
1

Automatic Construction of Automatic Construction of
Hoare Proof Trees from Hoare Proof Trees from
Abstract Interpretation ResultsAbstract Interpretation Results

Sunae Seo

with Hongseok Yang and Kwangkeun Yi

2003. 8. 18
LiComR workshop 2003

ContentsContents

Problem

Outline

Approach

Language and preliminary

Example and algorithm

Summary

Future works

2

ProblemProblem

The safety of mobile code is important
Proof-Carrying Code : a safety proof + code

A code producer generates a proof.

A code consumer checks the proof.

Limitation of the existing works
How to generate program proofs other than
types

OutlineOutline

Compilation

Source code

Target code

Types_src

Types_trg

Target code with type-safety proof

verification
conditon
generator

Source code with safety proof

Compilation

Target code with safety proof

1) Existing approach 2) Our approach

today’s talk

3

Our ApproachOur Approach

We combine two technologies.
Program analysis technique (abstract interpretation): to
obtain program properties

Program logic (Hoare logic): to represent and to check
proofs of program properties

ContentsContents

Problem

Outline

Approach

Language and preliminary

Example and algorithm

Summary

Future works

4

LanguageLanguage

Hoare Logic (1/2)Hoare Logic (1/2)

A specification for program properties

A triple with two assertions and a command

5

Hoare Logic (2/2)Hoare Logic (2/2)

Properties from abstract interpretation results

A proof system for verifying Hoare triples

Abstract InterpretationAbstract Interpretation

A general program analysis framework to
compute program properties using an abstract
semantic domain and an abstract interpreter.

A concrete semantics of a program assigns a set of
states to each program point.

6

An Example (Interval Analysis)An Example (Interval Analysis)

Simple Outline of our WorkSimple Outline of our Work

Abstract interpretation result

Hoare specification

Hoare proof tree

ifS

7

Generic Abstract InterpretationGeneric Abstract Interpretation

Safety Requirement of Abstract Safety Requirement of Abstract
OperatorsOperators

Soundness of abstract operators

For example,

8

Examples (Sound Abstract Operators)Examples (Sound Abstract Operators)

Even-odd analysis

Interval analysis

ClaimClaim

We construct Hoare proof tree when we have

soundness proof of abstract operators

translation function tr

9

Safety Requirement of Abstract Safety Requirement of Abstract
Operators in Proof TreeOperators in Proof Tree

• Soundness proof of abstract operators

Translation function Translation function tr(tr(d,Ed,E)) (1/2)(1/2)

It returns a formula indicating ``the value of E
is included in the meaning of d .’’

For example,

10

An ExampleAn Example

11

Generic AI Generic AI (full)(full)

12

Second ExampleSecond Example

Proof tree for the exampleProof tree for the example

13

AlgorithmAlgorithm

AlgorithmAlgorithm
Proof construction T ([s]C[s’]) for an annotated program

Proof construction E (s, E) for an arithmetic expression E

Proof construction Eb (s, a, E) for a backward arithmetic
expression E

Proof construction Bb (s, B) for a boolean expression B

14

Proof Construction Proof Construction T T ([([s]C[ss]C[s’’])]) (part)(part)

ComplexityComplexity

Proposition
For a command A of size n, the tree T(A) has
O(n2 + n £ |Vars|) nodes

15

SummarySummary

Hoare proof construction method from program
analysis results (for use in safe anonymous
computing of mobile environment).

fully automatic

general
insensitive to the various abstract properties derived from a
single concrete semantics.

room for trade-off between trusted base size and proof size.

not completely general
our method is tightly coupled with the source language and
the concrete semantics.

for different concrete semantics we must change the proof
construction method and the trusted base.

Things to CompleteThings to Complete

Currently, we are working on the implementation
emitting Isabelle code.

To study practicality of the current work
Finding interesting analysis example to apply our
method

Estimating practicality factors like proof tree size

To extend the language syntax with arrays and
pointers

16

Backup SlidesBackup Slides

Related WorksRelated Works

PCC (Proof-Carrying Code) [Ne97]
Gaining safety certainty on mobile code

Focusing on proof checking

Foundational PCC [App01]
Compensating PCC by reducing the trusted-bases

Limited for types

17

ReferencesReferences

Andrew W. Appel. Foundational proof-carrying code. In 16th Annual
IEEE Symposium on Logic in Computer Science, June 2001.

App01

Nadeem Hamid, Zhong Shao, Valery Trifonov, Stefan Monier, and
Zhaoshong Ni. A syntactic approach to foundational proof-carrying code.
In 17th Annual IEEE Symposium on Logic in Computer Science, June
2002.

HST+02

George C. Necula. Proof-Carrying Code. In Proceedings of The ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages, 106-119, 1997.

Ne97

Boolean RewritingBoolean Rewriting

18

An Example DomainAn Example Domain

Interval domain

An AI ExampleAn AI Example

환경프로그램

19

Code producer Code consumer

Our Approach

Code

Analysis
Results

(property)

code

+

proof
Abstract

Interpretation

Our algorithm
using Hoare logic

proof checker

Various properties are represented
in abstract interpretation framework and
Hoare logic with first-order logic formula

To automatically generate proof trees
we suggest an algorithm from
abstract interpretation results

Both code producer and code consumer
don't have to share analysis information

Property-related rules

property-related rules

logic base

Code producer Code consumer

proof

proof checker

PCC framework [Ne97]

code

property
annotation

Foundational PCC [App01,HST+02]

type

Our Approach

proof

how to annotate properties in codetrusted baseNo other propertyVarious propertiesProof generation is automaticSmall trusted base

property-related rules

code
abstract

interpretation

property
our

algorithm

20

Translation function Translation function tr(tr(d,Ed,E)) (2/2)(2/2)

Required properties
Monotonicity : if ava’, then tr(a,E)) tr(a’,E)
Meet Preservation : tr(aua’, E) = tr(a,E)Ætr(a’, E)
Strictness : tr(?, E) = ff
Constants Preservation : tr(α ({n}), n) holds
Closedness : Free (tr(a, E)) = Free (E)
Commutativity : tr(a, E)[E’/x] = tr(a, E[E’/x])

γ ‘s property

a hole with E

21

Proof Construction Proof Construction T T ([([s]C[ss]C[s’’])]) (cont.)(cont.)

