£ 53 o] (pure functional programming language) HaskellS
W WH S ASeta ey, thEA Qo] (general-purpose language)= A

dolmeielel LAy FAL 230 stw Y A

Haskell Z = 188e]4 7]E9 C¢ Javaw® 7Wst Zw 19SS 553 F 9

o], Visual Basic? %] Microsoft COM 7ol HAEVE Zgaed-S
St 4 <= IDLo] 7R ol Qv Egh i e Ao AAfE ZR Y
S & 4 9ow CGIL DB, 1#|¥ 2~ Fo xS golstA 3 5 9l
= glelr gl se] AFHI Ak @A oleld AU FFEd] JAHIT 9
omg ANEE oy FvEe Zzay FES QAT 5 du FHx
http://haskell.org/libraries/).

Haskell?] W3 58S 2 u Ericsson*te] Erlang® #o], HaskellS 4k
q'og o]g3% F AT AC’]E’]"C‘ Aol EolA il At} Haskell 73

ko] Fr=2 92 s 9= Peyton—Jones 297} 2Hd ol MicrosoftAl &
oA stHA olegt AYS YL o] T2 Urh weF o]k Mol AHE
HIFE Alold A9 ‘o] 2’3 ‘A8 Alolo] WS FF = Fa%H
e ZAoRA, O SFEAE g F AeR 94 F A AE

ol =Moo THELR] ekdals 7122 0 2 Haclksllo nll @ Fulad e E]

S A3 Qon wSA 74X 7} Avkal ®Bol)

1o A= Haskell Z212do)] A4S 2= 545 ¢34 Al A9 4
sk gk, 94, Birde]l #& o A HE non-strict $Hrd Z 21|
] oist wAl=A deE] AFEE A 1988l 23S o w AfRE
7} Haskell®] =& 7]6S BAAAA A 29o] ER/HAT o] AL =3
T-9F mp7EA 2 Oxford Wieh R 9 digteld F2 AFEHE HogA
g zraHgel dEFeldA ARl #971E ®el =74 §d. ¢
2, Thompson®] #& 19960l Z=¥-& W7kstar 19990 293 W1k
Hl LA FH o Asg FHolt}, o] A2 Hugs I ZZEE 7|Rke g AF§-2
NAl F o st TP F&3 oy V|eES A HAHEEn
t}, 3—]“& o] AL vl thdto A 1-28hd § e wAEAME FWol] ALEEH AL
Atk Al AR Hudake] #& A ol &g Howx dAAe o4 4
A BAE Eekdoh ey, Ay d3ke] Hudake] A9k o] &€
fog nFolE o o] Hoiz 7|FE 2 tpFo]A A YW interaction
o AMELR ey ZRIagW 7IHS At s AoR gt
Hudak< Conal Elliote} FA e~ ofyuo]d ghe]B2Z]Ql Fran
(Functional Reactive Animation)g 7]%35Fl o 892 # €]l Haskore
o MRS Aol ded, o] g W&ol AU e AoE BT

(oo 10 oo of o i
o)i

Simon Thompson: Haskell: The Craft of Functional Programming,
Second Edition, Addison-Wesley, 507 pages, paperback, 1999. ISBN
0-201-34275-8. (=] dj=z]d: 2 E3HAL)

This books introduces Haskell at a level appropriate for those with little
or no prior experience of functional programming. The emphasis is on the
process of crafting programs, solving problems, and avoiding common

errors.

The second edition of Haskell: The Craft of Functional Programming is
essential reading for beginners to functional programming and newcomers
to the Haskell programming language. The emphasis is on the process of
crafting programs and the text contains many examples and running case
studies, as well as advice an program design, testing, problem solving
and how to avoid common pitfalls.

Building on the strengths of the first edition, the book includes many new
and improved features:

Complete coverage of Haskell 98, the standard version of Haskell which
will be stable and supported by implementations for vears to come. An
emphasis on software engineering principles, encouraging a disciplined
approach to building reusable libraries of software components. Detailed
coverage of the Hugs interpreter with an appendix covering other
implementations. A running case study of pictures emphasizes the built-in
functions which appear in the standard prelude and libraries. It is also
used to give an early preview of some of the more complex language
features, such as high-order functions. List comprehensions and the
standard functions over lists are covered before recursion. Early coverage
of polymorphism supporting the "toolkit” approach and encouraging the
reuse of built-in functions and types.

Richard Bird: Introduction to Functional Programming using Haskell,
2nd edition, Prentice Hall Press, 1998, 460 pp., ISBN: 0-13-484346-0. (=1
el 4l gt =3Ab.

The book is self-contained, assuming no prior knowledge of programming,
and is suitable as an introductory undergraduate text for first- or
second-year students.

After the success of the first edition, Introduction to Functional
Programming using Haskell has been thoroughly updated and revised to

provide a complete grounding in the principles and techniques of

CRLIVL Lllical
CRLIVL 1liedl

programming with functions. The second edition uses the popular
language Haskell to express functional programs. There are new chapters
on program optimisation, abstract datatypes in a functional setting, and

programming in a monadic style. There are completely new case studies,

tha fiindamaontal tacrhnicsnioe fAar raacanina ahant fiinetinnal rracrame and

for deriving them systematically from their specifications.

Paul Hudak: The Haskell School of Expression,
300pp, ISBN: 0 521 64408 9, September 1999, Cambridge University Press,
(Price £ 17.95).

Functional programming is a style of programming that emphasizes the
use of functions. It has become popular in recent years because of its
simplicity, conciseness, and clarity. This book teaches functional
programming as a way of thinking and problem solving, using Haskell,
the most popular purely functional language. Rather than using the
conventional (boring) mathematical examples commonly found in other
programming language textbooks, the author uses examples drawn from
multimedia applications, including graphics, animation, and computer
music, thus rewarding the reader with working programs for inherently
more interesting applications. Aimed at both beginning and advanced
programmers, this tutorial begins with a gentle introduction to functional
programming and moves rapidly on to more advanced topics. Details
about programming in Haskell are presented in boxes throughout the text
so they can be easily found and referred to.

Chapter Contents

1. Problem solving, programming, and calculation; 2. A module of shapes:
part I, 3. Simple graphics; 4. Shapes II: drawing shapes; 5. Polymorphic
and higher-order functions; 6. Shapes III: perimeters of shapes; 7. Trees;
8. A module of regions; 9. More about higher-order functions; 10.
Drawing regions; 11. Proof by induction; 12. Qualified types; 13. A module
of simple animations; 14. Programming with streams; 15. A module of
reactive animations; 16. Communicating with the outside world; 17.
Rendering reactive animations; 18. Higher-order types: 19. An imperative
robot language; 20. Functional music composition; 21. Algebraic properties
of multimedia; 22. Interpreting functional music; 23. A tour of the prelude

list module; 24. A Tour of Haskell s standard type classes.

