
Set-Based Access Conicts Analysis of Structured Workow

De�nition Language

Minkyu Lee, Dongsoo Han and Jaeyong Shim

School of Engineering, Information and Communications University,

58-4 Hwaam, Yusong, Daejon, Korea

Abstract

An error-comprising workow de�nition might provoke serious problems to an enterprise especially

when it is involved with mission critical business processes. Concurrency of workow processes is known
as one of the major sources causing such an invalid workow process de�nition. So the conicts caused
by concurrent workow processes should be considered deliberately when de�ning concurrent workow

processes. However it is very diÆcult to ascertain whether a workow process is free from conicts or
not without any experimental executions at runtime. Which will be very tedious and time consuming
work to process designers. If we can analyze the conicts immanent in concurrent workow de�nition

prior to runtime, it will be very helpful to business process designers and many other users of workow
management system. In this paper, we propose a set-based constraint system to analyze possible read-

write conicts and write-write conicts between activities which reads and writes to the shared variables

in a workow process de�nition. The system is composed of two phases. In the �rst phase, it generates
set constraints from a structured workow de�nition. In the second phase, it �nds the minimal solution
of the set constraints.

1 Introduction

A workow is a collection of cooperating, coordinated activities designed to carry out a well-de�ned complex
process, such as trip planning, insurance claiming, health care business processes[5]. An activity in workow
could be performed either by a human, a device, or a program. Workow management system (WFMS) is
a software system which provides tools to de�ne workow processes and enactment services to create and
manage the execution of workows.

Once a workow is invoked in WFMS, the activities are executed along the control paths and data ow
information in the process de�nition. Several activities can be in active state in a concurrent workow
process. We call them concurrent activities in this paper. Concurrent activities may access the shared data
in any order because their order of accessing is situation dependent. But the non-deterministic access of
concurrent activities to shared data may bring unexpected result from the workow execution. The following
race problems can be considered from the execution of concurrent activities :

1. read-write conict is a situation when an activity A tries to read data from a shared variable x and an
activity B tries to write data to the same shared variable x where A and B are concurrent activities
and vice versa.

2. write-write conict is a situation when an activity A tries to write data to a shared variable x and an
activity B also tries to write data to a shared variable x where A and B are concurrent activities.

Above race conditions are diÆcult to be detected when the workow process is in execution state and can
result in serious problems to business critical processes. Thus such access conict-comprising de�nitions
should be eliminated or cleared completely before the real execution of the processes. When designing
relatively small workow processes, such de�nitions might be avoided by careful designing of the processes.
However when the workow processes get complicated, it is not enough to leave all the responsibilities for

w ::= 0 (inert task)
j (w) (priority)
j task t(p1; :::; pn) (task execution)

j w0 ; w1 (sequential composition)
j w0 k w1 (concurrent composition)
j if-then w0 else w1 (branch)

j while-do w (loop)
p ::= in x (input parameter)

j out x (output parameter)

Figure 1: Abstract Syntax of SWDL

the access conict free de�nitions to only workow designers. More systematic ways to detect the conicts
from the de�nitions and to notify them to the designers are required.

Many researches to analyze race conditions have been performed in programming language research
communities. War-lock[10] is a static race detection system for ANSI C programs and Eraser[11] is a tool for
detecting race conditions and deadlocks dynamically. Aiken and Gay[1] studied statc race detection in the
context of SPMD(Single Program Multiple Data) style programs, and Flanagan and Freund[3] presented a
static race detection analysis technique for multithreaded Java programs. In while these researches have been
done in the context of programming languages, our analysis has done in di�erent approach in the context
workow.

In this paper, we propose a set-based access conict analysis method to detect all the possible access
conicts prior to the execution of workow process. We de�ne a small target workow de�nition language
for the description of the method focusing on the language. But the method can be easily extended to
the general workow de�nition languages like WPDL(Workow De�nition Language)[12]. The method is
composed of two phases. In the �rst phase, it generates set constraints from a structured workow de�nition.
In the second phase, it solves the set constraints obtained from the �rst phase.

This paper is organized as follows. In Section 2, we introduce a simple workow de�nition language that
is used as target language of the analysis. Section 3 presents details of the analysis method with illustrations.
Finally, in Section 4, we draw conclusion and future work.

2 Structured Workow De�nition Language

We de�ne a simple workow de�nition language, named SWDL(Structured Workow De�nition Language),
as target language for the succinct and clear description of our access conicts analysis method. Figure 1
shows abstract syntax of SWDL. The SWDL only contains the features that are necessary to express control
ow and data ow of a workow process because they contain enough information to analyze the access
conicts of a language. The semantics of each feature are described as follows:

� \0" : Inert workow process.

� \(w)" : This is used only to bundle up.

� \task t(p1; :::; pn)" : This means the execution of a task named t. The task may have zero or more
parameters. Each parameter is either input parameter, denoted by in, or output parameter, denoted by
out. The semantics of execution is that the task reads all the input parameters from shared database
by pass-by-value manner and evaluates the task with the parameters and then replaces the shared
data with the output parameters of the evaluated task. The pass-by-value parameter passing is more
reasonable than pass-by-reference in two reasons. The �rst reason is that recent workow management
systems are implemented in concerning with mobile environment. In mobile environment, each actor is
mobile so the actor may be disconnected to workow management system[4]. To perform the activity
in disconnected state, all the input values should be copied to the disconnected activity site before the
activity to be started. The second reason is that the activities may be distributed in di�erent locations.

and-split and-join

A

B(out x) C(in x)

D E(out x) F

G H

Figure 2: An example of workow de�nition

We cannot assume that each activity is always in connected state with other activities because network
bandwidth is amenable to change and the connections are not stable. Input parameters of an activity
may not delivered in time during the processing of the activity. Thus, the assumption that all the
input parameters are prepared by call-by-value mechanism before an activity starts its work is more
reasonable.

� \w0 ; w1" : Two workow processes w0 and w1 are executed sequentially. So w1 starts its execution
after the end of w0.

� \w0 k w1" : Two workow processes w0 and w1 are executed concurrently in interleaved manner. So
race conditions may occur between w0 and w1.

� \if-then w0 else w1" : This is the same control structure as if-then-else statement in programming
languages. One of the two workow processes w0 and w1 are selected and executed. Condition
expression to determine which one is selected is omitted in SWDL language because the selection is
not necessarily required in our analysis.

� \while-do w" : Workow process w is executed repetitively. Repetition condition is omitted because
of the same reason as the above item.

Note that data ow of workow process is not explicitly de�ned but implicitly included in SWDL. It is
obvious that the features of SWDL are not suÆcient but most features necessary to analyze access conicts
between activities are included in the SWDL speci�cations.

The control structure of SWDL is similar to that of structured programming languages such as C and
Pascal. So it can de�ne structured control ow of a workow process. Structured workow process de�nition
has two advantages over WPDL[12]-standard workow speci�cation languages in which activities and control
ow among them are de�ned in separate manner.

1. Syntax-level prevention of invalid de�nition: Structured de�nition of workow process is very useful in
preventing various invalid workow de�nitions by syntax-level grammar checking. Isolated activities
and transitions from outer-loop into inner-loop are the examples of invalid de�nitions. Some of invalid
de�nitions can be forced not be de�ned in SWDL and some of them can be checked during the parsing
phase.

2. Readibility : De�ning activities and transitions among them in separate manner like WPDL makes it
very diÆcult for one to read the ow of process directly from the process de�nition. Since control
structure of SWDL-like the approach of [2] is similar to that of popular structured programming
languages such as C and Pascal, it is more friendly to users and users can grasp the control ow of the
process more easily.

Figure 2 shows a simple workow process de�nition. Activity name is written in upper case letters and
shared variable is written in lower case letters. After activity A is executed, (B;C) and (D;E;F) are
executed concurrently and then G and H are executed sequentially. Activity B and activity E write to the
variable x and activity C reads the value of the variable x. This workow process is represented in SWDL
as follows:

A ; (B(out x) ; C(in x) k D ; E(out x) ; F) ; G ; H

[Null] 0� � [Pri]
w � C

(w)� C

[Task]

task x(in i1; � � � ; in in;out o1; � � � ;out om)�

fX � taskR(x; i1); � � � ;X � taskR(x; in);
X � taskW (x; o1); � � � ;X � taskW (x; om)g

[Seq]
w0 � C0 w1 � C1

w0;w1 � fX � Xw0
;X � Xw1

g [C0 [C1

[Par]
w0 � C0 w1 � C1

w0kw1 � fX � Xw0
;X � Xw1

;X � par(Xw0
;Xw1

)g [C0 [C1

[While]
w � C

while-do w � fX � Xwg [C

[If]
w0 � C0 w1 � C1

if-then w0 else w1 � fX � Xw0
;X � Xw1

g [C0 [C1

Figure 3: Constraint Generation Rules : �

3 Access Conict Analysis

In workow process de�nition presented in Figure 2, (B;C) and (D;E;F) may be executed concurrently and
they may access the shared variable x. In this case, two access conicts can be provoked. The �rst access
conict is write-write conict caused by B, E. The second access conict is read-write conict caused by C
and E.

To analyze all the possible conicts, we adopt set constraint system that is used to analyze runtime
features of programming languages[8][9][6][7]. The method consists of two phases. In the �rst phase, it
generates set constraints from the source and in the second phase, it �nds the minimal solution from the
set constraints generated at the �rst phase. In our analysis, every workow expression w of input workow
process de�nition has set constraints Xw � se. The set variable X is used to collect(represent) w's possible
access conicts. For example, suppose that (A k B ; C) is an input workow, every workow expression A,
B, C, B ; C, (A k B ; C) has its own set variables Xa, Xb, Xc, Xbc, Xabc respectively. Finally, Xabc will have
all the possible conicts of the input workow. Each set constraint is in the form of X � se where se is a
set expression. The meaning of set constraint X � se is intuitive: that is, set X contains the set represented
by the set expression se.

In the next subsection, we present how to generate set constraints from an input workow de�nition and
then show how to solve the set constraints with an example.

3.1 Construction of Set Constraints

Figure 3 shows the rules to generate set constraints for every workow expression. The set variable X is
for the current workow expression to which the rule applies and the subscripted set variable Xw is for the
workow expression w. The relation \w � C" represents that \constraints C are generated from workow
expression w."

Every workow expression of workow de�nition presented in Figure 2 is underlined and labeled. Each
label will be used as subscript of its set variable.

A
a
; (B(out x)

b
; C(in x)

c
bc

k D
d
; E(out x)

e
; F

f
ef

df

)

bf

; G
g
; H

h
gh

bh
ah

Set constraints for this example generated by � is presented in Figure 4 and the expected result is the
minimal set which satis�es all the constraints.

Xah � Xa Xah � Xbh

Xbh � Xbf Xbh � Xgh

Xbf � Xbc Xbf � Xdf Xbf � par(Xbc;Xdf)

Xgh � Xg Xgh � Xh

Xbc � Xb Xbc � Xc

Xdf � Xd Xdf � Xef

Xef � Xe Xef � Xf

Xb � taskW (B;x) Xc � taskR(C;x) Xe � taskW (E;x)

Figure 4: Set Constraints Generated by �

3.2 Solving Set Constraints

In the previous subsection we showed how to generate set constraints. In this subsection we present how to
compute the solution from the set constraints. To solve the set constraints we introduce constraint solving
rules S, which is presented in Figure 5. Each rule in S is written in the following way:

C1 � � � Cn

C1 � � � Cm

Using this notation, one or more set constraints already contained are written above a bar and new set
constraints are written below the bar. The structure states that if set constraints are found in written above
a bar then add the new set constraints to the set of constraints.

The minimum solution is computed by iterative application of constraint solving rules S to set of con-
straints C and the iterative application is denoted by S

�(C). Although S
�(C) certainly denotes the solution,

we can have more concise solution by eliminating unnecessary and redundant constraints. Final result is in
the followings:

fX � conflictRW (s; t; x) j X � conflictRW (s; t; x) 2 S
�(C)g

[fX � conflictWW (s; t; x) j X � conflictWW (s; t; x) 2 S
�(C)g

If C is same as Figure 4 then the �nal result becomes:

fXah � conflictRW (C;E; x);Xah � conflictWW (B;E; x)g

The time complexity of the algorithm to estimate access conicts is O(n3) where n is the size of input
workow expression. The O(n3) bound is derived based on the following observations. First, the construction
of constraints is proportional to the n. So the time complexity becomes O(n). Second, at most n2 new con-
straints can be added by the constraints solving algorithm, and the cost of \adding" each new constraint(i.e.
determining what other new constraints need to be added, given this constraint is added) is bounded by
O(n). Thus, the sum of the �rst and the second phase becomes O(n) +O(n3) = O(n3).

4 Conclusion and Future Work

We presented a set-based method to detect all possible access conict situations in a workow process
de�nition before runtime. The method consists of two phases: set constraint generation phase and set
constraint solving phase. We also proposed a workow de�nition language, named SWDL, for the e�ective
description of the method. Although SWDL is lack of many features to become a general purpose workow
de�nition language, it has suÆcient features to analyze access conicts in concurrent workow de�nition.
Thus we expect that the method developed in this paper can be applied to general purpose workow de�nition
languages fairly easily.

Our method is to predict the access conicts among concurrent activities in a workow instance not
those of inter-workow instances. Actually in workow management system, the situation where multiple
instances of workow processes try to access shared data simultaneously can happen. So the access conicts
happening between multiple instances also must be considered. It seems to be inherently the same problem

X � Y Y � taskR(t; x)

X � taskR(t; x)

X � Y Y � taskW (t; x)

X � taskW (t; x)

X � par(Y;Z) Y � par(V;W)

X � par(V;Z);X � par(W;Z)

X � par(Y;Z) Z � par(V;W)

X � par(Y;V);X � par(Y;W)

X � par(Y;Z) Y � taskR(s; x) Z � taskW (t; x)

X � conflictRW (s; t; x)

X � par(Y;Z) Y � taskW (s; x) Z � taskR(t; x)

X � conflictRW (s; t; x)

X � par(Y;Z) Y � taskW (s; x) Z � taskW (t; x)

X � conflictWW (s; t; x)

X � Y Y � conflictRW (s; t; x)

X � conflictRW (s; t; x)

X � Y Y � conflictWW (s; t; x)

X � conflictWW (s; t; x)

Figure 5: Constraint Solving Rules : S

as that we have dealt with in this paper. But more in-depth analysis is required to be convinced and to solve
such a problem.

The other direction of our research is to generate new conict free workow process de�nition automat-
ically using the obtained conict information from our analysis. One possible approach is simply to put
lock and unlock operation on shared variables in the front and rear of activities which may conict. Such
approach can free business process designers from the concerning of provoking access conicts when de�ning
workow processes.

References

[1] A. Aiken and D. Gay, \Barrier inference," Proceeding of the 25th Symposium on Principles of Program-
ming Languages, pages 243-354, 1998.

[2] C. Dengi and S. Neftci, \Dow Workow Management System," Proceedings of 8th International Work-
shop on Database and Expert Systems Applications, 1997.

[3] C. Flanagan and S. Freund, \Type-Based Race Detection for Java," Proceedings of ACM Conference
on Programming Language Design and Implementation, June, 2000.

[4] G. Alonso, R. Gunthor, M. Kamath, D. Agrawal, A. El Abbadi and C. Mohan, \Exotica/FMDC:
Handling Disconnected Clients in a Workow Management System," 3rd International Conference on
Cooperative Information Systems, Vienna, May 1995.

[5] H. Davulcu, M. Kifer, C.R. Ramakrishnan, and I.V.Ramakrishnan, \Logic based modeling and analysis
of workows," In ACM Symposium on Principles of Database Systems, June, 1998.

[6] K. Yi and B. Chang, \Exception Analysis for Java," ECOOP'99 Workshop on Formal Techniques for
Java Programs, June, 1999.

[7] K. Yi and S. Ryu, \A Cost-e�ective Estimation of Uncaught Exceptions in SML Programs," Theoretical
Computer Science, Vol. 273, No. 1, 2000.

[8] N. Heintze, \Set Based Program Analysis," Ph.D.thesis, School of Computer Science, Carnegie Mellon
University, October 1992.

[9] N. Heintze, \Set Based Analysis of ML Programs," Carnegie Mellon University Technical Report CMU-
CS-93-193, July 1993.

[10] N. Sterling, \A static data race analysis tool," In USENIX Winter Technical Conference, pages 97-106,
1993.

[11] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson, \Eraser: A dynamic data race
detector for multi-threaded programs," ACM Transactions no Computer Systems, 15(4):391-411, 1997.

[12] Workow Management Coalition, \Interface 1: Process De�nition Interchange Process Model," Docu-
ment Number WfMC TC-1016-P, October 29, 1999.

