(r) \}
\]

\[
T_i = \{< \sigma p_i, r_i > \mid Cand_i^\sigma \neq \emptyset, \forall k \in Cand_i^{\neg \sigma}. \exists j \in Cand_i^\sigma. S_{i-1} \models \text{OverridessBody(j,k)} \}
\]

\[
\cup \{< \sigma p_i, r_i > \mid \forall j. label(j, r), Head(r) = \neg \sigma p_i, \\
\exists k. label(k, s), S_{i-1} \models Body(s), \text{OverridessBody(k,j)} \}
\]
Conclusion and Future Works

Conclusion

- We show new inconsistent case that may happen in default logic program.
- We define a new semantics of default logic program for solving given inconsistent case.
- Our semantics keeps unique consistent answer set for inconsistency that is defined by Gelfond and Lifschitz.

Future Works

- We will extend our semantics to solve problem that is occurred when complementary literal overrides each other repeatedly.
- We will convert our default logic program to relational algebra.
Reference

