
Sparrow
Static Bug Finder

Yungbum Jung co-worked with
YI Jhee, MS Jin, DH Kim, SH Kong, HJ Lee, HJ Oh, DJ Park and KK Yi

Programming Research Lab.
Seoul National Univ.

SIGPL Winter School, 01/31/2008 @ KAIST

1

Sparrow History

• 2004 - Airac: Array index range analyzer for C (abstract interpretation)

• 2005 - AiracV: improved Airac + statistical post analysis[SAS’05]

• 2006 - AiracV: loop-refinement Mairac: memory leak detector

• 2007 - Sparrow: edg parser + M/Airac engine + reason chain + UI

• 2008 - Sparrow 2.0: Sparrow Nest + path-sensitive analysis + more bugs
checker (null-dereference, ...)

2

08. 01. 15 !" 11:51:: Catch Bugs Early - SPARROW : A Program Bug Detector based on Static Program Analysis ::

1 of 1 #$%http://www.spa-arrow.com/

Digital Times 2007.12.03

Computer World 2007.12.02

Network Times 2007.11.30

SPARROW won ‘The G.. 2007.11.30

Fasoo.com Launches .. 2007.04.03

 SPARROW is a source code analyzer that

points to fatal bugs in C/C++ program source.

SPARROW is based on the "semantics-based

static program analysis" technology that finitely

computes the dynamics of a program without

actually executing it. The analysis is performed

in an abstract space, economically tracing all

the execution paths of the program to

determine properties of its behavior.

> Learn more about SPARROW

http://spa-arrow.com

3

http://spa-arrow.com
http://spa-arrow.com

Overview on Sparrow

• Sparrow is a static source code analyzer that points to fatal bugs in C

• Airac: Buffer Overrun, Uninitialized Local Variables, Divided by Zero

• Mairac: Memory Leak, Null Dereference, Double Free, Use After Free,
Return Pointer to Local and Return Pointer to Freed

• Sparrow’s analysis engines are created by semantics-based static analysis
technology, abstract interpretation

4

SPARROW – An Overview

 Smake
 : A pre-processor

Original Source codes
Preprocessed source codes
(*.i)

 SPARROW Engine
 : A Static program Analyzer

Alarms

Annotated source
codes
 + Alarms

 Report Generator
 : A Post-processor

Web browser
: Inspect alarms

How Sparrow Works

5

Reporting Bugs

• Sparrow uses statistical post-analysis to rank the alarms, so that
the user can check highly probable errors first

• Sparrow explains bugs

5 Conclusion 14

Sparrow’s user interface is web-based. The interface is hyper-linked in-between
source pages, helping the user to quickly traverse the source to verify the alarms.

Sparrow explains bugs. Because Sparrow in effect follows the execution flows
of the source code, it can replay its analysis process back from the bug point. This
replay is shown as hyper-linked “Reason Point” boxes overlayed in the source code.
The chain of the reason points explains why a bug can happen. An example page
of the source code with a bug point and its reason point chain is as follows:

5 Conclusion

5.1 Why Sparrow?

Your software size increases too fast. Conventional software quality assurance pro-
cess fails to catch up.

You need an automatic tool suite to reduce the software quality assurance cost.
A high-end, semantic-based static analysis technology is what is necessary in such
tools.

Particularly, in the spectrum of the technology, you need one that finds most
critical and relevant bugs with a reasonable price. You need a tool that sits in front
of the second plateau of the technology spectrum curve. Sparrow stands there,
right before the steep cost-increase point yet capable of finding most bugs in your
code.

Sparrow’s return on your investment is:

• Early Detection

Sparrow enables you to fix bugs as early as possible – right when your
source code is ready. If you find a bug of a large program at testing, it

Copyright c© 2007 Fasoo.com, Inc. All rights reserved.

6

Sparrow
Performance Performance Numbers (3/3)
Buffer overrun detection (SPEC2000 and open sources) (as of
01/04/2008)

Programs Size Time True False
KLOC (sec) Alarms Alarms

art 1.2 0.45 0 0
equake 1.5 2.89 0 1
mcf 1.9 0.33 0 0
bzip2 4.6 10.90 23 29
gzip 7.7 3.38 18 24
parser 10.9 260.94 4 13
twolf 19.7 8.59 0 0
ammp 13.2 10.20 6 0
vpr 16.9 11.15 0 3
crafty 19.4 139.80 1 5
mesa 50.2 47.88 2 10
vortex 52.6 40.12 2 0
gap 59.4 28.48 0 2

gzip-1.2.4 9.1 8.55 0 17
gnuchess-5.07 17.8 179.58 1 8
tcl8.4.14/unix 17.9 585.99 1 14
hanterm-3.1.6 25.6 52.25 34 1
sed-4.0.8 26.8 49.34 2 11
tar-1.13 28.3 57.98 1 10
grep-2.5.1a 31.5 47.26 0 1
bison-2.3 48.4 281.84 0 18
openssh-4.3p2 77.3 97.69 0 9
fftw-3.1.2 184.0 102.17 9 4
httpd-2.2.2 316.4 265.43 10 33
net-snmp-5.4 358.0 899.73 3 36

The Sparrow Development
7

Sparrow
Performance Performance Numbers (1/3)
Memory leak detection (SPEC2000 and open sources) (as of
01/04/2008)

Programs Size Time True False
KLOC (sec) Alarms Alarms

art 1.2 0.68 1 0
equake 1.5 1.03 0 0
mcf 1.9 2.77 0 0
bzip2 4.6 1.52 1 0
gzip 7.7 1.56 1 4
parser 10.9 15.93 0 0
ammp 13.2 9.68 20 0
vpr 16.9 7.85 0 9
crafty 19.4 84.32 0 0
twolf 19.7 68.80 5 0
mesa 50.2 43.15 9 0
vortex 52.6 34.79 0 1
gap 59.4 31.03 0 0
gcc 205.8 1330.33 44 1

gnuchess-5.07 17.8 9.44 4 0
tcl8.4.14 17.9 266.09 4 4
hanterm-3.1.6 25.6 13.66 0 0
sed-4.0.8 26.8 13.68 29 31
tar-1.13 28.3 13.88 5 3
grep-2.5.1a 31.5 22.19 2 3
openssh-3.5p1 36.7 10.75 18 4
bison-2.3 48.4 48.60 4 1
openssh-4.3p2 77.3 177.31 1 7
fftw-3.1.2 184.0 15.20 0 0
httpd-2.2.2 316.4 102.72 6 1
net-snmp-5.4 358.0 201.49 40 20
binutils-2.13.1 909.4 712.0 9 228 25

The Sparrow Development
8

Sparrow
Performance

Performance Numbers (2/3)
In comparison with other published memory leak detectors

Number of bugs: Sparrow finds consistently more bugs than
others
Analysis speed: 788LOC/sec, next to the fastest FastCheck.
False-alarm ratio: 21%
Efficacy (TrueAlarms/KLOC × 1/FalseAlarmRatio): biggest

Tool C size Speed True False Alarm Efficacy
KLOC LOC/s Alarms Ratio(%)

Saturn ’05 (Stanford) 6,822 50 455 10% 1/150
Clouseau ’03 (Stanford) 1,086 500 409 64% 1/170
FastCheck ’07 (Cornell) 671 37,900 63 14% 1/149
Contradiction ’06 (Cornell) 321 300 26 56% 1/691
Sparrow 2,543 720 433 21% 1/123

Table: Overall comparison

C program Tool True False Alarm
Alarms Count

SPEC2000 Sparrow 81 15
benchmark FastCheck ’07 (Cornell) 59 8

binutils-2.13.1 Sparrow 236 19
& Saturn ’05 (Stanford) 165 5

openssh-3.5.p1 Clouseau ’03 (Stanford) 84 269

Table: Comparison for the same C programs

The Sparrow Development

9

Sparrow Road Map
10

Memory Leak Analysis
11

Memory Leak Analysis on Airac

• Reporting not freed addresses when program terminates

void * mymalloc(int size){
return malloc(size);

 }

void main(){
char *a = mymalloc(1);
int *b = mymalloc(4);
free(a);

}

while(1)
p = malloc();

call site
abstraction

context
insensitive

b

a

12

Problem Localizing (program procedure)

• How can we know that a procedure makes allocated addresses safe?

• freed

• return value

• arguments passed to procedure

• global variables

return p;

f(int **x){
*x = p;

}

free(p);

int *gp;
f(){
gp = p;

}

p=malloc;

13

Memory Leak Problem = Graph Reachability Problem

global variable

address

heap address

leak!

leak!

leak!

14

Symbolic Address for Exploring Unknown Memory

• We can’t know the input memory while analyzing one procedure

char * f(List * arg){
free(arg->next);
arg->val = malloc(10);
return malloc(1);

}

a

next

val

ret

We can infer input memories from memory usages in the procedure

15

Procedural Summary

• How can we handle procedure call?

char * f(List * arg){
free(arg->next);
arg->val = malloc(10);
return malloc(1);

}

void bar(){
List * lst = malloc(sizeof(list));
lst->next = malloc(sizeof(list));
return f(lst);

}

leak!

leak!

a

next

val

ret

16

Categories on Procedural Summary

• We are interested in the following 8 categories for detecting memory leaks

• It seems that the above categories are sufficient for most realistic programs

• + exit, null return, varargs, returned number ...

• - there always exist exceptions making analyzer fool

freeing allocating globalizing aliasing

argument FreeArg Alloc2Arg Arg2Glob
Glob2Arg Arg2Arg

return Alloc2Ret Glob2Ret Arg2Ret

17

Freeing - FreeArg
Allocating - Alloc2Arg, Alloc2Ret

char * f(List * a){
free(a->next);
a->val = malloc(10);
return malloc(1);

}

a

next

val

ret

18

Globalizing - Glob2Arg, Arg2Glob, Glob2Ret

int *ga, *gb;
int gc;
int * glob(int *a, int **b){
ga = a;
b = &gb;
return &gc;

}

a

globalb ret

int *p = malloc();
int *q;
glob(p, &q);
q = malloc();

p

global&q

19

Aliasing - Arg2Arg, Arg2Ret

int *aliasing(int *a, int **b){
int *ret = *b;
*b = a;
return ret;

}

a

b

ret

20

Summary Instantiation

• Procedural summaries are instantiated depending on calling contexts

f(List *x, List *y){
free(y->next);
free(x);

}

g(){
List *a = malloc();
List *b = a;
a->next = malloc();
f(a,b);

}

x

y

next

a

b

next

21

Abstraction

• Dynamically allocated
addresses are abstracted to
their static call sites

• The number of introducing
symbolic addresses is
constantly bounded

• Using a pair of intervals for
number values (with widening)

List * allocList(int n){
List *h = malloc();
List *c = h;
for(i=1;i<n;i++){
c->next = malloc();
c = c->next;

}
return h;

}

h

next

next

22

Abstraction

• Dynamically allocated
addresses are abstracted to
their static call sites

• The number of introducing
symbolic addresses is
constantly bounded

• Using a pair of intervals for
number values (with widening)

freeList(List *p){
List *c = p;
while(c != Null){
p = p->next;
free(c);
c = p;

}
}

p

next next

k-bound exploring

...

23

Abstraction

• Dynamically allocated
addresses are abstracted to
their static call sites

• The number of introducing
symbolic addresses is
constantly bounded

• Using a pair of intervals for
number values (with widening)

int foo(int n){
int s = 0;
for(i=0;i<n;i++){
s++;

}
return s;

}

Pair of intervals is useful for non-zero numbers
!0 = [-oo, -1] [1, +oo]

s = [0, 0], [0, 1], ... , [0,+oo]

24

Memory Leaks in Real Programs

25

Memory Leaks on Complex Heap Structure

26

