
1

'99 정보과학회튜토리얼 1

자바언어를위한정적분석
(Static Analyses for Java)

‘99한국정보과학회가을학술발표회튜토리얼

1999. 10. 23

창병모

숙명여대전산학과

http://cs.sookmyung.ac.kr/~chang

'99 정보과학회튜토리얼 2

목차

• Java Overview

• Why static analyses ?

• Static analyses
– Class analysis
– Exception analysis
– Escape analysis

• Conclusions

2

'99 정보과학회튜토리얼 3

Java overview

• Object oriented
– classes (single inheritance)
– object types (interfaces)
– objects

• C-like syntax

• Static typing

– type soundness by Eisenbach in ECOOP’97

– by Nipkow in ACM POPL’98

'99 정보과학회튜토리얼 4

Java overview

• Dynamic binding
– inheritance and overriding
– class analysis (object type inference)

• Exception handling

– uncaught exception analysis

• Automatic memory management

– escape analysis

• Concurrency

3

'99 정보과학회튜토리얼 5

Why Static Analyses for Java

• Class analysis

– for call graph and fast method dispatch in compiler

• Exception analysis

– for verification and programming environments

• Escape analysis

– for efficient memory management and

synchronization optimization

'99 정보과학회튜토리얼 6

Higher-order CFA and
Class Analyses

4

'99 정보과학회튜토리얼 7

Higher-order Flow Analysis

• Call graphs
– Many program analyses rely on a call-graph.

– There is an edge (f,g) if function f calls function g.

– Call graphs are easy to compute in FORTRAN.

• Not so easy in higher-order languages

– functional (ML)

– object-oriented (Java, C++)

– pointer-based (C)

'99 정보과학회튜토리얼 8

Higher-order Flow Analysis

• In a functional language

e1 e2 closure analysis [Shivers88]

• In an object oriented language

e.m() class analysis

• In a pointer language

(*p)() pointer analysis

• In each case it is unclear which function is called.

5

'99 정보과학회튜토리얼 9

Class Analyses for Java

• The goal is

– to approximate the classes of the objects, to which

an expression refer

• Also gives an approximation of the call graph

'99 정보과학회튜토리얼 10

Class Analyses for Java

• Domain

– Sets of class names.

• A set variable [e] for each expression e.

• Set up set-constraints of the form :

[e] ⊇ se

• Analysis assigns possible classes of e to [e].

– Solution of the constraints yield the information

6

'99 정보과학회튜토리얼 11

Sample Constraints for Class Analyses

Suppose e is each of the following expressions

• new C | [e] ⊇ {C}

• if e0 then e1 else e2 | [e] ⊇ [e1] ∪ [e2]

• id = e1 | [id] ⊇ [e1]

• Method application e0.m(e1)

for each class C in [e0] with a method m(x1) = return em

C ∈ [e0] ⇒ ([x1] ⊇ [e1])

[e] ⊇ [em]

'99 정보과학회튜토리얼 12

History in Class Analyses

• Constraint resolution in O(n3) time.

• This analysis was discovered
– by Palsberg and Schwartzbach in 1991.

– closely related to closure analysis for functional
programs (Jones,Shivers).

• Fast interprocedural class analysis
– by node(set variable) merging

– Grove and Chambers in ACM POPL’98

7

'99 정보과학회튜토리얼 13

Objects and Methods in Java
class C {

int n;
void incr() { n++; }
void decr() { n--; }

}

• Method invocation:
[[e.m(arg)]] =
object * o = [[e]]; lookup(o→vtable, m)(o, [[arg]])

•

Value of n
incr

decr

void C::incr(this)
{ this.n++; g}

void C::decr(this)
{ this.n--; }

method table
object

'99 정보과학회튜토리얼 14

Objects and Methods in Java

• Layout of method tables attached to objects

– based on inheritance hierarchies

• Transformation of method invocations into

method lookups + calls.

• We can generate a direct call c.m using analysis
– if that set is a singleton {c} or

– if all elements in that set have the same
implementation of method m

8

'99 정보과학회튜토리얼 15

Uncaught Exception Analysis

'99 정보과학회튜토리얼 16

Exceptions in Java

• Every exception is declared as

– a subclass of “Exception” class

• Throw exceptions
throw e

• Exception handling
try { … } catch (E x) { … }

• Specify uncaught exceptions in method definition
m(...) throws … { …}

9

'99 정보과학회튜토리얼 17

Uncaught Exception Analysis in JDK

• Intraprocedural analysis

– Based on programmer’s specifications.

• Not elaborate enough to

– suggest for specialized handling nor

– remove unnecessary handlers

'99 정보과학회튜토리얼 18

Uncaught Exception Analysis

• We need an interprocedural analysis to

– estimate Java program's exception flows

– independently of the programmer's specs.

• Approximate all possible uncaught exceptions

– for every expression and every method

• Exception analysis after class analysis

10

'99 정보과학회튜토리얼 19

Deriving Set Constraints

• Domain

– Sets of exception class names.

• A set variable Pe for every expression e

– Deriving set constraints of the form :

Pe ⊇ se

• Analysis assigns classes of possible

uncaught exceptions of e to Pe

'99 정보과학회튜토리얼 20

Deriving Set Constraints
Suppose e is each of the following expressions

• id = e1 | Pe ⊇ Pe1

• if e0 then e1 else e2 | Pe ⊇ Pe0 ∪ Pe1 ∪ Pe2

• throw e1 | Pe ⊇ [e1] ∪ Pe1

• try e0 catch (c1 x1) e1 | Pe ⊇ (Pe0 - {c1}*) ∪ Pe1

• Method invocation e0.m(e1)

- Pe ⊇ Pe0 ∪ Pe1

- for each class C in [e0] with a method m(x1) = em

C ∈ [e0] ⇒ Pe ⊇ Pem

11

'99 정보과학회튜토리얼 21

Method-level Exception Analysis

• Cost-Effective?

– Too Many Set Variables

• Observations
– exceptions are sparse objects

– exceptions are usually explicit

– methods are usually explicit

'99 정보과학회튜토리얼 22

Set Variables for Method-level Analysis

• Pf for each method f
– class names of uncaught exceptions during the call to f

• Pg for try expressions eg in

try eg catch (c1 x1) e1

• Assume that [e] represents

– classes that are ``available'' at an expression e

12

'99 정보과학회튜토리얼 23

Method-level Set Constraints

Suppose each expression is in a method f

• id = e1 |

• if e0 then e1 else e2 |

• throw e1 | Pf ⊇ [e1] ∩ ExnClasses

• try eg catch (c1 x1) e1 | Pf ⊇ Pg - {c1}*

• Method invocation e0.m(e1)

- for each class C in [e0] with a method m(x1) = em

C ∈ [e0] ⇒ Pf ⊇ Pc.m

'99 정보과학회튜토리얼 24

Exception Analyses for Java

• Exception analysis for Java

– by Yi and Chang in ECOOP’99 Workshop

– Expression-level and Method-level

• We are currently devising

– a general framework for method-level analysis

• Jex
– A tool for a view of the exception flow

– by Robillard and Murphy in 1999

13

'99 정보과학회튜토리얼 25

Applications of Exception Analysis

• A kind of program verification

– Provide programmers information on all possible

uncaught exceptions

• Can be incorporated in Java programming

environment

'99 정보과학회튜토리얼 26

Escape Analysis

14

'99 정보과학회튜토리얼 27

Escape Analysis

• Escape analysis is basically
– lifetime analysis of objects

• An object escapes a method if it is
– passed as a parameter

– returned

• Basic idea of applications:
– Basically all objects are allocated in a heap.

– If an object doesn’t escape a method(or region), it
can be allocated on stack

'99 정보과학회튜토리얼 28

Escape Graph for Escape Analysis
• inside node

– object created inside the currently analyzed region
and accessed via inside edges.

• outside node
– object created outside the currently analyzed region

or accessed via outside edges.

• inside edge
– references created inside the current region

• outside edge
– references created outside the current region

15

'99 정보과학회튜토리얼 29

Example
Class complex {

double x, y;
complex (double a, double b) { x = a; y = b;}
complex multiply(complex a) {

complex product = new complex(x*a.x - y*a.y, x*a.y+y*a.x);
return product;

}
complex add(complex a) {

complex sum = new complex(x+a.x,y+a.y);
return sum;

}
complex multiplyAdd(complex a, complex b) {

complex product = a.multiply(b);
complex sum = this.add(product);
return sum;

}
}

'99 정보과학회튜토리얼 30

Example
Analysis Result for mutiplyAdd

a

product

b

this

sum

Inside edge Outside edge
Inside node Outside node
Return value

16

'99 정보과학회튜토리얼 31

Escape Analysis

• Intraprocedural analysis

– Construction of escape graph following the

control-flow

• Interprocedural analysis

– For every method invocation cite, mapping

between caller and callee.

– To simulate parameter passing and returning

'99 정보과학회튜토리얼 32

Escape Analysis

• OOPSLA’99

– Compositional Pointer and Escape Analysis for

Java Programs by J. Whaley and M. Rinard

– Escape analysis for object-oriented languages:

application to Java by B Blanchet

– Escape analysis for Java by J.D. Choi et al.

17

'99 정보과학회튜토리얼 33

Conclusions

• We surveyed three major analyses for Java

– class analysis, exception analysis, escape

analysis

• Further research topics

– generalize method-level analysis

– static analysis in connection with verification

– analyses of Java bytecode

