
SIGPL Summer School — Supplementary Notes

Sungwoo Park

August 18 – 20, 2009
http://sigpl.or.kr/school/2009s/



ii August 12, 2009



Preface

This is the supplementary material to be distributed to the students at SIGPL Summer School 2009. It
is based on the course notes for CSE-433 Logic in Computer Science taught at POSTECH, and aims to
introduce the basic proof theory (natural deduction) that underlies the design of the proof assistant
Coq.

iii



iv August 12, 2009



Chapter 1

Propositional Logic

This chapter develops propositional logic, i.e., logic without universal or existential quantifications.
In developing a formal system of propositional logic, we use two judgments: A prop and A true.

A prop ⇔ A is a proposition
A true ⇔ A is true

A prop becomes evident by the presence of an inference rule deducing A true. We will inductively
define the set of propositions using binary connectives (e.g., implication ⊃ , conjunction ∧, disjunction
∨) and unary connectives (e.g., negation ¬). The inference rules will be designed in such a way that
the definition of a connective does not involve another connective. We say that the resultant system is
orthogonal in the sense that all connectives can be developed independently of each other.

1.1 Natural deduction system for propositional logic

Natural deduction [?] is a principle for building a system of logic whose main concepts are introduction
and elimination rules. An introduction rule explains how to deduce a truth judgment involving a partic-
ular connective, exploiting those judgments in the premise. That is, it explains how to “introduce” the
connective in a derivation (when read in the top-down way). For example, an introduction rule for the
conjunction connective would look like:

· · ·
A ∧B true ∧I

A dual concept is an elimination rule which explains how to exploit a truth judgment involving a par-
ticular connective to deduce another judgment in the conclusion. That is, it explains how to “eliminate”
the connective in a derivation (when read in the top-down way). For example, an elimination rule for
the conjunction connective would look like:

A ∧B true
· · · ∧E

An introduction rule usually conveys the intuition behind a connective and is thus relatively easy to
design. In contrast, an elimination rule extracts the knowledge represented by a judgment and careful
design is required to ensure that the resultant system is sound and complete in some sense. For example,
an ill-designed elimination rule may be so strong as to extract false knowledge that cannot be justified
by its corresponding introduction rule. Or it may be too weak to deduce any interesting judgment. Note
that an introduction rule takes precedence over its corresponding elimination rule because without an
introduction rule, there is no use in designing an elimination rule. That is, an elimination rule cannot be
considered separately from its corresponding introduction rule whereas the design of an introduction
rule can be an isolated task.

Below we develop a natural deduction system for propositional logic, beginning with the conjunc-
tion connective ∧ (which is the easiest case).

1



Conjunction

Before we investigate inference rules for ∧, we need to know how to build valid propositions involving
∧. Hence we need a formation rule to state that A ∧B, read as “A and B” or “A conjunction B,” is a
proposition if both A and B are propositions:

A prop B prop
A ∧B prop ∧F

In order to justify the rule ∧F, we need an inference rule for proving the truth of A ∧B on the as-
sumption that there are inference rules for proving the truth of A and B. Since A ∧B is intended to
be true whenever both A and B are true, we use the following introduction rule to admit A ∧B as a
proposition:

A true B true
A ∧B true ∧I

The rule ∧I says that if both A and B are true, then A ∧B is true. It follows the usual interpretation
of an inference rule: if the premise holds, then the conclusion holds. Now we may use the rule ∧I to

construct a proof of A ∧B true from a proof DA of A true and a proof DB of B true; we write DA

A true
to mean that DA is a proof of A true , including the last inference rule whose conclusion is A true:

DA

A true
DB

B true
A ∧B true ∧I

The design of an elimination rule for ∧ begins with A ∧B true as a premise. Since A ∧B true ex-
presses that both A and B are true, we may conclude either A true or B true from A ∧B true, as shown
in the two elimination rules for ∧:

A ∧B true
A true

∧EL
A ∧B true

B true
∧ER

Implication

The implication connective ⊃ requires the notion of a hypothetical proof which is a proof containing
hypotheses. We read A ⊃ B as “A implies B” or “if A, then B,” and use the following formation rule:

A prop B prop
A ⊃ B prop ⊃F

The intuition behind ⊃ is that A ⊃ B true holds whenever A true implies B true , or a hypothesis of
A true leads to a proof of B true . We write a hypothesis of A true as A true , and obtain the following
introduction rule for ⊃ :

A true
x

...
B true

A ⊃ B true ⊃Ix

We may directly deduce A true using the hypothesis A true
x

when necessary in the proof of B true .
The premise of the rule ⊃Ix is an example of a hypothetical proof because it contains a hypothesis,

i.e., a judgment that is assumed to hold. We say that the rule ⊃I internalizes the hypothetical proof
in its premise as a proposition A ⊃ B in the sense that the truth of A ⊃ B compactly represents the
knowledge expressed by the hypothetical proof.

There are three observations to make about the rule ⊃Ix. First we annotate both the hypothesis
A true and the rule name ⊃I with the same label x. Thus a label in a hypothesis indicates from which
inference rule the hypothesis originates. It is not necessary to annotate all hypotheses with different

2 August 12, 2009



labels as long as no conflict occurs between two hypotheses with the same label. For example, the
following derivation is okay even though both hypotheses are annotated with the same label x:

A true
x

...
B true

A ⊃ B true ⊃Ix

A′ true
x

...
B′ true

A′ ⊃ B′ true ⊃Ix

(A ⊃ B) ∧ (A′ ⊃ B′) true

Second the hypothesis A true
x

remains in effect only within the premise of the rule ⊃Ix. In other
words, its scope is restricted to the premise of the rule ⊃Ix. After the rule ⊃Ix is applied to deduce
A ⊃ B true , A true

x
may no longer be used as a valid hypothesis. For example, the proof below may

not use the hypothesis A true
x

in the proof of in the proof DA of A true which lies outside the scope of
A true

x
:

DA

A true

A true
x

...
B true

A ⊃ B true ⊃Ix

A ∧ (A ⊃ B) true ∧I

We say that a hypothesis is discharged when its corresponding inference rule is applied and its scope is
exited.

Note that while the premise of the rule ⊃Ix is a hypothetical proof, the whole proof itself is not a
hypothetical proof. Specifically the proof D below is a hypothetical proof, but the proof E is not:

E


D


A true

x

...
B true

A ⊃ B true ⊃Ix

The reason why E is not a hypothetical proof is that the hypothesis A true
x

is discharged when the rule
⊃Ix is applied, and thus is not visible to the outside. That is, we are free to use any hypothesis without
turning the whole proof into a hypothetical proof as long as it is eventually discharged.

Third the hypothesis A true
x

may be used not just once but as many times as necessary. In fact, we
may even ignore it in the proof without using it at all. Here are examples of proofs that ignore A true

x
,

use it once, and use it twice:

B true
y A true

x

(not used in the proof)
A ⊃ B true ⊃Ix

B ⊃ (A ⊃ B) true ⊃Iy
A true

x

A ⊃ A true ⊃Ix

A true
x

A true
x

A ∧A true ∧I

A ⊃ (A ∧A) true ⊃Ix

As with the elimination rules for ∧, the design of the elimination rule for ⊃ begins with a premise
A ⊃ B true . Since A ⊃ B true expresses that A true implies B true , the only way to exploit it is by
supplying a proof of A true to conclude B true . Hence the elimination rule for ⊃ uses both A ⊃ B true
and A true as its premises:

A ⊃ B true A true
B true ⊃E

The following example proves (A ⊃ B) ⊃ (A ⊃ B) true using the rule ⊃E:

A ⊃ B true
x

A true
y

B true ⊃E

A ⊃ B true ⊃Iy

(A ⊃ B) ⊃ (A ⊃ B) true ⊃Ix

August 12, 2009 3



(We can also prove (A ⊃ B) ⊃ (A ⊃ B) true by directly using the hypothesis A ⊃ B true
x

.)
Here are two examples involving both ∧ and ⊃ . The two proofs show that A ⊃ (B ⊃ C) and

(A ∧B) ⊃ C are logically equivalent because each one implies the other. (See Section 1.2 for further
details.)

A ⊃ (B ⊃ C) true
x A ∧B true

y

A true
∧EL

B ⊃ C true ⊃E
A ∧B true

y

B true
∧ER

C true ⊃E

(A ∧B) ⊃ C true ⊃Iy

(A ⊃ (B ⊃ C)) ⊃ ((A ∧B) ⊃ C) true ⊃Ix

(A ∧B) ⊃ C true
x A true

y
B true

z

A ∧B true ∧I

C true ⊃E

B ⊃ C true ⊃Iz

A ⊃ (B ⊃ C) true ⊃Iy

((A ∧B) ⊃ C) ⊃ (A ⊃ (B ⊃ C)) true ⊃Ix

Disjunction

Like ∧ and ⊃ , the disjunction connective ∨ is binary:

A prop B prop
A ∨B prop ∨F

A ∨B, read as “A or B” or “A disjunction B,” is intended to be true when either A or B is true, but
we do not necessarily know which alternative is true. In our formulation of propositional logic, an
introduction rule for ∨ concludes A ∨B true from a proof of either A true or B true:

A true
A ∨B true

∨IL
B true

A ∨B true
∨IR

The design of an elimination rule for ∨ is not obvious. A naive attempt would be to conclude one
of A true and B true from A ∨B true :

A ∨B true
A true

∨EL?
A ∨B true

B true
∨ER?

In a certain sense, both rules are too strong (or too powerful) because they conclude a judgment that
cannot be justified by A ∨B true, which does not specify exactly which of A true and B true holds. In
fact, each rule allows us to prove A true for any proposition A:

B true
x

B ⊃ B true ⊃Ix

A ∨ (B ⊃ B) true
∨IR

A true
∨EL?

Since it is generally unknown which of A true and B true has been supplied in a proof of A ∨B true
(e.g., when A ∨B true is a hypothesis), the only logical way to exploit A ∨B true is by considering both
possibilities simultaneously. If we can prove C true both from A true and from B true for a certain
proposition C, then we may conclude C true from A ∨B true, since C true holds regardless of how the
proof of A ∨B true has been built. The elimination rule for ∨ expresses such a way of reasoning:

A ∨B true

A true
x

...
C true

B true
y

...
C true

C true ∨Ex,y

Note that A true and B true are introduced as new hypotheses and are annotated with different labels
x and y. As in the elimination rule for ⊃ , their scope is limited to their respective premises of the rule
∨Ex,y (i.e., A true

x
to the second premise and B true

y
to the third premise), which means that both

hypotheses are discharged when C true is deduced in the conclusion.
Unlike the elimination rules for ∧ and ⊃ , the elimination rule for ∨ exploits A ∨B true in an indirect

way in that its conclusion contains a proposition C that is not necessarily A, B, or their combination.

4 August 12, 2009



That is, when applying the elimination rule to A ∨B true , we ourselves have to choose a proposition C
(which can be completely unrelated to A and B) such that C true is provable both from A true and from
B true. For this reason, the inclusion of ∨ in a system of logic makes it hard to investigate metalogical
properties of the system, as we will see later.

As a trivial example, let us prove that A true is stronger than A ∨B true :

A true
x

A ∨B true
∨IL

A ⊃ (A ∨B) true ⊃Ix

The converse does not hold, i.e., A ∨B true is strictly weaker than A true , because there is no way to
prove A true from B true for arbitrary propositions A and B:

A ∨B true
x

A true
y

B true
z

...
A true (impossible)

A true ∨Ey,z

(A ∨B) ⊃ A true ⊃Ix

As another example, let us prove that the disjunction connective is commutative:

(A ∨B) ⊃ (B ∨A) true

We begin by applying the rule ⊃I so that the problem reduces to proving B ∨A true from A ∨B true:

A ∨B true
x

...
B ∨A true

(A ∨B) ⊃ (B ∨A) true ⊃Ix

At this point, the proof may proceed either in a bottom-up way by applying an introduction rule ∨IL or
∨IR to B ∨A true , or in a top-down way by applying the elimination rule ∨E to A ∨B true . In the first
case, we eventually get stuck because it is impossible to prove A true or B true from A ∨B true. For
example, we cannot fill the gap in the proof shown below:

A ∨B true
x

...
B true

B ∨A true
∨IL

(A ∨B) ⊃ (B ∨A) true ⊃Ix

In the second case, the problem reduces to separately proving B ∨A true from A true and from B true,
which is accomplished by applying the introduction rules for ∨:

A ∨B true
x

A true
y

B ∨A true
∨IR

B true
z

B ∨A true
∨IL

B ∨A true ∨Ey,z

(A ∨B) ⊃ (B ∨A) true ⊃Ix

Truth and falsehood

Truth> is a proposition that is assumed to be always true. Hence a proof of> true requires no particular
evidence and is always provable, as indicated by the empty premise in its introduction rule:

> prop >F > true >I

August 12, 2009 5



Then how do we exploit a proof of> true in an elimination rule? Since we have to provide no particular
evidence in a proof of > true , there is no logical content in it, which implies that there is no interesting
way to exploit it. Therefore > has no elimination rule.

Falsehood ⊥ is a proposition that is never true, or equivalently, whose truth is impossible to es-
tablish. The intuition is that it denotes a logical contradiction which must not be provable under any
circumstance. Therefore there is no introduction rule for ⊥. Interestingly, however, there is an elimina-
tion rule for ⊥. Suppose that we have a proof of ⊥ true . If we think of ⊥ true as something impossible
to prove, or as something that is the most difficult to prove, the existence of its proof implies that we
can prove everything (which is no more difficult to prove than ⊥ true)! Therefore the elimination rule
for ⊥ deduces C true for an arbitrary proposition C:

⊥ prop ⊥F
⊥ true
C true ⊥E

Then why do we need an elimination rule for ⊥ at all, if it is impossible to prove ⊥ true? While it is
impossible to prove⊥ true out of nothing, it is possible to prove⊥ true using hypotheses. For example,
⊥ true in the premise of the rule ⊥E itself may be a hypothesis, as illustrated in the proof below:

⊥ true
x

C true ⊥E

⊥ ⊃ C true ⊃Ix

In essence, there is nothing wrong with reasoning from an assumption that something impossible to
prove has been proven somehow.

We say that a system of logic is inconsistent if ⊥ true is provable in it, and consistent if not. An
inconsistent system is worthless because a judgment A true is provable for an arbitrary proposition A.
We will later present a proof that our system of propositional logic is consistent, whose discovery was
in fact a major milestone in the history of logic.

Truth > and falsehood ⊥ can also be viewed as the nullary cases of conjunction and disjunction,
respectively. Consider a general n-ary case

∧n
i=1 Ai of conjunction with a single introduction rule and n

elimination rules:

Ai true for i = 1, · · · , n∧n
i=1 Ai true

∧
I

∧n
i=1 Ai true
Ai true

∧
Ei (1 ≤ i ≤ n)

If we let > =
∧n

i=1 Ai with n = 0, the rule
∧

I turns into the rule >I because it comes to have an empty
premise, and each rule

∧
Ei disappears (i.e., no elimination rule for >). Similarly a general n-ary case∨n

i=1 Ai of disjunction has n introduction rules and a single elimination rule:

Ai true∨n
i=1 Ai true

∨
Ii(1 ≤ i ≤ n)

∨n
i=1 Ai true

Ai true
xi

...
C true for i = 1, · · · , n

C true
∨

Ex

If we let⊥ =
∨n

i=1 Ai with n = 0, each rule
∨

Ii disappears (i.e., no introduction rule for⊥), and the rule∨
E turns into the rule ⊥E because all hypothetical proofs in its premise disappear.
Now it is clear that > and ⊥ are identities for the binary connectives ∧ and ∨, respectively. For

example, we can identify A ∧ > with A: if A true is provable, then A ∧ > true is also provable because
> true automatically holds; the converse follows by the rule ∧EL. Similarly we can identify A ∨ ⊥ with
A: if A ∨ ⊥ true is provable, A true must also be provable because the second alternative ⊥ true cannot
be taken; the converse follows by the rule ∨IL.

Negation

The only unary connective in propositional logic is negation ¬:

A prop
¬A prop ¬F

6 August 12, 2009



¬A, read as “not A” or “negation A,” denotes the logical negation of A, and its truth means that A cannot
be true. We use an approach that uses a notational definition by regarding ¬A as a syntactic abbreviation
of A ⊃ ⊥. That is, ¬ plays no semantic role at all and ¬A is simply expanded to A ⊃ ⊥. The notational
definition of ¬ justifies the following rules:

A true
x

...
⊥ true
¬A true ¬Ix

¬A true A true
⊥ true ¬E

Note that if ¬ was defined as an independent connective rather than a notational convenience, these
rules would destroy the orthogonality of the system because the meaning of ¬ would depend on the
meaning of ⊥. We use the third approach in our treatment of ¬ (which is the most popular definition in
the literature).

As an example, we prove that if A is true, then ¬A cannot be true:

¬A true
y

A true
x

⊥ true ¬E

¬¬A true ¬Iy

A ⊃ ¬¬A true ⊃Ix

The converse ¬¬A ⊃ A true is not provable, however, which implies that A true is strictly stronger than
¬¬A true. That is, a proof that ¬A cannot be true is not enough for concluding that A is true. A failed
attempt to prove ¬¬A ⊃ A true would look like:

¬¬A true
x

¬¬A true
x

... ?
¬A true

⊥ true ¬E

A true ⊥E

¬¬A ⊃ A true ⊃Ix

The unprovability of ¬¬A ⊃ A true is a quintessential feature of the system of logic presented so far,
or any system belonging to what is known as constructive logic or intuitionistic logic. In constructive logic,
what ¬A true proves is not exactly the direct opposite of what A true proves. Rather it provides only
indirect evidence that there is no proof of A true by showing that the existence of such a proof leads to
a logical contradiction. In contrast, classical logic assumes that every proposition is either true or false
and has no intermediate state. Under classical logic, ¬¬A true is indistinguishable from A true because
A is either true or false and we have positive evidence that A cannot be false. The truth table method
for proving the truth of a proposition is based on classical logic, which tries all possible combinations
of truth and falsehood values for all atomic propositions.

Figure 1.1 shows all inference rules of propositional logic where the set of propositions is inductively
defined as follows:

proposition A ::= P | A ∧A | A ⊃ A | A ∨A | > | ⊥ | ¬A

P is called a propositional constant and denotes an atomic proposition (e.g. ‘1 + 1 is equal to 0,’ ‘1 + 1
is equal to 2’ is true,’ ‘the moon is made of cheese,’ etc). The rules ¬I and ¬E are derived rules under the
notational definition ¬A = A ⊃ ⊥. From now on, we use the following operator precedence

¬ > ∧ > ∨ > ⊃

where ∧, ∨, ⊃ are all right-associative. Examples are:

¬A ∧B = (¬A) ∧B
A ∧B ∨ C = (A ∧B) ∨ C
A ∨B ⊃ C = (A ∨B) ⊃ C

¬A ∧B ∨ C ⊃ D = (((¬A) ∧B) ∨ C) ⊃ D

A ∧B ∧ C = A ∧ (B ∧ C)
A ∨B ∨ C = A ∨ (B ∨ C)

A ⊃ B ⊃ C = A ⊃ (B ⊃ C)

August 12, 2009 7



A true B true
A ∧B true ∧I

A ∧B true
A true

∧EL
A ∧B true

B true
∧ER

A true
x

...
B true

A ⊃ B true ⊃Ix

A ⊃ B true A true
B true ⊃E

A true
A ∨B true

∨IL
B true

A ∨B true
∨IR

A ∨B true

A true
x

...
C true

B true
y

...
C true

C true ∨Ex,y

> true >I
⊥ true
C true ⊥E

A true
x

...
⊥ true
¬A true ¬Ix

¬A true A true
⊥ true ¬E

Figure 1.1: Natural deduction system for propositional logic

1.2 Logical equivalence

We say that a proposition A is logically equivalent to another proposition B, written A ≡ B, if A true
implies B true and vice versa. A notational definition of logical equivalence A ≡ B is given as follows:

A ≡ B = (A ⊃ B) ∧ (B ⊃ A) true

If A and B are logically equivalent, an occurrence of A inside any proposition may be replaced by
B (or an occurrence of B by A) without changing its meaning in that the resultant proposition remains
logically equivalent to the original proposition. Thus logical equivalences enable us to simplify a proof
involving a proposition that is logically equivalent to a less complex proposition. For example,

¬¬¬A ⊃ (¬¬¬B ⊃ ¬(A ∨B)) true

becomes easy (or even obvious) to prove once we transform ¬¬¬A ⊃ (¬¬¬B ⊃ ¬(A ∨B)) into
(¬A ∧ ¬B) ⊃ ¬(A ∨B) by exploiting logical equivalences¬¬¬A ≡ ¬A and A ⊃ (B ⊃ C) ≡ (A ∧B) ⊃ C.

Below we list logical equivalences of propositional logic which are divided into three groups.

Commutativity and idempotence. ∧ and ∨ are commutative and idempotent. An implication A ⊃ A
is logically meaningless and reduces to >.

(C1) A ∧B ≡ B ∧A
(C2) A ∨B ≡ B ∨A
(C3) A ⊃ B 6≡ B ⊃ A
(I1) A ∧A ≡ A
(I2) A ∨A ≡ A
(I3) A ⊃ A ≡ >

Truth and falsehood. Each logical equivalence below deals with a proposition of the form> φ A,⊥ φ A,
A ⊃ >, or A ⊃ ⊥ where φ is ∧, ∨, or ⊃ .

8 August 12, 2009



(M1) > ∧A ≡ A
(M2) > ∨A ≡ >
(M3) > ⊃ A ≡ A
(M4) ⊥ ∧A ≡ ⊥
(M5) ⊥ ∨A ≡ A
(M6) ⊥ ⊃ A ≡ >
(M7) A ⊃ > ≡ >
(M8) A ⊃ ⊥ = ¬A

Interaction between connectives. Each logical equivalence below deals with a proposition of the form
A φ (B φ C) or (A φ B) ⊃ C where φ is ∧, ∨, or ⊃ .

(L1) A ∧ (B ∧ C) ≡ (A ∧B) ∧ C (associativity of ∧)
(L2) A ∧ (B ∨ C) ≡ (A ∧B) ∨ (A ∧ C) (distributivity of ∧ over ∨)
(L3) A ∧ (B ⊃ C) ≡ ? (no interaction)
(L4) A ∨ (B ∧ C) ≡ (A ∨B) ∧ (A ∨ C) (distributivity of ∨ over ∧)
(L5) A ∨ (B ∨ C) ≡ (A ∨B) ∨ C (associativity of ∨)
(L6) A ∨ (B ⊃ C) ≡ ? (no interaction)
(L7) A ⊃ (B ∧ C) ≡ (A ⊃ B) ∧ (A ⊃ C) (distributivity of ⊃ over ∧)
(L8) A ⊃ (B ∨ C) ≡ ? (no interaction)
(L9) A ⊃ (B ⊃ C) ≡ (A ∧B) ⊃ C

(L10) (A ∧B) ⊃ C ≡ A ⊃ (B ⊃ C)
(L11) (A ∨B) ⊃ C ≡ (A ⊃ C) ∧ (B ⊃ C)
(L12) (A ⊃ B) ⊃ C ≡ ? (no interaction)

August 12, 2009 9



10 August 12, 2009



Chapter 2

Proof Terms

This chapter presents an alternative formulation of propositional logic using the principle called the
Curry-Howard isomorphism [?]. As a principle connecting logic and programming languages, it states that
propositions in logic correspond to types in programming languages (propositions-as-types correspon-
dence) and that proofs in logic correspond to programs in programming languages (proofs-as-programs
correspondence). Thus, by applying the Curry-Howard isomorphism to a formulation of logic, we
systematically derive a formulation of a corresponding programming language. In the case of proposi-
tional logic, we obtain a basic definition of the simply-typed λ-calculus.

The basic idea behind the Curry-Howard isomorphism is to represent a proofD of a truth judgment
A true as a proof term M of type A:

D
A true ⇐⇒ M : A

That is, a typing judgment M : A expresses that a proof term M of type A is a (concise) representation of
a proof of A true. When M : A holds, we say that proof term M typechecks with type A. Note that A
can be interpreted both as a proposition and as a type, depending on the context in which it is used.

Under the correspondence between proofs and proof terms shown above, each inference rule for
deducing truth judgments is translated to a corresponding typing rule for deducing typing judgments;
by convention, a typing rule is given the same name as the inference rule from which it is derived:

· · ·
A true R ⇐⇒

· · ·
M : A

R

Thus the typing rules for proof terms constitute another natural deduction system, in which an intro-
duction rule assigns to a proof term a type involving a particular connective whereas an elimination
rule uses such a proof term in its premise.

We may choose any syntax for proof terms as long as each proof term of type A provides all neces-
sary information to extract a corresponding proof of A true . Below we design proof terms according to
the syntax for the simply-typed λ-calculus so as to emphasize the close connection between logic and
type theory. We use metavariables M , N , · · · for terms. Figure 2.1 shows all the typing rules for proof
terms in propositional logic where the set of proof terms is inductively defined as follows:

proof term M ::= x | (M,M) | fst M | snd M | λx :A.M |M M |
inlA M | inrA M | case M of inl x. M | inr x.M | () | abortA M

Conjunction

Consider an application of the rule ∧I in which a proof D of A ∧B true is constructed from a proof DA

of A true and a proof DB of B true. If proof terms M and N represent DA and DB , respectively, we
use a product term (M,N) of type A ∧B to represent D. Thus the rule ∧I is translated to the following
typing rule (of the same name):

A true B true
A ∧B true ∧I ⇐⇒

M : A N : B
(M,N) : A ∧B

∧I

11



We use projection terms fst M and snd M in translating the rule ∧EL and ∧ER; fst and snd stand for ‘first
projection’ and ‘second projection,’ respectively:

A ∧B true
A true

∧EL ⇐⇒ M : A ∧B
fst M : A

∧EL
A ∧B true

B true
∧ER ⇐⇒ M : A ∧B

snd M : B
∧ER

Implication

Suppose that we wish to convert to a proof term a proof D of A ⊃ B true that applies the rule ⊃I to a
hypothetical proof E of B true :

D


E


A true

x

...
B true

A ⊃ B true ⊃Ix

In order to build a proof term M representing E , we first need to assign a proof term to the hypothesis
A true

x
. Since A true is just a hypothesis without a concrete proof, its corresponding proof term is also

unknown. Hence we represent A true
x

as a variable x, for which we can later substitute another proof
term (like we substitute a concrete proof of A true for the hypothesis A true

x
):

A true
x

⇐⇒ x : A

If M represents E , we use a λ-abstraction λx :A.M to represent D:

A true
x

...
B true

A ⊃ B true ⊃Ix

⇐⇒

x : A
...

M : B

λx :A.M : A ⊃ B
⊃I

We say that variable x is bound in the λ-abstraction λx :A.M . Note that we may rename x to another
variable without changing the meaning of λx :A.M . For example, both λx :A. (x, x) and λy :A. (y, y)
represent the same proof, since using a different label for the same hypothesis does not alter the struc-
ture of the proof. (Renaming a bound variable in a λ-abstraction is commonly called α-conversion.)

Similarly to the rule ⊃I in propositional logic, the typing rule ⊃I restricts the scope of the hypothesis
x : A to its premise. As a result, the hypothesis x : A is discharged when the rule ⊃I is applied, and
variable x in λx :A.M can be assigned type A only if it appears within M . For example, λx :A. x has
type A ⊃ A, but (λx :A. x, x) cannot be assigned a type and fails to typecheck. Also the hypothesis x : A
may be used not just once but as many times as necessary. Hence proof term M in λx :A.M may contain
any number of occurrences of variable x, as illustrated below:

x : B
y : A

(not used in the proof)
λy :A. x : A ⊃ B

⊃I

λx :B. λy :A. x : B ⊃ (A ⊃ B)
⊃I

x : A
λx :A. x : A ⊃ A

⊃I

x : A x : A
(x, x) : A ∧A

∧I

λx :A. (x, x) : A ⊃ (A ∧A)
⊃I

(See Page 3 for proofs of corresponding truth judgments.)
As a proof term corresponding to the rule ⊃E, we use a λ-application M N :

A ⊃ B true A true
B true ⊃E ⇐⇒ M : A ⊃ B N : A

M N : B
⊃E

The following example uses the rule ⊃E to typecheck λx :A ⊃ B. λy :A. x y:

x : A ⊃ B y : A

x y : B
⊃E

λy :A. x y : A ⊃ B
⊃I

λx :A ⊃ B. λy :A. x y : (A ⊃ B) ⊃ (A ⊃ B)
⊃I

12 August 12, 2009



Disjunction

As proof terms corresponding to the rule ∨IL and ∨IR, we use injection terms inlA M and inrA M ; inl and
inr stand for ‘injection left’ and ‘injection right,’ respectively:

A true
A ∨B true

∨IL ⇐⇒ M : A
inlB M : A ∨B

∨IL
B true

A ∨B true
∨IR ⇐⇒ M : B

inrA M : A ∨B
∨IR

We annotate an injection term inlA M or inrA M with a type A so that whenever M typechecks, the
whole injection term also typechecks with a unique type.

For the elimination rule ∨E, we use a case term case M of inl x. N | inr y. N ′; as with the rule ⊃I, we
represent hypotheses A true

x
and B true

y
in the premise as variables x and y:

A ∨B true

A true
x

...
C true

B true
y

...
C true

C true ∨Ex,y

⇐⇒
M : A ∨B

x : A
...

N : C

y : B
...

N ′ : C

case M of inl x.N | inr y. N ′ : C
∨E

Variables x and y are bound in the case term case M of inl x. N | inr y. N ′, and remain valid only within
N and N ′, respectively. As an example, here is a proof term of type (A ∨B) ⊃ (B ∨A):

x : A ∨B

y : A

inrB y : B ∨A
∨IR

z : B
inlA z : B ∨A

∨IL

case x of inl y. inrB y | inr z. inlA z : B ∨A
∨E

λx :A ∨B. case x of inl y. inrB y | inr z. inlA z : (A ∨B) ⊃ (B ∨A)
⊃I

Truth and falsehood

We use a unit term () as a proof term for > true :

> true >I ⇐⇒ () : > >I

Just like there is no logical content in > true, a unit term carries no useful information. As truth > has
no elimination rule, there is no more rule for ().

Since falsehood ⊥ has no introduction rule, there is no proof term for type ⊥. For the elimination
rule ⊥E, we use an abort term abortC M :

⊥ true
C true ⊥E ⇐⇒ M : ⊥

abortC M : C
⊥E

We annotate an abort term with a type C so that an unambiguous type can be assigned when M has
type ⊥.

August 12, 2009 13



M : A N : B
(M,N) : A ∧B

∧I
M : A ∧B
fst M : A

∧EL
M : A ∧B
snd M : B

∧ER

x : A
...

M : B

λx :A.M : A ⊃ B
⊃I

M : A ⊃ B N : A
M N : B

⊃E

M : A
inlB M : A ∨B

∨IL
M : B

inrA M : A ∨B
∨IR

M : A ∨B

x : A
...

N : C

y : B
...

N ′ : C

case M of inl x.N | inr y. N ′ : C
∨E

() : > >I
M : ⊥

abortC M : C
⊥E

Figure 2.1: Typing rules for proof terms in propositional logic

14 August 12, 2009



Chapter 3

First-Order Logic

This chapter develops first-order logic, i.e., logic with universal and existential quantifications. Develop-
ing first-order logic is the first step toward a practical reasoning system which inevitably demands an
apparatus for expressing that a given property holds for all, or ∀, objects or that there exists, or ∃, a certain
object satisfying a given property. Here we deal with pure first-order logic which does not stipulate a
particular class of objects. Later we will enrich it in such a way that we can express properties of specific
classes of objects such as natural numbers, trees, or boolean values.

3.1 Terms

In propositional logic, expressing properties of objects under consideration requires us to define propo-
sitional constants which denote atomic propositions. For example, in order to express that 1 is equal
to 1 itself, we would need a propositional constant Eq1 denoting an atomic proposition ‘1 is equal to
1.’ While logical connectives provide us with an elegant mechanism for reasoning about such atomic
propositions, the need for a separate propositional constant for each atomic proposition makes propo-
sitional logic too limited in its expressive power. For example, in order to express that every natural
number is equal to itself, we would have to define an infinite array of propositional constants Eq i de-
noting ‘i is equal to i.’

First-order logic replaces propositional constants in propositional logic by predicates. A predicate
may have arguments and expresses a relation between its arguments. (For this reason, first-order logic
is also called predicate logic.) For example, we can define a predicate Eq so that Eq(t1 , t2 ) denotes a
proposition ‘t1 is equal to t2.’ Here the predicate Eq has two arguments t1 and t2 and expresses an
equality between t1 and t2. The arguments t1 and t2 are called terms in first-order logic and may be
interpreted as particular mathematical objects (such as natural numbers). Thus first-order logic is a
system in which we use predicates to express properties of terms.

Note that first-order logic itself does not enforce a specific way of interpreting terms. As an example,
consider two terms 0 and s(0). As usual, we could interpret 0 as zero and s(0) as the successor of zero,
but such an interpretation is just a specific way of assigning mathematical objects to terms. Thus it is
also fine to interpret 0 as the natural number one and or s(0) as the predecessor of one. In general, we do
not formalize how to relate terms to mathematical objects, and first-order logic in our discussion (which
is based on proof theory) deals only with terms and not with their interpretations. Thus predicates
directly express properties of uninterpreted terms.

Formally we define terms as follows:

term t, s ::= x | y | · · · | a | b | · · · | f(t1, · · · , tn) | c

x, y, · · · are called term variables which range over the set of all terms. We may substitute terms for term
variables and we write [s/x]t for the result of substituting s for x in t. a, b, · · · are called parameters and
denote arbitrary/unspecified terms about which we can make no assumption. The difference between
term variables and parameters is that a term variable is just a placeholder for another term whereas a
parameter is understood as an arbitrary term about which nothing is known. (We will see the use of
parameters in inference rules for first-order logic.)

15



f is called a function symbol and has zero or more arguments. We write f(t1, · · · , tn) for a term where
f is a function symbol of arity n and t1, · · · , tn are its arguments. A constant c is a function symbol of
zero arity; that is, c is an abbreviation of c(). Note that although it is usually interpreted as a function
in the mathematical sense, a function symbol f is not a function because f(t1, · · · , tn) is a term in itself
and does not reduce to another term. For example, s(0), which comprises of a function symbol s and
its argument 0, does not reduce to another term, say 1, because it is a term in itself.

Now we can define a set of terms by specifying function symbols with their arities. Here are a few
examples:

• To obtain terms for natural numbers, we use a constant 0 for zero and a function symbol s of arity
one to be interpreted as the successor function.

• To obtain terms for boolean values, we use two constants true and false.

• To obtain terms for binary trees, we use a constant leaf for leaf nodes and a function symbol node
of arity two for inner nodes.

Terms are not to be confused with proof terms. Terms can represent any kinds of objects (e.g., nat-
ural numbers, boolean values, student names, etc.) whereas proof terms represent proofs in logic. For
example, we can say that a proof term λx :A. x represents a proof of A ⊃ A, but it makes no sense to
judge the truth or falsehood of a term s(0).

3.2 Propositions in first-order logic

In addition to logical connectives from propositional logic, first-order logic uses predicates and two
forms of quantifications over terms. An inductive definition of propositions is given as follows:

proposition A ::= P (t1, · · · , tn) | · · · | ∀x.A | ∃x.A

Alternatively we may use three new formation rules:

P (t1, · · · , tn) prop PF
A prop

∀x.A prop ∀F
A prop

∃x.A prop ∃F

P is called a predicate symbol. A predicate P (t1, · · · , tn) is a proposition that expresses a certain
relation between terms t1, · · · , tn. For example, we may use Nat(t) to mean that term t is a natural
number, or Eq(t1, t2) to mean that terms t1 and t2 are equal. A propositional constant P is a predicate
symbol of zero arity; that is, P is an abbreviation of P ().

∀x.A uses a universal quantifier ∀ to introduce a term variable x. Roughly speaking, the truth of ∀x.A
means that A is true for “every” term x. ∃x.A uses an existential quantifier ∃ to introduce a term variable
x. Roughly speaking, the truth of ∃x.A means that we can present “some” term x for which A is true.
Quantifiers ∀ and ∃ have the lowest operator precedence. For example, ∀x.A ⊃ B is understood as
∀x.(A ⊃ B); similarly ∃x.A ⊃ B is understood as ∃x.(A ⊃ B).

As quantifiers introduce term variables, there arises a need for substitutions for term variables in
propositions or proofs. We write [t/x]A for the result of substituting t for x in proposition A. Similarly
we write [t/x]D for the result of substituting t for x throughout proof D. Extending substitutions for
term variables, we write [t/a]A and [t/a]D for the result of substituting t for parameter a in A and D,
respectively. These substitutions for term variables and parameters are considerably simpler to define
than substitutions in the simply-typed λ-calculus because variable captures never occur in first-order
logic. That is, in a substitution [t/x]A or [t/x]D, term t is always closed and contains no free term
variables.

3.3 Universal quantification

A universal quantification ∀x.A is true if A is true for every term x. For example, given that 0, s(0),
s(s(0)), · · · constitute the set of terms, we can deduce ∀x.Eq(x, x) true if Eq(0,0) true, Eq(s(0), s(0)) true,
Eq(s(s(0)), s(s(0))) true , · · · are all provable. Hence it helps to think of ∀x.A as an infinite conjunction

[t1/x]A ∧ [t2/x]A ∧ · · · ∧ [ti/x]A ∧ · · ·

16 August 12, 2009



where t1, t2, · · · , ti, · · · enumerate all terms.
The inference rules for universal quantifications are given as follows:

[a/x]A true
∀x.A true ∀Ia ∀x.A true

[t/x]A true ∀E

In the rule ∀Ia, parameter a denotes an arbitrary term about which we can make no assumption. Thus
we may read [a/x]A true as a shorthand for a sequence of judgments

[t1/x]A true [t2/x]A true · · · [ti/x]A true · · ·

where t1, t2, · · · , ti, · · · enumerate all terms. In the rule ∀E, t can be any term — a constant, a function
symbol, a term variable, or even an existing parameter. We justify the rule ∀E by reading ∀x.A true as

[t1/x]A ∧ [t2/x]A ∧ · · · ∧ [ti/x]A ∧ · · · true

where t1, t2, · · · , ti, · · · enumerate all terms.
It is important that in the rule ∀Ia, parameter a must be fresh and not found in any undischarged

hypothesis. For example, a proof of ∀x.Nat(x) true introducing a fresh parameter a must not contain

any hypothesis of the form P (a) , which is an assumption on an arbitrary term about which we can
make no assumption! The presence of such a hypothesis implies that parameter a is already declared
elsewhere and thus cannot be interpreted as an arbitrary term. The following example, which tries to
prove that y is a natural number whenever x is a natural number, shows that using the same parameter
twice in difference instances of the rule ∀I results in a wrong proof:

Nat(a) true
w

∀x.Nat(x) true
∀Ia (wrong)

Nat(b) true ∀E

Nat(a) ⊃ Nat(b) true ⊃Iw

∀y.Nat(a) ⊃ Nat(y) true ∀Ib

∀x.∀y.Nat(x) ⊃ Nat(y) true ∀Ia

Here is an example of a proof involving universal quantifiers where we exploit [a/x](A ∧B) =
[a/x]A ∧ [a/x]B.

∀x.A ∧B true
w

[a/x](A ∧B) true ∀E

[a/x]A true
∧EL

∀x.A true ∀Ia

∀x.A ∧B true
w

[a/x](A ∧B) true ∀E

[a/x]B true
∧ER

∀x.B true ∀Ia

(∀x.A) ∧ (∀x.B) true ∧I

(∀x.A ∧B) ⊃ (∀x.A) ∧ (∀x.B) true ⊃Iw

3.4 Existential quantification

An existential quantification ∃x.A is true if there exists a term x satisfying A. For example, if Eq(0,0) true
is provable, we can deduce ∃x.Eq(x, x) because substituting a concrete term 0 for x makes Eq(x, x) true
provable. Hence it helps to think of ∃x.A as an infinite disjunction

[t1/x]A ∨ [t2/x]A ∨ · · · ∧ [ti/x]A ∨ · · ·

where t1, t2, · · · , ti, · · · enumerate all terms.
The inference rules for existential quantifications are given as follows:

[t/x]A true
∃x.A true ∃I

∃x.A true

[a/x]A true
w

...
C true

C true ∃Ea,w

August 12, 2009 17



The rule ∃I says that we prove ∃x.A true by presenting a concrete term, or a witness, t such that
[t/x]A true is provable. We justify the rule ∃I by reading ∃x.A true as

[t1/x]A ∨ [t2/x]A ∨ · · · ∨ [ti/x]A ∨ · · · true

where t1, t2, · · · , ti, · · · enumerate all terms and ti = t holds. In the rule ∃Ea,w, we annotate the
hypothesis [a/x]A true with label w. We also introduce a fresh parameter a because the witness for the
proof of ∃x.A true is unknown and thus we cannot make any assumption about it. Thus we may read

[a/x]A true
w

...
C true

as a shorthand for a sequence of hypothetical proofs

[t1/x]A true
w

...
C true

[t2/x]A true
w

...
C true

· · ·
[ti/x]A true

w

...
C true

· · ·

where t1, t2, · · · , ti, · · · enumerate all terms.
In the rule ∃Ea,w, parameter a must be fresh and not found in proposition A or any undischarged

hypothesis. In particular, it must not be found in proposition C. Otherwise the rule ends up with a
conclusion that makes too strong an assumption about the witness, namely that the witness can be an
arbitrary term! For example, the following proof exploits a proof of ∃x.Nat(x) ∧ Eq(x,0) true to draw
a (nonsensical) conclusion that an arbitrary term is equal to a natural number 0, as it allows parameter
a to appear in the conclusion:

...
∃x.Nat(x) ∧ Eq(x,0) true

Nat(a) ∧ Eq(a,0) true
w

Eq(a,0) true
∧ER

Eq(a,0) true ∃Ea,w

In essence, the rule ∃Ea,w introduces parameter a in the course of proving C true after fixing proposition
C, which implies that C is oblivious to a.

An important aspect of the rule ∃I is that in order to prove ∃x.A true, it is not enough to show that
there only “exists” a witness x satisfying A without actually knowing what it is. The necessity of such
a witness is indeed a distinguishing feature of constructive logic. In contrast, a proof of ∃x.A true in
classical logic only needs to show that there exists a term t, which may or may not be known, such that
[t/x]A true is provable. In other words, a proof of ∃x.A true essentially shows that it cannot happen
that there exists no term t such that [t/x]A true is provable. As a consequence, ∃x.A is no different from
¬∀x.¬A in classical logic.

To better understand the nature of existential quantifications in constructive logic, let us consider
a few examples. First ∃x.¬A ⊃ ¬∀x.A true is provable. Intuitively a proof of ∃x.¬A true gives us a
witness t such that [t/x]¬A true is provable, and we can use t to refute ∀x.A true .

∃x.¬A true
w

[a/x]¬A true
y ∀x.A true

z

[a/x]A true ∀E

⊥ true ¬E

⊥ true ∃Ea,y

¬∀x.A true ¬Iz

∃x.¬A ⊃ ¬∀x.A true ⊃Iw

The converse ¬∀x.A ⊃ ∃x.¬A true is not provable, however. Intuitively a proof of ∃x.¬A true requires
a witness t such that [t/x]¬A true is provable, but no proof of ¬∀x.A true gives such a witness.

¬∀x.A true
w ?

∀x.A true
⊥ true ¬E

∃x.¬A true ⊥E

¬∀x.A ⊃ ∃x.¬A true ⊃Iw

18 August 12, 2009



[a/x]A true
∀x.A true ∀Ia ∀x.A true

[t/x]A true ∀E
[t/x]A true
∃x.A true ∃I

∃x.A true

[a/x]A true
w

...
C true

C true ∃Ea,w

Figure 3.1: Natural deduction system for first-order logic

Perhaps surprisingly, (∀x.A) ⊃ (∃x.A) true is not provable. The reason is that although ∀x.A true
states that [t/x]A true is provable for any term t, it does not decide a concrete term t such that [t/x]A true
is provable. In particular, if the set of terms is empty, ∀x.A true holds trivially (because there is no term),
but ∃x.A true never holds because it is impossible to choose a term t for x, regardless of proposition A.

∀x.A true
w

[t/x]A true? ∀E

∃x.A true ∃I

(∀x.A) ⊃ (∃x.A) true ⊃Iw

On the other hand, ∀y.(∀x.A) ⊃ (∃x.A) true is provable even if y does not occur free in A. The difference
from the previous example is that ∀y allows us to make an assumption that the set of terms is not empty.
In the proof shown below, parameter a denotes an arbitrary term in the set of terms, and its presence
implies that the set of terms is not empty.

∀x.A true
w

[a/x]A true ∀E

∃x.A true ∃I

(∀x.A) ⊃ (∃x.A) true ⊃Iw

∀y.(∀x.A) ⊃ (∃x.A) true ∀Ia

These two examples illustrate that in constructive logic, ∀x.A is not equivalent to A even if x does not
occur free in A at all: ∀x.A asserts A on the assumption that the set of terms is not empty, whereas A
without a universal quantifier cannot exploit such an assumption.

Figure 3.1 shows the inference rules for first-order logic.

3.5 Examples

As a concrete example of reasoning in first-order logic, let us characterize natural numbers. We use
0 as a term denoting zero and s as a function symbol denoting the successor function. We also use
three predicates: Nat(t) to mean that t is a natural number, Eq(t, t′) to mean that t and t′ are equal, and
Lt(t, t′) to mean that t is less than t′.

First we need axioms as a means of defining the three predicates:

Nat(0) true Zero ∀x.Nat(x) ⊃ Nat(s(x)) true Succ

∀x.Eq(x, x) true
Eqi ∀x.∀y.∀z.(Eq(x, y) ∧ Eq(x, z)) ⊃ Eq(y, z) true

Eqt

∀x.Lt(x, s(x)) true
Lts ∀x.∀y.Eq(x, y) ⊃ ¬Lt(x, y) true

Lt¬

The lower four axioms may be thought of as translations of the following mathematical properties:

• x = x.
• If x = y and x = z, then y = z.
• x < x + 1.
• If x = y, then x 6< y.

August 12, 2009 19



Combined with these axioms, first-order logic allows us to prove new theorems about these pred-
icates. As a trivial example, here is a proof of Nat(s(s(0))) true , which states that s(s(0)) is a natural
number:

∀x.Nat(x) ⊃ Nat(s(x)) true Succ

Nat(s(0)) ⊃ Nat(s(s(0))) true ∀E

∀x.Nat(x) ⊃ Nat(s(x)) true Succ

Nat(0) ⊃ Nat(s(0)) true ∀E Nat(0) true Zero

Nat(s(0)) true
⊃E

Nat(s(s(0))) true
⊃E

Note that the two applications of the rule ⊃E substitute different terms, namely s(0) and 0, for term
variable x in ∀x.Nat(x) ⊃ Nat(s(x)).

An example of using an existential quantification is a proof of ∀x.Nat(x) ⊃ (∃y.Nat(y) ∧ Eq(x, y)) true
which states that if x is a natural number, there exists a natural number y such that x = y:

Nat(a) true
z

∀x.Eq(x, x) true
Eqi

Eq(a, a) true ∀E

Nat(a) ∧ Eq(a, a) true ∧I

∃y.Nat(y) ∧ Eq(a, y) true ∃I

Nat(a) ⊃ (∃y.Nat(y) ∧ Eq(a, y)) true ⊃Iz

∀x.Nat(x) ⊃ (∃y.Nat(y) ∧ Eq(x, y)) true ∀Ia

In the application of the rule ∃I, we use parameter a as a witness.
Here are two more examples. The first states the commutativity of equality: x = y implies y = x

The second states that there is no term x such that x = 0 and x = 1.

• Proof of ∀x.∀y.Eq(x, y) ⊃ Eq(y, x) true:

∀x.∀y.∀z.(Eq(x, y) ∧ Eq(x, z)) ⊃ Eq(y, z) true
Eqt

∀y.∀z.(Eq(a, y) ∧ Eq(a, z)) ⊃ Eq(y, z) true ∀E

∀z.(Eq(a, b) ∧ Eq(a, z)) ⊃ Eq(b, z) true ∀E

(Eq(a, b) ∧ Eq(a, a)) ⊃ Eq(b, a) true ∀E
Eq(a, b) true

w
∀x.Eq(x, x) true

Eqi

Eq(a, a) true ∀E

Eq(a, b) ∧ Eq(a, a) true ∧I

Eq(b, a) true
⊃E

Eq(a, b) ⊃ Eq(b, a) true ⊃Iw

∀y.Eq(a, y) ⊃ Eq(y, a) true ∀Ib

∀x.∀y.Eq(x, y) ⊃ Eq(y, x) true ∀Ia

• Proof of ¬∃x.Eq(x,0) ∧ Eq(x, s(0)) true:

∃x.Eq(x,0) ∧ Eq(x, s(0)) true
w

∀x.∀y.Eq(x, y) ⊃ ¬Lt(x, y) true
Lt¬

∀y.Eq(0, y) ⊃ ¬Lt(0, y) true
∀E

Eq(0, s(0)) ⊃ ¬Lt(0, s(0)) true
∀E D

Eq(0, s(0)) true

¬Lt(0, s(0)) true
⊃E

∀x.Lt(x, s(x)) true
Lts

Lt(0, s(0)) true
∀E

⊥ true
¬E

⊥ true
∃Ea,z

¬∃x.Eq(x,0) ∧ Eq(x, s(0)) true
¬Iw

where we let

D =

∀x.∀y.∀z.(Eq(x, y) ∧ Eq(x, z)) ⊃ Eq(y, z) true
Eqt

∀y.∀z.(Eq(a, y) ∧ Eq(a, z)) ⊃ Eq(y, z) true
∀E

∀z.(Eq(a,0) ∧ Eq(a, z)) ⊃ Eq(0, z) true
∀E

(Eq(a,0) ∧ Eq(a, s(0))) ⊃ Eq(0, s(0)) true
∀E

Eq(a,0) ∧ Eq(a, s(0)) true
z

Eq(0, s(0)) true
⊃E

20 August 12, 2009



3.6 Proof terms

As in propositional logic, we use the Curry-Howard isomorphism to represent proofs of truth judg-
ments as proof terms. Proof terms for first-order logic are given as follows:

proof term M ::= · · · | λx.M |M t | 〈t, M〉 | let 〈x,w〉 = M in M

λx.M , a proof term of type ∀x.A, is a λ-abstraction that takes a term t and returns a proof term of
type [t/x]A. (Recall that propositions and types are equivalent under the Curry-Howard isomorphism.)
It is similar to a λ-abstraction from propositional logic except that it takes a term, instead of a proof
term, as its argument. For example, given a term t (denoting a natural number), λx.M may return a
proof term of type Nat(t) ⊃ Nat(s(t)). A corresponding λ-application M t is a proof term of type [t/x]A
if M is a proof term of type ∀x.A.

The typing rules for λx.M and M t are given as follows:

[a/x]M : [a/x]A
λx.M : ∀x.A

∀Ia M : ∀x.A
M t : [t/x]A ∀E

Here we write [t/x]M for a substitution of term t for term variable x in proof term M . The rule ∀Ia
proves that λx.M has type ∀x.A by introducing a fresh parameter a and proving that [a/x]M has type
[a/x]A. For example, a proof that λx.M has type ∀x.Eq(x, x) could show that [a/x]M has type Eq(a, a)
for some parameter a. Note that in the rule ∀Ia, term a appears in both proof term M and type A. This
feature of first-order logic is manifested in the rule ∀E: terms may appear not only in types but also in
proof terms. Intuitively a proof about a specific term t needs to mention t somewhere in it. (Otherwise
how can we prove a fact about t at all?) Hence a proof term whose type contains t also mentions t
somewhere in it. For example, we could use Eqi 0 as a proof term of type Eq(0,0) where Eqi assumes
type ∀x.Eq(x, x). As a consequence, a substitution [t/x]M on proof term M may need a substitution
[t/x]A on type A if x occurs inside A in M .

〈t, M〉 is a proof term of type ∃x.A. Intuitively a proof of ∃x.A true requires a concrete witness t and
a proof that t satisfies A. Hence a proof term of type ∃x.A contains such a witness t and a proof term M
of type [t/x]A. For example, a proof term of type ∃x.Eq(x, x) (“there exists a term x such that x is equal
to x itself”) may contain a witness 0 and a proof term of type Eq(0,0) (“0 is equal to 0). Thus we obtain
the following typing rule for 〈t, M〉:

M : [t/x]A
〈t,M〉 : ∃x.A

∃I

Given that M has type ∃x.A, a proof term let 〈x,w〉 = M in N decides the type of N after binding
x and w to a witness t and a proof term of type [t/x]A, respectively. (Note that x is a term variable
whereas w is a variable ranging over proof terms.) Since such a witness is unknown in general (e.g., if
M is a variable), we have to assume an arbitrary witness a and assign type [a/x]A to w. Accordingly
we replace x in N by a. Thus we obtain the following typing rule for let 〈x,w〉 = M in N :

M : ∃x.A

w : [a/x]A
...

[a/x]N : C

let 〈x,w〉 = M in N : C
∃Ea

In practice, we may use the following typing rule with an extra assumption that x is a fresh term vari-
able:

M : ∃x.A

w : A
...

N : C

let 〈x,w〉 = M in N : C
∃E

Figure 3.2 shows all the typing rules for proof terms in first-order logic.

August 12, 2009 21



[a/x]M : [a/x]A
λx.M : ∀x.A

∀Ia M : ∀x.A
M t : [t/x]A ∀E

M : [t/x]A
〈t, M〉 : ∃x.A

∃I
M : ∃x.A

w : [a/x]A
...

[a/x]N : C

let 〈x, w〉 = M in N : C
∃Ea

Figure 3.2: Typing rules for proof terms in first-order logic

3.7 Examples of proof terms

This section rewrites all the proofs in Section 3.5 using proof terms. First we need constant proof terms
for axioms:

Nat0 : Nat(0) Zero
Nats : ∀x.Nat(x) ⊃ Nat(s(x)) Succ

Eqi : ∀x.Eq(x, x)
Eqi

Eqt : ∀x.∀y.∀z.(Eq(x, y) ∧ Eq(x, z)) ⊃ Eq(y, z)
Eqt

Lts : ∀x.Lt(x, s(x))
Lts

Lt¬ : ∀x.∀y.Eq(x, y) ⊃ ¬Lt(x, y)
Lt¬

The proof of Nat(s(s(0))) true corresponds to a proof term Nats s(0) (Nats 0 Nat0) as shown in the
following derivation tree:

Nats : ∀x.Nat(x) ⊃ Nat(s(x)) Succ

Nats s(0) : Nat(s(0)) ⊃ Nat(s(s(0))) ∀E

Nats : ∀x.Nat(x) ⊃ Nat(s(x)) Succ

Nats 0 : Nat(0) ⊃ Nat(s(0)) ∀E
Nat0 : Nat(0) Zero

Nats 0 Nat0 : Nat(s(0))
⊃E

Nats s(0) (Nats 0 Nat0) : Nat(s(s(0)))
⊃E

In the same fashion, we obtain the following proof terms:

• Proof term of type ∀x.Nat(x) ⊃ (∃y.Nat(y) ∧ Eq(x, y)):

z : Nat(a)
Eqi : ∀x.Eq(x, x)

Eqi

Eqi a : Eq(a, a) ∀E

(z,Eqi a) : Nat(a) ∧ Eq(a, a) ∧I

〈a, (z,Eqi a)〉 : ∃y.Nat(y) ∧ Eq(a, y) ∃I

λz :Nat(a). 〈a, (z,Eqi a)〉 : Nat(a) ⊃ (∃y.Nat(y) ∧ Eq(a, y)) ⊃Iz

λx. λz :Nat(x). 〈x, (z,Eqi x)〉 : ∀x.Nat(x) ⊃ (∃y.Nat(y) ∧ Eq(x, y)) ∀I
a

• Proof term of type ∀x.∀y.Eq(x, y) ⊃ Eq(y, x):

Eqt : ∀x.∀y.∀z.(Eq(x, y) ∧ Eq(x, z)) ⊃ Eq(y, z)
Eqt

Eqt a : ∀y.∀z.(Eq(a, y) ∧ Eq(a, z)) ⊃ Eq(y, z) ∀E

Eqt a b : ∀z.(Eq(a, b) ∧ Eq(a, z)) ⊃ Eq(b, z) ∀E

Eqt a b a : (Eq(a, b) ∧ Eq(a, a)) ⊃ Eq(b, a) ∀E
w : Eq(a, b)

Eqi : ∀x.Eq(x, x)
Eqi

Eqi a : Eq(a, a) ∀E

(w,Eqi a) : Eq(a, b) ∧ Eq(a, a) ∧I

Eqt a b a (w,Eqi a) : Eq(b, a)
⊃E

λw :Eq(a, b).Eqt a b a (w,Eqi a) : Eq(a, b) ⊃ Eq(b, a) ⊃Iw

λy. λw :Eq(a, y).Eqt a y a (w,Eqi a) : ∀y.Eq(a, y) ⊃ Eq(y, a) ∀I
b

λx. λy. λw :Eq(x, y).Eqt x y x (w,Eqi x) : ∀x.∀y.Eq(x, y) ⊃ Eq(y, x) ∀I
a

• Proof term of type ¬∃x.Eq(x,0) ∧ Eq(x, s(0)):

w : ∃x.Eq(x,0) ∧ Eq(x, s(0))

E
(Lt¬ 0 s(0)) (Eqt a 0 s(0) z) : ¬Lt(0, s(0))

Lts : ∀x.Lt(x, s(x))
Lts

Lts 0 : Lt(0, s(0))
∀E

(Lt¬ 0 s(0)) (Eqt a 0 s(0) z) (Lts 0) : ⊥ ¬E

let 〈x, z〉 = w in (Lt¬ 0 s(0)) (Eqt x 0 s(0) z) (Lts 0) : ⊥ ∃Ea

λw :∃x.Eq(x,0) ∧ Eq(x, s(0)). let 〈x, z〉 = w in (Lt¬ 0 s(0)) (Eqt x 0 s(0) z) (Lts 0) : ¬∃x.Eq(x,0) ∧ Eq(x, s(0))
¬Iw

22 August 12, 2009



where we let

E =

Lt¬ : ∀x.∀y.Eq(x, y) ⊃ ¬Lt(x, y)
Lt¬

Lt¬ 0 : ∀y.Eq(0, y) ⊃ ¬Lt(0, y)
∀E

Lt¬ 0 s(0) : Eq(0, s(0)) ⊃ ¬Lt(0, s(0))
∀E D

Eqt a 0 s(0) z : Eq(0, s(0))

(Lt¬ 0 s(0)) (Eqt a 0 s(0) z) : ¬Lt(0, s(0))
⊃E

where we let

D =

Eqt : ∀x.∀y.∀z.(Eq(x, y) ∧ Eq(x, z)) ⊃ Eq(y, z)
Eqt

Eqt a : ∀y.∀z.(Eq(a, y) ∧ Eq(a, z)) ⊃ Eq(y, z)
∀E

Eqt a 0 : ∀z.(Eq(a,0) ∧ Eq(a, z)) ⊃ Eq(0, z)
∀E

Eqt a 0 s(0) : (Eq(a,0) ∧ Eq(a, s(0))) ⊃ Eq(0, s(0))
∀E

z : Eq(a,0) ∧ Eq(a, s(0))

Eqt a 0 s(0) z : Eq(0, s(0))
⊃E

August 12, 2009 23



24 August 12, 2009



Chapter 4

Datatypes

In pure first-order logic, term variables are assumed to range over all kinds of terms and their domains
are left unspecified. Hence we can restrict the domain of a term variable only indirectly by using a
predicate corresponding to a particular domain. For example, we may use a predicate Nat(x) to specify
that x ranges over natural numbers, as in:

∀x.Nat(x) ⊃ A
∃x.Nat(x) ∧A

This chapter develops first-order logic with datatypes which explicitly specifies the domain of each
term variable bound by a quantifier ∀ or ∃. We write ∀x∈τ.A and ∃x∈τ.A to specify that term variable x
in proposition A ranges over datatype τ . For example, the above two propositions can now be concisely
written as

∀x∈nat.A
∃x∈nat.A

where nat is a datatype for natural numbers.
The main judgment for first-order logic with datatypes is t ∈ τ :

t ∈ τ ⇔ term t has datatype τ

As in propositional logic and pure first-order logic, we base the development of datatypes on natural
deduction. For example, each datatype τ is accompanied by introduction and elimination rules for
deducing and exploiting judgments t ∈ τ . We use metavariables τ and σ for datatypes, and t and s for
terms.

From this chapter on, we adopt a new notation A(x) to mean that proposition A contains term vari-
able x, as in ∀x∈nat.A(x) and ∃x∈nat.A(x). Accordingly A(t) stands for A in which every occurrence
of x has been replaced by t. That is, we have A(t) = [t/x]A.

4.1 Basic constructors for datatypes

Before we consider concrete datatypes such as bool for boolean values and nat for natural numbers,
we develop basic constructors for datatypes to obtain a general language similar to the simply-typed
λ-calculus:

datatype τ ::= · · · | τ→τ | τ × τ | τ +τ | unit | void

We call τ→σ a function type, τ × σ a product type, τ +σ a sum type, unit a unit type, and void a void
type. We will use terms of these datatypes as programs for manipulating ordinary terms of such con-
crete datatypes. For example, we use a term of datatype nat→bool as a function mapping natural
numbers to boolean values, and a term of datatype nat× nat to carry a pair of natural numbers. We
assume that→, ×,+ are all right-associative.

The basic constructors for datatypes have their counterparts in the simply-typed λ-calculus as fol-
lows:

datatype → × + unit void
type ⊃ ∧ ∨ > ⊥

25



x ∈ τ
...

t ∈ σ

λx ∈ τ. t ∈ τ→σ
→I

t ∈ τ→σ s ∈ τ
t s ∈ σ →E

t ∈ τ s ∈ σ
〈t, s〉 ∈ τ × σ

×I
t ∈ τ × σ
fst t ∈ τ

×EL
t ∈ τ × σ
snd t ∈ σ

×ER

t ∈ τ
inlσ t ∈ τ +σ

+IL
t ∈ σ

inrτ t ∈ τ ∨ σ
+IR

t ∈ τ +τ ′

x ∈ τ
...

s ∈ σ

y ∈ τ ′

...
s′ ∈ σ

case t of inl x. s | inr y. s′ ∈ σ
+E

〈〉 ∈ unit
unitI

t ∈ void
abortτ t ∈ τ

voidE

Figure 4.1: Typing rules for terms

For example, function types of the form τ→σ correspond to types of the form A ⊃ B. Terms for these
datatypes also have their counterparts in the simply-typed λ-calculus. For example, as we use a λ-
abstraction λx :A.M as a proof term of type A ⊃ B, we use another form of λ-abstraction λx ∈ τ. t as a
term of datatype τ→σ. The definition of terms reuses the syntax for proof terms in the simply-typed
λ-calculus with a few cosmetic changes:

term t ::= · · · | λx ∈ τ. t | t t | 〈t, t〉 | fst t | snd t | inlτ t | inrτ t | case t of inl x. t | inr x. t |
〈〉 | abortτ t

Figure 4.1 shows the typing rules for terms, all of which are obtained in an analogous way to the
typing rules for the simply-typed λ-calculus in Figure 2.1.

Since the typing rules are all based on the principle of natural deduction, we obtain so called β-
reductions and η-expansions of terms defined as follows:

(λx ∈ τ. t) s =⇒β [s/x]t
fst (t, s) =⇒β t

snd (t, s) =⇒β s
case inlσ t of inl x. s | inr y. s′ =⇒β [t/x]s
case inrτ t of inl x. s | inr y. s′ =⇒β [t/y]s′

t ∈ τ→σ =⇒η λx ∈ τ. t x (x is not free in t)
t ∈ τ × σ =⇒η 〈fst t, snd t〉
t ∈ τ +σ =⇒η case t of inl x. inlσ x | inr y. inrτ y
t ∈ unit =⇒η 〈〉
t ∈ void =⇒η abortvoid t

Here [s/x]t, similar to [N/x]M , denotes a capture-avoiding substitution of s for x in t. With β-reductions
and η-expansions available, these terms constitute a general language of their own.

4.2 Natural deduction for datatypes

We now consider two concrete datatypes bool for boolean values and nat for natural numbers. Again
we explain the meaning of judgments t ∈ bool and t ∈ nat using the principle of natural deduction. For
example, an introduction rule for bool specifies how to deduce a new judgment t ∈ bool whereas an
elimination rule for bool specifies how to exploit an existing judgment t ∈ bool. Usually we first design
introduction rules according to the intuition behind a given datatype and then derive elimination rules
from these introduction rules. In fact, elimination rules for a datatype can be automatically derived
from its introduction rules as long as terms of the datatype are defined inductively.

Let us consider datatype bool for boolean values:

datatype τ ::= · · · | bool

26 August 12, 2009



As a boolean value allows us to choose one of two different options, we associate with datatype bool
two terms, true and false, indicating which option to choose:

true ∈ bool
boolIt false ∈ bool

boolIf

Suppose now that we have a judgment t ∈ bool that we wish to exploit in deducing another judgment.
Since it is in general unknown whether t is equivalent to true or false, we provide for both possibilities
using a term matching t with true and false in turn:

t ∈ bool t1 ∈ τ t2 ∈ τ

case t of true ⇒ t1 | false ⇒ t2 ∈ τ
boolE

Note that although the rule boolE eliminates a term of datatype bool, the term in its conclusion may
have a different datatype τ .

We choose to abbreviate case t of true ⇒ t1 | false ⇒ t2 as if t then t1 else t2 familiar from
programming languages. Thus we obtain the following definition of terms for datatype bool:

term t ::= · · · | true | false | if t then t else t

For datatype bool, we obtain the following β-reductions and η-expansion:

if true then t1 else t2 =⇒β t1
if false then t1 else t2 =⇒β t2

t ∈ bool =⇒η if t then true else false

Here are a few examples of functions manipulating boolean values. and and or compute the logical
conjunction and disjunction, respectively, of two boolean values. not computes the logical negation of
a boolean value.

and ∈ bool→bool→bool and = λx ∈ bool. λy ∈ bool. if x then y else false
or ∈ bool→bool→bool or = λx ∈ bool. λy ∈ bool. if x then true else y
not ∈ bool→bool not = λx ∈ bool. if x then false else true

Datatype nat defines a natural number as either zero 0 or a successor s(t) of another natural number
t.

datatype τ ::= · · · | nat

0 ∈ nat
natI0

t ∈ nat
s(t) ∈ nat

natIs

The elimination rule is similar to the rule boolE and considers two cases for a given term t of datatype
nat: when t matches zero and when t matches a successor of another natural number. The difference is
that in the second case, the elimination rule binds a term variable, say x, to the predecessor of t which
is unknown in general. Thus the elimination rule for datatype nat uses a hypothesis of x ∈ nat:

t ∈ nat t0 ∈ τ

x ∈ nat
...

ts ∈ τ

case t of 0 ⇒ t0 | s(x) ⇒ ts ∈ τ
natE

Here x is a local term variable whose scope is restricted to ts, and we may rename it whenever necessary.
Thus we obtain the following definition of terms for datatype nat:

term t ::= · · · | 0 | s(t) | case t of 0 ⇒ t | s(x) ⇒ t

We use the following β-reductions and η-expansion for datatype nat:

case 0 of 0 ⇒ t0 | s(x) ⇒ ts =⇒β t0
case s(t) of 0 ⇒ t0 | s(x) ⇒ ts =⇒β [t/x]ts

t ∈ nat =⇒η case t of 0 ⇒ 0 | s(x) ⇒ s(x)

August 12, 2009 27



Now we can define various functions returning different results depending on whether a given
natural number is zero or not. For example, we define a function returning the predecessor of a given
natural number as follows:

pred ∈ nat→nat pred = λx ∈ nat. case x of 0 ⇒ 0 | s(y) ⇒ y

The extent to which we define such functions is limited, however, because we have no machinery for
defining recursive functions. For example, the following definition of a function doubling a given nat-
ural number is not valid because double in the body of the λ-abstraction is a free term variable whose
definition is still incomplete:

double ∈ nat→nat double = λx ∈ nat. case x of 0 ⇒ 0 | s(y) ⇒ s(s(double y))

In the next section, we revise the rule natE so that we can define recursive functions over natural
numbers. Instead of a general form of recursion, we base the rule natE on primitive recursion which guar-
antees that every recursive call eventually terminates. Not every recursive function is definable with
primitive recursion (e.g., the Ackermann function), but in the study of first-order logic with datatypes,
we seldom need such recursive functions.

4.3 Primitive recursion

The revised rule natE based on primitive recursion is another elimination rule for datatype nat:

t ∈ nat t0 ∈ τ

x ∈ nat f(x) ∈ τ
...

ts ∈ τ

rec f(t) of f(0) ⇒ t0 | f(s(x)) ⇒ ts ∈ τ
natE

We may think of rec f(t) of f(0) ⇒ t0 | f(s(x)) ⇒ ts as a primitive recursive function f applied to t. In
the base case where t is 0, we take t0. Hence t0 is not permitted to make a recursive call to f . In the
recursive case where t matches s(x), we take ts. Inside ts, we use x to denote the predecessor of t and

f(x) to denote a recursive call to f . Sometimes we write rec f(t) of
{

f(0) ⇒ t0
f(s(x)) ⇒ ts

for visual clarity.

It is important that ts may contain a recursive call to f , but only with x as its argument. For example,
such terms as f(pred x) and f(s(0))) are disallowed in ts. This syntactic restriction is the characteristic
feature of primitive recursion which prohibits an infinite sequence of recursive calls and thus guarantees
that a primitive recursive function always terminates regardless of its actual argument. Since every
recursive call to f within ts always takes x as its argument, we regard f(x) as not an application but a
term variable in itself.

Note that if ts contains no recursive call to f , the whole term rec f(t) of f(0) ⇒ t0 | f(s(x)) ⇒ ts
simplifies to case t of 0 ⇒ t0 | s(x) ⇒ ts. Since the previous rule natE is a special case of the revised
rule natE, we revise the definition of terms for datatype nat as follows:

term t ::= · · · | 0 | s(t) | rec f(t) of f(0) ⇒ t | f(s(x)) ⇒ t

The β-reductions and η-expansion for datatype nat are given as follows:

rec f(0) of f(0) ⇒ t0 | f(s(x)) ⇒ ts =⇒β t0
rec f(s(t)) of f(0) ⇒ t0 | f(s(x)) ⇒ ts =⇒β [rec f(t) of f(0) ⇒ t0 | f(s(x)) ⇒ ts/f(x)][t/x]ts

t ∈ nat =⇒η rec f(t) of f(0) ⇒ 0 | f(s(x)) ⇒ s(x)

In the first β-reduction, the left term reduces to t0 because the argument to f is 0. In the second
β-reduction where the argument s(t) matches s(x), we apply an equality x = t throughout ts by replac-
ing x by t and f(x) by a term denoting a call to f with an argument of t, namely rec f(t) of f(0) ⇒ t0 | f(s(x)) ⇒ ts.
The η-expansion does not involve a recursive call.

28 August 12, 2009



Now we can define a wide range of recursive functions. For example, we specify a function double
doubling a given natural number as follows:

double 0 = 0
double s(x) = s(s(double x))

The above specification translates to the following definition:

double ∈ nat→nat
double = λx ∈ nat. rec d(x) of d(0) ⇒ 0 | d(s(y)) ⇒ s(s(d(y)))

The following sequence of β-reductions (which are applied to subterms when necessary) shows that
double s(0) reduces to s(s(0)):

double s(0) =⇒β rec d(s(0)) of d(0) ⇒ 0 | d(s(y)) ⇒ s(s(d(y)))
=⇒β s(s(rec d(0) of d(0) ⇒ 0 | d(s(y)) ⇒ s(s(d(y)))))
=⇒β s(s(0))

As another example, we specify and define a function plus adding two natural numbers as follows:

plus 0 y = y
plus s(x) y = s(plus x y)

plus ∈ nat→nat→nat
plus = λx ∈ nat. λy ∈ nat. rec p(x) of p(0) ⇒ y | p(s(z)) ⇒ s(p(z))

The following sequence of β-reductions shows that s(0) and t add to s(t):

plus s(0) t =⇒β (λy ∈ nat. rec p(s(0)) of p(0) ⇒ y | p(s(z)) ⇒ s(p(z))) t
=⇒β rec p(s(0)) of p(0) ⇒ t | p(s(z)) ⇒ s(p(z))
=⇒β s(rec p(0) of p(0) ⇒ t | p(s(z)) ⇒ s(p(z)))
=⇒β s(t)

Alternatively we may define plus in such a way that it recurses over the first argument x before
taking the second argument y:

plus = λx ∈ nat. rec p(x) of p(0) ⇒ λy ∈ nat. y | p(s(z)) ⇒ λy ∈ nat. s(p(z) y)

In this case, the reduction of plus s(0) t requires one more step:

plus s(0) t =⇒β

(
rec p(s(0)) of

{
p(0) ⇒ λy ∈ nat. y
p(s(z)) ⇒ λy ∈ nat. s(p(z) y)

)
t

=⇒β λy ∈ nat. s(
(
rec p(0) of

{
p(0) ⇒ λy ∈ nat. y
p(s(z)) ⇒ λy ∈ nat. s(p(z) y)

)
y) t

=⇒β s(
(
rec p(0) of

{
p(0) ⇒ λy ∈ nat. y
p(s(z)) ⇒ λy ∈ nat. s(p(z) y)

)
t)

=⇒β s((λy ∈ nat. y) t)
=⇒β s(t)

It is important to note that we have derived, as opposed to designed, the rule natE from the inductive
definition of terms for datatype nat. In general, once we design introduction rules for a datatype so
as to obtain an inductive definition of terms, the principle of primitive recursion determines a unique
elimination rule. Below we consider another example of a datatype in order to further elucidate the
process of deriving an elimination rule from introduction rules.

We use list τ as a datatype for lists of terms of datatype τ :

datatype τ ::= · · · | list τ

We use nilτ for an empty list of datatype list τ and t :: s for a list consisting of a head element t and a
tail list s:

nilτ ∈ list τ
listIn

t ∈ τ s ∈ list τ
t :: s ∈ list τ

listIc

August 12, 2009 29



From these introduction rules, we derive the following elimination rule based on primitive recursion:

t ∈ list τ sn ∈ σ

x ∈ τ l ∈ list τ f(l) ∈ σ
...

sc ∈ σ

rec f(t) of f(nil) ⇒ sn | f(x :: l) ⇒ sc ∈ σ
listE

The first branch, corresponding to the rule listIn, uses no term variable because nilτ has no subterm.
In the second branch, we use two term variables x and l because the rule listIc uses two terms in its
premise. As in the rule natE, we treat f(l) as a term variable. Thus we obtain the following definition
of terms for datatype list τ :

term t ::= · · · | nilτ | t :: t | rec f(t) of f(nil) ⇒ t | f(x :: x) ⇒ t

The derivation of the β-reductions and η-expansion is also similar to the case of datatype nat:

rec f(nilτ ) of f(nil) ⇒ sn | f(x :: l) ⇒ sc =⇒β sn

rec f(t :: t′) of f(nil) ⇒ sn | f(x :: l) ⇒ sc =⇒β [rec f(t′) of f(nil) ⇒ sn | f(x :: l) ⇒ sc/f(l)][t′/l][t/x]sc

t ∈ list τ =⇒η rec f(t) of f(nil) ⇒ nilτ | f(x :: l) ⇒ x :: l

As examples of recursive functions over lists, we define a function append concatenating two lists
and another function length calculating the length of a list:

append nilτ t = t
append (x :: l) t = x :: (append l t)

append ∈ list τ→ list τ→ list τ
append = λy ∈ list τ . λz ∈ list τ . rec f(y) of f(nil) ⇒ z | f(x :: l) ⇒ x :: f(l)

length nilτ = 0
length (x :: l) = s(length l)

length ∈ list τ→nat
length = λy ∈ list τ . rec f(y) of f(nil) ⇒ 0 | f(x :: l) ⇒ s(f(l))

4.4 First-order logic with datatypes

So far, we have designed a system for creating terms and specifying their datatypes. As our study fo-
cuses on logic rather than programming languages, we are ultimately interested in proving properties
of terms rather than in manipulating terms. For example, the goal of designing a system for natu-
ral numbers is not to demonstrate how to multiply two natural numbers, but to formally prove such
properties as that every non-zero natural number is a product of two prime numbers.

In order to state, let alone prove, interesting properties of terms, we need appropriate predicates. For
example, we may need a predicate LT (m,n) to state that a natural number m is less than another natural
number n. We also need universal and existential quantifications so as to express that a property holds
for all terms of a specific datatype, or that there exists a certain term satisfying a given property. For
example, we may use ∀x∈nat.LT (x, s(x)) to state that for every natural number is less than its successor,
or ∃x∈nat.LT (x, s(0)) to state that there exists a natural number less than one. Then constructing proofs
of judgments ∀x∈nat.LT (x, s(x)) true and ∃x∈nat.LT (x, s(0)) true amounts to formally proving these
properties.

Before we investigate how to define predicates, we consider universal and existential quantifications
in the presence of datatypes. The development is similar to the case of pure first-order logic except that
we now specify the datatype for each term variable.

The inductive definition of propositions is extended as follows:

proposition A ::= · · · | ∀x∈τ.A(x) | ∃x∈τ.A(x)

30 August 12, 2009



x ∈ τ
...

A(x) true

∀x∈τ.A(x) true ∀I
∀x∈τ.A(x) true t ∈ τ

A(t) true ∀E

t ∈ τ A(t) true
∃x∈τ.A(x) true ∃I

∃x∈τ.A(x) true

x ∈ τ A(x) true
w

...
C true

C true ∃Ew

Figure 4.2: Natural deduction system for first-order logic with datatypes

x ∈ τ
...

M : A(x)

λx ∈ τ.M : ∀x∈τ.A(x) ∀I
M : ∀x∈τ.A(x) t ∈ τ

M t : A(t) ∀E

t ∈ τ M : A(t)
〈t, M〉 : ∃x∈τ.A(x) ∃I

M : ∃x∈τ.A(x)

x ∈ τ w : A(x)
...

N : C

let 〈x,w〉 = M in N : C
∃E

Figure 4.3: Typing rules for proof terms in first-order logic with datatypes

The formation rules for ∀x∈τ.A and ∃x∈τ.A use a hypothesis of x ∈ τ :

x ∈ τ
...

A(x) prop

∀x∈τ.A(x) prop ∀F

x ∈ τ
...

A(x) prop

∃x∈τ.A(x) prop ∃F

As we may freely rename x in ∀x∈τ.A(x) and ∃x∈τ.A(x) to a different term variable, we assume that
term variables declared in universal and existential quantifications are all distinct.

Figure 4.2 shows the inference rules for first-order logic with datatypes. These inference rules have
two important differences from those in pure first-order logic. First the rules ∀I and ∃E no longer replace
a term variable x by a fresh parameter a as in [a/x]A true , but use a hypothesis of x ∈ τ specifying the
datatype for x. Second the rules ∀E and ∃I require a separate judgment t ∈ τ .

The rule ∀I resembles the rule ⊃I in that it uses a hypothesis whose scope is local to the premise.
The difference from the rule ⊃I is that the meaning of proposition A(x) in the premise is dependent on
the meaning of term variable x in the hypothesis. In contrast, in the rule ⊃I for proving A ⊃ B true, the
meaning of proposition B is independent of the meaning of proposition A. Hence, if we collapse the
distinction between types and datatypes and use x ∈ A instead of x : A, an implication A ⊃ B becomes
a special case of a universal quantification ∀x∈A.B where B contains no occurrence of x. Then the rule
⊃E also becomes a special case of the rule ∀E.

Proof terms are the same as in pure first-order logic except that we use λ-abstractions that explicitly
specify the datatype of term variables:

proof term M ::= · · · | λx ∈ τ.M |M t | 〈t,M〉 | let 〈x,w〉 = M in M

Figure 4.3 shows the typing rules for these proof terms. The typing rules ∀I and ∀E show that it is no
coincidence that we use λ-abstractions and λ-applications as proofs terms for universal quantifications
as well as for implications, since implications are essentially a special case of universal quantifications.

August 12, 2009 31



Here are a few examples of proof terms whose types involve universal or existential quantifications:

• A proof term of type (∀x∈τ.A(x) ∧B(x)) ⊃ ∀x∈τ.A(x) is

λz :∀x∈τ.A(x) ∧B(x). λx ∈ τ. fst (z x).

Note that z is a variable whereas x is a term variable.

• A proof term of type (∃x∈τ.A(x) ∨B(x)) ⊃ ((∃x∈τ.A(x)) ∨ (∃x∈τ.B(x))) is

λz :∃x∈τ.A(x) ∨B(x). let 〈x, w〉 = z in case w of inl y1. inl∃x∈ τ.B(x) 〈x, y1〉 | inr y2. inr∃x∈ τ.A(x) 〈x, y2〉.

• A proof term of type ((∃x∈τ.A(x)) ∨ (∃x∈τ.B(x))) ⊃ (∃x∈τ.A(x) ∨B(x)) is

λz : (∃x∈τ.A(x)) ∨ (∃x∈τ.B(x)).
case z of inl y1. let 〈x, w〉 = y1 in 〈x, inlB(x) w〉 | inr y2. let 〈x,w〉 = y2 in 〈x, inrA(x) w〉 .

The β-reduction and η-expansion for universal and existential quantifications are given as follows:

(λx ∈ τ.M) t =⇒β [t/x]M
M : ∀x∈τ.A(x) =⇒η λx ∈ τ.M x (x is not free in M )

let 〈x, w〉 = 〈t, M〉 in N =⇒β [M/w][t/x]N
M : ∃x∈τ.A(x) =⇒η let 〈x, w〉 = M in 〈x,w〉

4.5 Natural deduction for predicates

We now investigate how to define predicates on terms. As with all the logical connectives in first-order
logic, we base the definition of every predicate on the principle of natural deduction. That is, we use an
introduction rule to deduce a new judgment involving the predicate, and an elimination rule to exploit
an existing judgment involving the predicate. Moreover, as in the definition of such datatypes as bool
and nat, we first design introduction rules to characterize the predicate and then derive elimination rules
from these introduction rules.

As a running example, we define a predicate LT (m,n) to mean a natural number m is less than
another natural number n. We abbreviate LT (m,n) as m < n.

proposition A ::= · · · |m < n

The formation rule for m < n requires both m and n to be of datatype nat:

m ∈ nat n ∈ nat
m < n prop <F

By the rule <F, every judgment m < n true implicitly assumes that both m and n are of datatype nat.
We use the following introduction rules:

0 < s(n) true
< I0

m < n true
s(m) < s(n) true

< Is

The rule < I0 states that 0 is less than the successor of any natural number; the rule < Is states that
proving s(m) < s(n) true reduces to proving m < n true. Now the two introduction rules determine a
unique meaning for < which is a comparison relation applicable to any pair of natural numbers. If we
choose to include the rule < I0 but omit < Is, we obtain a different but still valid meaning for < which is
a relation testing whether a given natural number is greater than zero or not. Thus the two introduction
rules provide just a specific way to characterize <, which can be defined in many different ways.

In order to derive elimination rules, we consider four possible cases of the judgment m < n true :

• 0 < 0 true is impossible to prove. The corresponding elimination rule may deduce any judgment
C true.

32 August 12, 2009



• s(m) < 0 true is impossible to prove. The corresponding elimination rule may deduce any judg-
ment C true .

• 0 < s(n) true holds trivially by the rule < I0 whose premise is empty. Hence there is no corre-
sponding elimination rule.

• s(m) < s(n) true holds by the rule < Is whose premise is m < n true. Thus the corresponding
elimination rule deduces m < n true.

We combine the first two cases to obtain a single elimination rule:

m < 0 true
C true

<E0
s(m) < s(n) true

m < n true <Es

Note that the rules < Is and <Es, which have < in both the conclusion and the premise, do not
destroy the orthogonality of the system because < is not a logical connective but a predicate. If < were
a logical connective, we lose the orthogonality of the system because we explain the meaning of < using
< itself.

Here are two examples of proofs using the rules for <:

0 < s(0) true
< I0

s(0) < s(s(0)) true
< Is

m < 0 true
z

⊥ true
<E0

¬(m < 0) true ¬Iz

We can also represent a proof of m < n true as a proof term of type m < n. Note that we refer to
m < n as a “type,” which is nothing strange because propositions and types are equivalent under the
Curry-Howard isomorphism. We use the following definition of proof terms each of which corresponds
to an inference rule as shown below:

proof term M ::= · · · | ltI0 | ltIs(M) | ltE0(M) | ltEs(M)

ltI0 : 0 < s(n)
< I0

M : m < n
ltIs(M) : s(m) < s(n)

< Is
M : m < 0
ltE0(M) : C

<E0

M : s(m) < s(n)
ltEs(M) : m < n

<Es

Here are proof terms of types s(0) < s(s(0)) and ¬(m < 0):

ltI0 : 0 < s(0)
< I0

ltIs(ltI0) : s(0) < s(s(0))
< Is

z : m < 0
z

ltE0(z) : ⊥ <E0

λz :m < 0. ltE0(z) : ¬(m < 0)
⊃I

As another example, we consider a predicate EQ(m,n) to mean that natural numbers m and n are
equal. We abbreviate EQ(m,n) as m =N n.

proposition A ::= · · · |m =N n

m ∈ nat n ∈ nat
m =N n prop =NF

Note that m =N n, which says that m and n represent the same natural number, is different from m = n,
which says that m and n are syntactically identical.

Similarly to the predicate m < n, we use two introduction rules:

0 =N 0 true =NI0
m =N n true

s(m) =N s(n) true
=NIs

From these introduction rules, we derive the following elimination rules:

0 =N s(n) true
C true

=NE0s

s(m) =N 0 true
C true

=NEs0
s(m) =N s(n) true

m =N n true =NEs

There is no elimination rule for 0 =N 0 true because the premise of the rule =NI0 is empty.

August 12, 2009 33



We use the following definition of proof terms for the predicate m =N n:

proof term M ::= · · · | eqI0 | eqIs(M) | eqE0s(M) | eqEs0(M) | eqEs(M)

eqI0 : 0 =N 0
=NI0

M : m =N n

eqIs(M) : s(m) =N s(n)
=NIs

M : 0 =N s(n)
eqE0s(M) : C

=NE0s

M : s(m) =N 0
eqEs0(M) : C

=NEs0

M : s(m) =N s(n)
eqEs(M) : m =N n

=NEs

Now that we have a couple of predicates, we may attempt to prove interesting properties of natural
numbers in conjunction with universal and existential quantifications. For example, we may attempt to
prove that for any natural number x, there exists a natural number y such that x < y, for example, by
choosing y = s(x). A formal proof of ∀x∈nat.∃y∈nat.x < y true , however, is not so simple:

x ∈ nat
s(x) ∈ nat

natIs
???

x < s(x) true
∃y∈nat.x < y true

∀x∈nat.∃y∈nat.x < y true ∀I

In fact, we cannot prove even such a simple judgment ∀x∈nat.x =N x. Intuitively we have to prove an
infinite number of judgments 0 =N 0, s(0) =N s(0), s(s(0)) =N s(s(0)), and so on, but we do not have a
mechanism by which we represent all these proofs as a single proof of finite size.

In the next section, we introduce yet another form of elimination rule for datatypes which provides
such a mechanism.

4.6 Induction on terms

Suppose that we wish to prove A(x) true for every boolean value x. Since there are only two terms
true and false, it suffices to prove A(true) true and A(false) true separately, which is expressed in the
following elimination rule for datatype bool:

t ∈ bool A(true) true A(false) true
A(t) true

boolEI

Note that unlike the previous elimination rule boolE which deduces only a judgment of the form s ∈ τ ,
the rule boolEI exploits a proof of t ∈ bool to deduce a judgment A(t) true where A(t) can be any propo-
sition involving t. Thus we have derived a new form of elimination rule which connects different forms
of judgments.

Now suppose that we wish to prove A(x) true for every natural number x. Since there are an infinite
sequence of natural numbers, a naive approach similar to the case of datatype bool would be clearly
infeasible:

t ∈ nat A(0) true A(s(0)) true A(s(s(0))) true · · ·
A(t) true

natEI

Thus we are led to derive an elimination rule that allows mathematical induction on natural num-
bers inside a proof. Specifically it needs to show that A(0) true holds and that an induction hypothesis
A(x) true implies A(s(x)) true:

t ∈ nat A(0) true

x ∈ nat A(x) true
u(x)

...
A(s(x)) true

A(t) true natE
u(x)
I

The second premise states that A(x) true holds for x = 0, and corresponds to the base case in mathe-
matical induction. The third premise states that a hypothesis of A(x) true (with label u(x)) leads to a

34 August 12, 2009



proof of A(s(x)) true, and corresponds to the inductive case in mathematical induction. Hence the sec-
ond and third premises constitute a valid proof of A(x) true for every natural number x. Note that the
first premise just provides a specific natural number t which is to be substituted for x in A(x) true and
is thus not essential in completing a proof by mathematical induction. Often t is just a term variable, in
which case it is called an induction variable.

Using the new elimination rule, we can now complete the proof of ∀x∈nat.∃y∈nat.x < y true. In
the proof shown below, we use x as an induction variable and let A(x) = x < s(x) in the rule natE

u(x)
I :

x ∈ nat
s(x) ∈ nat

natIs
x ∈ nat 0 < s(0) true

< I0
x < s(x) true

u(x)

s(x) < s(s(x)) true
< Is

x < s(x) true natE
u(x)
I

∃y∈nat.x < y true
∀x∈nat.∃y∈nat.x < y true ∀I

Generalizing the case of datatype nat, we can derive from the definition of a datatype, or from its
introduction rules, an elimination rule that is based on induction on terms and builds inductive proofs
on terms. For example, the definition of datatype list τ results in the following elimination rule:

t ∈ list τ A(nilτ ) true

x ∈ τ l ∈ list τ A(l) true
u(l)

...
A(x :: l) true

A(t) true listE
u(l)
I

We can also devise proof terms for the new elimination rules. For example, we use the following
proof term for the rule natEI :

proof term M ::= · · · | ind u(t) of u(0) ⇒ M | u(s(x)) ⇒ N

t ∈ nat M : A(0)

x ∈ nat u(x) : A(x)
...

N : A(s(x))

ind u(t) of u(0) ⇒ M | u(s(x)) ⇒ N : A(t)
natEI

We can think of ind u(t) of u(0) ⇒ M | u(s(x)) ⇒ N as an inductive function u applied to t. If N does not
use u(x), it degenerates to a case analysis construct and may be written as case t of 0 ⇒ M | s(x) ⇒ N :

proof term M ::= · · · | case t of 0 ⇒ M | s(x) ⇒ N

t ∈ nat M : A(0)

x ∈ nat
...

N : A(s(x))

case t of 0 ⇒ M | s(x) ⇒ N : A(t)
natEI

As an example, here is a proof term of type ∀x∈nat.∃y∈nat.x < y:

x ∈ nat
s(x) ∈ nat

natIs
x ∈ nat ltI0 : 0 < s(0)

< I0
u(x) : x < s(x)

ltIs(u(x)) : s(x) < s(s(x))
< Is

ind u(t) of u(0) ⇒ ltI0 | u(s(x)) ⇒ ltIs(u(x)) : x < s(x)
natEI

〈s(x), ind u(t) of u(0) ⇒ ltI0 | u(s(x)) ⇒ ltIs(u(x))〉 : ∃y∈nat.x < y

λx ∈ nat. 〈s(x), ind u(t) of u(0) ⇒ ltI0 | u(s(x)) ⇒ ltIs(u(x))〉 : ∃y∈nat.x < y : ∀x∈nat.∃y∈nat.x < y
∀I

An elimination rule based on induction on terms gives rise to new β-reductions. For example,
an introduction rule natI0 or natIs (proving t ∈ nat) followed by the elimination rule natEI (proving

August 12, 2009 35



A(t) true) forms a new pattern of detour, and removing such a detour corresponds to a β-reduction of
a term of type A(t). In the case of datatype nat, we obtain the following β-reductions:

ind u(0) of u(0) ⇒ M | u(s(x)) ⇒ N =⇒β M
ind u(s(t)) of u(0) ⇒ M | u(s(x)) ⇒ N =⇒β [ind u(t) of u(0) ⇒ M | u(s(x)) ⇒ N/u(x)][t/x]N

In the second β-reduction where s(t) matches s(x), we replace u(x) in N by a proof term of type A(t),
namely ind u(t) of u(0) ⇒ M | u(s(x)) ⇒ N .

Note that elimination rules based on induction on terms are irrelevant to η-expansions. For example,
an η-expansion of t ∈ nat must return another term of datatype nat, but the rule natEI yields a proof
term instead of a term. That is, the rule natEI eliminates a judgment t ∈ nat to produce an incompatible
judgment M : A(t).

4.7 Examples

We have seen in Section 4.5 that the introduction rules for a predicate specify a unique set of elimination
rules. For example, the introduction rules for the predicate m =N n

0 =N 0 true =NI0
m =N n true

s(m) =N s(n) true
=NIs

specify the following elimination rules:

0 =N s(n) true
C true

=NE0s

s(m) =N 0 true
C true

=NEs0
s(m) =N s(n) true

m =N n true =NEs

We have also seen in Section 4.6 that the introduction rules for a datatype specify an elimination rule
based on induction on terms. For example, the introduction rules for datatype nat

0 ∈ nat
natI0

t ∈ nat
s(t) ∈ nat

natIs

specify the following elimination rule:

t ∈ nat A(0) true

x ∈ nat A(x) true
u(x)

...
A(s(x)) true

A(t) true natE
u(x)
I

Here we consider a few examples which use these rules to prove properties of natural numbers.

Example 1. ∀x∈nat.x =N x

A judgment ∀x∈nat.x =N x true states that every natural number is equal to itself. Note that the judg-
ment does not hold trivially because =N is not a syntactic equality relation but a notational abbreviation
of a predicate symbol EQ such that EQ(m,n) means m =N n. That is, there is no reason that x =N x
should hold just because we intend =N as an equality relation between natural numbers.

We begin with an inductive proof of x =N x true where x is assumed to be an arbitrary natural
number:

Proof. By induction on x.

Base case x = 0:
0 =N 0 true from 0 =N 0 true =NI0

Inductive case x = s(x′):
x′ =N x′ true by induction hypothesis

36 August 12, 2009



s(x′) =N s(x′) true from
x′ =N x′ true

s(x′) =N s(x′) true
=NIs

From this inductive proof, we obtain a derivation tree for the judgment ∀x∈nat.x =N x true :

x ∈ nat 0 =N 0 true =NI0
x′ =N x′ true

u(x′)

s(x′) =N s(x′) true
=NIs

x =N x true natE
u(x′)
I

∀x∈nat.x =N x true ∀I

Then we obtain a proof term of type ∀x∈nat.x =N x by assigning a proof term to every part of the
derivation tree:

x ∈ nat eqI0 : 0 =N 0
=NI0

u(x′) : x′ =N x′

eqIs(u(x′)) : s(x′) =N s(x′)
=NIs

ind u(x) of u(0) ⇒ eqI0 | u(s(x′)) ⇒ eqIs(u(x′)) : x =N x
natE

u(x′)
I

λx ∈ nat. ind u(x) of u(0) ⇒ eqI0 | u(s(x′)) ⇒ eqIs(u(x′)) : ∀x∈nat.x =N x
∀I

An equivalent but easier way to obtain such a proof term is to begin with its specification. For
example, we can derive a proof term eqNat of type ∀x∈nat.x =N x from the specification that eqNat x
returns a proof term of type x =N x:

x proof term of type x =N x
eqNat 0 = eqI0
eqNat s(x′) = eqIs(eqNat x′)

Note that eqNat may be recursively called only with argument x′, just like a primitive recursive function
applied to s(x′) may be recursively called only with argument x′. Then we introduce an inductive
function u and rewrite the specification into the definition of eqNat where eqNat x′ changes to u(x′):

eqNat = λx ∈ nat. ind u(x) of u(0) ⇒ eqI0 | u(s(x′)) ⇒ eqIs(u(x′))

Example 2. ∀x∈nat.∀y∈nat.∀z∈nat.x =N y ⊃ y =N z ⊃ x =N z

A judgment ∀x∈nat.∀y∈nat.∀z∈nat.x =N y ⊃ y =N z ⊃ x =N z true expresses the transitivity of the
equality relation =N. An inductive proof of x =N y ⊃ y =N z ⊃ x =N z true is given as follows:

Proof. By induction on x. We consider subcases on y and z. In each case, we assume x =N y true and
y =N z true to show x =N z true.

Base case x = 0. We need to show 0 =N y ⊃ y =N z ⊃ 0 =N z true :
Subcase y = 0:

Subcase z = 0. We need to show 0 =N 0 true.
0 =N 0 true by the rule =NI0

Subcase z = s(z′). We need to show 0 =N s(z′) true .
0 =N s(z′) true from the assumption y =N z true

Subcase y = s(y′). We need to show 0 =N z true.
0 =N s(y′) true from the assumption x =N y true

0 =N z true from
0 =N s(y′) true
0 =N z true =NE0s

Inductive case x = s(x′). We need to show s(x′) =N y ⊃ y =N z ⊃ s(x′) =N z true:
x′ =N y′ ⊃ y′ =N z′ ⊃ x′ =N z′ true for any y′ and z′ by induction hypothesis
Subcase y = 0. We need to show s(x′) =N z true.

s(x′) =N 0 true from the assumption x =N y true

s(x′) =N z true from
s(x′) =N 0 true
s(x′) =N z true

=NEs0

August 12, 2009 37



Subcase y = s(y′):
Subcase z = 0. We need to show s(x′) =N 0 true.

s(y′) =N 0 true from the assumption y =N z true

s(x′) =N 0 true from
s(y′) =N 0 true
s(x′) =N 0 true

=NEs0

Subcase z = s(z′). We need to show s(x′) =N s(z′) true :
s(x′) =N s(y′) true from the assumption x =N y true

x′ =N y′ true from
s(x′) =N s(y′) true

x′ =N y′ true
=NEs

s(y′) =N s(z′) true from the assumption y =N z true

y′ =N z′ true from
s(y′) =N s(z′) true

y′ =N z′ true
=NEs

x′ =N z′ true
from x′ =N y′ ⊃ y′ =N z′ ⊃ x′ =N z′ true, x′ =N y′ true, y′ =N z′ true

s(x′) =N s(z′) true from
x′ =N z′ true

s(x′) =N s(z′) true
=NIs

Instead of rewriting the inductive proof as a derivation tree and then obtaining a corresponding
proof term (which is tedious), we obtain a proof term trans directly from its specification:

x y z v : x =N y w : y =N z proof term of type x =N z
trans 0 0 0 v : 0 =N 0 w : 0 =N 0 = eqI0 or v or w
trans 0 0 s(z′) v : 0 =N 0 w : 0 =N s(z′) = w or eqE0s(w)
trans 0 s(y′) z v : 0 =N s(y′) w : s(y′) =N z = eqE0s(v)
trans s(x′) 0 z v : s(x′) =N 0 w : 0 =N z = eqEs0(v)
trans s(x′) s(y′) 0 v : s(x′) =N s(y′) w : s(y′) =N 0 = eqEs0(w)
trans s(x′) s(y′) s(z′) v : s(x′) =N s(y′) w : s(y′) =N s(z′) = eqIs(trans x′ y′ z′ eqEs(v) eqEs(w))

It requires a bit of thinking to obtain a correct definition of trans. For example, here is a wrong
definition of trans in which we mistakenly apply induction on x after taking y and z:

λx ∈ nat. λy ∈ nat. λz ∈ nat.

ind u(x) of



u(0) ⇒ case y of

 0 ⇒ case z of

{
0 ⇒ λv :0 =N 0. λw :0 =N 0. eqI0
s(z′) ⇒ λv :0 =N 0. λw :0 =N s(z′). eqE0s(w)

s(y′) ⇒ λv :0 =N s(y′). λw :s(y′) =N z. eqE0s(v)

u(s(x′)) ⇒ case y of


0 ⇒ λv :s(x′) =N 0. λw :0 =N z. eqEs0(v)

s(y′) ⇒ case z of

 0 ⇒ λv :s(x′) =N s(y′). λw :s(y′) =N 0. eqEs0(w)
s(z′) ⇒ λv :s(x′) =N s(y′). λw :s(y′) =N s(z′).

eqIs(u(x′) y′ z′ eqEs(v) eqEs(w))

This definition is wrong because u(x′) y′ z′ eqEs(v) eqEs(w) fails to typecheck: u(x′) has type
x′ =N y ⊃ y =N z ⊃ x′ =N z, but it is applied to two terms y′ and z′ instead of two proof terms of types
x′ =N y and y =N z. Neither does dropping y′ and z′ help because eqEs(v) and eqEs(w) have different
types x′ =N y′ and y′ =N z′, respectively. The problem in this definition is that y and z are already fixed
when induction on x starts, leaving no chance to use u(x′) to build a proof term of type x′ =N z′ true
from proof terms of types x′ =N y′ and y′ =N z′. Thus a correct definition of proof term trans starts
induction on x before taking y and z as arguments:

λx ∈ nat.

ind u(x) of



u(0) ⇒ λy ∈ nat. λz ∈ nat.

case y of

 0 ⇒ case z of

{
0 ⇒ λv :0 =N 0. λw :0 =N 0. eqI0
s(z′) ⇒ λv :0 =N 0. λw :0 =N s(z′). eqE0s(w)

s(y′) ⇒ λv :0 =N s(y′). λw :s(y′) =N z. eqE0s(v)
u(s(x′)) ⇒ λy ∈ nat. λz ∈ nat.

case y of


0 ⇒ λv :s(x′) =N 0. λw :0 =N z. eqEs0(v)

s(y′) ⇒ case z of

 0 ⇒ λv :s(x′) =N s(y′). λw :s(y′) =N 0. eqEs0(w)
s(z′) ⇒ λv :s(x′) =N s(y′). λw :s(y′) =N s(z′).

eqIs(u(x′) y′ z′ eqEs(v) eqEs(w))

38 August 12, 2009



In this definition, u(x) has type ∀y∈nat.∀z∈nat.x′ =N y ⊃ y =N z ⊃ x′ =N z, allowing us to build a
proof term of type x′ =N z′ true from proof terms of types x′ =N y′ and y′ =N z′.

Example 3. ∀x∈nat.¬(x =N 0) ⊃ ∃y∈nat.s(y) =N x

A judgment ∀x∈nat.¬(x =N 0) ⊃ ∃y∈nat.s(y) =N x true states that every non-zero natural number is
the successor of some natural number. A proof of ¬(x =N 0) ⊃ ∃y∈nat.s(y) =N x true, which is not an
inductive proof but reuses the proof of ∀z∈nat.z =N z true, is given as follows:

Proof. By case analysis of x.

Case x = 0. We need to show ¬(0 =N 0) ⊃ ∃y∈nat.s(y) =N 0:
¬(0 =N 0) true assumption
∃y∈nat.s(y) =N 0 true from ¬(0 =N 0) true and 0 =N 0 true =NI0

Case x = s(x′). We need to show ¬(s(x′) =N 0) ⊃ ∃y∈nat.s(y) =N s(x′):
¬(s(x′) =N 0) true assumption (which is not used in this case)
x′ =N x′ true from the proof of ∀z∈nat.z =N z true and x′ ∈ nat

s(x′) =N s(x′) true from
x′ =N x′ true

s(x′) =N s(x′) true
=NIs

∃y∈nat.s(y) =N s(x′) true from
x′ ∈ nat s(x′) =N x true
∃y∈nat.s(y) =N x true ∃I

The specification of a proof term pred of type ∀x∈nat.¬(x =N 0) ⊃ ∃y∈nat.s(y) =N x is:

x v : ¬(x =N 0) proof term of type ∃y∈nat.s(y) =N x
pred 0 v : ¬(0 =N 0) = abort∃y∈nat.s(y)=N0 (v eqI0)
pred s(x′) v : ¬(s(x′) =N 0) = 〈x′, eqIs(eqNat x′)〉

From this specification, we obtain the following definition of pred :

pred = λx ∈ nat. case x of

{
0 ⇒ λv :¬(0 =N 0). abort∃y∈nat.s(y)=N0 (v eqI0)
s(x′) ⇒ λv :¬(s(x′) =N 0). 〈x′, eqIs(eqNat x′)〉

Exercise 4.1. Can you give a definition of pred of the following form?

pred = λx ∈ nat. λv :¬(x =N 0). case x of

{
0 ⇒ ...
s(x′) ⇒ ...

Exercise 4.2. Give a proof of ∀x∈nat.∀y∈nat.x =N y ⊃ y =N x true . What is its proof term?

Exercise 4.3. Give a proof of ∀x∈nat.∀y∈nat.x < y ⊃ ¬(x =N y) true. What is its proof term?

4.8 Induction on predicates

In Section 4.5, we have seen how to derive a set of elimination rules for a predicate from its introduction
rules. For example, the introduction rules =NI0 and =NIs for the predicate m =N n specify the elimi-
nation rules =NE0s, =NEs0, and =NEs. Now we show how to derive yet another elimination rule from
the introduction rules for a predicate. Such an elimination rule is based on induction on predicates and
allows us to prove properties of terms satisfying certain predicates.

Suppose that we wish to show a property that whenever m0 =N n0 true holds, we have a proof of
A(m0, n0) where A(m0, n0) can be any proposition involving terms m0 and n0. For example, we may
have A(m0, n0) = n0 =N m0, in which case we attempt to prove the judgment in Exercise 4.2. We
consider two cases of building a proof of m0 =N n0 true:

• The proof of m0 =N n0 true uses the rule =NI0. In this case, we have m0 = 0 and n0 = 0, and thus
need to prove A(0,0) true.

August 12, 2009 39



• The proof of m0 =N n0 true uses the rule =NIs. In this case, we have m0 = s(m) and n0 = s(n),
and thus need to prove A(s(m), s(n)) true from the assumption of m =N n true . In addition, the
principle of induction allows us to make another assumption of A(m,n) true because according
to the rule =NIs, m =N n true uses a “smaller” predicate than s(m) =N s(n) true and is assumed
to already satisfy the property.

The analysis in these two cases justifies the following elimination rule:

m0 =N n0 true A(0,0) true

m ∈ nat n ∈ nat m =N n w A(m,n) true
u(m,n)

...
A(s(m), s(n)) true

A(m0, n0) true =NE
w,u(m,n)
I

Note that as is the case for induction on terms, the second and third premises do not use m0 and n0

at all and constitute a valid proof of A(m,n) true for every pair of natural numbers m and n. Thus
the first premise just provides two specific natural number m0 and n0 to be substituted for m and n in
A(m,n) true and are not essential in completing a proof by induction on predicates.

As an example of using the rule =NEI , here is a proof of the judgment in Exercise 4.2 where we let
A(m,n) = n =N m:

x =N y true
w

0 =N 0 true =NI0
n =N m true

u(m,n)

s(n) =N s(m) true
=NIs

y =N x true =NE
w,u(m,n)
I

x =N y ⊃ y =N x true ⊃Iw

∀y∈nat.x =N y ⊃ y =N x true ∀I

∀x∈nat.∀y∈nat.x =N y ⊃ y =N x true ∀I

In a similar way, the introduction rules for the predicate m < n specify the following elimination
rule based on induction on predicates:

m0 < n0 true

n ∈ nat
...

A(0, s(n)) true

m ∈ nat n ∈ nat m < n
w

A(m,n) true
u(m,n)

...
A(s(m), s(n)) true

A(m0, n0) true <E
w,u(m,n)
I

We can now simplify the proof of the judgment in Exercise 4.3 by using the rule <EI with A(m,n) =
¬(m =N n):

x < y true
w

0 =N s(n) true
v

⊥ true
=NE0s

¬(0 =N s(n)) true ¬Iv

¬(m =N n) true
u(m,n)

s(m) =N s(n) true
v

m =N n true =NEs

⊥ true ¬E

¬(s(m) =N s(n)) true ¬Iv

¬(x =N y) true <E
w,u(m,n)
I

x < y ⊃ ¬(x =N y) true ⊃Iw

∀y∈nat.x < y ⊃ ¬(x =N y) true ∀I

∀x∈nat.∀y∈nat.x < y ⊃ ¬(x =N y) true ∀I

4.9 Definitional equality

So far, we have seen how to use predicates on terms to prove various properties of datatypes. Inciden-
tally these terms are not further reducible by β-reductions because they are either variables or built only
by introduction rules, as in 0 =N 0, x =N y, and s(x) =N s(y). Now we consider predicates containing

40 August 12, 2009



terms that may reduce to simpler terms by β-reductions. For example, a predicate plus 0 0 =N 0 con-
tains a term plus 0 0 which reduces to 0 by β-reductions. Note that plus 0 0 =N 0 true is not provable
because the introduction rules =NI0 and =NIs allow us to prove judgments of the form 0 =N 0 true and
s(m) =N s(n) true only. Since plus 0 0 and 0 denote the same natural number, we would like to be able
to prove plus 0 0 =N 0 true.

This section develops a methodology that enables us to prove such judgments as plus 0 0 =N 0 true.
The basic idea is to define a notion of equality =, called definitional equality, which identifies two terms
that reduce to the same term by β-reductions. For example, we have an equality plus 0 0 = 0 because
plus 0 0 reduces to 0 by β-reductions. Then the equality plus 0 0 = 0 allows us to simplify the judgment
plus 0 0 =N 0 true to 0 =N 0 true, which is provable.

It is important that although definitional equality uses the symbol = which usually stands for syn-
tactic equality, it is a strict extension of syntactic equality. For example, 0 = 0 holds under both syntactic
equality (because x is syntactically equal to x) and definitional equality (because x reduces to x by zero
β-reductions), but plus 0 0 = 0 does not hold under syntactic equality (because plus 0 0 is syntactically
different from 0) while it holds under definitional equality. We also note that definitional equality has
nothing to do with the symbol =N in the predicate m =N n which is just a syntactic abbreviation of
EQ(m,n).

Formally we use a new judgment t = s to mean that terms t and s are definitionally equal. (Instead
of writing t = s true, we write t = s, omitting true .) As with predicates, we base the definition of t = s
on the principle of natural deduction:

t =⇒∗
β r s =⇒∗

β r

t = s
DefEq I

A(t) true t = s

A(s) true
DefEqE

In the introduction rule DefEq I, the judgment t =⇒∗
β r means that t reduces to r by zero or more

β-reductions. Here we assume that β-reductions may be applied to subterms of the term being reduced.
For example, if t1 =⇒β t2 holds, s(t1) =⇒∗

β s(t2) holds because t1 is a subterm of s(t1). Thus the rule
DefEq I states that two terms are definitionally equal if both reduce to the same term by β-reductions.
As a special case, two terms t and s are definitionally equal if t reduces to s by β-reductions or vice
versa.

• If t =⇒∗
β s or s =⇒∗

β t, then t = s.

The elimination rule DefEqE states that once we build a proof of t = s, we cease to distinguish between
(syntactically different) propositions A(t) and A(s). The corresponding typing rule allows us to change
the type of a proof term silently without changing the proof term itself:

M : A(t) t = s

M : A(s)
DefEqE

According to the rule DefEq I, definitional equality is a relation between terms which is reflexive and
commutative:

• t = t holds for any term t.

• t = s implies s = t.

Definitional equality is not necessarily transitive because the set of terms is open-ended and thus can be
extended with new terms that destroy the transitivity of definitional equality. It is transitive, however,
in the following weak sense:

• If t = s and s = r, then A(t) true implies A(r) true .

Here are a few examples of definitional equality:

• pred 0 = 0 holds because we have pred 0 =⇒β case 0 of 0 ⇒ 0 | s(y) ⇒ y =⇒β 0.

• The sequence of β-reductions on Page 29 proves plus s(0) t = s(t).

August 12, 2009 41



• plus 0 x = x holds:

plus 0 x =⇒β (λy ∈ nat. rec p(0) of p(0) ⇒ y | p(s(z)) ⇒ s(p(z))) x
=⇒β rec p(0) of p(0) ⇒ x | p(s(z)) ⇒ s(p(z))
=⇒β x

• plus x 0 = x does not holds:

plus x 0 =⇒β (λy ∈ nat. rec p(x) of p(0) ⇒ y | p(s(z)) ⇒ s(p(z))) 0
=⇒β rec p(x) of p(0) ⇒ 0 | p(s(z)) ⇒ s(p(z))
=⇒β ???

As an example of a proof using definitional equality, let us find a proof term of the following type
which states that every natural number is either even or odd:

∀x∈nat.(∃y∈nat.y + y =N x) ∨ (∃y∈nat.s(y + y) =N x)

Here we write t + s for plus t s. Note that without definitional equality, it is impossible to find such a
proof term because there is no way to prove, for example, y + y =N x.

First we observe that s(x) + y = s(x + y) holds:

s(x) + y =⇒∗
β rec p(s(x)) of p(0) ⇒ y | p(s(z)) ⇒ s(p(z))

=⇒β s(rec p(x) of p(0) ⇒ y | p(s(z)) ⇒ s(p(z)))
s(x + y) =⇒∗

β s(rec p(x) of p(0) ⇒ y | p(s(z)) ⇒ s(p(z)))

Next we define a proof term comp whose type is ∀x∈nat.∀y∈nat.x + s(y) =N s(x + y):

comp = λx ∈ nat. λy ∈ nat. ind u(x) of

{
u(0) ⇒ eqNat s(y)
u(s(x′)) ⇒ eqIs(u(x′))

Here eqNat s(y) is assigned type 0 + s(y) =N s(0 + y) which is equivalent to s(y) =N s(y) under defi-
nitional equality. Similarly eqIs(u(x′)) is assigned type s(x′) + s(y) =N s(s(x′) + y) which is equivalent
to s(x′ + s(y)) =N s(s(x′ + y)) under definitional equality. Then we use the proof term trans given in
Section 4.7 to obtain a proof term of the given type:

λx ∈ nat.

ind u(x) of

{
u(0) ⇒ inl∃y∈nat.s(y+y)=N0 〈0, eqI0〉
u(s(x′)) ⇒

case u(x′) of

{
inl z. let 〈y, w〉 = z in inr∃y∈nat.y+y=Ns(x′) 〈y, eqIs(w)〉

| inr z. let 〈y, w〉 = z in
inl∃y∈nat.s(y+y)=Ns(x′) 〈s(y), trans (s(y) + s(y)) (s(s(y + y))) (s(x′)) (comp s(y) y)eqIs(w)〉

42 August 12, 2009


