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Basic Blocks

 A sequence of statements that is 

always entered at the beginning and 

exited at the end without halt or 

possibility of branching except at 

the end

 Two consecutive instructions are in 

the same basic block iff the 

execution of the first instruction 

guarantees  the execution of the 

next instruction

 For intermediate representation, 

such as three-address statements

read m

f0 = 0

f1 = 1

if m <= 1 goto L3

i = 2

L1: if i <= m goto L2 

return f2

L2: f2 = f0 + f1

f0 = f1

f1 = f2

i = i + 1

goto L1

L3: return m
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Finding Basic Blocks

1. The first instruction is a leader

2. Any instruction that is the target of a conditional 

or unconditional jump is a leader

3. Any instruciton that is immediately follows a 

conditional or unconditional jump is a leader

 For each leader, its basic block consists of 

itself and all instructions up to but not including 

the next leader or the end of the intermediate 

program
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Control-Flow Graphs

 Flow-of-control information

 Directed graph

 CFG = (V, E, Entry, Exit) 

 V = the set of basic blocks U 

{Entry, Exit} 

 Entry is the unique program entry

 Exit is the unique program exit

 Edges in E represent potential flow 

of control

 There is a directed edge from B1 to 

B2 if B2 can immediately follow B1 in 

some execution sequence

 An edge from Entry to Exit

read m

f0 = 0

f1 = 1

m <= 1

i = 2

i <= m

return f2

f2=f0+f1

f0 = f1

f1 = f2

i=i+1

return m

entry

exit
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Edges in CFGs

 There is a conditional or unconditional jump 

from the last statement of B1 to the first 

statement of B2, or

 B2 immediately follows B1 in the order of the 

program, and B1 does not end in an 

unconditional jump

 B1 – predecessor of B2

 B2 – successor of B1

B1

B2
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Code Optimizations

 Local code optimization – code improvement with in a 

basic block

 Global code optimization – improvements take into 

account what happens across basic blocks
 Most are based on data-flow anlaysis

 A compiler optimization must preserve the semantics of 

the original program
 Common-subexpression elimination

 Copy propagation

 Dead-code elimination

 Constant folding

 …



Data-Flow Analysis

 Derives information about the flow of data along 

program execution paths

 Analyzes the behavior of a program by 

considering all the possible sequence of 

program points (paths) through a flow graph 

that the program execution can take
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Data-Flow Analysis (contd.)

 Within one basic block, the program point after a 

statement is the same as the program point before 

the next statement

 If there is an edge form block B1 to block B2, then 

the program point after the last statement of B1 may 

be followed immediately by the program point 

before the first statement of B2
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B1

B2
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Execution Paths

 From point p1 to pn

 A sequence of points p1, p2, …, 

pn such that for each i = 1, 2, 

…, n – 1, either 

 pi is the point immediately 

preceding a statement and pi+1

is the point immediately 

following that same statement, 

or

 pi is the end of some block 

and pi+1 is the beginning of a 

successor block

read m

f0 = 0

f1 = 1

m <= 1

i = 2

i <= m

return f2

f2=f0+f1

f0 = f1

f1 = f2

i=i+1

return m

entry

exit
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Transfer Functions

 Data-flow values before and after each 

statement s
 IN[s] and OUT[s]

 Data-flow problem – to find a solution to a 

set of constraints on the IN[s]’s and 

OUT[s]’s for all statements s

 Transfer function – the relationship between 

the data-flow values before and after the 

statement
 Forward-flow problem – OUT[s] = fs(IN[s])

 Backward-flow problem – IN[s] = fs(OUT[s])

s  (fs)

OUT[s]

IN[s]
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Extension to Basic Blocks

 Suppose block B consists of statements s1, …, and 

sn in that order
 IN[B] = IN[s1]

 OUT[B] = OUT[sn]

 Forward-flow problem 
 fB = fsn 

 …  fs2 
 fs1

 OUT[B] = fB(IN[B])

 Backward-flow problem 
 fB = fs1 

 …  fsn-1 
 fsn

 IN[B] = fB(OUT[B])

s1 (fs1
)

OUT[s1] = IN[s2]

IN[B] = IN[s1]

s2 (fs2
)

s3 (fs3
)

OUT[s2] = IN[s3]

OUT[B] = OUT[s3] 



Data Flow Problem #1: Reaching Definitions

 Which definitions of a variable 

may reach each use of the 

variable in a procedure?

 A definition of a variable x is a 

statement that assigns, or may 

assign, a value to x

 A statement defines a variable x if it 

may assign x a value

 conservative
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i = 2

i < m

i = i + 1

j = i + 2



Reaching Definitions (contd.)

 A definition d reaches a point p if 

there is a path from the point 

immediately following d to p, such 

that d is not killed along that path

 A definition of a variable x is killed 

if there is any other definition of x 

anywhere along the path
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i = 2

i < m

i = i + 1

j = i + 2



Usages of Reaching Definitions

 Is x a constant at point p?

 Is x undefined at point p?
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i = 7

i < m

i = 4 + 3

j = i + 2

i = 3

read m

i < m

j = 4

n = k + i

entry



Effects of a Statement

d: u = v + w

 Generates a definition d of variable u

 Kills all the other definitions in the program that 

define variable u

 Transfer function
fd (x) = gend  ( x – killd )

 gend – the set of  definitions generated by the statement

 killd – the set of all other definitions of u in the program
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gend1 = { d1}, killd1 = {d3}

gend2 = { d2}, killd2 = {d4}

gend3 = { d3}, killd3 = {d1}

d1: x = a + b
d2: y = x + 3
d3: x = x + 4

d0: z = 7
d4: y = 4 + 8
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Effects of a Basic Block

 Compose effects of statements

fB(x) =  fn(…f2(f1(x))…) 

= genn  ((genn-1  (( … (gen1  ( x – kill1 )) … ) – killn-1 )) –

killn )

in[B]={d0,d4}

out[B]={d0,d2,d3}

d0: z=7

d4: y=4+8

Gen[B]={d2,d3} d1: x=a+b

d2: y=x+3

d3: x=x+4Kill[B]={d4}

gend1 = { d1}, killd1 = {d3}

gend2 = { d2}, killd2 = {d4}

gend3 = { d3}, killd3 = {d1}
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Effects of a Basic Block (contd.)

fB(x) = Gen[B]  ( x – Kill[B] )

Kill[B] = kill1  kill2  …  killn
Gen[B] = genn  ( genn-1 – killn )  ( genn-2 – killn-1 – killn ) 

… ( gen1 – kill2 – kill3 – … – killn ) 

 Gen[B] – contains all the definitions inside the block that are 

visible immediately after the block (downwards exposed)

 Kill[B] – the union of all the definitions killed by the individual 

statements

 out[B] = f
B
(in[B])

           = Gen[B] U (in[B] - Kill[B])

in[B]={d0,d4}

out[B]={d0,d2,d3}

d0: z=7

d4: y=4+8

Gen[B]={d2,d3} d1: x=a+b

d2: y=x+3

d3: x=x+4Kill[B]={d4}
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Effects of Control Flow

 Deal with incoming information from different 

predecessors of a basic block B

 in[B] = 
p  pred[B]

out[P]

B1

B3

B2

out[B1] out[B2]

in[B3]
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Solving Reaching Definitions Problem

 Data flows forwards

 Create data flow equations and solve them for all basic 
blocks in the CFG

Out[B] = Gen[B]  ( in[B] – Kill[B] )

in[B] = 
p  pred[B]

out[P]

 Use iterative algorithm to solve the equations

 Use bit vectors to represent sets (not necessarily)

 One bit for each definition

  becomes bitwise and

  becomes bitwise or
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Iterative Algorithm

 Repeatedly visit all the nodes and update in and out

 excluding unreachable nodes

out[entry] = ;

for ( each block B other than entry ) {

out[B] = ; // or out[B] = Gen[B]

}

while (changes to any out occur) { 

for ( each block B other than entry ) {  

in[B] =  pred. P of B out[P];

out[B] = Gen[B]  (in[B] – Kill[B]);

}

}



SIGPL Winter School 2008 21

Reaching Definitions Example

out[B1]=Gen[B1] U (in[B1]-Kill[B1])

out[B2]=Gen[B2] U (in[B2]-Kill[B2])

out[B3]=Gen[B3] U (in[B3]-Kill[B3])

out[B4]=Gen[B4] U (in[B4]-Kill[B4])

out[B5]=Gen[B5] U (in[B5]-Kill[B5])

in[B1]=out[entry]

in[B2]=out[B1] U out[B5]

in[B3]=out[B2]

in[B4]=out[B2]

in[B5]=out[B1] U out[B5]

Gen[B4] = {d7} = 0000001

Kill[B4] = {d1,d4} = 1001000

Gen[B1] = {d1,d2,d3} = 1110000

Kill[B1] = {d4,d5,d6,d7} = 0001111

 d1: i=m-1

 d2: j=n

 d3: a=x

 d4: i=i+1

 d5: j=j-1

       i < j

 d6: a=y  d7: i=z

B1

B4
B3

B2

 j > m

entry

exit

B5

Gen[B2] = {d4,d5} = 0001100

Kill[B2] = {d1,d2,d7} = 1100001

Gen[B3] = {d6} = 0000010

Kill[B3] = {d3} = 0010000

Gen[B5] = { } = 0000000

Kill[B4] = { } = 0000000
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Reaching Definitions Example (contd.)

 d1: i=m-1

 d2: j=n

 d3: a=x

 d4: i=i+1

 d5: j=j-1

       i < j

 d6: a=y  d7: i=z

 j > m

entry

exit

in[B1]   =  0000000

Gen[B4] = 0000001

Kill[B4] =   1001000

Gen[B1] = 1110000

Kill[B1] =   0001111

Gen[B2] = 0001100

Kill[B2] =   1100001

Gen[B3] = 0000010

Kill[B3] =   0010000

Gen[B5] = 0000000

Kill[B4] =   0000000

out[B1] =  1110000

in[B2]   =  0000000

out[B2] =  0001100

out[B4] =  0000001

in[B4]   =  0000000

out[B3] =  0000010

in[B3]   =  0000000

out[B5] =  0000000

in[B5]   =  0000000

in[exit] =  0000000

out[entry] =  0000000
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Reaching Definitions Example (contd.)

 d1: i=m-1

 d2: j=n

 d3: a=x

 d4: i=i+1

 d5: j=j-1

       i < j

 d6: a=y  d7: i=z

 j > m

entry

exit

in[B1]   =  0000000

Gen[B4] = 0000001

Kill[B4] =   1001000

Gen[B1] = 1110000

Kill[B1] =   0001111

Gen[B2] = 0001100

Kill[B2] =   1100001

Gen[B3] = 0000010

Kill[B3] =   0010000

Gen[B5] = 0000000

Kill[B4] =   0000000

out[B1] =  1110000

in[B2]   =  1110000

out[B2] =  0011100

out[B4] =  0010101

in[B4]   =  0011100

out[B3] =  0001110

in[B3]   =  0011100

out[B5] = 0011111

in[B5]   =  0011111

in[exit] =  0011111

out[entry] =  0000000
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Reaching Definitions Example (contd.)

 d1: i=m-1

 d2: j=n

 d3: a=x

 d4: i=i+1

 d5: j=j-1

       i < j

 d6: a=y  d7: i=z

 j > m

entry

exit

in[B1]   =  0000000

Gen[B4] = 0000001

Kill[B4] =   1001000

Gen[B1] = 1110000

Kill[B1] =   0001111

Gen[B2] = 0001100

Kill[B2] =   1100001

Gen[B3] = 0000010

Kill[B3] =   0010000

Gen[B5] = 0000000

Kill[B4] =   0000000

out[B1] =  1110000

in[B2]   =  1111111

out[B2] = 0011110

out[B4] =  0010111

in[B4]   =  0011110

out[B3] =  0001110

in[B3]   =  0011110

out[B5] = 0011111

in[B5]   =  0011111

in[exit] =  0011111

out[entry] =  0000000
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Data Flow Problem #2: Live Variable Analysis

 A variable x is live at a point p if the value of x at p could be 

used along some path in the flow graph starting at p

 Used in

 Register allocation

 Code motion in loops

 Elimination of useless assignments (dead code elimination)

 Data flows backwards

i=7

…=i+4
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Transfer Functions of a Basic Block

 Def[B]: the set of variables definitely assigned values 

in B 

 Use[B]: the set of variables whose values may be used 

in B prior to any definition of the variable 

 Uses not covered by the definitions in B

 in[B] is a function of out[B]
in[B]={a,b,z}

out[B]={x,z}

Use[B]={a,b} x=a+b

y=x+3

x=x+4Def[B]={x,y}

 in[B] = f
B
(out[B])

         = Use[B] U (out[B] - Def[B])
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Effects of Control Flow

B1

B3

B2
in[B1]

out[B3]

in[B2]

 out[B] = in[P1] U in[P2] U … U in[Pn]

P1,P2, …, Pn are successors of B
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Iterative Solution for Live Variable Analysis

 Repeatedly visit all the nodes and update in and out

in[exit] = 

for each block B other than exit do 

in [B] =  // or in[B] = Use[B] 

enddo

while changes to any in occur do

for each block B other than exit do

out[B] =  succ. P of B in[P]

in[B] = Use[B]  (out[B] – Def[B]) 

enddo

enddo
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Live Variable Analysis Example

Def[B4] = {r}

Use[B4] = {a,e}

Def[B1] = {a,b}

Use[B1] = {a,b,c,d}
a=a+1

b=b+1

 c<d

e=c
a=d

b>=0

B1

B4

B3
B2

r=a+e

entry

exit

Def[B2] = {e}

Use[B2] = {c}

Def[B3] = {a}

Use[B3] = {b,d}
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Live Variable Analysis Example (contd.)

a=a+1

b=b+1

 c<d

e=c
a=d

b>=0

B1

B4

B3
B2

r=a+e

entry

exit

Def[B4] = {r}

Use[B4] = {a,e}

Def[B1] = {a,b}

Use[B1] = {a,b,c,d}

Def[B2] = {e}

Use[B2] = {c}

Def[B3] = {a}

Use[B3] = {b,d}

in[B1]={}

out[B1]={}

in[B4]={}

in[B2]={} in[B3]={}

out[entry]={}

out[B2]={}

out[B4]={}

out[B3]={}

in[exit]={}
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Live Variable Analysis Example (contd.)

a=a+1

b=b+1

 c<d

e=c
a=d

b>=0

B1

B4

B3
B2

r=a+e

entry

exit

Def[B4] = {r}

Use[B4] = {a,e}

Def[B1] = {a,b}

Use[B1] = {a,b,c,d}

Def[B2] = {e}

Use[B2] = {c}

Def[B3] = {a}

Use[B3] = {b,d}

in[B1]={a,b,c,d,e}

out[B1]={a,b,c,d,e}

in[B4]={a,e}

in[B2]={c,a}
in[B3]={b,d,e}

out[entry]={a,b,c,d,e}

out[B2]={a,e}

out[B4]={}

out[B3]={a,e}

in[exit]={}

In the order of  B4, B3, B2, B1
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Live Variable Analysis Example (contd.)

a=a+1

b=b+1

 c<d

e=c
a=d

b>=0

B1

B4

B3
B2

r=a+e

entry

exit

in[B1]={a,b,c,d,e}

out[B1]={a,b,c,d,e}

in[B4]={a,e}

in[B2]={c,a}
in[B3]={b,c,d,e}

out[entry]={a,b,c,d,e}

out[B2]={a,e}

out[B4]={}

out[B3]={a,b,c,d,e}

in[exit]={}

In the order of  B4, B3, B2, B1

Def[B4] = {r}

Use[B4] = {a,e}

Def[B1] = {a,b}

Use[B1] = {a,b,c,d}

Def[B2] = {e}

Use[B2] = {c}

Def[B3] = {a}

Use[B3] = {b,d}
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Data Flow Problem #3: Available 
Expressions

 An expression x op y is available at a point p if every 

path from the entry node to p evaluates x op y, and 

after the last such evaluation prior to reaching p, there 

are no subsequent assignments to x or y

 Used in common subexpression elimination

x=a+b y=a+b

z=a+b

t=a+b

x=t

t=a+b

y=t

z=t
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Kill[B] and Gen[B]

 Kill[B] – A block kills expression x op y if it assigns 

(or may assign) x or y and does not subsequently 

recompute x op y

 Gen[B] – A block generates expression x op y if it 

definitely evaluates x op y and does not 

subsequently define x or y

in[B] =  pred. P of B out[P]

out[B]=Gen[B]  (in[B]-Kill[B])
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Iterative Solution for Available Expressions

 Repeatedly visit all the nodes and update in and out

out[entry] = 

for each block B other than entry do 

out [B] = U

enddo

while changes to any out occur do

for each block B other than entry do

in[B] =  pred. P of B out[P]

out[B] = Gen[B]  (in[B] – Kill[B]) 

enddo

enddo
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Out[B] =  is Too Restrictive

B1

B2

in[B2] = out[B1]  out [B2] 
out[B2] = Gen[B2]  (in[B2] – Kill[B2]) 

inj+1[B2] = out[B1]  outj[B2] 
outj+1[B2] = Gen[B2]  (inj+1[B2] – Kill[B2]) 

out0[B2] = 
in1[B2] = out[B1]  out0[B2] = 

out0[B2] = U
in1[B2] = out[B1]  out0[B2] = out[B1] 



Data-Flow Analysis Summary
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Reaching Definitions Live Variables Available Expressions

Domain Sets of definitions Sets of variables Sets of expressions

Direction Forwards Backwards Forwards

Transfer 

Function

Gen[B] ( x – Kill[B]) Use[B] ( x – Def[B]) Gen[B] ( x – Kill[B])

Boundary out[entry] =  int[exit] =  out[entry] = 

Meet()   

Equations out[B] = fB(in[B])

in[B] =  pred. P of B

out[P]

in[B] = fB(out[B])

out[B] =  succ. P of B

in[P]

out[B] = fB(in[B])

in[B] =  pred. P of B

out[P]

Initialize out[B] =  in[B] =  out[B] = U
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Foundations of Data-Flow Analysis

 Under what circumstances is the iterative 

algorithm used in data-flow analysis correct?

 How precise is the solution obtained by the 

iterative algorithm?

 Will the iterative algorithm converge?

 What is the meaning of the solution to the 

equations?
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Data-Flow Analysis Framework (D, V,  ,F)

 A direction of the data flow D 

 Forward or backward

 A semilattice, which includes a domain of values 

V and a meet operator 

 A family F of transfer functions from V to V

 Must include functions suitable for the boundary 

conditions, which are constant transfer functions for 

the entry and exit 
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Partial Order

 A binary relation  over a set V is 

a partial order is if for all x, y, 

and z in V,

 Reflexive: x  x

 Antisymmetric: x  y and y  x  x 

= y

 Transitive: x  y and  y  z  x  z

 A set V with a partial order  is 

called a partially ordered set 

(poset) (V, )

 x < y iff (x  y) and x  y

<111>

<101> <011><110>

<010> <001><100>

<000>

bit vector = poset (2{1,2,3},⊆)
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<111>

<101> <011><110>

<010> <001><100>

<000>

Semilattices

 A semmilattice (V, ) is a set V 

and a binary meet operator 

such that for all x, y, and z in V

 idempotent: x  x = x

 commutative: x  y = y  x

 associative: x  ( y  z ) = ( x  y ) 

z

 has a top element, denoted T, such 

that for all x in V, T  x = x

 optionally, has a bottom element, 

denoted ⊥, such that for all x in V, 

⊥  x = ⊥

<101><110>

<010><100>

<000>

a lattice

not a lattice
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Partial Order for a Semilattice (V, )

 Define a partial order  for a 

semilattice (V, )

 For all x and y in V, x  y iff x  y = 

x

  is reflexive, antisymmetric, and 

transitive

<111>

<101> <011><110>

<010> <001><100>

<000>
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Greatest Lower Bounds

 Suppose (V, ) is a semilattice

 A greatest lower bound (glb) of x and y in V is 

an element g such that,

 g  x

 g  y, and 

 If z is any element such that z  x and z  y, then z 

g

 There is at most one such element g if it exist
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Glb and Meet Operation

 The meet of x and y is their only glb
 Let g = x  y

 g  x because ( x  y )  x = x  y

 g  x = (( x  y )  x ) = ( x  ( y  x )) = ( x  ( x  y )) = 

(( x  x )  y ) = ( x  y ) = g 

 Similarly, g  y

 Suppose z is any element such that z  x and z  y. z  g 

and therefore z cannot be a glb of x and y unless z = g
 z  g = ( z  ( x  y )) = (( z  x )  y )

 Since z  y, we know z  y = z, and therefore z  g = z

 Proven z  g and conclude g = x  y is the only glb of x and y
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Product of Two Semilattices (A, A) and (B, 
B)

 domain – D = A  B

 meet – if (a,b)  D and (a’,b’)  D, (a, b)  (a’, b’) = (a 

A a’, b B b’)

 partial order – (a, b)  (a’, b’) iff a A a’ and b B b’

 When a A a’ = a and b B b’ = b, then (a A a’, b B b’) 

= (a, b)
 a A a’ = a  a A a’ 

 b B b’ = b  b B b’ 

 The product is an associative operation
 Meet – (a1, a2, …, ak)  (b1, b2, …, bk) = (a1 1 b1, a2 2 b2, …, 

ak k bk)

 Partial order – (a1, a2, …, ak)  (b1, b2, …, bk) iff  ai i bi, for all 

i
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Chains

 An ascending chain in a poset (V, ) is 

a sequence where x1< x2< … < xn and xi

V for all i

 The height of a semilattice is the largest 

number of < relations in any ascending 

chain

 Reaching definitions semilattice for a 

program with n definition is n

 A lattice consisting of a finite set of 

values has a finite height

 A lattice consisting of an infinite set of 

values may have a finite height

<111>

<101> <011><110>

<010> <001><100>

<000>

Bit vector
⊆
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Transfer Functions

 The family of transfer functions
 F: V → V

 F has an identity function I, such that I(x) = x for all x in V

 F is closed under composition

 For any two functions f and g in F, the function h defined by h(x) 

= g(f(x)) is in F 

 Reaching definitions
 There is an identity function where Gen[B] and Kill[B] are both the 

empty set

 fB1(x) = Gen[B1]  ( x – Kill[B1] )

 fB2(x) = Gen[B2]  ( x – Kill[B2] )

 fB2(fB1(x)) = Gen[B2]  ( (Gen[B1]  ( x – Kill[B1] ))  – Kill[B2] )

= (Gen[B2]  (Gen[B1] – Kill[B2]))  ( x – (Kill[B1]  Kill[B2]))
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Monotone Frameworks

 A data-flow framework (D, F, V, ) is monotone if for 

all x and y in V and f in F, x  y implies f(x)  f(y)

 Equivalently,
 for all x and y in V and f in F, f(x  y)  f(x)  f(y)

 Proof

 Assume x  y implies f(x)  f(y)
 x  y  x and x  y  y

 f(x  y)  f(x) and f(x  y)  f(y) 

 Since f(x)  f(y) is glb of f(x) and f(y), f(x  y)  f(x)  f(y)

 Assume f(x  y)  f(x)  f(y) and suppose x  y
 f(x)  f(x)  f(y) since x  y = x

 Since f(x)  f(y) is glb of f(x) and f(y), we know f(x)  f(y)  f(y)

 f(x)  f(x)  f(y)  f(y)
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Distributive Frameworks

 A data-flow framework (D, F, V, ) is distributive if 

for all x and y in V and f in F, f(x  y) = f(x)  f(y)

 Distributivity implies monotonicity, but not vice 

versa

 If a = b, then a  b = a, so a  b

 Reaching Definitions

 Gen[B]  ( (x  y) – Kill[B] ) 

= (Gen[B]  ( x – Kill[B] ))  (Gen[B]  ( y –

Kill[B] )) 

 (x  y) – Kill[B] = ( x – Kill[B] )  ( y – Kill[B] )
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The Iterative Algorithm for General Frameworks

 A data-flow graph, with entry and exit nodes

 A direction of the data-flow D

 A set of values V

 A meet operator 

 A set of transfer functions F for basic blocks

 A constant value ventry and vexit in V representing 

the boundary condition for forward and 

backward frameworks, respectively
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The Iterative Algorithm for General Frameworks 
(contd.)

out[entry] = ventry ;
for ( each block B other than entry ) out[B] 
= T;
while (changes to any out occur) 

for (each block B other than entry) {
in[B] =  pred. P of B out[P];
out[B] = fB(in[B]); 

}

in[exit] = vexit ;
for ( each block B other than entry ) in[B] = 
T;
while (changes to any in occur) 

for (each block B other than exit) {
out[B] =  succ. P of B in[P];
in[B] = fB(out[B]); 

}
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Properties of the Iterative Algorithm

1. If the iterative algorithm converges, the result is 

a solution to the data-flow equations

 If the equations are not satisfied by the time the 

while-loop ends, then there will be at least one 

change to an OUT (in the forward case) or IN (in the 

backward case)

 Loop once more
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Properties of the Iterative Algorithm (contd.)

2. If the framework is monotone, then the solution 

found is the maximum fixedpoint (MFP) of the 

data-flow equations

 A maximum fixedpoint is a solution with the property 

that in any other solution, the values of IN[B] and 

OUT[B] are  the corresponding values of the MFP
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Properties of the Iterative Algorithm (contd.)

 Proof (forward case)

 Basis

 IN[B] and OUT[B] for all blocks B  entry are initialized with T

 After the first iteration the value of IN[B] and OUT[B] is not 

greater than the initialized value

 Induction

 Assume that after the kth iteration, the values are all not greater 

than those after (k – 1) th iteration

 IN[B] =  pred. P of B out[P]

 OUTk[P]  OUTk-1[P] → INk+1[B]  INk[B] 

 OUT[B] = fB(IN[B])

 INk+1[B]  INk[B] → OUTk+1[P]  OUTk[P] (by monotonicity)
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Properties of the Iterative Algorithm (contd.)

 The values taken by IN[B] and OUT[B] for any B 

can only decrease as the algorithm iterates

 Every change observed for values of IN[B] and 

OUT[B] is necessary to satisfy the equations

 If the iterative algorithm terminates, the result must 

have values that are at least as great as the 

corresponding values in any other solutions
 The meet operators return the glb of their inputs

 The transfer functions return the only solution that is 

consistent with the block itself and its given input
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Properties of the Iterative Algorithm (contd.)

3. If the semilattice of the framework is 

monotone and of finite height, then the 

algorithm is guaranteed to converge

 The values of each IN[B] and OUT[B] decrease 

with each change, and the algorithm stops if at 

some round nothing changes

 The algorithm converges after a number of rounds 

no greater than (the height)  (the number of basic 

blocks)
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The Ideal Solution

 Let P = entry → B1 → B2 → … → Bk be a path in 

G

 fP(x)= fk(fk-1(…(f1(x))…))

 IDEAL[B] =  P a possible execution path from entry to B

fP[ventry]

 Any answer that is greater than IDEAL is incorrect

 Any value smaller than or equal to the ideal is 

conservative, i.e., safe
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The Meet-Over-Paths Solution

 MOP[B] =  P a path from entry to B fP[ventry]

 A super set of all the paths that are possibly executed

 MOP[B]  IDEAL[B]

 Computing MOP is undecidable

 There is no algorithm that can compute MOP for an 

arbitrary instance of monotone framework

 There is no efficient way to tell exactly which paths 

are real and which are not

 Accept the MOP solution as the closest feasible solution
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MOP vs. MFP

 If all the functions are distributive, 

 MFP solution = the MOP solution

 If the transfer functions are all monotone 

but not necessarily distributive, the 

iterative algorithm produces the MFP 

solution but not necessarily the MOP 

solution

MOP[B4] = ((fB3 fB1)  (fB3 fB2))(Ventry)

MFP[B4] = fB3((fB1(Ventry)  fB2(Ventry)))

B1 B2

B3

B4

entry



SIGPL Winter School 2008 60

Constant Propagation (CONST)

 For each program point, whether or not a variable has a 

constant value whenever execution reaches that point

 For constant folding or constant propagation

 Replaces expressions that evaluate to the same constant 

every time they are executed, by that constant

b = 2
c = 3

b = 2
c = 3

a = b+c a = 5

x = b x = 2
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The Lattice for CONST

 (L, ) is a product lattice and L  2V(C{UNDEF, NAC}), 
where V is the infinite set of variables and C is the set 
of constant values
 NAC – not a constant
 UNDEF – undefined 
  = 
 L is the set of functions from V to C
 Sets of (variable, constant value) pairs
 Bit-vector is inappropriate

 fL is the information about variables that we may assume at 
certain points of a flow graph
 (v, c)  f
 variable v has a constant value c
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The Lattice for a Single Variable

UNDEF

NAC

0 1 2-1-2 ……
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The Lattice for CONST

b = 2
c = 3

a = b+c

x = b



{(b,2),(c,3)}

{(a,5),(b,2),(c,3)}

{(a,5)} {(b,2)} {(c,3)} ……

…

…
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Transfer Functions for CONST

 Let fs be the transfer function of statement s, and let m 

and m’ represent data-flow values such that m’ = fs(m) 

 If s is not an assignment statement, then fs is the identity 

function

 If s is an assignment to variable x, then m’(v) = m(v), for all 

variables v  x

 If RHS of s is a constant c, then m’(x) = c 

 If RHS is of the form  y  z, then

 m’(x) = m(y)  m(z) if m(y) and m(z) are constant values

 m’(x) = NAC if either m(y) or m(z) is NAC

 m’(x) = UNDEF otherwise

 If RHS is any other expression (e.g. a function call or 

assignments through a pointer), then m’(x) = NAC
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CONST is not Distributive

 Data flow formulation for the point r

 p = {(b,1), (c,2)}

 q = {(b,2), (c,1)}

 pq = 

 Therefore, f4(pq) = f4() = 

 MOP formulation for the point r

 f4(p)=f4({(b,1),(c,2)})= 

{(a,3),(b,1),(c,2)}

 f4(q)=f4({(b,2),(c,1)})= 

{(a,3),(b,2),(c,1)}

 f4(p)  f4(q) = {(a,3)}

 f4(pq)  f4(p)  f4(q)

b = 1
c = 2

b = 2
c = 1

a = b + c

1

4

32

{(b,1),(c,2)} {(b,2),(c,1)}

p q

r
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CONST is a Monotone Framework (contd.)

 Need to show for all x, yL and for all functions 

of the form fA=BC or fA=r,

 fA=BC(xy)  fA=BC(x)  fA=BC(y), and

 fA=r(xy)  fA=r(x)  fA=r(y)
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fA=BC(xy)  fA=BC(x)  fA=BC(y)

 For all XV – {A}, if (X,r)fA=BC(xy) then (X,r)x and 

(X,r)y. Thus, (X,r)  fA=BC(x) and (X,r)  fA=BC(y)

 If (A,r)fA=BC(xy), then {(B,r1),(C,r2)} is a subset of 

both x and y, for some r1 and r2 such that r = r1r2. This 

implies (A,r)fA=BC(x) and (A,r)fA=BC(y) 

 If A is undefined in fA=BC(xy)

 One of (B, b) and (C, c) is not in xy. One of x and y can not 

have both of (B, b) and (C, c). This means that A is undefined 

one of  fA=BC(x) and fA=BC(y). Thus,  A is undefined in fA=BC(x) 

 fA=BC(y)
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fA=r(xy)  fA=r(x)  fA=r(y)

 For all XV – {A}, if (X,r)fA=r(xy) then (X,r)x 

and (X,r)y. Thus, (X,r)  fA=r(x) and (X,r) 

fA=r(y) 

 (A,r)  fA=r(xy), (A,r)  fA=r(x), and (A,r)  fA=r(y) 

are always true
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Speed of Convergence of Iterative Data-Flow 
Algorithms

 The maximum number of iterations 

 The height of the lattice  the number of nodes

 Whether all events of significance at a node will 

be propagated to that node along some acyclic 

path?

 If all useful information propagates along acyclic 

paths, tailor the order in which we visit nodes in 

the iterative algorithm

 Relatively few passes

 Depth-first order or the reverse of depth-first order
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Speed of Convergence of Iterative Data-Flow 
Algorithms (contd.)

 Reaching definitions

 If a definition d is in IN[B], then there is some acyclic path from the 

block containing d to B s.t. d is in the IN’s and OUT’s all along that 

path

 Available expressions

 If an expression x + y is not available at the entrance to B, then there 

is some acyclic path that demonstrates that either the path is from 

the entry node and includes no statement that kills or generates x + y, 

or the path is from a block that kills x + y and along the path there is 

no subsequent generation of x + y

 Live variables

 If x is live on exit from B, then there is an acyclic path from B to a 

use of x, along which there are no definitions of x

 Paths with cycles add nothing for these analyses

 Remove cycles and find a shorter path 
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Speed of Convergence of Iterative Data-Flow 
Algorithms (contd.)

 Constant propagation

 The first time B is visited, c is found to be constant 1, but 

both a and b are undefined

 The second time, b and c are found to be constant 1

 The third time, a is found to be constant 1 

a = b 
b = c
c = 1

B
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Spanning Trees

 A spanning tree of a graph is just a subgraph 

that contains all the nodes and is a tree

 A graph may have many spanning trees
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Graph Search

 Depth-first search

 Visits all the nodes in the graph once, by starting at the entry node 

and visiting the nodes as far away from the entry node as quickly 

possible

 Depth-first spanning tree

 The route of the search in a depth-first search

 Tree traversal

 Preorder – visits a node before visiting any of its children, which it 

then visits recursively in left-to-right order

 Postorder – visits a node’s children, recursively in left-to-right order, 

before visiting the node itself

 Depth-first ordering

 The reverse of a postorder traversal

 Visit a node, traverse its rightmost child, the child to its left, and so 

on
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Depth-First Spanning Tree

109

8

7

65

4

3

2

1

10 9

8

7

5

6

4

3 2

1

Depth first traversal – 1 , 3, 4, 6, 7, 8,10, 8, 9, 8, 7, 6, 4, 5, 4, 3, 1, 2, 1

Preorder – 1, 3, 4, 6, 7, 8, 10, 9, 5, 2
Postorder – 10, 9, 8, 7, 6, 5, 4, 3, 2, 1
Depth-first ordering – 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
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Depth-First Ordering

 m → n is a retreating edge iff dfn[m]  dfn[n] 
 Go from a node m to an ancestor of m in the tree (possibly to m itself)
 4→3, 7→4, 10→7, 9→1, 8→3

void search(n) {
mark n “visited”;
for ( each successor s of n ) {

if ( s is “unvisited” ) {
add edge n→s to T;
search(s);

}
}
dfn[n] = c;
c = c – 1;

}

main() {
T = {};
for ( each node n of G ) { 

mark n “unvisited”;
}
c = the # of nodes in G;
search(entry);

} 10 9

8

7

5

6

4

3 2

1
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Speed of Convergence of Iterative Data-Flow 
Algorithms (contd.)

 A definition d propagates in a path, 3 → 5 →19 → 35 → 16 → 23 → 45 
→ 4 → 10 → 17 (the depth first numbers of basic blocks)
 The first round, OUT[3] → IN[5] → OUT[5] → IN[19] → OUT[19] → IN[35] 

→ OUT[35]
 IN[16] has been already computed

 The second round, OUT[35] → IN[16] → OUT[16] → IN[23] → OUT[23] → 
IN[45] → OUT[45]
 IN[4] has been already computed

 The third round, OUT[45] → IN[4] → OUT[4] → IN[10] → OUT[10] → 
IN[17] → OUT[17]

 After three passes d reaches block 17

out[entry] = ventry ;
for ( each block B other than entry ) out[B] = T;
while (changes to any out occur) 

for (each block B other than entry, in depth-first order) {
in[B] =  pred. P of B out[P];
out[B] = fB(in[B]); 

}
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Speed of Convergence of Iterative Data-Flow 
Algorithms (contd.)

 For reaching definitions,

 To propagate any reaching definition along any acyclic path is no 

more than one greater than the number of retreating edges 

 One more pass to detect that a fixed point is reached

 Two plus the depth of the flow graph

 Typical flow graphs 

 Average depth around 2.75

 D. E. Knuth, “An empirical study of FORTRAN programs,” Software –

Practice and Experience 1:2 (1971), pp. 105-133

 Backward-flow problems – use the reverse of the depth-first order

 The depth+2 bound works for any monotone framework

 As long as information only needs to propagate along acyclic paths
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Depth of a Flow Graph

 The depth  of a flow graph is the largest number of retreating 

edges along any acyclic path in the flow graph

 Normal control-flow constructs produce reducible flow graphs 

with the number of back edges (i.e., retreating edges) at most the 

nesting depth of loops
 Nesting depth tends to be small

increasing

retreating

increasingincreasing

retreating

depth  = 2

depth  = 3 depth  = 1
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