
1. Introduction

Software and its integration with the

hardware are playing a very important

role in embedded systems. So, they

become one of the most important costs.

Because of this reason, recent design

flows help the designers start with good

functional and implementation-independent

specifications of the systems so that many

heterogeneous systems can be used with

their software. However, implementing

software or integration with hardware is

not that simple. Shared resources such as

a processor and memory have to be

논문‧
을 사용한 임베디드 시스템의 스케쥴링Petri Net

(Scheduling of Embedded System Using a Petri Net)

이태용

한국전자통신연구원 이동통신연구단 무선시스템연구그룹

휴대인터넷 시스템 연구팀

grasshopper@etri.re.kr

요 약

Embedded systems specification usually has both data computation and control structures.
Control structure can be two types. One is data dependent control and the other is real time
control. The first one can be easily solved because it is involved with only one task and its
behavior is very obvious. The problem is the second case. We must use some sophisticated
techniques to resolve concurrent behavior of tasks.
To solve the second problem, these tasks require to be scheduled on a shared resource such

as processor and memory. This scheduling is mainly based on the system specification. To
simulate dynamic behaviors of system, it is very difficult to predict these behaviors because
these behaviors have to be determined at compile time and decisions have to be made at run
time. In other words, scheduling must be efficiently made while pleasing real time constraints
and using the processor and memory resources as efficiently as possible. Therefore,
Quasi-static scheduling algorithm is used to solve these problems.

precisely controlled. Here scheduling takes

places to control these resources.

There are three types of scheduling to

consider. The first is called a static

scheduling technique. This static

scheduling technique is used when a

single task is running. This technique is

considered to be the simplest one because

the next schedules are predictable. Another

one is a quasi-static scheduling technique

used when the specification has only data

dependent control in addition to data

computation. In data dependent control, the

schedules can be revealed at compile time

while computing data. The third one is

dynamic scheduling technique. This is

used when the specification has also real

time controls. Real time controls heavily

depend on the external information.

Therefore, it is not predictable.

The first one can be easily solved

because it is involved with only one task

and its behavior is very obvious. The

problem is the second and third case. But

only the second one will be considered in

this paper. The quasi-static scheduling

must use some sophisticated techniques to

resolve concurrent behavior of tasks.

Therefore, I will explain clearly how to

use Quasi-static scheduling (QSS)

algorithm that is a proposed solution for

this problem, and will explain on other

possible solutions on this case. This

Quasi-static scheduling algorithm uses

Free Choice Petri Nets (FCPNs).

Several techniques for this problem have

been proposed. Buck and Lee [3] have

introduced a technique called the Boolean

Data Flow (BDF) networks model and

explained a new algorithm for computing a

quasi-static schedule. Thoen et al. [2]

proposed another technique that uses static

information. Lin [4] proposed another

algorithm that creates a software program

from a concurrent process specification.

These three will be explained in the next

2. Buck and Lee (Boolean Data Flow

Networks Model)

Buck and Lee explained about an

analytical model of the behavior in data

flow graphs using data-dependent control

flow [3].

They used Tagged-token data flow

machines that were created to overcome

some of the problems in static data flow

machines. Figure l.4 shows the static data

flow machines. [3]

Figure 1.4 A simple model of a processing

element for a static data flow machine

The goal of static data flow machines is

to help the execution of loop iterations and

function/procedure invocations concurrently.

To make this thing work, data values are

carried by tokens that include a three-part

tag. The first field of the tag contains the

context, according to the current procedure

call. The second field of the tag contains

the iteration number that is used when

loop iterations are executed concurrently.

The third field contains the information

about activity, according to the appropriate

node in the data flow graph. [3]

This scheduling technique has some

shortcomings. Boolean Data Flow

Networks Model with bounded memory

cannot be decided. Any algorithm may fail

even though the Boolean Data Flow

Networks Model is schedulable. Therefore,

this algorithm proposed by Buck and Lee

can solve problems in special cases. [1]

3. Thoen

This technique uses static information

from the specification and finds statically

schedulable groups of threads from a

constraint graph description of the system.

The problem of this technique is that this

technique does not depend on a formal

model and does not describe the problems

about evaluating whether or not the

specification is schedulable. [2]

4. Lin

This algorithm creates a software

program from a concurrent process

specification using a Petri-Nets

representation [4]. This algorithm is used

on the assumption that the Petri-Nets is

reliable. This means buffer can only store

one data at a time. This algorithm

guarantees algorithm termination. Also it

guarantees handling multi-rate

specifications.

The best aspect of this algorithm is that

it always guarantees scheduling for the

models. However, this approach did not

include the possibility of the Petri-Nets

where source and sink transitions are

modeling the interaction with the

environment. For this reason, this

algorithm cannot specify inputs with

independent rates.

5. Sgroi

From here, a new algorithm will be

considered, proposed by Sgroi [1]. This

algorithm takes a Petri Nets model for the

inputs and produces outputs as a software

implementation that has a set of software

tasks. This set of software tasks is called

at run-time by Real-Time Operation

System (RTOS) [1].In order to find out

tasks and synthesize the code for each

task, it is important to consider the parts

of specification with data computation and

data-dependent control. And then

quasi-static schedule will be computed.

6. Petri-Nets

Sgroi chose a Petri-Nets as base formal

model. The reason is that Petri-Nets can

express concurrency, non-deterministic

choice, synchronization and causality [1].

Another reason is that most properties as

well as schedulability can be determined

for Petri-Nets. Data computations are

represented as a type of nodes (places)

and non-FIFO channels between

computations units are represented as

another type of nodes. Data-Dependent

control is modeled by choice, which is

nothing but just places, with several

output exchanges, one for every possible

solution for the control. Data are modeled

as tokens passed by transitions through

places [1].

A Petri-Net is a triple (P, T, F),

where P is a non empty finite set of

places, T a non-empty finite set of

transitions. A Petri-Net graph is a

representation of a Petri-Net as a bipartite

weighted directed graph. [1]

7. Free Choice Petri-Nets

Sgroi suggested a notation of shedulability

for Free Choice Petri-Nets. A Free Choice

Petri-Nets is quasi-statically schedulable

when there is a cyclic finite sequence that

produces the tokens of the net to their

initial places for every possible solution of

the control at the choice places [1]. Sgroi

suggest an algorithm that first evaluates

schedulability of the net to find out

whether or not the specification is correct.

If the net is schedulable, this algorithm

calculates a quasi-static schedule by

splitting the net into schedulable

sub-components. After that, this algorithm

provides a software implementation by go

over the schedule and switching

transitions with the appropriate code.

Figure 2 shows Free Choice Net and not

Free Choice Net.

Figure 2: Free Choice Net (A), Not Free

Choice Net (B)

8. Quasi-static Scheduling of Free

Choice Petri-Nets

Definition 1.1: Definition of schedulability　

Definition 1.2: Definition of valid schedule

This definition of schedulablitiy can be

extended to non-static Data Flow

networks. When the net contains

non-deterministic choices that model data

dependent structures like if-then-else or

while-do, a valid schedule is a set of

finite complete cycles, one for every

solution of non-deterministic choices.

Shedulability also includes a meaning that

the existence of at least one valid

schedule that make sure there is no

unbounded accumulation of tokens in any

place

Figure 3: Schedulable (A) and not

Schedulable (B) Free Choice Petri-Nets

In order to find a valid schedule, it is

necessary to find a valid group of finite

complete cycles that net is first split into

as many conflict free sub-components as

the number of possible resolutions for the

non-deterministic places. Now, each of the

sub-components is to be scheduled

statically. When all the components are

schedulable, a valid schedule is a set of

the finite complete cycle. If only one

sub-component is not schedulable, then

the whole net is not schedulable. The

next figure 3 shows the Schedulable and

not schedulable Free Choice Petri-Nets.

F(s) in A) is a(1,1,0,1,0) + b(1,0,1,0,1),

where a, b = 0, 1, 2 while F(s) in B)…

is (2,1,1,1) which is valid, (2,2,0,1) which

is unbounded, and (2,0,2,1) which is also

unbounded.

The benefits of using this technique are

explained below. First, Quasi-Static

Scheduling minimizes the execution

runtime overhead much more than

dynamic scheduling does, since it finishes

a lot of work at compile time. And then,

schedulability is decidable due to the

computation model of Free-Choice

Petri-Nets. Finally, it is quite easy to

create a complete algorithm to solve the

scheduling problem for any Petr-Net that

is quasi-statically schedulable.

9. Conclusion

In this paper, several techniques are

presented for scheduling of embedded

system using a Petri Nets. As I

mentioned in the beginning, there are three

types of scheduling to be considered. But

only the quasi-static scheduling technique

was considered in this paper. And then,

some sophisticated techniques were

presented to resolve concurrent behavior of

tasks.

Four different techniques are explained.

One is Buck and Lee's Boolean Data Flow

Networks Model. The second one is

proposed by Thoen. The third one is

proposed by Lin. Sgroi suggested another

techniques using Free Choice Petri-Nets.

Each of these techniques has cons and

pros but I personally like the solution

suggested by Sgroi. Again, finding

solutions for quasi-static scheduling is an

important problem in this field. I believe

using Petri-Nets is very important to find

these solutions because determining

whether the net is schedulable can be

clearly revealed only with a tool like

Petri-Nets and . After that, Petri-Nets can

also help to schedule each component

correctly. Therefore, using a Petri Nets is

one of the best solutions for scheduling of

Embedded System.

감사의 글

이 논문을 적는데 많은 도움을 주신 아래 참

고문헌에 기재된 모든 분들께 감사의 말씀을

드립니다.

참고문헌

[1] M. Sgroiy. Synthesis of Embedded

Software Using Free-Choice Petri Nets.

UC Berkeley, 1999

[2] F. Theoen et al. Real-time

multi-tasking in software synthesis for

information processing systems. In

Proceedings of the International System

Synthesis Symposium, 1995.

[3] J. Buck. Scheduling dynamic data flow

graphs with bounded memory using the

token flow model. Ph. D dissertation. UC

Berkeley, 1993.

[4] B.Lin. Software synthesis of

process-based concurrent programs. In

Proceedings of the Design Automation

Conference, Jun 1998.

이태용

년 년1997 ~2001 Southern Illinois University

학사Computer Science, US ().

년 년2001 ~2002 Dept. of Parks, St. Louis,

US, (Web search engine programmer).

년 년2002 ~2004 Southern Illinois University

석사Computer Science, US ().

년 현재 한국전자통신연구원 이동통신연2004 ~

구단 무선시스템연구그룹 휴대인터넷시스템

연구팀소속 연구원

관심분야는 Network Traffic Engineering,

MPLS (Mulitprotocol Label Switching),

Petri-Net, Internet Quality of Service,

OFDMA, CDMA

