PL Lab
7\" LiComR 2003
Language-based
Information-Flow Security
2003. 08. 19
=
ey]
. confidentiality
security policies specify enforce

programming language

formal semantics
- static analysis

2003-08-19 LiComR2003: Language-Based
Information-Flow Security

PL Lab

> HYU
. Access Control
. Firewalls
. Encryption
e Antivirus Software
2003-08-19 LiComR2003: Language-Based
Information-Flow Security
PL Lab
HYU

A

Information-Flow Security

information flow

2003-08-19 LiComR2003: Language-Based
Information-Flow Security

PL Lab
HYU
11 1 I?

Secure Information-Flow

[]
. noninterference
2003-08-19 LiComR2003: Language-Based 5

Information-Flow Security

}\o Information Leaks

h: ()

| : ()
J explicit flow

@“‘@
. implicit flow

h = h mod 2;

| = 0;

_ _/Qoetnane0a080no0nceoanes [

it == then(l)= 1

else skip
2003-08-19 LiComR2003: Language-Based 6

Information-Flow Security

7\-/ dynamic

input
program —— + ———— output
insecure!?!
2003-08-19 LiComR2003: Language-Based 7

Information-Flow Security

PL Lab

7\, Mandatory Access Control

Fenton, Bell-LaPadula

- ()

process sensitivity label

- : implicit flow
[label creep = monotonically increasing labels]
Too restrictive to be practical

2003-08-19 LiComR2003: Language-Based 8
Information-Flow Security

. PL Lab
7& static

— Static Certification

o static
analysis
input
program —— -, secure | — output
program
insecure!?!
2003-08-19 LiComR2003: Language-Based 9

Information-Flow Security

. PL Lab
7& static

— Static Certification

. ?

- soundness
. ?

¢ Type Systems

Control- and Data-Flow Analysis (Flow Logic)
Abstract Interpretation

Model Checking

2003-08-19 LiComR2003: Language-Based 10
Information-Flow Security

A

Semantics-based Security

. soundness ?

- secure
insecure , insecure
secure

. soundness ?
- noninterference

formal semantics ()

2003-08-19 LiComR2003: Language-Based
Information-Flow Security

11

PL Lab
HYU

A

Noninterference

state : s=(s,S) €S
meaning : [[C]]: S - S,
* low input equivalence
s= s iff §=¢
* low output (behavioral) equivalence
S~ S
iff they are indistinguishable to the attacker
* noninterference
C issecureiff

Vs$, €S 8 = 8 = [[Cll s~ [[Cl] 5,

2003-08-19 LiComR2003: Language-Based
Information-Flow Security

12

PL Lab
HYU

PL Lab
% HYU
. Sy high, low }
input
program —— Secure-type | secure - output
System program
type error
insecure!?!
2003-08-19 LiComR2003: Language-Based 13
Information-Flow Security
PL Lab
% HYU
security-type system
[E1] [E2]
Syntax : oo high h e Vars.(exp)
C :=var:=exp | skip | C;; C, exp : low
| if exp then C, else C, | [C1] [CT] [high] C
i C ski e
| while exp do C [pc] 1p llow] c
C2 C3 C4
2] S epiiow g, g o
[pc] h=exp
low] |=exp [pc] G5 G
[C3] [Cé6]
exp : pc [pc] C expipc [pc] G [pc] G
[pc] while exp do C [pc] if exp then C, else C,
2003-08-19 LiComR2003: Language-Based 14

Information-Flow Security

PL Lab

HYU
h ¢ Vars(l - 5)
[E2]
[-5:1
[C2] ow [C3]
= | I=1-5
[low] h=1+4 [low] (ca]
[low] h=l+4;1=1-5
[E1] [C2] [C1]
h==1 : high [high] h=h+4 [high] skip
[C6]
[high] if h==1 then h=h+ 4 else skip
2003-08-19 LiComR2003: Language-Based 15
Information-Flow Security
PL Lab
HYU
h :=tew-
[C3]
[low] I=h
[E1] [C1]
h=1 : high [high] ===+ [high] skip
[C6]
[high] if h==1 then |=1 else skip
2003-08-19 LiComR2003: Language-Based 16

Information-Flow Security

Research Trends

Enriching Language Expressiveness
Exploring Concurrency

Analyzing Covert Channels

Refining Security Policies

2003-08-19 LiComR2003: Language-Based 17
Information-Flow Security

Language Expressiveness

» Security type systems
— a while language with 1t order procedures

— a functional language with first-class functions
(SLam calculus)

— a first-class continuation, state and references
— exceptions
— objects (JFlow)

2003-08-19 LiComR2003: Language-Based 18
Information-Flow Security

Nondeterminism

» the observable behavior of a program is the set of its
possible results
» Possibilistic generalizations of noninterference
* Example:
h = h mod 2;
(t=hij@=011=1)

the final value of | revealsthe least significant bit of h with the
probability 0.5+ 0.5* 0.5=0.75

» Solutions:
— Analysis tracking dependencies between variables

— Leino-Joshi’'s approach based on equational security condition
— Sabelfeld-Sands generalizes it using PERs

2003-08-19 LiComR2003: Language-Based 19
Information-Flow Security

Concurrency

» Multithreaded programs on a single processor
Thread 1 Thread 2

h=0; h=h;
| =h;
» Timing- and probability-sensitive security
(if h==1then C,, elseskip); =1 || I=0)
needs schedul er-independent security
» Concurrent languages with secure type systems

2003-08-19 LiComR2003: Language-Based 20
Information-Flow Security

7\~ Covert Channels

- implicit flow

- termination channels

- timing channels

- probability channels

- resource exhaustion channels
- power channels

2003-08-19 LiComR2003: Language-Based 21
Information-Flow Security

PL Lab
7L Termination Channels

while (h==1) skip ;
* Termination-sensitive noninterference
C issecureiff

Vs1$, €S s = 8 =[[Cl] s~ [[C]] 5
where S x| S iff either 55 €S s =S
or s=s =1
» Solution

— Disallows high loops
— Requires high conditionals have no loops in the branches

2003-08-19 LiComR2003: Language-Based 22
Information-Flow Security

7\~ Timing Channels

(if h==1then C,, elseskip); =1 || I=0)
e Timing-sensitive noninterference
C issecureiff

Vs$, €S s 5 5 = [[Cl] % [[Cl] s,
where S & s iff both diverge or both terminatein the
same number of execution stepsin low-equal final states
A Solution

— Requires high conditionals have no loops in the branches

— Wraps each high conditional in a protect statement whose execution is
atomic

Another Solution
— Closes timing leaks by program transformation

2003-08-19 LiComR2003: Language-Based 23
Information-Flow Security

7\, Security Policies

» Decentralized Model
— Selective declassification of security labels is permitted
« Spi Calculus
— a calculus of cryptographic protocols
— Type systems that guarantee confidentiality (Abadi)

2003-08-19 LiComR2003: Language-Based 24
Information-Flow Security

PL Lab
HYU

Future Directions

» system-wide security
— +

 certifying compilation (in the Trusted Computed Base)
— Java bytecode verification

typed assembly language

proof-carrying code

— Security-type inference system
- precision

2003-08-19 LiComR2003: Language-Based 25
Information-Flow Security

PL Lab
HYU

Discussions

