

Semantics of Prioritized Default Rules System

$=\models \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot \wp \Leftrightarrow \neg = \models \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot \wp \Leftrightarrow \dashv = \models \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot \wp \Leftrightarrow \dashv$

Theory & Formal Methods Lab. Dept. of CSE, Korea University Hee-Jun Yoo <u>hyoo@formal.korea.ac.kr</u> LiComR, SongGwangSa, August 2003

Content

2

	Introduction				
	Background				
	 Extended Logic Programs 				
	 Default Rules 				
	 Prioritized Default Rules 				
۲	Previous Approach for Prioritized Defaults Rules				
\diamond	Motivated Example				
۲	Our Approach				
\diamond	Conclusion and Future Works				
	Reference				
2(003-08-11 Theory and Formal Methods lab.				

Introduction

$=\models \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot \wp \Leftrightarrow \neg = \models \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot \wp \Leftrightarrow \dashv = \vdash \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot \wp \Leftrightarrow \dashv$

- Extended Logic Program is *contradictory* if it has inconsistent answer set.
 - Answer Set is *inconsistency* if it contains a pair of complementary literals.
- Default Rules are described by extended logic notation.
- Most of Default Rules Semantics deal with such a inconsistency as this.
- Problem
 - Default Rules could have another inconsistency during making the consistent answer set.
- We suggest that example occurs a problem.
- We define a new semantics for solving above problem.

2003-08-11

Background

$=\models \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot p \Leftrightarrow \neg = \models \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot p \Leftrightarrow \dashv = \models \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot p \Leftrightarrow \dashv$

- negation as failure not
 - $\square \neg \mathcal{Q} \leftarrow \textit{not } P$
 - *Q* is false, if there is is no evidence that *P* is true.
- Extended logic Program (Π) (Baral's Representation)
 - A collection of rules of the form
 - $L_0 \leftarrow L_{1'} \dots, L_{m'} \text{ not } L_{m+1'} \dots, \text{ not } L_n$
 - *L* : literals, *i.e.* formulas of the form p or $\neg p$
 - *p* is an atom.
 - Lit : the set of all literals in the language of Π .
 - Lit(p) : the collection of ground literals formed by the predicate p.

2003-08-11

$=\models \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot p \Leftrightarrow \neg = \models \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot p \Leftrightarrow \exists = \models \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot p \Leftrightarrow \exists = \neg = \bot p \Leftrightarrow \exists = \Box p \iff \exists = \Box p$

- : sets of literals corresponding to beliefs which can be built by a rational reasoner on the basis of $\Pi.$
- The answer set of II not containing *not* is the smallest subset S of Lit such that
 - For any rule $L_0 \leftarrow L_1, ..., L_m$ from Π , if $L_1, ..., L_m \in S$, then $L_0 \in S$;
 - If *S* contains a pair of complementary literals, then *S* = *Lit*.

2003-08-11

$=\models \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot \wp \Leftrightarrow \neg = \models \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot \wp \Leftrightarrow \dashv = \models \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot \wp \Leftrightarrow \dashv$

Default Reasoning

- Defaults are statements containing words "normally, typically, as a rule".
- A large part of our education seems to consists of learning various defaults, their exceptions, and the skill of reasoning with them.
- Defaults do not occur in the language of mathematics, and therefore were not studied by classical mathematical logic.
- Reiter's notation
 - $\mathsf{BIRD}(x) \land \neg \mathsf{PENGUIN}(x) \land \neg \mathsf{OSTRICH}(x) \land ... \supset \mathsf{FLY}(x)$

BIRD(x):MFLY(x)

FLY(x)

"M" is to be read as "it is consistent to assume".

Prioritized Default Reasoning (Gelfond's Representation)

- Language L₀(σ)
 - parameterized by a multi-sorted signature σ.
 - containing names for objects, functions, and relations of the user's domain.
- σ contains two special collections of terms of the language
 - name defaults.
 - strict(non-defeasible) rules.
- d_i : defaults of $L_o(\sigma)$
- r_i : rules of $L_o(\sigma)$

Prioritized Default Reasoning (*Gelfond's Representation*)
 d, *d*₁, *d*₂ are defaults names, *I*₀, ..., *I*_n are literals of *L*₀(σ) and [] is the list operator

 $rule(r, I_{0'} [I_{0'} ..., I_{m}]);$ $default(d, I_{0'} [I_{0'} ..., I_{m}]);$ $conflict(d_{1'} d_{2});$ $prefer(d_{1'} d_{2});$

are literals of $L_0(\sigma)$.

$=\models \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot p \Leftrightarrow \neg = \models \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot p \Leftrightarrow \dashv = \vdash \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot p \Leftrightarrow \dashv$

\diamond	Prioritized Default Reasoning Example					
	- defaults					
	<i>default</i> (<i>d</i> ₁ , <i>p</i> , []); <i>default</i> (<i>d</i> ₂ , <i>q</i> , [<i>r</i>]);	$p \leftarrow not \neg p$				
	- rules	$q \leftarrow r, not \neg q$				
	rule(r ₁ , ¬p, [q]); rule(r ₂ , ¬q, [p]); fact	$\neg p \leftarrow q$ $\neg q \leftarrow p$				
	- Tact	ightharpoonup igh				
	- conflict <i>conflict(d₁, d₂)</i> - prefer	$conflict(d_{2^{i}} d_{1}) \leftarrow prefer(d_{2^{i}} d_{1}) \leftarrow$				
	$prefer(d_1, d_2)$					

Previous Approach (by Gorosof)

$=\models \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot \wp \Leftrightarrow \neg = \models \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot \wp \Leftrightarrow \dashv = \models \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot \wp \Leftrightarrow \dashv$

- Augment ELP syntax and modify ELP semantics :
 - Add optional label (name) to each rule.
 - Include prioritization facts of form *Overrides(i, j)* ←
 - Overrides is a special reserved predicate.
 - Overrides(i, j) means i has higher priority than j.
 - Overrides is a strict partial order on labels.
 - Locale is "definition" of one ground atom.
 - Locale(p) = {all rules whose head is p or $\neg p$ }
 - Stratify the CLP into locales. (Dependency graph)
 - The answer set is defined via constructive induction along the stratification.
 - Prioritization Sub-Program is defined as set of positive ground facts about Overrides.

2003-08-11

Previous Approach (Cont'd)

$=\models \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot p \Leftrightarrow \neg = \models \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot p \Leftrightarrow \dashv = \models \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot p \Leftrightarrow \dashv$

Syntax

- *DLP*: Default Logic Program
 - $DLP = DLP_{main} \cup DLP_{Overrides}$
 - DLP is required to be acyclic.
 - **DLP**instd
 - DLP that results when rule in DLP having variables has been replaced by set of all its possible ground instantiations.
- $\bullet \rho = \rho_1, \dots, \rho_m$
 - ρ be a sequencing of all the ground atoms of *DLP^{instd}*.
 - ρ be a total stratification of the atoms when ρ is a reverse-direction topological sort of atom dependency graph.
 - *p_i* stand for the *ith* (ground) atom in this sequence *ρ*.

2003-08-11

Previous Approach (Cont'd)

$=\models \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot p \Leftrightarrow \neg = \models \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot p \Leftrightarrow \dashv = \models \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot p \Leftrightarrow \dashv$

2003-08-11

Motivated Example

$=\models \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot \wp \Leftrightarrow \neg = \models \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot \wp \Leftrightarrow \dashv = \models \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot \wp \Leftrightarrow \dashv$

- Some Definition by International Agreement
 - One creature has exactly one species name.
 - There are no life on this planet that has two species name.
 - Two different species has no same name.

Motivated Example

<Wat> Fishes(?ani) ← LiveInWater(?ani) <Pla> Mammal(?ani) ← HasPlacenta(?ani) Overrides (Pla, Wat) ← LiveInWater(whale) ← HasPlacenta (whale) ←

2003-08-11

Our approach

$=\models \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot p \Leftrightarrow \neg = \models \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot p \Leftrightarrow \dashv = \models \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot p \Leftrightarrow \dashv$

Object of Approach

- Ensure consistency
- Unique answer set; thus conceptually simple
 - Simple to specify override (priorities)
- Inferencing tractable
- Include consistent "extended" LP and "general" LP (acyclic)

Theory and Formal Methods lab. KOREA UNIVERSITY

Our approach (Cont'd)

$=\models \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot \wp \Leftrightarrow \neg = \vdash \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot \wp \Leftrightarrow \dashv = \vdash \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot \wp \Leftrightarrow \dashv$

Definition

- A partition $\pi_0, ..., \pi_k$ of the set of all predicate symbols of a default logic program *DLP* is a *stratification* of *DLP*, if for any rule of the definite type and for any $p \in \pi_s$, $0 \le s \le k$ if $L_0 \in atoms(p)$, then : 1. for every $1 \le i \le m$ there is q and $j \le s$ such that $q \in \pi_j$ and $L_i \in atoms(q)$ 2. for every $m+1 \le i \le n$ there is q and $i \le s$ such that $q \in \pi_i$ and $L_i \in$
 - 2. for every $m+1 \le i \le n$ there is q and j < s such that $q \in \pi_j$ and $L_i \in atoms(q)$
- A program is called *stratified* if it has a stratification.

Our approach (Cont'd)

Dependency graph (D_{DLP}) is consist of

- Vertices : predicate names.
- Labeled edge : $\langle P_{j'}, P_{j'}, S \rangle$
 - *P_i*: head of rule
 - *P_j* : body of rule
 - s: label s ∈ { +, }
 - denoting whether P_j appears in positive or a negative literal in the body of r.
- Negative cycle
 - Dependency graph has cycle if it contains at least one edge with negative label.

2003-08-11

Our approach (Cont'd)

$=\models \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot \wp \Leftrightarrow \neg = \models \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot \wp \Leftrightarrow \dashv = \models \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot \wp \Leftrightarrow \dashv$

Some Definitions

- Ground : Formulas and rules not containing variables.
- HB(DLP) Herbrand base of program(DLP)
 - Set of all ground atoms in the language of a program(*DLP*).
- Stable model of a definite program DLP
 - is the smallest subset *S* of *HB* such that for any rule $L_0 \leftarrow L_1, ..., L_m$ from Π_i if $L_1, ..., L_m \in S_i$ then $L_0 \in S_i$.
- *DLP^S* be a program obtained from *DLP* by deleting
 - 1. each rule that has a formula *not* L in its body with $L \in S$.
 - all formulas of the form *not L* in the bodies of the remaining rules.
 The programs are called *categorical*, if it have a unique stable model.

2003-08-11

Our approach (Cont'd)

$=\models \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot \wp \Leftrightarrow \neg = \models \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot \wp \Leftrightarrow \dashv = \vdash \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot \wp \Leftrightarrow \dashv$

Proposition 1

 A default logic program is stratified iff its dependency graph D_{DLP} does not contain any negative cycles.

Proposition 2

- Any stratified default logic program is categorical.
- Theorem 3
 - A consistent logic program whose dependency graph does not have a cycle with only positive edges has at least one stable model.

Lemma 4

- For any stable model *S* of a default logic program *DLP*.
 - 1. For any ground instance of a rule of the definite type from *DLP*, if $\{L_1, \dots, L_m\} \subseteq \{L_{m+1}, \dots, L_n\} \cap S = \emptyset$ then $L_0 \in S$.
 - 2. If *S* is stable model of *DLP* and $L_0 \in S$, then there exists a ground instance of a rule of the definite type from *DLP* such that $\{L_1, ..., L_m\} \subseteq \{L_{m+1}, ..., L_n\} \cap S = \emptyset$ then $L_0 \in S$.

Syntax

- DLP : Default Logic Program
 - DLP = DLP_{main} \cup DLP_{Overrides}
 - DLP is required to be *acyclic*.
 - DLP^{instd}
 - DLP that results when rule in DLP having variables has been replaced by set of all its possible ground instantiations.
- $\bullet \rho = \rho_1, \dots, \rho_m$
 - ρ be a sequencing of all the ground atoms of DLP^{instd}.
 - ρ be a total stratification of the atoms when ρ is a reverse-direction topological sort of atom dependency graph.
 - *p_i* stand for the *ith* (ground) atom in this sequence *ρ*.

2003-08-11

Our approach (Cont'd)

$=\models \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot p \Leftrightarrow \neg = \models \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot p \Leftrightarrow \dashv = \models \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot p \Leftrightarrow \dashv$

Conclusion and Future Works

$=\models \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot \wp \Leftrightarrow \neg = \models \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot \wp \Leftrightarrow \dashv = \vdash \Box \neq \forall \vdash \Rightarrow \top \exists \neg = \bot \wp \Leftrightarrow \dashv$

Conclusion

- We show new inconsistent case that may happen in default logic program.
- We define a new semantics of default logic program for solving given inconsistent case.
- Our semantics keeps unique consistent answer set for inconsistency that is defined by Gelfond and Lifschitz.

Future Works

- We will extend our semantics to solve problem that is occurred when complementary literal overrides each other repeatedly.
- We will convert our default logic program to relational algebra.

20	03-	· 08	-11	

Reference

- 1. A Logic for Default Reasoning, R. Reiter, Artificial Intelligence, 12:81 132, 1980.
- 2. Foundations of Logic Programming (second, extended edition), J.W. Lloyd, Springer-verlag, 1987.
- 3. Classical Negation in Logic Programs and Disjunctive Databases, Michael Gelfond, Vladimir Lifschitz, New Generation Computing, 1991.
- 4. Logic Programming and Knowledge Representation, Chitta Baral, Michael Gelfond Journal of Logic Programming, 1994.
- 5. Courteous Logic Programs : Prioritized Conflict Handling For Rules, Benjamin N. Grosof, I BM Research Report RC 20836, 1997.
- 6. Reasoning with Prioritized Defaults, Michael Gelfond, Tran Cao Son Lecture Notes in Computer Science, 1998.
- 7. Compiling Prioritized Default Rules into Ordinary Logic Programs, Benjamin N. Grosof, I BM Research Report RC 21472, 1999.

2003-08-11