Automatic Construction of Hoare Proof Trees from Abstract Interpretation Results

Sunae Seo

with Hongseok Yang and Kwangkeun Yi

2003. 8. 18 LiComR workshop 2003

Contents

- Problem
- Outline
- Approach
- Language and preliminary
- Example and algorithm
- Summary
- Future works

Contents Problem Dutline Approach Language and preliminary Example and algorithm Summary Future works

Language

Program	P	::=	C;;	
Commands	C	::=	x := E	assignment
			$\texttt{if} \ B \texttt{ then} \ C \texttt{ else} \ C \texttt{ fi}$	if-statement
			while B do C od	while-statement
			C;C	sequence
Arithmetic Expressions	E	::=	m	integer
			x	program variable
			E + E	addition
			E-E	subtraction
			$E \times E$	multiplication
Boolean Expressions	B	::=	tt	true
			ff	false
			$B \wedge B$	$\operatorname{conjuction}$
			$B \lor B$	disjunction
			E = E	equality
			E < E	inequality

An Example (Interval Analysis)

```
 \begin{split} & \{x: [-1,2], y: [0,4]\} \\ & \text{if } x + y = 0 \\ & \text{then} \\ & \{x: [-1,2], y: [0,4]\} \\ & x: = x + y \\ & \{x: [-1,6], y: [0,4]\} \\ & \text{else} \\ & \{x: [-1,2], y: [0,4]\} \\ & x: = 0 \\ & \{x: [0,0], y: [0,4]\} \\ & \text{fi} \\ & \{x: [-1,6], y: [0,4]\} \end{split}
```


Generic Abstract Interpretation

Commands : $\hat{State} \rightarrow \hat{State}$ $\llbracket x := E \rrbracket \sigma$ $= \sigma[x \mapsto (\llbracket E \rrbracket \sigma)]$ $\llbracket \text{if } B \text{ then } C_1 \text{ else } C_2 \text{ fi}
rbrace \sigma = (\llbracket C_1
rbrace \sigma) \sqcup (\llbracket C_2
rbrace \sigma)$ $\llbracket \text{while } B \text{ do } C \text{ od} \rrbracket \sigma \qquad = lfp \lambda X. \sigma \sqcup (\llbracket C \rrbracket X)$ $\llbracket C : C \rrbracket \sigma \qquad = \llbracket C \rrbracket (\llbracket C \rrbracket z)$ $= [C_2] ([C_1]] \sigma)$ $\llbracket C_1; C_2 \rrbracket \sigma$ ArithmeticExpression : $\hat{State} \rightarrow \hat{Value}$ $\llbracket m \rrbracket \sigma \qquad = \alpha(\{m\})$ $\llbracket x \rrbracket \sigma \qquad = \ \sigma(x)$ $[\![E_1 + E_2]\!] \sigma = ([\![E_1]\!] \sigma) + ([\![E_2]\!] \sigma)$ $\llbracket E_1 - E_2 \rrbracket \sigma = (\llbracket E_1 \rrbracket \sigma) \hat{-} (\llbracket E_2 \rrbracket \sigma)$ $\llbracket E_1 \times E_2 \rrbracket \sigma = (\llbracket E_1 \rrbracket \sigma) \stackrel{\circ}{\times} (\llbracket E_2 \rrbracket \sigma)$ $\alpha_{interval}(\{1\}) = [1,1]$ $\gamma_{interval}([1,1]) = \{1\}$ $\alpha_{interval}(\{3, 5, 7\}) = [3, 7]$ $\gamma_{interval}([3,7]) = \{3,4,5,6,7\}$ $\gamma_{even_odd}(odd) = \{\cdots, -3, -1, 1, 3, \cdots\}$ $\alpha_{even_odd}(\{3,5,7\}) = \mathbf{odd}$

Safety Requirement of Abstract Operators

• Soundness of abstract operators $p + q \supseteq \alpha(\{m + n \in \mathbb{Z} \mid m \in \gamma(p), n \in \gamma(q)\})$ $p - q \supseteq \alpha(\{m - n \in \mathbb{Z} \mid m \in \gamma(p), n \in \gamma(q)\})$ $p \times q \supseteq \alpha(\{m \times n \in \mathbb{Z} \mid m \in \gamma(p), n \in \gamma(q)\})$ For example,

 $[1,3] +_{interval}[4,5] \supseteq \alpha_{interval}(\{m+n | m \in \{1,2,3\} \land n \in \{4,5\}\})$

Safety Requirement of Abstract Operators in Proof Tree

Soundness proof of abstract operators

$$\begin{bmatrix} \mathbf{AP} \end{bmatrix} \quad \exists \nabla : \ \frac{\nabla}{(\mathsf{tr}(p, E_1) \land \mathsf{tr}(q, E_2))} \Rightarrow \ \mathsf{tr}(p\hat{+}q, E_1 + E_2) \\ \begin{bmatrix} \mathbf{AM} \end{bmatrix} \quad \exists \nabla : \ \frac{\nabla}{(\mathsf{tr}(p, E_1) \land \mathsf{tr}(q, E_2))} \Rightarrow \ \mathsf{tr}(p\hat{-}q, E_1 - E_2) \\ \begin{bmatrix} \mathbf{AT} \end{bmatrix} \quad \exists \nabla : \ \frac{\nabla}{(\mathsf{tr}(p, E_1) \land \mathsf{tr}(q, E_2))} \Rightarrow \ \mathsf{tr}(p\hat{\times}q, E_1 \times E_2) \\ \end{bmatrix}$$

Translation function tr(d,E) (1/2) tr : Vâlue × Expressions → Formulas It returns a formula indicating "the value of E is included in the meaning of d." For example, tr_{interval}([1,3], E) = 1 ≤ E ≤ 3 tr_{even_odd}(0dd, E) = ∃n : E = 2n + 1

An Example

```
 \begin{array}{l} \{x: [-1,2], y: [0,4]\} \\ \texttt{if } x + y = 0 \\ \texttt{then} \\ \{x: [-1,2], y: [0,4]\} \\ \texttt{x} := \texttt{x} + y \\ \{x: [-1,6], y: [0,4]\} \\ \texttt{else} \\ \{x: [-1,2], y: [0,4]\} \\ \texttt{x} := 0 \\ \{x: [0,0], y: [0,4]\} \\ \texttt{fi} \\ \{x: [-1,6], y: [0,4]\} \end{array}
```


$$\frac{1}{\begin{pmatrix} (-1 \le x \le 2) \land (0 \le y \le 4) \\ \land (x + y = 0) \\ \Rightarrow (-1 \le x \le 2) \land (0 \le y \le 4) \end{pmatrix}} \xrightarrow{\{ (-1 \le x \le 2) \\ \land (0 \le y \le 4) \} \times := x + y \{ (-1 \le x \le 6) \land (0 \le y \le 4) \\ \Rightarrow (-1 \le x \le 6) \land (0 \le y \le 4) \}}$$

$$\frac{\{ (-1 \le x \le 2) \land (0 \le y \le 4) \land (x + y = 0) \} x := x + y \{ (-1 \le x \le 6) \land (0 \le y \le 4) \}}{\{ (-1 \le x \le 2) \land (0 \le y \le 4) \} \text{ if } S \{ (-1 \le x \le 6) \land (0 \le y \le 4) \}}$$

$$\frac{(-1 \le x \le 2) \land (0 \le y \le 4) \} \text{ if } S \{ (-1 \le x \le 6) \land (0 \le y \le 4) \}}{\{ (-1 \le x \le 6) \land (0 \le y \le 4) \}}$$

$$\frac{(-1 \le x \le 2) \land (0 \le y \le 4) \} \text{ if } S \{ (-1 \le x \le 6) \land (0 \le y \le 4) \}}{\{ (-1 \le x \le 6) \land (0 \le y \le 4) \}}$$

Generic AI (full)

Second Example

```
 \begin{array}{l} \{x:[1,4],y:[2,5]\} \\ \texttt{if } x = y + 1 \\ \texttt{then} \\ \{x:[3,4],y:[2,3]\} \\ \texttt{x}:= \texttt{x} + y \\ \{x:[5,7],y:[2,3]\} \\ \texttt{else} \\ \{x:[1,4],y:[2,5]\} \\ \texttt{x}:= \texttt{x} + 1 \\ \{x:[2,5],y:[2,5]\} \\ \texttt{fi} \\ \{x:[2,7],y:[2,5]\} \end{array}
```

Proof tree for the example

Algorithm

Algorithm

• Proof construction T([s]C[s']) for an annotated program

$$\frac{:}{\{\mathsf{trst}(\hat{s})\} C \{\mathsf{trst}(\hat{s}')\}}$$

• Proof construction $\mathcal{E}(s, E)$ for an arithmetic expression E

$$\vdots \\ \mathsf{trst}(\hat{s}) \Rightarrow \mathsf{tr}(\llbracket E \rrbracket \hat{s}, E)$$

Proof construction *E_b* (s, a, E) for a backward arithmetic expression E

$$\frac{\cdot}{\operatorname{trst}(\hat{s}) \wedge \operatorname{tr}(a, E) \Rightarrow \operatorname{trst}(\llbracket E \rrbracket_b \hat{s} a)}$$

• Proof construction \mathcal{B}_b (s, B) for a boolean expression B

$$\frac{:}{\operatorname{trst}(\hat{s}) \land B \Rightarrow \operatorname{trst}(\llbracket B \rrbracket_b \hat{s})}$$

Backup Slides

Related Works

- PCC (Proof-Carrying Code) [Ne97]
 - Gaining safety certainty on mobile code
 - Focusing on proof checking
- Foundational PCC [App01]
 - Compensating PCC by reducing the trusted-bases
 - Limited for types

References

Ne97	George C. Necula. Proof-Carrying Code. In <i>Proceedings of The ACM</i> SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages, 106-119, 1997.
App01	Andrew W. Appel. Foundational proof-carrying code. In 16th Annual IEEE Symposium on Logic in Computer Science, June 2001.
HST+02	Nadeem Hamid, Zhong Shao, Valery Trifonov, Stefan Monier, and Zhaoshong Ni. A syntactic approach to foundational proof-carrying code. In <i>17th Annual IEEE Symposium on Logic in Computer Science</i> , June 2002.

Boolean Rewriting

tt	\triangleq	tt		\triangleq	ff
$\overline{\mathtt{f}\mathtt{f}}$	$\underline{\underline{\frown}}$	ff	$\overline{\neg \mathtt{f}\mathtt{f}}$	$\underline{\bigtriangleup}$	tt
$\overline{E_1 < E_2}$	$\underline{\bigtriangleup}$	$E_1 < E_2$	$\overline{\neg(E_1 < E_2)}$	$\underline{\bigtriangleup}$	$\overline{E_1 \ge E_2}$
$\overline{E_1 \le E_2}$	\triangleq	$(E_1 < E_2) \lor (E_1 = E_2)$	$\overline{\neg(E_1 \le E_2)}$	\triangleq	$\overline{E_1 > E_2}$
$\overline{E_1 = E_2}$	\triangleq	$E_1 = E_2$	$\overline{\neg(E_1 = E_2)}$	\triangleq	$\overline{E_1 <> E_2}$
$\overline{E_1 <> E_2}$	$\underline{\underline{\frown}}$	$(E_1 < E_2) \lor (E_1 > E_2)$	$\overline{\neg(E_1 <> E_2)}$	$\underline{\Delta}$	$E_1 = E_2$
$\overline{E_1 > E_2}$		$E_1 > E_2$	$\overline{\neg(E_1 > E_2)}$	$\underline{\underline{\frown}}$	$\overline{E_1 \le E_2}$
$\overline{E_1 \ge E_2}$	\triangleq	$(E_1 = E_2) \lor (E_1 > E_2)$	$\overline{\neg(E_1 \ge E_2)}$	\triangleq	$E_1 < E_2$
$\overline{B_1 \vee B_2}$	\triangleq	$B_1 \lor B_2$	$\overline{\neg(B_1 \lor B_2)}$	\triangleq	$\overline{\neg B_1} \land \overline{\neg B_2}$
$\overline{B_1 \wedge B_2}$	$\underline{\square}$	$B_1 \wedge B_2$	$\overline{\neg(B_1 \wedge B_2)}$	\triangleq	$\overline{\neg B_1} \vee \overline{\neg B_2}$
			$\overline{\neg(\neg B)}$	$\underline{\underline{\frown}}$	\overline{B}

Proof Construction f(s)C(s') (cont.) $Case A \equiv [\hat{s}]([inv \hat{s}_{0}]while B do [\hat{s}_{1}]R_{1}[\hat{s}'_{1}] od)[\hat{s}']$ $\frac{B_{b}(\hat{s}_{0}, B) - f([\hat{s}_{1}]R_{1}[\hat{s}'_{1}] \mod S(\hat{s}'_{1}, \hat{s}_{0})}{[trst(\hat{s}_{0}) \land B] \overline{R_{1}}[trst(\hat{s}_{0})]} \bigoplus B_{b}(\hat{s}_{0}, \neg B)} B_{b}(\hat{s}_{0}, \neg B)$ $ronSt(\hat{s}, \hat{s}_{0}) \frac{f(\hat{s}_{1})R_{1}(\hat{s}_{1}) \mod S(\hat{s}'_{1}, \hat{s}_{0})}{[trst(\hat{s})] while B do \overline{R_{1}} od \{trst(\hat{s}_{0}) \land \neg B\}} B_{b}(\hat{s}_{0}, \neg B)}$ $Case A \equiv [\hat{s}]A_{1}; A_{2}[\hat{s}']$ $\frac{f(A_{1}) - f(A_{2})}{[trst(\hat{s})]\overline{A_{1}}; \overline{A_{2}}[trst(\hat{s}')]}$