
Challenges of Automated Model-based GUI Testing for Android Apps

Young-Min Baek, Doo-Hwan Bae

Korea Advanced Institute of Science and Technology (KAIST)
Daejeon, Republic of Korea

{ymbaek, bae}@se.kaist.ac.kr

한국정보과학회프로그래밍언어연구회여름학교프로그램 (SIGPL)

2017.08.10

Outline 1. Introduction

2. Graphical User Interface (GUI) Testing

for Mobile Apps

3. Challenges of Model-based Automated GUI Testing

for Mobile Apps

4. Our Empirical Study
Automated Model-based GUI Testing using

Multi-level GUI Comparison Criteria (ASE ‘16)

5. Conclusions

Automated Model-based Android GUI Testing using Multi-level GUI Comparison Criteria 2

Introduction

Automated Model-based Android GUI Testing using Multi-level GUI Comparison Criteria 3

 Overwhelming variety of mobile applications

The World of Mobile Applications

Introduction GUI Testing for Mobile Apps Challenges of GUI Testing for Mobile Apps Empirical Study (ASE’16) Conclusion

4

 Overwhelming variety of mobile applications

The World of Mobile Applications

5

No standard rules to develop apps

No common structure to implement user interface

Closely connected to service infrastructures

(Database, web sites, 3rd party services, network, etc.)

Introduction GUI Testing for Mobile Apps Challenges of GUI Testing for Mobile Apps Empirical Study (ASE’16) Conclusion

 Evolving features to improve user experience

 Better performance

 Shallower depth to access screens

 Simpler graphical design

 Modern look-and-feel

Evolving Mobile Apps

http://www.greeceandroid.gr/images/articles/apps/gmail-for-android-updated-to-4-8/gmail-slide-bar-old-1.jpg

https://scdn.androidcommunity.com/wp-content/uploads/2015/06/Gmail-app-for-Android.png 6

Evolve

Old gmail app Current gmail app
with better UI, improved security

Introduction GUI Testing for Mobile Apps Challenges of GUI Testing for Mobile Apps Empirical Study (ASE’16) Conclusion

http://www.greeceandroid.gr/images/articles/apps/gmail-for-android-updated-to-4-8/gmail-slide-bar-old-1.jpg
https://scdn.androidcommunity.com/wp-content/uploads/2015/06/Gmail-app-for-Android.png

 Volatile and easy to leave your app

 Reasons to uninstall apps[1]

However, Mobile App Users Are…

[1] Selim Ickin et al., “Why Do Users Install and Delete Apps? A Survey Study,” ICSOB ‘17
7

C
ra

sh
es

H
ig

h
 m

em
o
ry

 a
ll

o
c

U
n
st

a
b
le

 /
 I

n
co

n
si

st
en

t

P
o
o
r

u
se

r
in

te
rf

a
ce

A
b
u
si

n
g
 p

ri
va

cy

C
o
m

p
a
ti

b
il

it
y

Introduction GUI Testing for Mobile Apps Challenges of GUI Testing for Mobile Apps Empirical Study (ASE’16) Conclusion

Software error/fault/failure

H
ig

h
 b

a
tt

er
y
 u

sa
g
e

There is a need to predict, detect, solve faults in your app.

 A report by Usamp stated the percentage of those deleting an app for specific

reasons[1]

Need of Mobile App Testing

[1] Chupamobile, “Why Your Mobile App is Getting Deleted (And How to Avoid It),”

http://www.chupamobile.com/blog/2014/05/13/why-your-mobile-app-is-getting-deleted-and-how-to-avoid-it/ 8

53%

55%

59%

71%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Heavy use of ads

Uses too much battery

Slow response time

App Crash

Introduction GUI Testing for Mobile Apps Challenges of GUI Testing for Mobile Apps Empirical Study (ASE’16) Conclusion

http://www.chupamobile.com/blog/2014/05/13/why-your-mobile-app-is-getting-deleted-and-how-to-avoid-it/

GUI Testing for Mobile Apps
(Graphical User Interface Testing)

Automated Model-based Android GUI Testing using Multi-level GUI Comparison Criteria 9

 GUIs are event-driven components to interact with users.

 GUIs enable users to execute functionality via widgets such as buttons, text fields,

etc.

 Users perform actions (events) such as clicking, long-clicking, keyboard typing on

the widgets.

Graphical User Interface (GUI)

[1] Guru99, "Complete Guide for GUI Testing," http://www.guru99.com/gui-testing.html
10

GUI Software

System
w

w

w

w

f

f

f

f

ff
: widget

: function

w

fUsers

GUI is what we see.

We do not see the

source code[1].

Introduction GUI Testing for Mobile Apps Challenges of GUI Testing for Mobile Apps Empirical Study (ASE’16) Conclusion

interact with

http://www.guru99.com/gui-testing.html

 GUI testing is a process that detects if an application is functionally correct by

using its GUIs[1].

 To ensure trouble-free use and implementation, from improper output and small

bugs to complete system crashes[2]

What is GUI Testing?

[1] Alessandro Marchetto, Fondazione Bruno Kessler, "GUI-based Testing

[2] Techopedia, "Graphical User Interface Testing (GUI Testing),"

https://www.techopedia.com/definition/29846/graphical-user-interface-testing-gui-testing 11

GUI Software

System
w

w

w

w

f

f

f

f

ff
: widget

: function

w

f

Set of

event

sequences

GUI test inputs

Software Under Test (SUT)

Introduction GUI Testing for Mobile Apps Challenges of GUI Testing for Mobile Apps Empirical Study (ASE’16) Conclusion

https://www.techopedia.com/definition/29846/graphical-user-interface-testing-gui-testing

 Think as a user, not a tester

 It is the user interface (UI) of the application, which decides that a user is going to

use the app further or not[1].

Why Is GUI Testing Important?

[1] Testomato, "What Is UI Testing and Why Is It Important?“ https://blog.testomato.com/what-is-ui-testing/
12

Unit testing

• Unit testing relies on automated

tests written by developers.

• Each test targets individual

units of source code or a narrow

aspect of application behavior.

GUI testing

• Functional testing is performed

by QA personnel or through

automated UI testing

framework.

• GUI testing performs the test

processes like a user.

Introduction GUI Testing for Mobile Apps Challenges of GUI Testing for Mobile Apps Empirical Study (ASE’16) Conclusion

 Think as a user, not a tester

 It is the user interface (UI) of the application, which decides that a user is going to

use the app further or not[1].

Why Is GUI Testing Important?

[1] Testomato, "What Is UI Testing and Why Is It Important?“ https://blog.testomato.com/what-is-ui-testing/
13

We passed

unit tests perfectly,

and fulfilled all the

specifications!

Who cares?

Developers

(or testers)

Users
Welcome!

Let’s start our app!

Wonderful App

Start!

Unfortunately,

Wonderful App has

stopped.

OK

Introduction GUI Testing for Mobile Apps Challenges of GUI Testing for Mobile Apps Empirical Study (ASE’16) Conclusion

 An Android GUI is a hierarchical, graphical front-end to an Android app

displayed on the foreground of the screen.

 GUIs accept input events and produce graphical outputs.

An Android GUI hierarchically consists of specific types of graphical objects called

widgets; each widget has a fixed set of properties; each property has discrete values

during the execution of the GUI.

GUI of Mobile Apps (Android)

14

Introduction GUI Testing for Mobile Apps Challenges of GUI Testing for Mobile Apps Empirical Study (ASE’16) Conclusion

 GUI testing ensures that the application returns the correct UI output in

response to a sequence of user / system actions.

 Fault detection, behavior observation, robustness testing

GUI Testing for Android Apps

15

GUI

Application under test (AUT)

underlying functionalities

component

widgets

functionality1

functionality2

functionalityn

...

exercise

behaviors

update

user interface

GUI test input

event sequence

click [Button B1]

long-click [Button B2]

click [360, 480]

swipe [ListView L3]

run

check execution results

Crash? No response? Unexpected screen?

Introduction GUI Testing for Mobile Apps Challenges of GUI Testing for Mobile Apps Empirical Study (ASE’16) Conclusion

 GUI testing ensures that the application returns the correct UI output in

response to a sequence of user / system actions.

 Fault detection, behavior observation, robustness testing

GUI Testing for Android Apps

16

GUI

Application under test (AUT)

underlying functionalities

component

widgets

functionality1

functionality2

functionalityn

...

exercise

behaviors

update

user interface

GUI test input

event sequence

click [Button B1]

long-click [Button B2]

click [360, 480]

swipe [ListView L3]

run

check execution results

Crash? No response? Unexpected screen?

Introduction GUI Testing for Mobile Apps Challenges of GUI Testing for Mobile Apps Empirical Study (ASE’16) Conclusion

To explore as much behavior space of an AUT

as possible using generated test inputs

Manual testing Automated testing

Human knowledge,
BUT time-consuming,
error-prone, costly

Limited knowledge,
BUT repeatable,

guidable to specific objectives,
unlimited scenarios

Existing GUI Testing Methods for Android Apps

17

Manual testing Automated testingSemi-automated testing

Manual

random testing

Table-based

manual testing

Script-based

Capture-and-replay

Event model-based

testing

Scenario-based

manual testing

State model-based

testing

Beta testing

Static analysis-based testing

Guided-random

testing

Automated

random testing

Spec-based testing

Introduction GUI Testing for Mobile Apps Challenges of GUI Testing for Mobile Apps Empirical Study (ASE’16) Conclusion

 Generating GUI test cases

 A test input contains sequences of GUI events, completed with concrete inputs and

expected oracles.

GUI Testing Approaches

18

Black-box

• Internal structure is not

known to the tester.

• Static information

(source code,

dependencies,

relationships) is not

used.

White-box

• Internal structure,

design, implementation

is known to the tester.

• Generally,

programming and

implementation

knowledge is required.

Grey-box
(Black-box + White-box)

• Internal structure is

partially known to the

tester.

• Testing is performed at

the user, or black-box

level.

Methods to generate GUI test inputs

Introduction GUI Testing for Mobile Apps Challenges of GUI Testing for Mobile Apps Empirical Study (ASE’16) Conclusion

 Examples of GUI errors

 Incorrect functioning, including crash errors

 Missing commands

 Incorrect GUI screenshots or states

 Absence of mandatory UI components

 Incorrect default values for fields or UI objects

 Data validation errors

 Incorrect error handling

 Compatibility among different smart devices

(Positioning of GUI elements for different screen resolution)

 Poor usability

What Errors Can Occur in (Android) GUI?

19

Introduction GUI Testing for Mobile Apps Challenges of GUI Testing for Mobile Apps Empirical Study (ASE’16) Conclusion

Challenges of
(Model-based) GUI Testing for Mobile Apps

Automated Model-based Android GUI Testing using Multi-level GUI Comparison Criteria 20

 Challenges to mobile testing[1,2]

Overview of Challenges for Mobile App Testing

[1] Capgemini, “World Quality Report 2013-14 Mobile Testing Pull Out,”

http://www.capgemini.com/resources/world-quality-report-2013-14-mobile-testing-pull-out

[2] Software Testing Help, “5 Mobile Testing Challenges and Solutions,”

http://www.softwaretestinghelp.com/5-mobile-testing-challenges-and-solutions/ 21

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Do not have the right
tools to test

Do not have the
devices readily

avilable

Do not have the right
testing process /

method

No mobile testing
experts available

Do not have in-house
testing environment

Not enough time to
test

Introduction GUI Testing for Mobile Apps Challenges of GUI Testing for Mobile Apps Empirical Study (ASE’16) Conclusion

http://www.capgemini.com/resources/world-quality-report-2013-14-mobile-testing-pull-out
http://www.softwaretestinghelp.com/5-mobile-testing-challenges-and-solutions/

 Generic GUI testing framework

 GUI testing exercises the behavior space of an application under test (AUT) as a

user.

Model-based GUI Testing (1/2)

Reference

22

GUI

application under test (AUT)

underlying functionalities

component

widgets

functionality1

functionality2

functionalityn

...

exercise

behaviors

update

user interface

GUI test input

event sequence

click [Button B1]

long-click [Button B2]

click [360, 480]

swipe [ListView L3]

run

check execution results

Crash? No response? Unexpected screen?

Introduction GUI Testing for Mobile Apps Challenges of GUI Testing for Mobile Apps Empirical Study (ASE’16) Conclusion

 Model-based GUI testing

 Utilize a model to guide test input generation and limit the search space for the

systematic test[1]

Model-based GUI Testing (2/2)

[1] S. R. Choudhary, et al., “Automated Test Input Generation for Android: Are We There Yet?,” ASE ‘15 Proceedings of the 2015 30th IEEE/ACM

International Conference on Automated Software Engineering (ASE), 2015. 23

GUI

application under test (AUT)

underlying
functionalities

component

widgets

f1

f2

fn

..

.

GUI test input

event sequence

click [Button B1]

long-click [Button B2]

click [360, 480]

swipe [ListView L3]

run

check execution results

Crash? No response? Unexpected screen?

GUI model

s0

s2s1

s4s3

e

generate

test input

Introduction GUI Testing for Mobile Apps Challenges of GUI Testing for Mobile Apps Empirical Study (ASE’16) Conclusion

 Model-based GUI testing

 Utilize a model to guide test input generation and limit the search space for the

systematic test[1]

Model-based GUI Testing (2/2)

[1] S. R. Choudhary, et al., “Automated Test Input Generation for Android: Are We There Yet?,” ASE ‘15 Proceedings of the 2015 30th IEEE/ACM

International Conference on Automated Software Engineering (ASE), 2015. 24

GUI

application under test (AUT)

underlying
functionalities

component

widgets

f1

f2

fn

..

.

GUI test input

event sequence

click [Button B1]

long-click [Button B2]

click [360, 480]

swipe [ListView L3]

run

GUI model

s0

s2s1

s4s3

e

generate

test input

The underlying GUI model can determine

the overall testing effectiveness.

• Quality of test inputs

• Behavioral/Code coverage

• Error detection accuracy

check execution results

Crash? No response? Unexpected screen?

Introduction GUI Testing for Mobile Apps Challenges of GUI Testing for Mobile Apps Empirical Study (ASE’16) Conclusion

How to Build a GUI Model?

[1] S. R. Choudhary, et al., “Automated Test Input Generation for Android: Are We There Yet?,” ASE ‘15 Proceedings of the 2015 30th IEEE/ACM

International Conference on Automated Software Engineering (ASE), 2015. 25

Introduction GUI Testing for Mobile Apps Challenges of GUI Testing for Mobile Apps Empirical Study (ASE’16) Conclusion

 Manual-based

 Build a GUI model based on the specification by

experts

 Program Analysis

 Build a GUI model statically from app source code

 Random-based

 Build a GUI model from random app executions

 GUI Ripping

 Learn and build a GUI model dynamically from

interactive app executions and their traces

 How much do we have to abstract an AUT’s behaviors?

 Because most Android apps do not have their own GUI models (specifications)

beforehand, we often have to build a GUI model through reverse-engineering

(GUI ripping).[1]

 Reaching a sufficient coverage in a reasonable time for model extraction is

important. (Gap 2[2])

The Gap in Automated GUI Model Generation

[1] D. Amalfitano, et al. “Using gui ripping for automated testing of android applications”. In Proceedings of the 27th IEEE/ACM International

Conference on Automated Software Engineering, ASE 2012, 2012. ACM.

[2] P. Aho, M. Suarez, A. Memon, and T. Kanstrén, “Making GUI Testing Practical: Bridging the Gaps,” Information Technology – New

Generations (ITNG), 2015. 26

Possible

behavior space

GUI model

s0

s2s1

s4s3

e

abstraction

Introduction GUI Testing for Mobile Apps Challenges of GUI Testing for Mobile Apps Empirical Study (ASE’16) Conclusion

 Characteristics of recent mobile apps (1/2)

 Recent apps have a number of dynamic pages, non-deterministic (context-

sensitive) GUIs.

Challenges: Fancy but Volatile Apps

27

Multiple dynamic pages of a single screen

(Seoulbus app)

ViewPager widget is frequently used

to provide multiple view pages in a single activity.

Context/Data-sensitive GUIs

(Facebook app)

Timeline and personal newspeed are totally dependent

on user’s and facebook friends’ data or context.

Introduction GUI Testing for Mobile Apps Challenges of GUI Testing for Mobile Apps Empirical Study (ASE’16) Conclusion

 Characteristics of recent mobile apps (2/2)

 Practical testing tools are needed to apply testing techniques into industrial app

development.

“That’s why we are still doing manual or random-based testing”

Challenges: Fancy but Volatile Apps

*https://icdn2.digitaltrends.com/image/facebook-android-2-0-625x1000.jpg
28

Facebook Android app

How to define the behavior space?

How to model this complicated app?

How to classify app’s bugs/faults?

How to deal with unpredictable data?

Introduction GUI Testing for Mobile Apps Challenges of GUI Testing for Mobile Apps Empirical Study (ASE’16) Conclusion

Until when to finish testing?

 Infinite number of possible combinations

 Difficulties in identifying meaningful

test input combinations

 Sophisticated GUI test inputs

 Inter-related, synchronized, inter-dependent

 Test inputs requiring personal

information/data to access certain screens

E.g., text input for sign-up:

Valid ID, password, e-mail are required

Challenges: Test Input Generation (1/2)

https://sourcey.com/beautiful-android-logn-and-signup-screens-with-material-design/screenshot-signup.png
29

Introduction GUI Testing for Mobile Apps Challenges of GUI Testing for Mobile Apps Empirical Study (ASE’16) Conclusion

 Stateful GUIs & Context-dependent behavior

 A single GUI state can contain lots of contextual information, and test results may

not be reproducible if the context is not met.

Challenges: Test Input Generation (2/2)

30

User information

Connected friends

History preference

Contents & comments

Network connection

GPS status

Cached data

Date & time

Introduction GUI Testing for Mobile Apps Challenges of GUI Testing for Mobile Apps Empirical Study (ASE’16) Conclusion

 UI state explosion problem

 Even a simple app can contain a large number of UI states

Combinatorial explosion due to a number of branching and choices

 Test input selection, prioritization, pruning is required.

Challenges: Model Generation

31

Introduction GUI Testing for Mobile Apps Challenges of GUI Testing for Mobile Apps Empirical Study (ASE’16) Conclusion

 Test results analysis

 Conventional code-based coverage cannot be adequate.

GUIs are implemented in terms of event-based system, hence, the abstraction level is

different with respect to the conventional system code.

So, mapping between GUI events and system code cannot be easy.

 Coverage criteria for adequacy evaluation

Types: code coverage, state coverage, event coverage

Event coverage: All events of the GUI need to be executed at least once

Event-pair coverage, Event-triple coverage

State coverage: All states of the GUI need to be exercised at least once

Functionality coverage: Using a functional point of view

The coverage criteria are not commonly used

Difficult to compare with each other

Challenges: GUI Testing Process

32

Introduction GUI Testing for Mobile Apps Challenges of GUI Testing for Mobile Apps Empirical Study (ASE’16) Conclusion

 A comparative study among GUI testing methods is required, but it is not

easy to conduct the experiment fairly.

 Overview of existing test input generation tools for Android [1]

Challenges: Test Effectiveness & Performance

[1] S. R. Choudhary, et al., “Automated Test Input Generation for Android: Are We There Yet?,” ASE ‘15 Proceedings of the 2015 30th IEEE/ACM

International Conference on Automated Software Engineering (ASE), 2015. 33

Introduction GUI Testing for Mobile Apps Challenges of GUI Testing for Mobile Apps Empirical Study (ASE’16) Conclusion

 Android fragmentation

 Fragmentation has been a contentious issue in Android[1]

Different version of operating systems

Different version of smart devices, device types, resolutions

Different types of mobile apps: Native, hybrid, web

Challenges: Compatibility & Fragmentation (1/2)

[1] XDA Developers, “The Sorry State of Android Fragmentation: An Example to Understand Developers’ Plight,”

https://www.xda-developers.com/the-sorry-state-of-android-fragmentation/ 34

Introduction GUI Testing for Mobile Apps Challenges of GUI Testing for Mobile Apps Empirical Study (ASE’16) Conclusion

https://www.xda-developers.com/the-sorry-state-of-android-fragmentation/

 Fragmentation in smart platforms due to fast-evolving mobile platform

system [1]

 App developers need to consider diversified screen sized for their user interface to

be developed.

 However, an application can behave differently across OSs and devices.

Challenges: Compatibility & Fragmentation (2/2)

[1] Lili Wei et al., “Taming Android Fragmentation: Characterizing and Detecting Compatibility Issues for Android Apps,” Automated Software

Engineering (ASE) 2016, Singapore. 35

API call sites

Device model

API level

Introduction GUI Testing for Mobile Apps Challenges of GUI Testing for Mobile Apps Empirical Study (ASE’16) Conclusion

 How to test non-functional requirements[1]

 Usability, Accessibility

 Responsiveness, Performance

 Reliability, Security

 Modifiability

 Maintainability

 A new validation method for non-functional requirements at GUI level is

required.

 Since GUI is what user only sees, nonfunctional requirements should be satisfied

at GUI level as well.

Challenges: Non-functional Requirements

[1] http://www.dummies.com/web-design-development/mobile-apps/basics-of-nonfunctional-requirements-for-ios-apps/
36

Introduction GUI Testing for Mobile Apps Challenges of GUI Testing for Mobile Apps Empirical Study (ASE’16) Conclusion

 Performance & Scalability

 More shift left testing[2]

 Network virtualization testing[2] / Network bypass[1]

 Cloud testing[2]

 Emergence of big data[2]

 Continuous testing as a part of continuous integration[2]

 Parallel testing[2]

 Regression testing

 Test oracle generation

 Industrial standards[1]

Other Challenges / Required Features

[1] The Official 360Logica Blog, “Challenges faced in Mobile App Testing,”

http://www.360logica.com/blog/challenges-faced-in-mobile-app-testing/

[2] Guy Arieli, “11 Challenges for Mobile Testing in 2016,” Experitest Blog, 2016.

https://experitest.com/blog/blog-cat/11-challenges-for-mobile-testing-in-2016-blog/ 37

Introduction GUI Testing for Mobile Apps Challenges of GUI Testing for Mobile Apps Empirical Study (ASE’16) Conclusion

http://www.360logica.com/blog/challenges-faced-in-mobile-app-testing/
https://experitest.com/blog/blog-cat/11-challenges-for-mobile-testing-in-2016-blog/

Our Empirical Study

Automated Model-based Android GUI Testing using Multi-level GUI Comparison Criteria 38

Y. M. Baek, D. H. Bae,

“Automated Model-based Android GUI Testing
using Multi-level GUI Comparison Criteria,” ASE ‘16

Introduction

Automated Model-based Android GUI Testing using Multi-level GUI Comparison Criteria 39

Automated Model-based Android GUI Testing
using Multi-level GUI Comparison Criteria

 State-based models for Model-Based GUI Testing (MBGT) *,**

 Model AUT’s GUI states and transitions between the states

 Generate test inputs, which consist of sequences of events, considering stateful

GUI states of the model

test input

generation
abstraction

How Can We Model an Android App?

Introduction Background Overall Approach Methodology Experiments Results Conclusion Discussion

* D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, and A. M. Memon, “MobiGUITAR: Automated Model-Based

Testing of Mobile Apps,” IEEE Software, vol. 32, issue 5, pp 53-59, 2015.

** T. Azim and I. Neamtiu, “Targeted and Depth-first Exploration for Systematic Testing of Android Apps,” OOPSLA 2013.

s0

s2s1

s4s3

e1 e2

e3 e4

e5

e6
e7

e8

e9

e10
e11

s0

s2s1

s3

e3

e7

e10

GUI model
5 states, 11 transitions

test input
e3 e10 e7

40

application

under test (AUT)

Welcome!
Let’s start our app!

Wonderful App

Start!

 A GUI Comparison Criterion (GUICC)

 A GUICC distinguishes the equivalence/difference between GUI states to update

the model.

Define GUI States of a GUI Model

Introduction Background Overall Approach Methodology Experiments Results Conclusion Discussion

41

GUI Comparison Criterion (GUICC)
e.g., Activity name, enabled widgets

Welcome!
Let’s start our app!

Wonderful App

Start!

Welcome!
Let’s start our app!

Wonderful App

Start!

Unfortunately, Wonderful

App has stopped.

OK

compare

=

1) Equivalent GUI state

2) Different GUI state

transition
event

GUI state 1

GUI state 1

discarded

modeling e1

e2

en

...

GUI state 2

 GUICC determines the effectiveness of MBGT techniques.

Influence of GUICC on Automated MBGT

Introduction Background Overall Approach Methodology Experiments Results Conclusion Discussion

42

Weak GUICC for Android

Activity name

Strong GUICC for Android

Observable graphical change

* P. Aho, M. Suarez, A. Memon, and T. Kanstrén, “Making GUI Testing Practical: Bridging the Gaps,” Information Technology – New

Generations (ITNG), 2015.

MainActivity MainActivity MainActivity

 GUICC determines the effectiveness of MBGT techniques.

Influence of GUICC on Automated MBGT

Introduction Background Overall Approach Methodology Experiments Results Conclusion Discussion

43
* P. Aho, M. Suarez, A. Memon, and T. Kanstrén, “Making GUI Testing Practical: Bridging the Gaps,” Information Technology – New

Generations (ITNG), 2015.

Weak GUICC for Android

Activity name

Strong GUICC for Android

Observable graphical change

state 1 (MainActivity) state 1 state 0 state 2

discarded discarded

Infinite number of GUI states

MBGT techniques should carefully consider the GUICC for model generation

GUI Comparison Criteria (GUICC) for Android

 Used GUICC by existing MBGT tools for Android apps

Introduction Background Overall Approach Methodology Experiments Results Conclusion Discussion

1st Author Venue/Year Tool Type of model GUICC

M. L. Vasquez MSR/2015 MonkeyLab statistical language model Activity

L. Ravindranath MobiSys/2014 VanarSena OCR-based EFG positions of texts

E. Nijkamp Github/2014 SuperMonkey state-based graph Activity

S. Hao MobiSys/2014 PUMA state-based graph
cosine-similarity with a

threshold

D. Amalfitano ASE/2012 AndroidRipper GUI tree
composition of

conditions

T. Azim OOPSLA/2013 A3E Activity transition graphs Activity

W. Choi OOPSLA/2013 SwiftHand
extended deterministic

labeled transition systems (ELTS)
enabled GUI elements

D. Amalfitano
IEEE Software/

2014
MobiGUITAR

finite state machine
(state-based directed graph)

widget values
(id, properties)

P. Tonella ICSE/2014 Ngram-MBT statistical language model
values of class

attributes

W. Yang FASE/2013 ORBIT finite state machine
observable state

(structural)

C. S. Jensen ISSTA/2013 Collider finite state machine set of event handlers

R. Mahmood FSE/2014 EvoDroid
interface model/
call graph model

composition of widgets

44

1. They have not clearly explained why those GUICC were selected.

2. They utilize only a fixed single GUICC for model generation,

no matter how AUTs behave.

Goal of This Research

 Motivation

 Dynamic and volatile behaviors of Android GUIs make accurate GUI modeling

more challenging.

 However, existing MBGT techniques for Android:

are focusing on improving exploration strategies and test input generation, while

GUICC are regarded as unimportant.

have defined their own GUI comparison criteria for model generation

 Goal

 To conduct empirical experiments to identify the influence of GUICC on the

effectiveness of automated model-based GUI testing.

Introduction Background Overall Approach Methodology Experiments Results Conclusion Discussion

45

Automated Model-based Android GUI Testing
using Multi-level GUI Comparison Criteria

GUI Graph

Automated Model-based Android GUI Testing using Multi-level GUI Comparison Criteria 46

GUI Graph

Introduction Background Overall Approach Methodology Experiments Results Conclusion Discussion

 An example GUI graph

47

1

2

3

4

5

6

7

8

9

10

s Normal state s Terminated state s Error state

ScreenNode

EventEdge

* The generated GUI models are visualized by GraphStream-Project, http://graphstream-project.org/

distinguished by

GUICC

http://graphstream-project.org/

Automated Model-based Android GUI Testing
using Multi-level GUI Comparison Criteria

Our Approach

Automated Model-based Android GUI Testing using Multi-level GUI Comparison Criteria 48

• Overall Approach

• Multi-level GUI Comparison Criteria

• Automated GUI Testing Framework

Introduction Background Overall Approach Methodology Experiments Results Conclusion Discussion

49

Our Approach

Multi-level GUICC

GUI model generator Test input generator Test executor

test results

GUI analysis
• feature extraction
• event inference

model management

event sequence

generation

test execution

log collection

GUI extraction

exploration

strategies

test

inputs

GUI

model

multiple GUICC

Compare test effectiveness:
GUI modeling, code coverage, error detection

test
results

Multi-level GUI graphs

Systematic investigation with real-world apps
definition

 Automated model-based Android GUI testing using

Multi-level GUI Comparison Criteria (Multi-level GUICC)

 Overview of the investigation on the behaviors of commercial Android

applications

 The multi-level GUI comparison technique was designed based on a semi-

automated investigation with 93 real-world Android commercial apps registered in

Google Play.

Introduction Background Overall Approach Methodology Experiments Results Conclusion Discussion

240

apps

Target

app

selection

Selected

93

apps

Manual

exploration

&

GUI

extraction

GUI

information

classification

Define

multi-level

GUICC

50

Google

Play

UIAutomator

Dumpsys

Multi-level

GUI Comparison Model

Design Multi-level GUICC

 Step 1. Target app selection

 Collect the 20 most popular apps in 12 categories (Total 240 apps)

Exclude <Game> category because they are usually not native apps

Exclude apps that were downloaded fewer than 10,000 times

 Finally select 93 target apps

Introduction Background Overall Approach Methodology Experiments Results Conclusion Discussion

51

Investigation on GUIs of Android Apps

Category # of apps Category # of apps

Book 13 Shopping 9

Business 12 Social 7

Communication 10 Transportation 13

Medical 9 Weather 10

Music 10

Selected 93 apps for the investigation

 Step 2. Manual exploration

 Manually visit 5-10 main screens of the apps in an end user’s view

 Examine the constituent widgets in GUIs of the main screens

Use UIAutomator tool to analyze the GUI components of the screens

Extract system information via dumpsys system diagnostics & Logcat

Introduction Background Overall Approach Methodology Experiments Results Conclusion Discussion

52

Investigation on GUIs of Android Apps

Add Delete

Select a button

Go back

Text description

visited screen

UIAutomator

dumpsys Logcat

Extract system information

Extract GUI structure

GUI dump XML

system logs

Parse

GUI hierarchy,
widget components,
properties, values

Parse

system states, logs
activity, package info

 Step 2. Manual exploration

 Manually visit 5-10 main screens of the apps in an end user’s view

 Examine the constituent widgets in GUIs of the main screens

Use UIAutomator tool to analyze the GUI components of the screens

Extract system information via dumpsys system diagnostics & Logcat

Introduction Background Overall Approach Methodology Experiments Results Conclusion Discussion

53

Investigation on GUIs of Android Apps

UIAutomator dump Dumpsys

adb shell /system/bin/uiautomator/ dump

/data/local/tmp/uidump.xml

adb shell dumpsys window windows >

/data/local/tmp/windowdump.txt

LinearLayout

RelativeLayout LinearLayout

LinearLayout Button EditText ImageView

Button Button

mDisplayId

mFocusedApp

mCurrentFocus

mAnimLayer

mConfiguration

Package

Values

Activities

Widgets

 Step 3. Classification of GUI information

 Find hierarchical relationships from extracted GUI information

 Filter out redundant GUI information that highly depends on the device or the

execution environment (e.g., coordinates)

 Merge some GUI information into a single property

Introduction Background Overall Approach Methodology Experiments Results Conclusion Discussion

54

Investigation on GUIs of Android Apps

Android package

Android Activity

Layout widgets

Control widgets

Widget properties-values

1

*

1

*

1

*

1

*

AppName, AppVersion, CachedInfo
combine

combine

combine

combine

Launchable, CurrentlyFocused Activity

Coordination, Orientation, TouchMode,

WidgetClass, ResourceId

Coordination, WidgetClass, ResourceId

{Long-clickable, Clickable, Scrollable, ...}

 Step 4. Definition of GUICC model

 Design a multi-level GUI comparison model that contains hierarchical relationships

among GUI information

Define 5 comparison levels (C-Lv)

Define 3 types of outputs according to the comparison result

T: Terminated state, S: Same state, N: New state

Introduction Background Overall Approach Methodology Experiments Results Conclusion Discussion

55

Investigation on GUIs of Android Apps

A GUI comparison model using multi-level GUICC for Android apps

 Automated Model Learner for Android

 Traverse AUT’s behavior space and build a GUI graph based on the execution traces

 Generate test inputs based on the graph generated so far

Introduction Background Overall Approach Methodology Experiments Results Conclusion Discussion

56

Testing Framework with Multi-level GUICC

GUI Graph

PC Testing Environment
Android Device

ADB
(Android

Debug

Bridge)

Testing Engine

Error
Checker

test inputs
event

sequence

xml
files

Execution
results

receive/analyze
test results

return
execution results

execute
tests

send
test commands

select
next event

update
GUI graph

Multi-level
GUI

comparison

criteria

Input forTestingEngine Input forEventAgent

Max C-Lv

apk file

EventAgent

AUTUIAutomator

Dumpsys

Graph
Generator

Test
Executor

Automated Model-based Android GUI Testing
using Multi-level GUI Comparison Criteria

Empirical Study

Automated Model-based Android GUI Testing using Multi-level GUI Comparison Criteria 57

 Evaluating the influence of GUICC on the effectiveness of automated model-

based GUI testing for Android

 RQ1: How does the GUICC affect the behavior modeling?

(a) GUI graph generation of open-source apps

(b) GUI graph generation of commercial apps

 RQ2: Does the GUICC affect the code coverage?

 RQ3: Does the GUICC affect the error detection ability?

58

Research Questions

Introduction Background Overall Approach Methodology Experiments Results Conclusion Discussion

Benchmark

applications
(a) open-source

(b) commercial

Max C-Lv: 2~5

Automated testing engine

GUI graph generation

GUI graphs

Coverage reports

Error reports

75%
43%

83%

Excepti

onFatal

error

Test input generation

Error detection

Inputs for testing Actual MBGT for Android apps Result analysis

RQ1

RQ2

RQ3
Logcat

Emma

XMLs

 Benchmark Android apps: open-source & commercial apps

 Commercial Android apps were used to assess the feasibility of our testing

framework for real-world apps

59

Experimental Setup

Introduction Background Overall Approach Methodology Experiments Results Conclusion Discussion

Open-source benchmark apps*

No Application package LOC

1 org.jtb.alogcat 1.5K

2 com.example.anycut 1.1K

3 com.evancharlton.mileage 4.6K

4 cri.sanity 8.1K

5 ori.jessies.dalvikexplorer 2.2K

6 i4nc4mp.myLock 1.4K

7 com.bwx.bequick 6.3K

8 com.nloko.android.syncmypix 7.2K

9 net.mandaria.tippytipper 1.9K

10 de.freewarepoint.whohasmystuff 1.1K

Commercial benchmark apps

No Application name Download

1 Google Translate 300,000K

2 Advanced Task Killer 70,000K

3 Alarm Clock Xtreme Free 30,000K

4 GPS Status & Toolbox 30,000K

5 Music Folder Player Free 3,000K

6 Wifi Matic 3,000K

7 VNC Viewer 3,000K

8 Unified Remote 3,000K

9 Clipper 750K

10 Life Time Alarm Clock 300K

* The open-source Android apps were collected from F-Droid (https://f-droid.org)

https://f-droid.org/

60

Experimental Configuration

Introduction Background Overall Approach Methodology Experiments Results Conclusion Discussion

 Test input generation algorithm: fixed

 For only assessing the influence of GUICC, test input generation was performed with

the same algorithm.

 Exploration strategy: BFS (Breadth-first-search)

 In order to exercise much behavior during the same amount of time, our framework

implements BFS strategy as a default.

 Knowledge of the source code of apps: Black-box

 Our framework do not require the detailed knowledge of the underlying source code

of an AUT.

 Our framework only needs (1) an APK file and (2) a specific C-Lv.

Automated Model-based Android GUI Testing
using Multi-level GUI Comparison Criteria

Results

Automated Model-based Android GUI Testing using Multi-level GUI Comparison Criteria 61

 Automated GUI crawling and model-based test input generation using multi-

level GUICC

62

GUI Graph Generation with Our Framework

Introduction Background Overall Approach Methodology Experiments Results Conclusion Discussion

 Multi-level GUI graph generation by manipulating C-Lvs*

63

GUI Graph Generation with Our Framework

Introduction Background Overall Approach Methodology Experiments Results Conclusion Discussion

[C-Lv 2] 16 ScreenNodes, 117 EventEdges [C-Lv 3] 48 ScreenNodes, 385 EventEdges

[C-Lv 4] 57 ScreenNodes, 401 EventEdges [C-Lv 5] 77 ScreenNodes, 563 EventEdges

* Example GUI graphs are the modeling results of Mileage app (com.evancharlton.mileage)

 Generated GUI graphs by GUICC (Max C-Lv)

 A. Open-source benchmark Android apps

Number of EventEdges (#EE) indicates the number of exercised test inputs

64

RQ1: Evaluation on GUI Modeling by GUICC

No Package name

Activity-based Proposed comparison steps

C-Lv2 C-Lv3 C-Lv4 C-Lv5

#SN #EE #SN #EE #SN #EE #SN #EE

1 org.jtb.alogcat 5 45 8 66 15 247 76 269

2 com.example.anycut 8 33 8 33 8 33 9 42

3 com.evancharlton.mileage 16 117 48 385 69 532 81 618

4 cri.sanity 1 4 1 4 2 7 145 922

5 ori.jessies.dalvikexplorer 16 178 29 285 30 301 S/E S/E

6 i4nc4mp.myLock 2 24 5 51 5 51 10 101

7 com.bwx.bequick 2 7 36 200 60 250 71 351

8 com.nloko.android.syncmypix 4 11 17 81 20 96 20 115

9 net.mandaria.tippytipper 4 29 11 65 13 102 19 175

10 de.freewarepoint.whohasmystuff 7 37 15 106 24 143 26 180

*C-Lv: level of comparison, #SN: number of ScreenNodes, #EE: number of EventEdges

1. More GUI states were modeled.

2. More test inputs were inferred and exercised.

Introduction Background Overall Approach Methodology Experiments Results Conclusion Discussion

 Generated GUI graphs by GUICC (Max C-Lv)

 A. Open-source benchmark Android apps

Number of EventEdges (#EE) indicates the number of exercised test inputs

65

RQ1: Evaluation on GUI Modeling by GUICC

No Package name

Activity-based Proposed comparison steps

C-Lv2 C-Lv3 C-Lv4 C-Lv5

#SN #EE #SN #EE #SN #EE #SN #EE

1 org.jtb.alogcat 5 45 8 66 15 247 76 269

2 com.example.anycut 8 33 8 33 8 33 9 42

3 com.evancharlton.mileage 16 117 48 385 69 532 81 618

4 cri.sanity 1 4 1 4 2 7 145 922

5 ori.jessies.dalvikexplorer 16 178 29 285 30 301 S/E S/E

6 i4nc4mp.myLock 2 24 5 51 5 51 10 101

7 com.bwx.bequick 2 7 36 200 60 250 71 351

8 com.nloko.android.syncmypix 4 11 17 81 20 96 20 115

9 net.mandaria.tippytipper 4 29 11 65 13 102 19 175

10 de.freewarepoint.whohasmystuff 7 37 15 106 24 143 26 180

*C-Lv: level of comparison, #SN: number of ScreenNodes, #EE: number of EventEdges

State Explosion (S/E)
DalvikExplorer has continuously changing TextView

for the real-time monitoring of Dalvik VM

For DalvikExplorer, C-Lv4 could be

the best GUICC for behavior modeling.

Introduction Background Overall Approach Methodology Experiments Results Conclusion Discussion

 Achieved code coverage by GUICC (Max C-Lv)

 C-Lv shows the minimum comparison level to achieve the maximum coverage M

66

RQ2: Evaluation on Code Coverage by GUICC

No Package name

Class

coverage
Method coverage

Block

coverage
Statement coverage

A C-Lv M A C-Lv M A C-Lv M A C-Lv M

1 org.jtb.alogcat 51% 4 69% 46% 4 65% 42% 5 60% 39% 5 56%

2 com.example.anycut 27% 4 86% 23% 4 69% 18% 5 56% 19% 4 55%

3 com.evancharlton.mileage 28% 5 59% 22% 5 43% 19% 5 36% 18% 5 33%

4 cri.sanity n/a n/a n/a n/a

5 ori.jessies.dalvikexplorer 71% 4 73% 65% 4 70% 60% 4 67% 57% 4 64%

6 i4nc4mp.myLock 16% 3 16% 11% 4 12% 11% 4 12% 10% 4 11%

7 com.bwx.bequick 43% 4 51% 24% 5 39% 22% 5 38% 21% 5 39%

8 com.nloko.android.syncmypix 22% 4 50% 10% 4 24% 5% 4 15% 6% 4 17%

9 net.mandaria.tippytipper 70% 5 93% 42% 5 65% 37% 5 64% 36% 5 61%

10 de.freewarepoint.whohasmystuff 74% 5 89% 39% 5 62% 35% 5 52% 35% 4 51%

Average 45% 65% 31% 50% 28% 44% 27% 43%

Introduction Background Overall Approach Methodology Experiments Results Conclusion Discussion

*C-Lv: minimum comparison level that achieves the maximum coverage, A: Activity-based, M: maximum coverage (C-Lv3~5)

 Achieved code coverage by GUICC (Max C-Lv)

 C-Lv shows the minimum comparison level to achieve the maximum coverage M

67

RQ2: Evaluation on Code Coverage by GUICC

No Package name

Class

coverage
Method coverage

Block

coverage
Statement coverage

A C-Lv M A C-Lv M A C-Lv M A C-Lv M

1 org.jtb.alogcat 51% 4 69% 46% 4 65% 42% 5 60% 39% 5 56%

2 com.example.anycut 27% 4 86% 23% 4 69% 18% 5 56% 19% 4 55%

3 com.evancharlton.mileage 28% 5 59% 22% 5 43% 19% 5 36% 18% 5 33%

4 cri.sanity n/a n/a n/a n/a

5 ori.jessies.dalvikexplorer 71% 4 73% 65% 4 70% 60% 4 67% 57% 4 64%

6 i4nc4mp.myLock 16% 3 16% 11% 4 12% 11% 4 12% 10% 4 11%

7 com.bwx.bequick 43% 4 51% 24% 5 39% 22% 5 38% 21% 5 39%

8 com.nloko.android.syncmypix 22% 4 50% 10% 4 24% 5% 4 15% 6% 4 17%

9 net.mandaria.tippytipper 70% 5 93% 42% 5 65% 37% 5 64% 36% 5 61%

10 de.freewarepoint.whohasmystuff 74% 5 89% 39% 5 62% 35% 5 52% 35% 4 51%

Average 45% 65% 31% 50% 28% 44% 27% 43%

17%

36%

15%

7%

1%

18%

11%

25%

16%

Activity-based testing achieved lower code coverage than testing with

other higher levels of GUICC

18%

59%

31%

2%

0%

8%

28%

23%

15%

19%

36%

21%

5%

1%

15%

15%

13%

23%

18%

38%

17%

7%

1%

16%

10%

27%

17%

20% 19% 16% 16%

Introduction Background Overall Approach Methodology Experiments Results Conclusion Discussion

*C-Lv: minimum comparison level that achieves the maximum coverage, A: Activity-based, M: maximum coverage (C-Lv3~5)

 Detected runtime errors by GUICC (Max C-Lv)

 Our testing framework had detected four reproducible runtime errors in open-

source benchmark apps.

68

RQ3: Evaluation on Error Detection Ability by GUICC

No C-Lv Application package Error type Detected error log

1 C-Lv5 com.evancharlton.mileage Fatal signal
F/libc(23414): Fatal signal 11 (SIGSEGV)

at 0x9722effc (code=2), thread 23414

(harlton.mileage)

2 C-Lv5 cri.sanity Fatal exception

E/AndroidRuntime(9415): FATAL EXCEPTION: main

E/AndroidRuntime(9415): java.lang.RuntimeExcep

tion: Unable to start activity ComponentInfo{c

ri.sanity/cri.sanity.screen.VibraActivity}:

java.lang.NullPointerException

3 C-Lv5 cri.sanity Fatal exception

E/AndroidRuntime(22158): FATAL EXCEPTION: main

E/AndroidRuntime(22158):

java.lang.RuntimeException: Unable to start

activity ComponentInfo

{cri.sanity/cri.sanity.screen.VibraActivity}:

java.lang.NullPointerException

4 C-Lv4 com.evancharlton.mileage Fatal signal
F/libc(20978): Fatal signal 11 (SIGSEGV)

at 0x971b4ffc (code=2), thread 20978

(harlton.mileage)

Introduction Background Overall Approach Methodology Experiments Results Conclusion Discussion

 Detected runtime errors by GUICC (Max C-Lv)

 Our testing framework had detected four reproducible runtime errors in open-

source benchmark apps.

69

RQ3: Evaluation on Error Detection Ability by GUICC

No C-Lv Application package Error type Detected error log

1 C-Lv5 com.evancharlton.mileage Fatal signal
F/libc(23414): Fatal signal 11 (SIGSEGV)

at 0x9722effc (code=2), thread 23414

(harlton.mileage)

2 C-Lv5 cri.sanity Fatal exception

E/AndroidRuntime(9415): FATAL EXCEPTION: main

E/AndroidRuntime(9415): java.lang.RuntimeExcep

tion: Unable to start activity ComponentInfo{c

ri.sanity/cri.sanity.screen.VibraActivity}:

java.lang.NullPointerException

3 C-Lv5 cri.sanity Fatal exception

E/AndroidRuntime(22158): FATAL EXCEPTION: main

E/AndroidRuntime(22158):

java.lang.RuntimeException: Unable to start

activity ComponentInfo

{cri.sanity/cri.sanity.screen.VibraActivity}:

java.lang.NullPointerException

4 C-Lv4 com.evancharlton.mileage Fatal signal
F/libc(20978): Fatal signal 11 (SIGSEGV)

at 0x971b4ffc (code=2), thread 20978

(harlton.mileage)

From C-Lv2 to C-Lv3,
these runtime errors could not

be detected
by automated testing

Introduction Background Overall Approach Methodology Experiments Results Conclusion Discussion

 “Activity” is still frequently used as a simple GUICC by many tools, but

Activity-based models have to be refined.

 Clearly defining an appropriate GUICC can be an easier way to improve

overall testing effectiveness.

 Higher levels of GUICC are not always optimal solutions.

70

Summary of Experimental Results

Introduction Background Overall Approach Methodology Experiments Results Conclusion Discussion

Conclusion

Automated Model-based Android GUI Testing using Multi-level GUI Comparison Criteria 71

72

Conclusion

This study

Current model-based GUI testing techniques for Android

Future direction for Android model-based GUI testing

Focus on improving test generation algorithms,
exploration strategies

Use arbitrary GUI comparison criteria

Multi-level GUICC Empirical study of

the influence of GUICC

Automated model-

based testing framework
Investigation of

behaviors of
Android GUIs

Design GUI
comparison model

GUI graph generation

Model-based
test input generation

Error detection

Behavior modeling by GUICC
(a) open-source apps, (b) commercial apps

Code coverage by GUICC

Error detection by GUICC

Automated model-based testing should carefully/clearly define the GUICC

according to AUTs’ behavior styles, prior to improvement of other algorithms

Introduction GUI Testing for Mobile Apps Challenges of GUI Testing for Mobile Apps Empirical Study (ASE’16) Conclusion

73

Threats to Validity (1/3)

Introduction GUI Testing for Mobile Apps Challenges of GUI Testing for Mobile Apps Empirical Study (ASE’16) Conclusion

 Automated selection of an adequate GUICC

 Current related work

[Gap 2 in Pekka Aho et al., 2015*] To refine a generated GUI model by providing

inputs for multiple states of the GUI after model generation

[State abstraction by Pekka Aho et al., 2014**] To abstract away the data values by

parameterizing screenshots of the GUI

 Future work

Feature-based GUI model generation

Automatic feature extraction from APK file and GUI information of minimal

number of main screens (uploaded on the market)

Generation of specific abstraction levels of a GUI model based on the extracted

GUI features

74

Threats to Validity (2/3)

Introduction GUI Testing for Mobile Apps Challenges of GUI Testing for Mobile Apps Empirical Study (ASE’16) Conclusion

 Performance problems in model-based GUI testing

 Current performance

Modeling a GUI graph with about 25 nodes and 150 edges takes about a half

an hour. Expensive for industrial application

 Future work

Incremental model refinement

Build the most abstract GUI model first, and then incrementally refine some parts of

the model into more concrete models.

GUI model clustering

Build multi-level GUI models parallel, and then cluster them into a single model of

an AUT

Generate more sophisticated test inputs using the clustered model

75

Threats to Validity (3/3)

Introduction GUI Testing for Mobile Apps Challenges of GUI Testing for Mobile Apps Empirical Study (ASE’16) Conclusion

 Other threats to validity
 Time and memory consumption problems

Online model-learning (GUI ripping) requires non-trivial testing time and memory.

 Reliable on test assistant tools

Our testing framework uses UIAutomator, Dumpsys to analyze GUI states and test input

generation automatically.

 Quality of F-Droid apps

Many open-source Android apps in F-Droid are not following the latest design trends,

76

Summary

Introduction GUI Testing for Mobile Apps Challenges of GUI Testing for Mobile Apps Empirical Study (ASE’16) Conclusion

 GUI testing is necessary.

 Graphical User Interface (GUI) decides that a user is going to use the app further or not.

 GUI testing is a process that detects if an application is functionally correct by using its

GUIs.

 We should understand the challenges of

automated model-based GUI testing for mobile apps.

 Due to various characteristics of recent mobile apps, GUI testing becomes more difficult.

 In particular, model-based techniques should understand these challenges and they must be

carefully addressed for the practical application.

 Our empirical study (ASE’16) shows the importance of GUI model generation and

provides future research directions.

Challenges of Automated Model-based GUI Testing for Android Apps

Thank You.

Young-Min Baek, Doo-Hwan Bae

{ymbaek, bae}@se.kaist.ac.kr
http://se.kaist.ac.kr

한국정보과학회프로그래밍언어연구회여름학교프로그램 (SIGPL)

Publication

 Final publication copy of this paper

 Young-Min Baek, Doo-Hwan Bae, “Automated Model-Based Android GUI Testing using

Multi-level GUI Comparison Criteria,” In Automated Software Engineering (ASE), 2016

31th IEEE/ACM International Conference on,

 URL: http://dl.acm.org/citation.cfm?doid=2970276.2970313

 DOI: 10.1145/2970276.2970313

Appendix

Automated Model-based Android GUI Testing using Multi-level GUI Comparison Criteria

A. Android GUI

B. Example of Dynamic/Volatile Android GUIs

C. Investigated Android Apps

D. Comparison of Widget Compositions using UIAutomator

E. Comparison Examples

F. Exploration Strategies of Our Framework

G. Exploration Strategy: Breadth-first-search (BFS)

H. Exploration Strategy: Depth-first-search (DFS)

Android GUI

Automated Model-based Android GUI Testing using Multi-level GUI Comparison Criteria

Appendix A

 Definition

 An Android GUI is a hierarchical, graphical front-end to an Android application displayed on the

foreground of the Android device screen that accepts input events from a finite set of events and

produces graphical output according to the inputs.

 An Android GUI hierarchically consists of specific types of graphical objects called widgets; each

widget has a fixed set of properties; each property has discrete values at any time during the

execution of the GUI.

Android GUI – Formal definition of GUI graph

Automated Model-based Android GUI Testing using Multi-level GUI Comparison Criteria

Appendix A

 A GUI graph G is defined as G = (S, E)
 S is a set of ScreenNodes (S = {s1, s2, ..., sn}), n = # of nodes.

 E is a set of EventEdges (E = {e1, e2, ..., em}), m = # of edges.

 A GUI Comparison Criterion (GUICC) represents a specific type of GUI information to

distinguish GUI states.

GUICC

ScreenNode s1 ScreenNode s2

EventEdge

e1

Examples of Dynamic/Volatile Android GUIs

Appendix B

 Multiple dynamic pages of a single screen

(Seoulbus view pages)

 ViewPager widget is used to provide multiple

view pages in a single activity.

 Non-deterministic (context-sensitive) GUIs

(Facebook personal pages)

 Personal pages of SNSs are dependent on

users’ preference or edited/configured profile.

 Endless GUIs

(Facebook timeline views)

 Newsfeed of SNSs provides an endless scroll

view to provide friends’ or linked people’s news.

Automated Model-based Android GUI Testing using Multi-level GUI Comparison Criteria

Android Apps Investigated for Building GUICC Model

Appendix C

 93 real-world commercial Android apps registered in Google Playstore
NoAndroid application (package name) Category
1com.scribd.app.reader0 Book
2 com.spreadsong.freebooks Book
3 com.tecarta.kjv2 Book
4 com.google.android.apps.books Book
5 com.merriamwebster Book
6 com.taptapstudio.dailyprayerlite Book
7 com.audible.application Book
8wp.wattpad Book
9 com.dictionary Book
10 com.amazon.kindle Book
11org.wikipedia Book
12 com.ebooks.ebookreader Book
13an.SpanishTranslate Book
14 com.autodesk.autocadws Business
15 com.futuresimple.base Business
16mm.android Business
17 com.yammer.v1 Business
18 com.invoice2go.invoice2goplus Business
19 com.docusign.ink Business
20 com.alarex.gred Business
21 com.fedex.ida.android Business
22 com.google.android.calendar Business
23 com.metago.astro Business
24 com.squareup Business
25com.dynamixsoftware.printershare Business
26kik.android Communication
27 com.tumblr Communication
28 com.twitter.android Communication
29 com.oovoo Communication
30 com.facebook.orca Communication
31 com.yahoo.mobile.client.android.mail Communication
32 com.skout.android Communication
33 com.mrnumber.blocker Communication
34 com.taggedapp Communication
35 com.timehop Communication
36 com.carezone.caredroid.careapp.medications Medical
37com.hp.pregnancy.lite Medical
38 com.medscape.android Medical
39 com.szyk.myheart Medical
40 com.smsrobot.period Medical
41 com.hssn.anatomyfree Medical
42au.com.penguinapps.android.babyfeeding.client.android Medical
43 com.cube.arc.blood Medical
44 com.doctorondemand.android.patient Medical
45 com.bandsintown Music
46 com.djit.equalizerplusforandroidfree Music

47com.madebyappolis.spinrilla Music
48com.magix.android.mmjam Music
49com.shazam.android Music
50com.songkick Music
51com.famousbluemedia.yokee Music
52com.musixmatch.android.lyrify Music
53 tunein.player Music
54com.google.android.music Music
55com.ebay.mobile Shopping
56com.grandst Shopping
57com.biggu.shopsavvy Shopping
58com.ebay.redlaser Shopping
59com.alibaba.aliexpresshd Shopping
60com.newegg.app Shopping
61com.islickapp.pro Shopping
62com.ubermind.rei Shopping
63com.inditex.zara Shopping
64com.linkedin.android Social
65com.foursquare.robin Social
66com.match.android.matchmobile Social
67com.whatsapp Social
68 flipboard.app Social
69com.facebook.katana Social
70com.instagram.android Social
71net.mypapit.mobile.speedmeter Transportation
72com.lelic.speedcam Transportation
73com.sygic.speedcamapp Transportation
74com.funforfones.android.dcmetro Transportation
75br.com.easytaxi Transportation
76com.nyctrans.it Transportation
77com.ninetyeightideas.nycapp Transportation
78com.nomadrobot.mycarlocatorfree Transportation
79com.ubercab Transportation
80org.mrchops.android.digihud Transportation
81com.drivemode.android Transportation
82com.greyhound.mobile.consumer Transportation
83com.citymapper.app.release Transportation
84com.alokmandavgane.sunrisesunset Weather
85com.pelmorex.WeatherEyeAndroid Weather
86com.cube.arc.hfa Weather
87com.cube.arc.tfa Weather
88com.handmark.expressweather Weather
89com.accuweather.android Weather
90mobi.infolife.ezweather Weather
91com.levelup.brightweather Weather
92com.weather.Weather Weather
93com.yahoo.mobile.client.android.weather Weather

Automated Model-based Android GUI Testing using Multi-level GUI Comparison Criteria

Comparison of Widget Compositions using UIAutomator (1/3)

Appendix D

 The Activity-based comparison could not distinguish detailed GUI states in real-world apps.
 Many commercial apps utilize the ViewPager widget, which contains multiple pages to show.

 However, Activity-based GUI models cannot distinguish multiple different views.

 A widget hierarchy, which is extracted by UIAutomator, is used to compare two GUIs based

on the composition of widgets.

Add Delete

Select a button

Go back

Text description

visited screen

UIAutomator

Extract GUI structure

GUI dump XML

Parse

GUI hierarchy,
widget components,
properties, values

Automated Model-based Android GUI Testing using Multi-level GUI Comparison Criteria

Comparison of Widget Compositions using UIAutomator (2/3)

Appendix D

 Every widget node has parents-children or sibling relationships.

 The relationships are encoded in an <index> property, which represents the order of child

widget nodes.

 If the value of an index of a certain widget wi is 0, wi is the first child of its parent widget node.

 By using index values, each widget (node X) can be specified as an index sequence that

accumulates the indices from the root node to the target node.

Automated Model-based Android GUI Testing using Multi-level GUI Comparison Criteria

Comparison of Widget Compositions using UIAutomator (3/3)

Appendix D

 Our comparison model obtains the composition of specific types of widgets using these

index sequences.

 Refer to non-leaf widgets as layout widgets

 Refer to leaf widget nodes, whose event properties (e.g., clickable) have at least one “true” value as

executable widgets.

 If a non-leaf widget node has an executable property, its child leaf nodes are considered as

executable widgets.

 In order to utilize the extracted event sequences as the widget information, we store

cumulative index sequences (CIS).

Type Nodes CIS

Layout A, B, C, F [0]-[0,0]-[0,1]-[0,0,2]

Executable D, G, L, M
[0,0,0]-[0,1,0]-

[0,0,2,0]-[0,0,2,1]

Automated Model-based Android GUI Testing using Multi-level GUI Comparison Criteria

Comparison Example: C-Lv1

Appendix E-a

 Comparison level 1 (C-Lv1): Package name comparison

 By comparing package names, the testing tool distinguishes the boundary of the behavior space

of an AUT

Out of AUT boundary

3rd party app

Out of AUT boundary

App termination by crash

Automated Model-based Android GUI Testing using Multi-level GUI Comparison Criteria

Comparison Example: C-Lv2

Appendix E-b

 Comparison level 2 (C-Lv2): Activity name comparison

 By comparing activity names, the testing tool distinguishes the physically-independent GUIs (i.e.,

MainActivity and OtherActivity are implemented in different Java files).

Activity 1

com.android.calendar.

AllInOneActivity

Activity2

com.android.calendar.

event.EditEventActivity

Automated Model-based Android GUI Testing using Multi-level GUI Comparison Criteria

Comparison Example: C-Lv3/4

Appendix E-c

 Comparison level 3, 4 (C-Lv4): Widget composition comparison

 Compare the widget composition of GUIs using UIAutomator hierarchy tree.

 Layout widgets: composition of non-leaf widgets.

 Executable widgets: composition of leaf widgets whose event properties have at least one “true” values

Automated Model-based Android GUI Testing using Multi-level GUI Comparison Criteria

TextView

Button

Button
V

List item

List item

List item

List item

Layout widgets

Button

Button
V

List item

List item

List item

List item

TextViewLayout

Layout

ListView

Executable widgets

Add a new item!

Add

Delete

Opt?

Item1

Item2

Item3

Item4

Widgets of an execution screen

Comparison Example: C-Lv3/4

Appendix E-c

 Comparison level 3, 4 (C-Lv4): Widget composition comparison

 Compare the widget composition of GUIs using UIAutomator hierarchy tree.

 Layout widgets: composition of non-leaf widgets.

 Executable widgets: composition of leaf widgets whose event properties have at least one “true” values

C_Lv3

Layout widget comparison

C_Lv4

Executable widget composition

Layout widget

composition 1

Layout widget

composition 2

Executable widget

composition 1

Executable widget

composition 2

Context menu layout <Initialize> button

Automated Model-based Android GUI Testing using Multi-level GUI Comparison Criteria

Comparison Example: C-Lv5

Appendix E-d

 Comparison level 5 (C-Lv5): Text contents, item comparison

 Text information: compare the context of GUIs, which is represented as text

 List item: distinguish the GUIs after scroll events

Text comparison

Text contents 1 Text contents 2 ListView before

a scroll event

ListView after

scroll event execution
Let’s start!

4:30 AM ~

ListView item comparison

12:00 AM ~
GUI Testing?

Automated Model-based Android GUI Testing using Multi-level GUI Comparison Criteria

Exploration Strategies in Our Testing Framework

Appendix F

 Breadth-First-Search (BFS): default strategy

 Depth-First-Search (DFS)

 Hybrid-Search (BFS + DFS)

▶ Detailed algorithm

▶ Detailed algorithm

Automated Model-based Android GUI Testing using Multi-level GUI Comparison Criteria

Exploration Strategy: Breadth-First-Search (BFS)

Appendix G

 BFS traverses the behavior space of an AUT in order of depth.

 BFS requires repetitive restart operation after test execution.

 BFS have a higher chance to reach more diverse range of states during the same amount

of time.

Automated Model-based Android GUI Testing using Multi-level GUI Comparison Criteria

Exploration Strategy: Depth-First-Search (DFS)

Appendix H

 Traverse as much behavior depth of an AUT along each branch before backtracking

 DFS have a higher chance to exercise behaviors caused by sequences of consecutive events.

Automated Model-based Android GUI Testing using Multi-level GUI Comparison Criteria

RQ2: Evaluation on Code Coverage by GUICC

Appendix I

Automated Model-based Android GUI Testing using Multi-level GUI Comparison Criteria

 Achieved code coverage by GUICC (Max C-Lv)

 C-Lv shows the minimum comparison level to achieve the maximum coverage M

No Package name

Class

coverage
Method coverage

Block

coverage
Statement coverage

A C-Lv M A C-Lv M A C-Lv M A C-Lv M

1 org.jtb.alogcat 51% 4 69% 46% 4 65% 42% 5 60% 39% 5 56%

2 com.example.anycut 27% 4 86% 23% 4 69% 18% 5 56% 19% 4 55%

3 com.evancharlton.mileage 28% 5 59% 22% 5 43% 19% 5 36% 18% 5 33%

4 cri.sanity n/a n/a n/a n/a

5 ori.jessies.dalvikexplorer 71% 4 73% 65% 4 70% 60% 4 67% 57% 4 64%

6 i4nc4mp.myLock 16% 3 16% 11% 4 12% 11% 4 12% 10% 4 11%

7 com.bwx.bequick 43% 4 51% 24% 5 39% 22% 5 38% 21% 5 39%

8 com.nloko.android.syncmypix 22% 4 50% 10% 4 24% 5% 4 15% 6% 4 17%

9 net.mandaria.tippytipper 70% 5 93% 42% 5 65% 37% 5 64% 36% 5 61%

10 de.freewarepoint.whohasmystuff 74% 5 89% 39% 5 62% 35% 5 52% 35% 4 51%

Average 45% 65% 31% 50% 28% 44% 27% 43%

Sophisticated text inputs

Service-driven functionalities

Required external data (pictures)

Several apps showed relatively
low coverage

*C-Lv: minimum comparison level that achieves the maximum coverage, A: Activity-based, M: maximum coverage (C-Lv3~5)

Example Modeling Results

Appendix J

 Model generation of an app with two different GUICC*

 <Who has my stuff?> App: de.freewarepoint.whohasmystuff

* The generated GUI models are visualized by GraphStream-Project, http://graphstream-project.org/

GUICC: Activity name

7 nodes, 37 edges

GUICC: widgets + text contents

26 nodes, 180 edges

http://graphstream-project.org/

At Which Level Conducting the GUI Testing?

Appendix K

 Acceptance testing

 Manual acceptance testing: User (tester) exercises the system manually using the

creativity, and evaluate the acceptance

 Acceptance testing with GUI test drivers: Tools help the developer do functional /

acceptance testing

 Table-based acceptance testing: Starting from a user story (use case or textual

requirement), the customer enters in a table the expectations of the program’s

behavior.

 Regression testing

 Since GUIs are often realized by means of rapid prototyping or automatic framework,

an efficient approach to generate and maintain GUI test suite is required.

Automated Software Engineering (ASE) 2016

Automated Model-Based Android GUI Testing
using Multi-Level GUI Comparison Criteria

This is the end of the file

Young-Min Baek, Doo-Hwan Bae

{ymbaek, bae}@se.kaist.ac.kr
http://se.kaist.ac.kr

