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1 Basic commands and tactics/tacticals

Commands

• Section and End.

• Variable and Variables.

• Theorem and Lemma.

• Proof and Qed.

• check, print, and inspect.

Tactics

• intro and intros.

• apply.

• assumption and exact.

• split.

• left and right.

• elim.

• auto, trivial, and tauto. (Don’t use!)

• cut.

• clear.

Tacticals

• T1;T2 (T1 then T2).

• T;[T1|T2|· · ·|T3].

The following table shows tactics corresponding to inferences rules in the natural deduction system.

-> /\ \/ True False ~
Introduction intro, intros split left, right intro
Elimination apply elim elim elim elim

Complete PartOne in the Coq script.
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2 Negation and classical logic

Negation

Complete PartTwo (Negation) in the Coq script.

• (A -> B) -> (~B -> ~A). This is known as a contrapositive in logic.

• A -> ~~A. If A is true, it is safe to assert that it is not that A is not true.

• ~~~A -> ~A. Although ~~A -> A is not true in general, ~~~A -> ~A is true for any proposition A.

• ~~(~~A -> A). This is tantamount to saying that ~~A -> A is not untrue.

Classical logic

Classical logic is a logic obtained by adding one of the following rules to constructive logic:

A ∨ ¬A true EM ¬¬A ⊃ A true DNE ((A ⊃ B) ⊃ A) ⊃ A true Peirce

The rule EM, called the law of excluded middle, asserts that for any proposition A, either A true or
¬A true must hold regardless of the existence of an actual proof. The rule DNE, called the law of double-
negation elimination, asserts that if A cannot be false, it must be true. The rule Peirce, called Peirce’s
law, says that a proof of A true may freely assume A ⊃ B true for an arbitrary proposition B. The three
rules above are all equivalent to each other in that the addition of any of these rules renders the other
two rules derivable.

Complete PartTwo (Classical logic) in the Coq script.

• (A ∨ ¬A) ⊃ (((A ⊃ B) ⊃ A) ⊃ A) true. That is, EM implies Peirce.

• (((A ⊃ ⊥) ⊃ A) ⊃ A) ⊃ (¬¬A ⊃ A) true. That is, Peirce implies DNE where we set B = ⊥.

• (¬¬(B ∨ ¬B) ⊃ (B ∨ ¬B)) ⊃ (B ∨ ¬B) true. That is, DNE implies EM where we set A in DNE to
B ∨ ¬B.

3 Proof terms

Previously we exploited tactics and tacticals of Coq to prove theorems in propositional logic. Since proof
terms are compact representations of proofs, we can translate all these proofs into corresponding proof
terms. In fact, we can just use the Coq command Print to displays all such proof terms. For example,
we can print the proof term for A -> A once we complete its proof using tactics as follows:

Coq < Theorem id : A -> A.
1 subgoal

============================
A -> A

...

id < Qed.
intro x.
assumption.
id is defined

Coq < Print id.
id = fun x : A => x

: A -> A
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In order to use a proof term in proving a theorem, we use the command Definition. For example,
we can define id by directly providing a proof term for it as follows:

Coq < Definition id : A -> A := fun x : A => x.
id is defined

Coq < Print id.
id = fun x : A => x

: A -> A

Definition uses the following syntax:

Definition 〈identifier〉 : 〈proposition〉 := 〈proof term〉.

Proof terms for propositional logic in Coq use slightly different syntax from the simply typed λ-
calculus. The following table shows how to convert proof terms in the simply typed λ-calculus into
Coq:

Simply-typed λ-calculus Coq
λx :A.M fun x : A => M

λx :A. λy :B.M fun (x : A) (y : B) => M
λx :A. λy :B. · · ·λz :C.M fun (x : A) (y : B) · · · (z : C) => M

M N M N
(M,N) conj M N

fst M where M : A ∧ B and ind (fun (p : A) (q : B) => p) M
snd M where M : A ∧ B and ind (fun (p : A) (q : B) => q) M

inlA M or introl A M
inrA M or intror A M

case M of inl x.N1 | inr y. N2 where M : A ∨ B or ind (fun x : A => N1) (fun y : B => N2) M
() I

abortC M False ind C M

Note that Coq provides just a single term and ind for eliminating conjunction, which can be thought of
as combining the two elimination rules for conjunction. To see how and ind works, Check it out!

Coq < Check and_ind.
and_ind

: forall A B P : Prop, (A -> B -> P) -> A /\ B -> P

Also Check out other terms such as conj, or introl, or intror, or ind, and False ind.
Complete PartThree in the Coq script.

4 First-order logic

Tactics for universal and existential quantifications

The following table shows tactics for universal and existential quantifications in first-order logic:

∀ (forall) ∃ (exists)
Introduction intro exists
Elimination apply, apply ... with term1 term2 · · · termn elim

Here is my Coq program transcribing the proofs of the following examples given in the supplementary
notes:

(∀x.A ∧ B) ⊃ (∀x.A) ∧ (∀x.B) true
∃x.¬A ⊃ ¬∀x.A true
∀y.(∀x.A) ⊃ (∃x.A) true
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Section FirstOrder.
Variable Term : Set.
Variables A B : Term -> Prop.

Theorem forall_and :
(forall x : Term, A x /\ B x) -> (forall x : Term, A x) /\ (forall x : Term, B x).
Proof.
intro w.
split; (intro a; elim (w a); intros; assumption).
Qed.

Theorem exist_neg : (exists x : Term, ~ A x) -> (~ forall x : Term, A x).
Proof.
intro w; intro z; elim w; intros a y; elim y; apply z.
Qed.

Theorem not_weird : forall y : Term, (forall x : Term, A x) -> (exists x : Term, A x).
Proof.
intro a; intro w; exists a; apply w.
Qed.
End FirstOrder.

First we declare a set Term which we will use as the set of terms:

Variable Term : Set.

We do not actually specify elements of the set Term because pure first-order logic does not assume a
particular set of terms.

Next we declare two propositions A and B:

Variables A B : Term -> Prop.

A and B are both given type Term -> Prop to indicate that they are parameterized over elements of the
set Term, or terms. What this means in practice is that if A contains a term variable x, we write A x,
which has type Prop, for the proposition. Note that all term variables in my Coq program are assigned
type Term so that they can be used as arguments to A and B.

Sets, propositions, and types

You might well be confused about the differences between Set for sets, Prop for propositions, and Type
for types in Coq. To tell the truth, these are all types and also terms in Coq — what a convoluted
system it is! For now, we only need the following facts. The invariant is that everything in Coq has its
type!

• A proof term M , or equivalently a proof, has a certain type A, and we call A a proposition. So we
have a relation M : A.

• A proposition A has type Prop, and we call Prop a sort in order to differentiate it from types in
the general sense. So we have a relation A : Prop, which literally says that A belongs to the set
Prop of propositions.

• A term t has a certain type τ , and we call τ a datatype. So we have a relation t : τ .

• A datatype τ has type Set, and we also call Set a sort in order to differentiate it from types in
general sense. So we have a relation τ : Set, which literally says that τ belongs to the set Set of
datatypes.

• Both Type and Set have type Type!

We can summarize the above relations as follows:
term t : datatype τ : Set : Type
proof term M : proposition A : Prop : Type
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Declarations and definitions

The following table shows how to declare term variables with only their datatypes, and how to define
term variables with terms as well as their datatypes. Global declarations and definitions are exported
to the outside of sections (beginning with Section and ending with End), while local declarations and
definitions are not.

declaration definition
global Parameter v : τ , Parameters Definition c : τ := t.
local Variable v : τ , Variables Let c : τ := t.

It turns out that these definitions and declarations can be used not only for terms but also for proof
terms and even for datatypes and propositions! For example, we have seen an example of declaring a
datatype like

Variable Term : Set.

or declaring a proposition like

Variable P : Prop.

For proofs and proof terms, Coq provides the following specialized forms for declarations and defini-
tions. An opaque definition hides its proof M and makes only H and A visible for later use. A transparent
definition makes visible its proof M as well. If you do not understand what the difference is, just use
opaque definitions in your Coq program and you will never run into trouble!

declaration definition
global Axiom H : A Lemma H : A. Proof M. — opaque

(Parameter H : A — not recommended) Theorem H : A. Proof M. — opaque
(Definition H : A := M.

— transparent, not recommended)
local Hypothesis H : A, Hypotheses Let H : A := M. — transparent

(Variable H : A — not recommended)

apply, elim, and exact

So far, we have used only variables or labels as arguments to these tactics. In general, their arguments
can be proof terms as long as they have proper types. Here are a few examples.

• apply (Ltn O (S O)).
Instead of specifying a label, we use a proof term Ltn O (S O).

• elim (EM (exists x, P x)).
Instead of specifying a label, we use a proof term EM (exists x, P x)

• exact (Eqi a).
Instead of specifying a label, we use use a proof term Eqi a.

Properties of natural numbers

We use the following axioms to characterize natural numbers.

Nat(0) true Zero ∀x.Nat(x) ⊃ Nat(s(x)) true Succ

∀x.Eq(x, x) true
Eqi ∀x.∀y.∀z.(Eq(x, y) ∧ Eq(x, z)) ⊃ Eq(y, z) true

Eqt

∀x.Lt(x, s(x)) true
Lts ∀x.∀y.Eq(x, y) ⊃ ¬Lt(x, y) true

Lt¬

We translate these axioms into Coq declarations as follows:
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Variable Term : Set.

Variable O : Term.
Variable S : Term -> Term.

Variable Nat : Term -> Prop.
Variable Eq : Term -> Term -> Prop.
Variable Lt : Term -> Term -> Prop.

Hypothesis Zero : Nat O.
Hypothesis Succ : forall x : Term, Nat x -> Nat (S x).
Hypothesis Eqi : forall x : Term, Eq x x.
Hypothesis Eqt : forall (x : Term) (y : Term) (z: Term), (Eq x y /\ Eq x z) -> Eq y z.
Hypothesis Lts : forall x : Term, Lt x (S x).
Hypothesis Ltn : forall (x : Term) (y : Term), Eq x y -> ~ Lt x y.

Complete PartFour in the Coq script:

∀x.Nat(x) ⊃ (∃y.Nat(y) ∧ Eq(x, y)) true
∀x.∀y.Eq(x, y) ⊃ Eq(y, x) true
¬∃x.Eq(x,0) ∧ Eq(x, s(0)) true

More properties of natural numbers

Complete PartFour in the Coq script:

∀x.Nat(x) ⊃ Nat(s(s(x))) true
∀x.∀y.Lt(x, y) ⊃ ¬Eq(x, y) true
¬∃x.∃y.Eq(x, y) ∧ Lt(x, y) true

5 Inductive datatypes and equality

Here is a summary of the commands and tactics that you need. Examples of using these commands and
tactics are also given.

Commands

• Fixpoint facilitates defining primitive recursive functions.

Fixpoint plus (m n:nat) struct m : nat :=
match m with
| O => n
| S m’ => S (plus m’ n)
end.

• Inductive allows us to define inductive datatypes. Later we will use Inductive to define inductive
predicates.

Inductive nat : Set :=
| O : nat
| S : nat -> nat.
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Tactics

• rewrite
rewrite e requires e to be of type forall (x1:T1) (x2:T2) ... (xn:Tn), a = b. Then apply-
ing rewrite e to a goal of the form P(a) rewrites it as P(b).

rewrite Heq
rewrite <- plus n 0
rewrite -> plus n 0 (which is equivalent to rewrite plus n 0)
rewrite <- (plus n 0 n0)
rewrite -> (plus n 0 n0) (which is equivalent to rewrite (plus n 0 n0))

• replace
replace e with e’ replaces e in the current goal by e’ and creates a new goal e’ = e.

replace (f 1) with 0
replace (f 1) with (f 0)

• reflexivity (not in the Coq Tutorial)
Applying this tactic to a goal of t1 = t2 immediately completes the proof if t1 and t2 can be
converted to each other (e.g., 6*6=9*4).

• symmetry (not in the Coq Tutorial)
Applying this tactic to a goal of t = s changes the goal to s = t.

• unfold
unfold x expands x into its definition.

unfold subset
unfold element at 1
unfold element in H

• red
red unfolds the head occurrence of the current goal.

• simple induction
simple induction is an abbreviation of intro; elim. When applied to a goal of the form forall
x:T, A(x), it creates new subgoals according to the definition of type T.

simple induction n

• simpl
simpl simplifies terms in the current goal using the definition of its subterms. For example, it
simplifies plus O n to n.

simpl
simpl plus
simpl plus at 1

• change
If the current goal can be converted to a term e, change e changes the current goal to e.

change (Is S O)
change False with (Is S O)
change False at 2 with (Is S O)

• discriminate
Applying this tactic to a hypothesis of the form a = b immediately completes the proof if a and b
cannot be converted to each other.

Primitive recursion

Use the Fixpoint command to implement the following functions as primitive recursive functions (Part-
Five in the Coq script).
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• plus2 : nat -> (nat -> nat)
plus2 m returns a function f such that f n returns m + n.

• double : nat -> nat
double m returns 2 ∗ m.

• mult : nat -> nat -> nat
mult m n returns m ∗ n. You may use plus in its definition.

• sum n : nat -> nat
sum n n returns Σn

i=0i. You may use plus in its definition.

Properties of plus

Prove the following lemmas in Coq (PartFive in the Coq script). Do not use the auto tactic or any
similar tactic.

Lemma plus_n_0 : forall n:nat, n = plus n O.

Lemma plus_n_S : forall n m:nat, S (plus n m) = plus n (S m).

Lemma plus_com : forall n m:nat, plus n m = plus m n.

Lemma plus_assoc : forall (m n l:nat), plus (plus m n) l = plus m (plus n l).

Proving 2 ∗ Σn
i=0i = n + n ∗ n

Prove the following lemmas in Coq (PartFive in the Coq script). Do not use the auto tactic or any
similar tactic.

Theorem sum_n_plus : forall n:nat, double (sum_n n) = plus n (mult n n).

Your proof may use any lemma from the previous part. You will need to introduce extras lemmas to
complete the proof. The sample solution, for examples, introduces three lemmas, one of which is:

Lemma double_plus2 : forall n:nat, double n = plus n n.

6 Inductive predicates

Commands

• Inductive allows us to define inductive datatypes.

Inductive nat : Set :=
| O : nat
| S : nat -> nat.

This definition automatically declares a term nat ind of the following type:

nat_ind
: forall P : nat -> Prop,
P O -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n

Be sure to understand that nat ind corresponds to the rule natEI given in the supplementary
notes.

• Inductive also allows us to define inductive predicates.
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Inductive eq : nat -> nat -> Prop :=
| eq O : eq O O
| eq S : forall (m n:nat), eq m n -> eq (S m) (S n).

This definition is a transcription of the definition of the predicate m =N n given in the supplemen-
tary notes. It also automatically declares a term eq ind of the following type:

eq ind
: forall P : nat -> nat -> Prop,
P O O ->
(forall m n : nat, eq m n -> P m n -> P (S m) (S n)) ->
forall n n0 : nat, eq n n0 -> P n n0

Be sure to understand that eq ind corresponds to the rule =NEI given in the supplementary notes.
Also remember that we can use eq O and eq S as terms of the types specified in the above definition.

Section 2.2 of the Coq Tutorial gives an example of an inductive predicate le (a parameterized
inductive type in the Coq terminology), which might be challenging to understand at first reading.
Section 1.3.3 (Inductive definitions) of the Coq Reference Manual might be more helpful where you
can find a simpler example of inductive datatype even : nat -> Prop.

Inductive even : nat -> Prop :=
| even O : even O
| even SS : forall n:nat, even n -> even (S (S n)).

even ind
: forall P : nat -> Prop,
P O ->
(forall n : nat, even n -> P n -> P (S (S n))) ->
forall n : nat, even n -> P n

This part uses another inductive predicate lt whose definition is a transcription of the definition
of the predicate m < n given in the supplementary notes.

Inductive lt : nat -> nat -> Prop :=
| lt O : forall n:nat, lt O (S n)
| lt S : forall (m:nat) (n:nat), lt m n -> lt (S m) (S n).

lt ind
: forall P : nat -> nat -> Prop,
(forall n : nat, P O (S n)) ->
(forall m n : nat, lt m n -> P m n -> P (S m) (S n)) ->
forall n n0 : nat, lt n n0 -> P n n0

Tactics

• inversion
In Coq, you give only introduction rules and not elimination rules because Coq provides the tactic
inversion.
Let us assume that e holds a proof of a predicate A. inversion e basically applies appropriate
elimination rules to the predicate A and generates new hypotheses. Since elimination rules are all
derived from introduction rules, we can think of inversion e as inverting the introduction rules
to derive all the necessary conditions that should hold in order for the predicate A to be proved.
Thus, whenever you need to apply an elimination rule to a judgment, you may need to consider
this tactic.

Here is an example:
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Lemma test inversion : forall (x y:nat), eq (S x) (S y) -> eq x y.
Proof.
intros x y H.
inversion H.
assumption.
Qed.

At the time when we apply the inversion tactic, we have H : eq (S x) (S y). As we want to
apply the elimination rule =NEs to H, we apply the inversion tactic, which will generate a new
hypothesis of type x = y, which is the only necessary and sufficient condition for eq (S x) (S y)
to hold. Try it yourself!

• elim
The elim tactic can be applied to any term of an inductive type. For example, it may be applied
to a term of type nat which is defined using the Inductive command, or to a term of type eq m n
which is also defined using the Inductive command. (The reason that we can use this tactic
extensively in propositional logic and pure first-order logic is that it is actually applied to a term
whose type is inductively defined.)

When applied to a term of an inductive type, the elim tactic applies the corresponding elimination
rule based on induction after analyzing the current goal. For example, when applied to a term
of type nat, it automatically applies nat ind, or the rule natEI in effect. Or when applied to a
term of type eq m n, it automatically applies eq ind, or the rule =NEI in effect. So, in order to
learn how this tactic works, you want to understand the two kinds of elimination rules based on
induction that are given in the supplementary notes!

For this part, do not use the auto tactic or any similar tactic.

Examples from the supplementary notes

Prove the following lemmas in Coq (PartSix in the Coq script). For exists greater and eq nat, do not
use the elim and induction tactics. For others, you may use the elim and induction tactics.

Lemma lt_one_two : lt (S O) (S (S O)).

Lemma no_lt_zero : forall (m:nat), ~(lt m O).

Lemma exists_greater : forall (x:nat), exists y:nat, lt x y.
(* use nat_ind; do not use elim/induction. *)

Lemma exists_greater’ : forall (x:nat), exists y:nat, lt x y.
(* may use elim/induction. *)

Lemma eq_nat : forall x:nat, eq x x.
(* use nat_ind; do not use elim/induction. *)

Lemma eq_nat’ : forall x:nat, eq x x.
(* may use elim/induction. *)

Lemma eq_trans : forall (x y z:nat), eq x y -> eq y z -> eq x z.

Lemma eq_succ : forall x:nat, ~(eq x O) -> exists y:nat, eq (S y) x.

Inductive predicates

Assume the following inductive predicate le (standing for “less than or equal to”), and prove the following
lemmas in Coq (PartSix in the Coq script). For le n S and lt le, do not use the elim and induction

tactics. For others, you may use the elim and induction tactics.
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Inductive le : nat -> nat -> Prop :=
| le_n : forall n, le n n
| le_S : forall (m n:nat), le m n -> le m (S n).

Lemma le_zero : forall n:nat, le O n.

Lemma le_n_S : forall n m:nat, le n m -> le (S n) (S m).
(* use le_ind; do not use elim/induction. *)

Lemma lt_le : forall (m n:nat), lt m n -> le m n.
(* use lt_ind; do not use elim/induction. *)

Lemma lt_le’ : forall (m n:nat), lt m n -> le m n.
(* may use elim/induction. *)

Less-than-or-equal-to means less-than or equal-to.

Prove the following theorem in Coq (PartSix in the Coq script). You may introduce a few lemmas if
needed. You may use the elim and induction tactics.

Theorem le_lt_eq : forall (m n:nat), le m n -> lt m n \/ eq m n.

Another definition of less-than

Here is a copy of the definition of le from Section 2.2 of the Coq Tutorial:

Inductive le’ (n:nat) : nat -> Prop :=
| le_n’ : le’ n n
| le_S’ : forall m:nat, le’ n m -> le’ n (S m).

Show that le given above and le’ are logically equivalent. You may use the elim and induction
tactics.

Lemma le_le’ : forall (m n:nat), le m n -> le’ m n.

Lemma le’_le : forall (m n:nat), le’ m n -> le m n.

7 Strings of matched parentheses

We use the following inference rules to prove the two theorems shown below:

ε mparen Meps
s mparen

(s) mparen
Mpar s1 mparen s2 mparen

s1 s2 mparen Mseq

ε lparen
Leps

s1 lparen s2 lparen

(s1) s2 lparen
Lseq

Theorem 7.1. If s mparen, then s lparen.

Theorem 7.2. If s lparen, then s mparen.

We provide a definition for strings of parentheses (S) and a function for concatenating two strings of
parentheses (concat). Your task is to define two inductive judgments mparen and lparen according to
the inference rules shown above, and to give proofs of theorems mparen2lparen and lparen2mparen.

Inductive E : Set :=
| LP : E
| RP : E.
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Inductive S : Set :=
| eps : S
| cons : E -> S -> S.

Fixpoint concat (s1 s2:S) {struct s1} : S :=
match s1 with
| eps => s2
| cons e s2’ => cons e (concat s2’ s2) end.

Inductive mparen : S -> Prop := ...

Inductive lparen : S -> Prop := ...

Theorem mparen2lparen : forall s:S, mparen s -> lparen s.

Theorem lparen2mparen : forall s:S, lparen s -> mparen s.

You may introduce additional lemmas to simplify the proof. You may also need to prove some
properties of concat, e.g., concat s eps = s. Feel free to introduce any auxiliary definitions that are
necessary to complete the proofs. All that I care about is your definitions of mparen and lparen and
your proofs of mparen2lparen and lparen2mparen.

8 Complete induction

We have learned the principle of complete induction, which appears to be more powerful than mathemat-
ical induction, but turns out to be a derived notion. In this part, you will give a proof of the principle of
complete induction in Coq. The goal is to give a proof of the theorem nat complete ind shown below:

Inductive nat : Set :=
| O : nat
| S : nat -> nat.

Inductive lt : nat -> nat -> Prop :=
| lt_O : forall n:nat, lt O (S n)
| lt_S : forall (m:nat) (n:nat), lt m n -> lt (S m) (S n).

Variable P : nat -> Prop.

Theorem nat_complete_ind :
P O -> (forall n:nat, (forall z:nat, lt z n -> P z) -> P n) -> forall x:nat, P x.

The theorem can be written in our notation as follows:

P (0) ⊃ (∀n∈nat.(∀z∈nat.z < n ⊃ P (z)) ⊃ P (n)) ⊃ ∀x∈nat.P (x) true

Here are a few hints that you might find useful.

• Remember that complete induction is a principle derived from mathematical induction. This
implies that your proof should contain an application of nat ind somewhere.

• Then the whole problem boils down to finding an appropriate predicate, say A n where n is a
natural number, for the application of nat ind. Then this application of nat ind will prove
forall n:nat, A n. This is the key part of your proof.

• A n should not be P n. Instead you have to generalize the goal statement so that forall n:nat, A n
would imply forall n:nat, P n. Letting A n = P n will fail!
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• Before starting to write a proof in Coq, try to find a mathematical proof. Without a solid un-
derstanding of how the proof works, it might be very difficult to complete the proof in Coq in an
interactive manner. That is, Coq helps you a lot especially when you know how to complete the
proof yourself.

• You can simplify the presentation by explicitly defining the predicate A, as in:

Let A : nat -> Prop := fun k:nat => ...

• This is a line copied directly from the sample solution:

apply (nat_ind A AO (Aind H)).

• You will have to prove some properties of lt.
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