
SIGPL Winter School 2008 1

Data-Flow Analysis

Jaejin Lee

School of Computer Science and Engineering

Seoul National University

http://aces.snu.ac.kr

http://aces.snu.ac.kr/

SIGPL Winter School 2008 2

Basic Blocks

 A sequence of statements that is

always entered at the beginning and

exited at the end without halt or

possibility of branching except at

the end

 Two consecutive instructions are in

the same basic block iff the

execution of the first instruction

guarantees the execution of the

next instruction

 For intermediate representation,

such as three-address statements

read m

f0 = 0

f1 = 1

if m <= 1 goto L3

i = 2

L1: if i <= m goto L2

return f2

L2: f2 = f0 + f1

f0 = f1

f1 = f2

i = i + 1

goto L1

L3: return m

SIGPL Winter School 2008 3

Finding Basic Blocks

1. The first instruction is a leader

2. Any instruction that is the target of a conditional

or unconditional jump is a leader

3. Any instruciton that is immediately follows a

conditional or unconditional jump is a leader

 For each leader, its basic block consists of

itself and all instructions up to but not including

the next leader or the end of the intermediate

program

SIGPL Winter School 2008 4

Control-Flow Graphs

 Flow-of-control information

 Directed graph

 CFG = (V, E, Entry, Exit)

 V = the set of basic blocks U

{Entry, Exit}

 Entry is the unique program entry

 Exit is the unique program exit

 Edges in E represent potential flow

of control

 There is a directed edge from B1 to

B2 if B2 can immediately follow B1 in

some execution sequence

 An edge from Entry to Exit

read m

f0 = 0

f1 = 1

m <= 1

i = 2

i <= m

return f2

f2=f0+f1

f0 = f1

f1 = f2

i=i+1

return m

entry

exit

SIGPL Winter School 2008 5

Edges in CFGs

 There is a conditional or unconditional jump

from the last statement of B1 to the first

statement of B2, or

 B2 immediately follows B1 in the order of the

program, and B1 does not end in an

unconditional jump

 B1 – predecessor of B2

 B2 – successor of B1

B1

B2

SIGPL Winter School 2008 6

Code Optimizations

 Local code optimization – code improvement with in a

basic block

 Global code optimization – improvements take into

account what happens across basic blocks
 Most are based on data-flow anlaysis

 A compiler optimization must preserve the semantics of

the original program
 Common-subexpression elimination

 Copy propagation

 Dead-code elimination

 Constant folding

 …

Data-Flow Analysis

 Derives information about the flow of data along

program execution paths

 Analyzes the behavior of a program by

considering all the possible sequence of

program points (paths) through a flow graph

that the program execution can take

SIGPL Winter School 2008 7

Data-Flow Analysis (contd.)

 Within one basic block, the program point after a

statement is the same as the program point before

the next statement

 If there is an edge form block B1 to block B2, then

the program point after the last statement of B1 may

be followed immediately by the program point

before the first statement of B2

SIGPL Winter School 2008 8

B1

B2

SIGPL Winter School 2008 9

Execution Paths

 From point p1 to pn

 A sequence of points p1, p2, …,

pn such that for each i = 1, 2,

…, n – 1, either

 pi is the point immediately

preceding a statement and pi+1

is the point immediately

following that same statement,

or

 pi is the end of some block

and pi+1 is the beginning of a

successor block

read m

f0 = 0

f1 = 1

m <= 1

i = 2

i <= m

return f2

f2=f0+f1

f0 = f1

f1 = f2

i=i+1

return m

entry

exit

SIGPL Winter School 2008 10

Transfer Functions

 Data-flow values before and after each

statement s
 IN[s] and OUT[s]

 Data-flow problem – to find a solution to a

set of constraints on the IN[s]’s and

OUT[s]’s for all statements s

 Transfer function – the relationship between

the data-flow values before and after the

statement
 Forward-flow problem – OUT[s] = fs(IN[s])

 Backward-flow problem – IN[s] = fs(OUT[s])

s (fs)

OUT[s]

IN[s]

SIGPL Winter School 2008 11

Extension to Basic Blocks

 Suppose block B consists of statements s1, …, and

sn in that order
 IN[B] = IN[s1]

 OUT[B] = OUT[sn]

 Forward-flow problem
 fB = fsn

 …  fs2
 fs1

 OUT[B] = fB(IN[B])

 Backward-flow problem
 fB = fs1

 …  fsn-1
 fsn

 IN[B] = fB(OUT[B])

s1 (fs1
)

OUT[s1] = IN[s2]

IN[B] = IN[s1]

s2 (fs2
)

s3 (fs3
)

OUT[s2] = IN[s3]

OUT[B] = OUT[s3]

Data Flow Problem #1: Reaching Definitions

 Which definitions of a variable

may reach each use of the

variable in a procedure?

 A definition of a variable x is a

statement that assigns, or may

assign, a value to x

 A statement defines a variable x if it

may assign x a value

 conservative

SIGPL Winter School 2008 12

i = 2

i < m

i = i + 1

j = i + 2

Reaching Definitions (contd.)

 A definition d reaches a point p if

there is a path from the point

immediately following d to p, such

that d is not killed along that path

 A definition of a variable x is killed

if there is any other definition of x

anywhere along the path

SIGPL Winter School 2008 13

i = 2

i < m

i = i + 1

j = i + 2

Usages of Reaching Definitions

 Is x a constant at point p?

 Is x undefined at point p?

SIGPL Winter School 2008 14

i = 7

i < m

i = 4 + 3

j = i + 2

i = 3

read m

i < m

j = 4

n = k + i

entry

Effects of a Statement

d: u = v + w

 Generates a definition d of variable u

 Kills all the other definitions in the program that

define variable u

 Transfer function
fd (x) = gend  (x – killd)

 gend – the set of definitions generated by the statement

 killd – the set of all other definitions of u in the program

SIGPL Winter School 2008 15

gend1 = { d1}, killd1 = {d3}

gend2 = { d2}, killd2 = {d4}

gend3 = { d3}, killd3 = {d1}

d1: x = a + b
d2: y = x + 3
d3: x = x + 4

d0: z = 7
d4: y = 4 + 8

SIGPL Winter School 2008 16

Effects of a Basic Block

 Compose effects of statements

fB(x) = fn(…f2(f1(x))…)

= genn  ((genn-1  ((… (gen1  (x – kill1)) …) – killn-1)) –

killn)

in[B]={d0,d4}

out[B]={d0,d2,d3}

d0: z=7

d4: y=4+8

Gen[B]={d2,d3} d1: x=a+b

d2: y=x+3

d3: x=x+4Kill[B]={d4}

gend1 = { d1}, killd1 = {d3}

gend2 = { d2}, killd2 = {d4}

gend3 = { d3}, killd3 = {d1}

SIGPL Winter School 2008 17

Effects of a Basic Block (contd.)

fB(x) = Gen[B]  (x – Kill[B])

Kill[B] = kill1  kill2  …  killn
Gen[B] = genn  (genn-1 – killn)  (genn-2 – killn-1 – killn) 

… (gen1 – kill2 – kill3 – … – killn)

 Gen[B] – contains all the definitions inside the block that are

visible immediately after the block (downwards exposed)

 Kill[B] – the union of all the definitions killed by the individual

statements

 out[B] = f
B
(in[B])

 = Gen[B] U (in[B] - Kill[B])

in[B]={d0,d4}

out[B]={d0,d2,d3}

d0: z=7

d4: y=4+8

Gen[B]={d2,d3} d1: x=a+b

d2: y=x+3

d3: x=x+4Kill[B]={d4}

SIGPL Winter School 2008 18

Effects of Control Flow

 Deal with incoming information from different

predecessors of a basic block B

 in[B] = 
p  pred[B]

out[P]

B1

B3

B2

out[B1] out[B2]

in[B3]

SIGPL Winter School 2008 19

Solving Reaching Definitions Problem

 Data flows forwards

 Create data flow equations and solve them for all basic
blocks in the CFG

Out[B] = Gen[B]  (in[B] – Kill[B])

in[B] = 
p  pred[B]

out[P]

 Use iterative algorithm to solve the equations

 Use bit vectors to represent sets (not necessarily)

 One bit for each definition

  becomes bitwise and

  becomes bitwise or

SIGPL Winter School 2008 20

Iterative Algorithm

 Repeatedly visit all the nodes and update in and out

 excluding unreachable nodes

out[entry] = ;

for (each block B other than entry) {

out[B] = ; // or out[B] = Gen[B]

}

while (changes to any out occur) {

for (each block B other than entry) {

in[B] =  pred. P of B out[P];

out[B] = Gen[B]  (in[B] – Kill[B]);

}

}

SIGPL Winter School 2008 21

Reaching Definitions Example

out[B1]=Gen[B1] U (in[B1]-Kill[B1])

out[B2]=Gen[B2] U (in[B2]-Kill[B2])

out[B3]=Gen[B3] U (in[B3]-Kill[B3])

out[B4]=Gen[B4] U (in[B4]-Kill[B4])

out[B5]=Gen[B5] U (in[B5]-Kill[B5])

in[B1]=out[entry]

in[B2]=out[B1] U out[B5]

in[B3]=out[B2]

in[B4]=out[B2]

in[B5]=out[B1] U out[B5]

Gen[B4] = {d7} = 0000001

Kill[B4] = {d1,d4} = 1001000

Gen[B1] = {d1,d2,d3} = 1110000

Kill[B1] = {d4,d5,d6,d7} = 0001111

 d1: i=m-1

 d2: j=n

 d3: a=x

 d4: i=i+1

 d5: j=j-1

 i < j

 d6: a=y d7: i=z

B1

B4
B3

B2

 j > m

entry

exit

B5

Gen[B2] = {d4,d5} = 0001100

Kill[B2] = {d1,d2,d7} = 1100001

Gen[B3] = {d6} = 0000010

Kill[B3] = {d3} = 0010000

Gen[B5] = { } = 0000000

Kill[B4] = { } = 0000000

SIGPL Winter School 2008 22

Reaching Definitions Example (contd.)

 d1: i=m-1

 d2: j=n

 d3: a=x

 d4: i=i+1

 d5: j=j-1

 i < j

 d6: a=y d7: i=z

 j > m

entry

exit

in[B1] = 0000000

Gen[B4] = 0000001

Kill[B4] = 1001000

Gen[B1] = 1110000

Kill[B1] = 0001111

Gen[B2] = 0001100

Kill[B2] = 1100001

Gen[B3] = 0000010

Kill[B3] = 0010000

Gen[B5] = 0000000

Kill[B4] = 0000000

out[B1] = 1110000

in[B2] = 0000000

out[B2] = 0001100

out[B4] = 0000001

in[B4] = 0000000

out[B3] = 0000010

in[B3] = 0000000

out[B5] = 0000000

in[B5] = 0000000

in[exit] = 0000000

out[entry] = 0000000

SIGPL Winter School 2008 23

Reaching Definitions Example (contd.)

 d1: i=m-1

 d2: j=n

 d3: a=x

 d4: i=i+1

 d5: j=j-1

 i < j

 d6: a=y d7: i=z

 j > m

entry

exit

in[B1] = 0000000

Gen[B4] = 0000001

Kill[B4] = 1001000

Gen[B1] = 1110000

Kill[B1] = 0001111

Gen[B2] = 0001100

Kill[B2] = 1100001

Gen[B3] = 0000010

Kill[B3] = 0010000

Gen[B5] = 0000000

Kill[B4] = 0000000

out[B1] = 1110000

in[B2] = 1110000

out[B2] = 0011100

out[B4] = 0010101

in[B4] = 0011100

out[B3] = 0001110

in[B3] = 0011100

out[B5] = 0011111

in[B5] = 0011111

in[exit] = 0011111

out[entry] = 0000000

SIGPL Winter School 2008 24

Reaching Definitions Example (contd.)

 d1: i=m-1

 d2: j=n

 d3: a=x

 d4: i=i+1

 d5: j=j-1

 i < j

 d6: a=y d7: i=z

 j > m

entry

exit

in[B1] = 0000000

Gen[B4] = 0000001

Kill[B4] = 1001000

Gen[B1] = 1110000

Kill[B1] = 0001111

Gen[B2] = 0001100

Kill[B2] = 1100001

Gen[B3] = 0000010

Kill[B3] = 0010000

Gen[B5] = 0000000

Kill[B4] = 0000000

out[B1] = 1110000

in[B2] = 1111111

out[B2] = 0011110

out[B4] = 0010111

in[B4] = 0011110

out[B3] = 0001110

in[B3] = 0011110

out[B5] = 0011111

in[B5] = 0011111

in[exit] = 0011111

out[entry] = 0000000

SIGPL Winter School 2008 25

Data Flow Problem #2: Live Variable Analysis

 A variable x is live at a point p if the value of x at p could be

used along some path in the flow graph starting at p

 Used in

 Register allocation

 Code motion in loops

 Elimination of useless assignments (dead code elimination)

 Data flows backwards

i=7

…=i+4

SIGPL Winter School 2008 26

Transfer Functions of a Basic Block

 Def[B]: the set of variables definitely assigned values

in B

 Use[B]: the set of variables whose values may be used

in B prior to any definition of the variable

 Uses not covered by the definitions in B

 in[B] is a function of out[B]
in[B]={a,b,z}

out[B]={x,z}

Use[B]={a,b} x=a+b

y=x+3

x=x+4Def[B]={x,y}

 in[B] = f
B
(out[B])

 = Use[B] U (out[B] - Def[B])

SIGPL Winter School 2008 27

Effects of Control Flow

B1

B3

B2
in[B1]

out[B3]

in[B2]

 out[B] = in[P1] U in[P2] U … U in[Pn]

P1,P2, …, Pn are successors of B

SIGPL Winter School 2008 28

Iterative Solution for Live Variable Analysis

 Repeatedly visit all the nodes and update in and out

in[exit] = 

for each block B other than exit do

in [B] =  // or in[B] = Use[B]

enddo

while changes to any in occur do

for each block B other than exit do

out[B] =  succ. P of B in[P]

in[B] = Use[B]  (out[B] – Def[B])

enddo

enddo

SIGPL Winter School 2008 29

Live Variable Analysis Example

Def[B4] = {r}

Use[B4] = {a,e}

Def[B1] = {a,b}

Use[B1] = {a,b,c,d}
a=a+1

b=b+1

 c<d

e=c
a=d

b>=0

B1

B4

B3
B2

r=a+e

entry

exit

Def[B2] = {e}

Use[B2] = {c}

Def[B3] = {a}

Use[B3] = {b,d}

SIGPL Winter School 2008 30

Live Variable Analysis Example (contd.)

a=a+1

b=b+1

 c<d

e=c
a=d

b>=0

B1

B4

B3
B2

r=a+e

entry

exit

Def[B4] = {r}

Use[B4] = {a,e}

Def[B1] = {a,b}

Use[B1] = {a,b,c,d}

Def[B2] = {e}

Use[B2] = {c}

Def[B3] = {a}

Use[B3] = {b,d}

in[B1]={}

out[B1]={}

in[B4]={}

in[B2]={} in[B3]={}

out[entry]={}

out[B2]={}

out[B4]={}

out[B3]={}

in[exit]={}

SIGPL Winter School 2008 31

Live Variable Analysis Example (contd.)

a=a+1

b=b+1

 c<d

e=c
a=d

b>=0

B1

B4

B3
B2

r=a+e

entry

exit

Def[B4] = {r}

Use[B4] = {a,e}

Def[B1] = {a,b}

Use[B1] = {a,b,c,d}

Def[B2] = {e}

Use[B2] = {c}

Def[B3] = {a}

Use[B3] = {b,d}

in[B1]={a,b,c,d,e}

out[B1]={a,b,c,d,e}

in[B4]={a,e}

in[B2]={c,a}
in[B3]={b,d,e}

out[entry]={a,b,c,d,e}

out[B2]={a,e}

out[B4]={}

out[B3]={a,e}

in[exit]={}

In the order of B4, B3, B2, B1

SIGPL Winter School 2008 32

Live Variable Analysis Example (contd.)

a=a+1

b=b+1

 c<d

e=c
a=d

b>=0

B1

B4

B3
B2

r=a+e

entry

exit

in[B1]={a,b,c,d,e}

out[B1]={a,b,c,d,e}

in[B4]={a,e}

in[B2]={c,a}
in[B3]={b,c,d,e}

out[entry]={a,b,c,d,e}

out[B2]={a,e}

out[B4]={}

out[B3]={a,b,c,d,e}

in[exit]={}

In the order of B4, B3, B2, B1

Def[B4] = {r}

Use[B4] = {a,e}

Def[B1] = {a,b}

Use[B1] = {a,b,c,d}

Def[B2] = {e}

Use[B2] = {c}

Def[B3] = {a}

Use[B3] = {b,d}

SIGPL Winter School 2008 33

Data Flow Problem #3: Available
Expressions

 An expression x op y is available at a point p if every

path from the entry node to p evaluates x op y, and

after the last such evaluation prior to reaching p, there

are no subsequent assignments to x or y

 Used in common subexpression elimination

x=a+b y=a+b

z=a+b

t=a+b

x=t

t=a+b

y=t

z=t

SIGPL Winter School 2008 34

Kill[B] and Gen[B]

 Kill[B] – A block kills expression x op y if it assigns

(or may assign) x or y and does not subsequently

recompute x op y

 Gen[B] – A block generates expression x op y if it

definitely evaluates x op y and does not

subsequently define x or y

in[B] =  pred. P of B out[P]

out[B]=Gen[B]  (in[B]-Kill[B])

SIGPL Winter School 2008 35

Iterative Solution for Available Expressions

 Repeatedly visit all the nodes and update in and out

out[entry] = 

for each block B other than entry do

out [B] = U

enddo

while changes to any out occur do

for each block B other than entry do

in[B] =  pred. P of B out[P]

out[B] = Gen[B]  (in[B] – Kill[B])

enddo

enddo

SIGPL Winter School 2008 36

Out[B] =  is Too Restrictive

B1

B2

in[B2] = out[B1]  out [B2]
out[B2] = Gen[B2]  (in[B2] – Kill[B2])

inj+1[B2] = out[B1]  outj[B2]
outj+1[B2] = Gen[B2]  (inj+1[B2] – Kill[B2])

out0[B2] = 
in1[B2] = out[B1]  out0[B2] = 

out0[B2] = U
in1[B2] = out[B1]  out0[B2] = out[B1]

Data-Flow Analysis Summary

SIGPL Winter School 2008 37

Reaching Definitions Live Variables Available Expressions

Domain Sets of definitions Sets of variables Sets of expressions

Direction Forwards Backwards Forwards

Transfer

Function

Gen[B] (x – Kill[B]) Use[B] (x – Def[B]) Gen[B] (x – Kill[B])

Boundary out[entry] =  int[exit] =  out[entry] = 

Meet()   

Equations out[B] = fB(in[B])

in[B] =  pred. P of B

out[P]

in[B] = fB(out[B])

out[B] =  succ. P of B

in[P]

out[B] = fB(in[B])

in[B] =  pred. P of B

out[P]

Initialize out[B] =  in[B] =  out[B] = U

SIGPL Winter School 2008 38

Foundations of Data-Flow Analysis

 Under what circumstances is the iterative

algorithm used in data-flow analysis correct?

 How precise is the solution obtained by the

iterative algorithm?

 Will the iterative algorithm converge?

 What is the meaning of the solution to the

equations?

SIGPL Winter School 2008 39

Data-Flow Analysis Framework (D, V,  ,F)

 A direction of the data flow D

 Forward or backward

 A semilattice, which includes a domain of values

V and a meet operator 

 A family F of transfer functions from V to V

 Must include functions suitable for the boundary

conditions, which are constant transfer functions for

the entry and exit

SIGPL Winter School 2008 40

Partial Order

 A binary relation  over a set V is

a partial order is if for all x, y,

and z in V,

 Reflexive: x  x

 Antisymmetric: x  y and y  x  x

= y

 Transitive: x  y and y  z  x  z

 A set V with a partial order  is

called a partially ordered set

(poset) (V, )

 x < y iff (x  y) and x  y

<111>

<101> <011><110>

<010> <001><100>

<000>

bit vector = poset (2{1,2,3},⊆)

SIGPL Winter School 2008 41

<111>

<101> <011><110>

<010> <001><100>

<000>

Semilattices

 A semmilattice (V, ) is a set V

and a binary meet operator 

such that for all x, y, and z in V

 idempotent: x  x = x

 commutative: x  y = y  x

 associative: x  (y  z) = (x  y) 

z

 has a top element, denoted T, such

that for all x in V, T  x = x

 optionally, has a bottom element,

denoted ⊥, such that for all x in V,

⊥  x = ⊥

<101><110>

<010><100>

<000>

a lattice

not a lattice

SIGPL Winter School 2008 42

Partial Order for a Semilattice (V, )

 Define a partial order  for a

semilattice (V, )

 For all x and y in V, x  y iff x  y =

x

  is reflexive, antisymmetric, and

transitive

<111>

<101> <011><110>

<010> <001><100>

<000>

SIGPL Winter School 2008 43

Greatest Lower Bounds

 Suppose (V, ) is a semilattice

 A greatest lower bound (glb) of x and y in V is

an element g such that,

 g  x

 g  y, and

 If z is any element such that z  x and z  y, then z 

g

 There is at most one such element g if it exist

SIGPL Winter School 2008 44

Glb and Meet Operation

 The meet of x and y is their only glb
 Let g = x  y

 g  x because (x  y)  x = x  y

 g  x = ((x  y)  x) = (x  (y  x)) = (x  (x  y)) =

((x  x)  y) = (x  y) = g

 Similarly, g  y

 Suppose z is any element such that z  x and z  y. z  g

and therefore z cannot be a glb of x and y unless z = g
 z  g = (z  (x  y)) = ((z  x)  y)

 Since z  y, we know z  y = z, and therefore z  g = z

 Proven z  g and conclude g = x  y is the only glb of x and y

SIGPL Winter School 2008 45

Product of Two Semilattices (A, A) and (B,
B)

 domain – D = A  B

 meet – if (a,b)  D and (a’,b’)  D, (a, b)  (a’, b’) = (a

A a’, b B b’)

 partial order – (a, b)  (a’, b’) iff a A a’ and b B b’

 When a A a’ = a and b B b’ = b, then (a A a’, b B b’)

= (a, b)
 a A a’ = a  a A a’

 b B b’ = b  b B b’

 The product is an associative operation
 Meet – (a1, a2, …, ak)  (b1, b2, …, bk) = (a1 1 b1, a2 2 b2, …,

ak k bk)

 Partial order – (a1, a2, …, ak)  (b1, b2, …, bk) iff ai i bi, for all

i

SIGPL Winter School 2008 46

Chains

 An ascending chain in a poset (V, ) is

a sequence where x1< x2< … < xn and xi

V for all i

 The height of a semilattice is the largest

number of < relations in any ascending

chain

 Reaching definitions semilattice for a

program with n definition is n

 A lattice consisting of a finite set of

values has a finite height

 A lattice consisting of an infinite set of

values may have a finite height

<111>

<101> <011><110>

<010> <001><100>

<000>

Bit vector
⊆

SIGPL Winter School 2008 47

Transfer Functions

 The family of transfer functions
 F: V → V

 F has an identity function I, such that I(x) = x for all x in V

 F is closed under composition

 For any two functions f and g in F, the function h defined by h(x)

= g(f(x)) is in F

 Reaching definitions
 There is an identity function where Gen[B] and Kill[B] are both the

empty set

 fB1(x) = Gen[B1]  (x – Kill[B1])

 fB2(x) = Gen[B2]  (x – Kill[B2])

 fB2(fB1(x)) = Gen[B2]  ((Gen[B1]  (x – Kill[B1])) – Kill[B2])

= (Gen[B2]  (Gen[B1] – Kill[B2]))  (x – (Kill[B1]  Kill[B2]))

SIGPL Winter School 2008 48

Monotone Frameworks

 A data-flow framework (D, F, V, ) is monotone if for

all x and y in V and f in F, x  y implies f(x)  f(y)

 Equivalently,
 for all x and y in V and f in F, f(x  y)  f(x)  f(y)

 Proof

 Assume x  y implies f(x)  f(y)
 x  y  x and x  y  y

 f(x  y)  f(x) and f(x  y)  f(y)

 Since f(x)  f(y) is glb of f(x) and f(y), f(x  y)  f(x)  f(y)

 Assume f(x  y)  f(x)  f(y) and suppose x  y
 f(x)  f(x)  f(y) since x  y = x

 Since f(x)  f(y) is glb of f(x) and f(y), we know f(x)  f(y)  f(y)

 f(x)  f(x)  f(y)  f(y)

SIGPL Winter School 2008 49

Distributive Frameworks

 A data-flow framework (D, F, V, ) is distributive if

for all x and y in V and f in F, f(x  y) = f(x)  f(y)

 Distributivity implies monotonicity, but not vice

versa

 If a = b, then a  b = a, so a  b

 Reaching Definitions

 Gen[B]  ((x  y) – Kill[B])

= (Gen[B]  (x – Kill[B]))  (Gen[B]  (y –

Kill[B]))

 (x  y) – Kill[B] = (x – Kill[B])  (y – Kill[B])

SIGPL Winter School 2008 50

The Iterative Algorithm for General Frameworks

 A data-flow graph, with entry and exit nodes

 A direction of the data-flow D

 A set of values V

 A meet operator 

 A set of transfer functions F for basic blocks

 A constant value ventry and vexit in V representing

the boundary condition for forward and

backward frameworks, respectively

SIGPL Winter School 2008 51

The Iterative Algorithm for General Frameworks
(contd.)

out[entry] = ventry ;
for (each block B other than entry) out[B]
= T;
while (changes to any out occur)

for (each block B other than entry) {
in[B] =  pred. P of B out[P];
out[B] = fB(in[B]);

}

in[exit] = vexit ;
for (each block B other than entry) in[B] =
T;
while (changes to any in occur)

for (each block B other than exit) {
out[B] =  succ. P of B in[P];
in[B] = fB(out[B]);

}

SIGPL Winter School 2008 52

Properties of the Iterative Algorithm

1. If the iterative algorithm converges, the result is

a solution to the data-flow equations

 If the equations are not satisfied by the time the

while-loop ends, then there will be at least one

change to an OUT (in the forward case) or IN (in the

backward case)

 Loop once more

SIGPL Winter School 2008 53

Properties of the Iterative Algorithm (contd.)

2. If the framework is monotone, then the solution

found is the maximum fixedpoint (MFP) of the

data-flow equations

 A maximum fixedpoint is a solution with the property

that in any other solution, the values of IN[B] and

OUT[B] are  the corresponding values of the MFP

SIGPL Winter School 2008 54

Properties of the Iterative Algorithm (contd.)

 Proof (forward case)

 Basis

 IN[B] and OUT[B] for all blocks B  entry are initialized with T

 After the first iteration the value of IN[B] and OUT[B] is not

greater than the initialized value

 Induction

 Assume that after the kth iteration, the values are all not greater

than those after (k – 1) th iteration

 IN[B] =  pred. P of B out[P]

 OUTk[P]  OUTk-1[P] → INk+1[B]  INk[B]

 OUT[B] = fB(IN[B])

 INk+1[B]  INk[B] → OUTk+1[P]  OUTk[P] (by monotonicity)

SIGPL Winter School 2008 55

Properties of the Iterative Algorithm (contd.)

 The values taken by IN[B] and OUT[B] for any B

can only decrease as the algorithm iterates

 Every change observed for values of IN[B] and

OUT[B] is necessary to satisfy the equations

 If the iterative algorithm terminates, the result must

have values that are at least as great as the

corresponding values in any other solutions
 The meet operators return the glb of their inputs

 The transfer functions return the only solution that is

consistent with the block itself and its given input

SIGPL Winter School 2008 56

Properties of the Iterative Algorithm (contd.)

3. If the semilattice of the framework is

monotone and of finite height, then the

algorithm is guaranteed to converge

 The values of each IN[B] and OUT[B] decrease

with each change, and the algorithm stops if at

some round nothing changes

 The algorithm converges after a number of rounds

no greater than (the height)  (the number of basic

blocks)

SIGPL Winter School 2008 57

The Ideal Solution

 Let P = entry → B1 → B2 → … → Bk be a path in

G

 fP(x)= fk(fk-1(…(f1(x))…))

 IDEAL[B] =  P a possible execution path from entry to B

fP[ventry]

 Any answer that is greater than IDEAL is incorrect

 Any value smaller than or equal to the ideal is

conservative, i.e., safe

SIGPL Winter School 2008 58

The Meet-Over-Paths Solution

 MOP[B] =  P a path from entry to B fP[ventry]

 A super set of all the paths that are possibly executed

 MOP[B]  IDEAL[B]

 Computing MOP is undecidable

 There is no algorithm that can compute MOP for an

arbitrary instance of monotone framework

 There is no efficient way to tell exactly which paths

are real and which are not

 Accept the MOP solution as the closest feasible solution

SIGPL Winter School 2008 59

MOP vs. MFP

 If all the functions are distributive,

 MFP solution = the MOP solution

 If the transfer functions are all monotone

but not necessarily distributive, the

iterative algorithm produces the MFP

solution but not necessarily the MOP

solution

MOP[B4] = ((fB3 fB1)  (fB3 fB2))(Ventry)

MFP[B4] = fB3((fB1(Ventry)  fB2(Ventry)))

B1 B2

B3

B4

entry

SIGPL Winter School 2008 60

Constant Propagation (CONST)

 For each program point, whether or not a variable has a

constant value whenever execution reaches that point

 For constant folding or constant propagation

 Replaces expressions that evaluate to the same constant

every time they are executed, by that constant

b = 2
c = 3

b = 2
c = 3

a = b+c a = 5

x = b x = 2

SIGPL Winter School 2008 61

The Lattice for CONST

 (L, ) is a product lattice and L  2V(C{UNDEF, NAC}),
where V is the infinite set of variables and C is the set
of constant values
 NAC – not a constant
 UNDEF – undefined
  = 
 L is the set of functions from V to C
 Sets of (variable, constant value) pairs
 Bit-vector is inappropriate

 fL is the information about variables that we may assume at
certain points of a flow graph
 (v, c)  f
 variable v has a constant value c

SIGPL Winter School 2008 62

The Lattice for a Single Variable

UNDEF

NAC

0 1 2-1-2 ……

SIGPL Winter School 2008 63

The Lattice for CONST

b = 2
c = 3

a = b+c

x = b



{(b,2),(c,3)}

{(a,5),(b,2),(c,3)}

{(a,5)} {(b,2)} {(c,3)} ……

…

…

SIGPL Winter School 2008 64

Transfer Functions for CONST

 Let fs be the transfer function of statement s, and let m

and m’ represent data-flow values such that m’ = fs(m)

 If s is not an assignment statement, then fs is the identity

function

 If s is an assignment to variable x, then m’(v) = m(v), for all

variables v  x

 If RHS of s is a constant c, then m’(x) = c

 If RHS is of the form y  z, then

 m’(x) = m(y)  m(z) if m(y) and m(z) are constant values

 m’(x) = NAC if either m(y) or m(z) is NAC

 m’(x) = UNDEF otherwise

 If RHS is any other expression (e.g. a function call or

assignments through a pointer), then m’(x) = NAC

SIGPL Winter School 2008 65

CONST is not Distributive

 Data flow formulation for the point r

 p = {(b,1), (c,2)}

 q = {(b,2), (c,1)}

 pq = 

 Therefore, f4(pq) = f4() = 

 MOP formulation for the point r

 f4(p)=f4({(b,1),(c,2)})=

{(a,3),(b,1),(c,2)}

 f4(q)=f4({(b,2),(c,1)})=

{(a,3),(b,2),(c,1)}

 f4(p)  f4(q) = {(a,3)}

 f4(pq)  f4(p)  f4(q)

b = 1
c = 2

b = 2
c = 1

a = b + c

1

4

32

{(b,1),(c,2)} {(b,2),(c,1)}

p q

r

SIGPL Winter School 2008 66

CONST is a Monotone Framework (contd.)

 Need to show for all x, yL and for all functions

of the form fA=BC or fA=r,

 fA=BC(xy)  fA=BC(x)  fA=BC(y), and

 fA=r(xy)  fA=r(x)  fA=r(y)

SIGPL Winter School 2008 67

fA=BC(xy)  fA=BC(x)  fA=BC(y)

 For all XV – {A}, if (X,r)fA=BC(xy) then (X,r)x and

(X,r)y. Thus, (X,r)  fA=BC(x) and (X,r)  fA=BC(y)

 If (A,r)fA=BC(xy), then {(B,r1),(C,r2)} is a subset of

both x and y, for some r1 and r2 such that r = r1r2. This

implies (A,r)fA=BC(x) and (A,r)fA=BC(y)

 If A is undefined in fA=BC(xy)

 One of (B, b) and (C, c) is not in xy. One of x and y can not

have both of (B, b) and (C, c). This means that A is undefined

one of fA=BC(x) and fA=BC(y). Thus, A is undefined in fA=BC(x)

 fA=BC(y)

SIGPL Winter School 2008 68

fA=r(xy)  fA=r(x)  fA=r(y)

 For all XV – {A}, if (X,r)fA=r(xy) then (X,r)x

and (X,r)y. Thus, (X,r)  fA=r(x) and (X,r) 

fA=r(y)

 (A,r)  fA=r(xy), (A,r)  fA=r(x), and (A,r)  fA=r(y)

are always true

SIGPL Winter School 2008 69

Speed of Convergence of Iterative Data-Flow
Algorithms

 The maximum number of iterations

 The height of the lattice  the number of nodes

 Whether all events of significance at a node will

be propagated to that node along some acyclic

path?

 If all useful information propagates along acyclic

paths, tailor the order in which we visit nodes in

the iterative algorithm

 Relatively few passes

 Depth-first order or the reverse of depth-first order

SIGPL Winter School 2008 70

Speed of Convergence of Iterative Data-Flow
Algorithms (contd.)

 Reaching definitions

 If a definition d is in IN[B], then there is some acyclic path from the

block containing d to B s.t. d is in the IN’s and OUT’s all along that

path

 Available expressions

 If an expression x + y is not available at the entrance to B, then there

is some acyclic path that demonstrates that either the path is from

the entry node and includes no statement that kills or generates x + y,

or the path is from a block that kills x + y and along the path there is

no subsequent generation of x + y

 Live variables

 If x is live on exit from B, then there is an acyclic path from B to a

use of x, along which there are no definitions of x

 Paths with cycles add nothing for these analyses

 Remove cycles and find a shorter path

SIGPL Winter School 2008 71

Speed of Convergence of Iterative Data-Flow
Algorithms (contd.)

 Constant propagation

 The first time B is visited, c is found to be constant 1, but

both a and b are undefined

 The second time, b and c are found to be constant 1

 The third time, a is found to be constant 1

a = b
b = c
c = 1

B

SIGPL Winter School 2008 72

Spanning Trees

 A spanning tree of a graph is just a subgraph

that contains all the nodes and is a tree

 A graph may have many spanning trees

SIGPL Winter School 2008 73

Graph Search

 Depth-first search

 Visits all the nodes in the graph once, by starting at the entry node

and visiting the nodes as far away from the entry node as quickly

possible

 Depth-first spanning tree

 The route of the search in a depth-first search

 Tree traversal

 Preorder – visits a node before visiting any of its children, which it

then visits recursively in left-to-right order

 Postorder – visits a node’s children, recursively in left-to-right order,

before visiting the node itself

 Depth-first ordering

 The reverse of a postorder traversal

 Visit a node, traverse its rightmost child, the child to its left, and so

on

SIGPL Winter School 2008 74

Depth-First Spanning Tree

109

8

7

65

4

3

2

1

10 9

8

7

5

6

4

3 2

1

Depth first traversal – 1 , 3, 4, 6, 7, 8,10, 8, 9, 8, 7, 6, 4, 5, 4, 3, 1, 2, 1

Preorder – 1, 3, 4, 6, 7, 8, 10, 9, 5, 2
Postorder – 10, 9, 8, 7, 6, 5, 4, 3, 2, 1
Depth-first ordering – 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

SIGPL Winter School 2008 75

Depth-First Ordering

 m → n is a retreating edge iff dfn[m]  dfn[n]
 Go from a node m to an ancestor of m in the tree (possibly to m itself)
 4→3, 7→4, 10→7, 9→1, 8→3

void search(n) {
mark n “visited”;
for (each successor s of n) {

if (s is “unvisited”) {
add edge n→s to T;
search(s);

}
}
dfn[n] = c;
c = c – 1;

}

main() {
T = {};
for (each node n of G) {

mark n “unvisited”;
}
c = the # of nodes in G;
search(entry);

} 10 9

8

7

5

6

4

3 2

1

SIGPL Winter School 2008 76

Speed of Convergence of Iterative Data-Flow
Algorithms (contd.)

 A definition d propagates in a path, 3 → 5 →19 → 35 → 16 → 23 → 45
→ 4 → 10 → 17 (the depth first numbers of basic blocks)
 The first round, OUT[3] → IN[5] → OUT[5] → IN[19] → OUT[19] → IN[35]

→ OUT[35]
 IN[16] has been already computed

 The second round, OUT[35] → IN[16] → OUT[16] → IN[23] → OUT[23] →
IN[45] → OUT[45]
 IN[4] has been already computed

 The third round, OUT[45] → IN[4] → OUT[4] → IN[10] → OUT[10] →
IN[17] → OUT[17]

 After three passes d reaches block 17

out[entry] = ventry ;
for (each block B other than entry) out[B] = T;
while (changes to any out occur)

for (each block B other than entry, in depth-first order) {
in[B] =  pred. P of B out[P];
out[B] = fB(in[B]);

}

SIGPL Winter School 2008 77

Speed of Convergence of Iterative Data-Flow
Algorithms (contd.)

 For reaching definitions,

 To propagate any reaching definition along any acyclic path is no

more than one greater than the number of retreating edges

 One more pass to detect that a fixed point is reached

 Two plus the depth of the flow graph

 Typical flow graphs

 Average depth around 2.75

 D. E. Knuth, “An empirical study of FORTRAN programs,” Software –

Practice and Experience 1:2 (1971), pp. 105-133

 Backward-flow problems – use the reverse of the depth-first order

 The depth+2 bound works for any monotone framework

 As long as information only needs to propagate along acyclic paths

SIGPL Winter School 2008 78

Depth of a Flow Graph

 The depth of a flow graph is the largest number of retreating

edges along any acyclic path in the flow graph

 Normal control-flow constructs produce reducible flow graphs

with the number of back edges (i.e., retreating edges) at most the

nesting depth of loops
 Nesting depth tends to be small

increasing

retreating

increasingincreasing

retreating

depth = 2

depth = 3 depth = 1

References

 Alfred V. Aho, Monica S. Lam, Ravi Sethi, and

Jeffrey D. Ullman. “Compilers” (second edition),

Addison Wesley, 2006

 Matthew S. Hecht. “Flow Analysis of Computer

Programs”, Elsevier Science Ltd., 1977

SIGPL Winter School 2008 79

