
String Analysis

한양대학교 안산캠퍼스 컴퓨터공학과

프로그래밍언어연구실

도경구

한국정보과학회
프로그래밍언어연구회

겨울학교 2008

2008.01.31

2008-01-31 String Analysis 2

String

• A Sequence of Characters

• Examples

– A program

– A HTML document

– An XML document

– A collection of formatted data

– A SQL command

– etc.

2008-01-31 String Analysis 3

“Classic” String Analysis = Parsing

SQL
Parser

XML
Parser

SQL
Query
(string)

SQL
AST

XML
Document

(string)

XML
tree

2008-01-31 String Analysis 4

Automatically Generated String

SQL
Parser

XML
Parser

SQL
Query
(string)

SQL
AST

XML
Document
(string)

XML
tree

Database
Application

Script
Program

User’s
Input

User’s
Input

2008-01-31 String Analysis 5

Example: DB Program

public void printAddresses(String id) throws SQLException {

Connection con = DriverManager.getConnection(“students.db”);

String q = “SELECT * FROM address”;

if (id != 0) q = q + “WHERE studentid=“ + id;

ResultSet rs = con.createStatement().executeQuery(q);

while (rs.next()) { System.out.println.getString(“addr”)); }

taken from Christensen/Moeller/Schwartzbach’s SAS2003 paper
“Precise analysis of string expression” with minor modification

• This program parses OK.
• But,
• Does the generated SQL query parse OK?
• Which database table does this program access?
• Is this program vulnerable to SQL injection attack?

2008-01-31 String Analysis 6

String-Generating Programs

• Does this DB application
always generate
grammatically correct SQL
queries?

• Which DB tables and fields
this application access and
update?

• Is the DB application free
from SQL injection attack?

SQL
Query
(string)

XML
Document
(string)

Database
Application

Script
Program

• Does this script always
generate valid XML
documents?

• Is the script free from
command injection attack?

User’s
Input

User’s
Input

2008-01-31 String Analysis 7

What to Know and How to Know?

We would like to know:

• whether or not SQL queries generated by the application are
always grammatically correct  syntax analysis

• DB tables and fields this application access and update 
impact analysis

• whether or not the application is not vulnerable to SQL
injection attack  security vulnerability analysis

Database
Application

String
Analyzer

Set of
possible

SQL
Queries

generated

2008-01-31 String Analysis 8

What to Know and How to Know?

Script
Program

String
Analyzer

Set of
possible

XML
documents
generated

We would like to know:

• whether or not XML documents generated by this script are
always valid  syntax analysis

• whether or not this script program is vulnerable to command
injection attack  security vulnerability analysis

2008-01-31 String Analysis 9

“Static” String Analysis

• Approximates the value of string expression with a
grammar.

• History

– XDuce: A statically typed XML processing language
[Hosoya/Pierce, WebDB 2000]

– Christensen/Moeller/Schwartzbach’s Java String Analyzer
[SAS 2003]

– Minamide’s PHP String Analyzer [WWW 2005]

– Choi/Lee/Kim/Doh’s abstract-interpretation approach
[APLAS 2006]

– Doh/Kim/Schmidt’s abstract parsing [unpublished]

2008-01-31 String Analysis 10

XDuce

• a domain-specific language for XML transformation

• extends ML’s type system with regular expression
types for describing the structure of XML
documents

• Its sound type system guarantees the validity of
dynamically generated documents.

• Example: [taken from Hosoya/Pierce’s ACM TOIT 2004 paper]

– Given an address book XML document,

– create a telephone book XML document by extracting
just the entries with telephone numbers.

2008-01-31 String Analysis 11

XDuce Example

type Addrbook = addrbook[Person*]

type Person = person[Name,Email*,Tel?]

type Name = name[String]

type Email = email[String]

type Tel = tel[String]

type TelBook = telbook[TelPerson*]

type TelPerson = person[Name,Tel]

let val doc = load_xml(“mybook.xml”)

let val valid_doc = validate doc with Addrbook

let val out_doc = match valid_doc with

addrbook[val persons as Person*] ->

telbook[make_tel_book(persons)]

save_xml(“output.xml”)(out_doc)

fun make_tel_book (val ps as Person*) : TelPerson* =

match ps with

person[name[val n as String], Email*, tel[val t as String]],

val rest as Person*

-> person[name[n], tel[n]], make_tel_book(rest)

| person[name[val n as String], Email*], val rest as Person*

-> make_tel_book(rest)

| () -> ()

the type definitions for input documents the type definitions for output documents

2008-01-31 String Analysis 12

“Static” String Analysis

• Approximates the value of string expression with a
grammar.

• History

– XDuce: A statically typed XML processing language
[Hosoya/Pierce, WebDB 2000]

– Christensen/Moeller/Schwartzbach’s Java String Analyzer
[SAS 2003]

– Minamide’s PHP String Analyzer [WWW 2005]

– Choi/Lee/Kim/Doh’s abstract-interpretation approach
[APLAS 2006]

– Doh/Kim/Schmidt’s abstract parsing [unpublished]

2008-01-31 String Analysis 13

Example: String Analysis

x = “a”;

while <cond> do

x = “0” + x;

x = x + “1”;

print x; Hot Spot

The possible values of string variable, x, at the hot
spot are expected as follows:

{ 0na1n | n  0 }

Can we obtain the sound approximation of the string
values by static analysis of the program?

2008-01-31 String Analysis 14

Example: String Analysis

1) Statically analyze the program and determine a context-
free grammar G which represents the values of a variable,
x, at the hot spot.

2) See if G is equivalent to the reference grammar:

S → “a” | “0” S “1”

x = “a”;

while <cond> do

x = “0” + x;

x = x + “1”;

print x; Hot Spot

Problem: Checking a context-free grammar is included in
another context-free grammar is “undecidable”.

2008-01-31 String Analysis 15

C/M/S’s Java String Analyzer

x = “a”;

while <cond> do

x = “0“ + x;

x = x + “1”;

print x;

1) Extract a context-free grammar from the program.

2) Determine the regular approximation of the
extracted grammar.

3) See if the regular grammar includes the reference
grammar.

X0 → “a”
X1 → X0 | X3

X2 → “0” X1

X3 → X2 “1”
X4 → X1

X0 → “a”
X1 → X0 X2 | X3

X3 → “0” X3 | 
X2 → “1” X2 | 
X4 → X1

1) 2)

S → “a” | “0” S “1”

⊇

3)

CFG RG

2008-01-31 String Analysis 16

How to deal with string operators
other than concatenation?

x = “a”;

while <cond> do

x = “00“ + x;

x = x + “1”;

print replace(“00”,”0”,x);

X0 → “a”
X1 → X0 | X3

X2 → “00” X1

X3 → X2 “1”
X4 → replace(“00”,”0”,X1)

1)

X0 → “a”
X1 → X0 | X3

X2 → “0” X1

X3 → X2 “1”
X4 → X1

Not clear how to deal with other string operators!

2008-01-31 String Analysis 17

“Static” String Analysis

• Approximates the value of string expression with a
grammar.

• History

– XDuce: A statically typed XML processing language
[Hosoya/Pierce, WebDB 2000]

– Christensen/Moeller/Schwartzbach’s Java String Analyzer
[SAS 2003]

– Minamide’s PHP String Analyzer [WWW 2005]

– Choi/Lee/Kim/Doh’s abstract-interpretation approach
[APLAS 2006]

– Doh/Kim/Schmidt’s abstract parsing [unpublished]

2008-01-31 String Analysis 18

Minamide’s PHP String Analyzer

x = “a”;

while <cond> do

x = “0“ + x;

x = x + “1”;

print x;

1) Extract a context-free grammar from the program.

2) Transform the reference grammar into a regular grammar
by restricting the nesting depth of recursion.

3) See if the context-free grammar includes the reference
grammar.

X0 → “a”
X1 → X0 | X3

X2 → “0“ X1

X3 → X2 “1”
X4 → X1

1)

2)

S → “a” | “0” S ”1”
⊇3)

S0 → “a”
S1 → “0” S0 ”1”
S2 → “0” S1 ”1”
…
Si →“0” Si-1 ”1”

2008-01-31 String Analysis 19

Improvement in dealing with string
operators

x = “a”;

while <cond> do

x = “00“ + x;

x = x + “1”;

print replace(“00”,”0”,x);

X0 → “a”
X1 → X0 | X3

X2 → “00” X1

X3 → X2 “1”
X4 → replace(“00”,”0”,X1)

1)

A transducer for replace(“00”,”0”,_)

0/

A/0A, 0/0 A/A

0/0
1 0 2

the image
under
the transducer

S → “a” | “0” S ”1”

2008-01-31 String Analysis 20

“Static” String Analysis

• Approximates the value of string expression with a
grammar.

• History

– XDuce: A statically typed XML processing language
[Hosoya/Pierce, WebDB 2000]

– Christensen/Moeller/Schwartzbach’s Java String Analyzer
[SAS 2003]

– Minamide’s PHP String Analyzer [WWW 2005]

– Choi/Lee/Kim/Doh’s abstract-interpretation approach
[APLAS 2006]

– Doh/Kim/Schmidt’s abstract parsing [unpublished]

2008-01-31 String Analysis 21

Abstract-Interpretation Approach

x = “a”;

while <cond> do

x = “0“ + x;

x = x + “1”;

print x;

1) A string value is abstracted as a “regular string” which is
the same as a regular expression except that a
consecutive repetition is not allowed, i.e., 0*1*  {0,1}*

2) Abstract interpretation of a program on the abstract
domain of regular strings.

x = “a”;

<cond

>

x = “0“ + x;

x = x + “1”;

print x;

a

ㅗ

ㅗ

2008-01-31 String Analysis 22

Abstract-Interpretation Approach

x = “a”;

while <cond> do

x = “0“ + x;

x = x + “1”;

print x;

1) A string value is abstracted as a “regular string” which is
the same as a regular expression except that a
consecutive repetition is not allowed, i.e., 0*1*  {1,0}*

2) Abstract interpretation of a program on the abstract
domain of regular strings.

x = “a”;

<cond

>

x = “0“ + x;

x = x + “1”;

print x;

a

ㅗ

a

2008-01-31 String Analysis 23

Abstract-Interpretation Approach

x = “a”;

while <cond> do

x = “0“ + x;

x = x + “1”;

print x;

1) A string value is abstracted as a “regular string” which is
the same as a regular expression except that a
consecutive repetition is not allowed, i.e., 0*1*  {0,1}*

2) Abstract interpretation of a program on the abstract
domain of regular strings.

x = “a”;

<cond

>

x = “0“ + x;

x = x + “1”;

print x;

a

0a1

a

2008-01-31 String Analysis 24

Abstract-Interpretation Approach

x = “a”;

while <cond> do

x = “0“ + x;

x = x + “1”;

print x;

1) A string value is abstracted as a “regular string” which is
the same as a regular expression except that a
consecutive repetition is not allowed, i.e., 0*1*  {0,1}*

2) Abstract interpretation of a program on the abstract
domain of regular strings.

x = “a”;

<cond

>

x = “0“ + x;

x = x + “1”;

print x;

a

0a1

a  0a1 = 0*a1*

2008-01-31 String Analysis 25

Abstract-Interpretation Approach

x = “a”;

while <cond> do

x = “0“ + x;

x = x + “1”;

print x;

1) A string value is abstracted as a “regular string” which is
the same as a regular expression except that a
consecutive repetition is not allowed, i.e., 0*1*  {0,1}*

2) Abstract interpretation of a program on the abstract
domain of regular strings.

x = “a”;

<cond

>

x = “0“ + x;

x = x + “1”;

print x;

a

0*a1*

00*a1*1

2008-01-31 String Analysis 26

Abstract-Interpretation Approach

x = “a”;

while <cond> do

x = “0“ + x;

x = x + “1”;

print x;

1) A string value is abstracted as a “regular string” which is
the same as a regular expression except that a
consecutive repetition is not allowed, i.e., 0*1*  {0,1}*

2) Abstract interpretation of a program on the abstract
domain of regular strings.

x = “a”;

<cond

>

x = “0“ + x;

x = x + “1”;

print x;

a

0*a1*  00*a1*1 = 0*a1*

00*a1*1

2008-01-31 String Analysis 27

Abstract-Interpretation Approach

x = “a”;

while <cond> do

x = “0“ + x;

x = x + “1”;

print x;

1) A string value is abstracted as a “regular string” which is
the same as a regular expression except that a
consecutive repetition is not allowed, i.e., 0*1*  {0,1}*

2) Abstract interpretation of a program on the abstract
domain of regular strings.

S → “a” | “0” S ”1”

⊇
x = “a”;

<cond

>

x = “0“ + x;

x = x + “1”;

print x;

a

0*a1*

00*a1*1

0*a1*

2008-01-31 String Analysis 28

“Static” String Analysis

• Approximates the value of string expression with a
grammar.

• History

– XDuce: A statically typed XML processing language
[Hosoya/Pierce, WebDB 2000]

– Christensen/Moeller/Schwartzbach’s Java String Analyzer
[SAS 2003]

– Minamide’s PHP String Analyzer [WWW 2005]

– Choi/Lee/Kim/Doh’s abstract-interpretation approach
[APLAS 2006]

– Doh/Kim/Schmidt’s abstract parsing [unpublished]

2008-01-31 String Analysis 29

Abstract Parsing

• Simultaneous analysis-and-parsing

– Statically analyze a program that generates strings, and,
at the same time, parse the generated strings with the
LR(k) reference grammar

• Abstracted parse-stack as the abstract denotations
of strings

2008-01-31 String Analysis 30

LR(k) Parsing
Goto Controller for parser built from LR(0)-items
for the reference grammar, S → “a” | “0” S “1”

→ . S

S → . “0” S “1”

S → . “a”

s0 s1

s2

s3

s4s5

S → “0” . S “1”

S → . “0” S “1”

S → . “a”

S → “0” S . “1”

S → “0” S “1” .S → “a” .→ S .

S

S“0”

“0”

“1”
“a”

“a”

Parse of input sequence,
00a11

parse stack (top at right)
s0

s0 s1

s0 s1 s1

s0 s1 s1 s2

s0 s1 s1

s0 s1 s1 s3

s0 s1 s1 s3 s4

s0 s1

s0 s1 s3

s0 s1 s3 s4

s0

s0 s5

input sequence (front at left)
00a11 shift
0a11 shift

a11 shift
11 reduce: S → “a”

S11 shift
11 shift

1 reduce: S → “0” S “1”
S1 shift

1 shift
reduce: S → “0” S “1”

S shift
(done)

2008-01-31 String Analysis 31

Abstract LR(k) Parsing

Given a string-generating program and

a reference grammar for the string variable at hot spot

• Generate data-flow equations from the program.

• Solve the equations in the abstract domain of parse stacks
of the reference grammar.

2008-01-31 String Analysis 32

Ongoing Works

• Implementation: Done

• Works fine with string concatenation operators

• But, not with destructive operators

– replace, substring, etc.

2008-01-31 String Analysis 33

Abstract String Representation

• Regular Grammar

– Impact Analysis

– Security Vulnerability Analysis

– Metrics

• Context-Free Grammar

– Syntax Analysis

– Semantics Analysis

2008-01-31 String Analysis 34

Future Directions

• Better Understanding of String Analysis

– analysis-then-compare vs. analysis-and-parse

– improve the precision of string analysis

– understand the abstract semantics of generated strings

• String-Processing Domain-Specific Languages

• Applications

– Tools for software development

– Tools for software maintenance

– Tools for automatic detection of software vulnerabilities

The End

