
Abstract-Value Slicing
(Goal-Directed Weakening of Abstract

Interpretation Results)

Sunae Seo

2008. 1. 31

SIGPL winter school

Contents

 A quick lookup

 Problem and approach

 Outline using insertion sort example

 Abstract-value slicing : extractor domain & back-tracer

 Correctness argument

 A little bit deeper

 Abstract interpretation

 Abstract-value slicer

 Designing back-tracers

 Experiments

 Conclusion and discussion

Problem

 AI results are often unnecessarily informative

 AI computes program invariants as strong as possible.

 Verification of a program usually does not require the

whole AI results.

 Our experiments show that 63%-84% of the results

were not needed for the intended verification.

 Constructing a compact program proof is tackled by

those big AI results.

Simple Example:
Parity Analysis

Simple Example

Can program slicing, dependency analysis or any other

techniques find this?

No, only abstract-value slicing can do.

Solution

 We propose an algorithm called Abstract-value Slicing (in

short, AVS).

 AVS filters out unnecessary invariants from AI results.

 AVS works as a postprocessor to AI.

Example:
Insertion Sort with Zone Analysis

 Insertion sort

 Property to verify: safe array access

 Analysis technique: AI with zone domain

insertion_sort(n, A[1..n])

int i,j,pivot;

i:=2; j:=0;

while (i<=n) do

pivot:=A[i]; j:=i-1;

while (j>=1 and A[j]>pivot) do

A[j+1]:=A[j]; j:=j-1;

od;

A[j+1]:=pivot; i:=i+1;

od

true

(2)i (0 2)j i

(2)i n (0 2)j i

(2) (0 1)i j n

(2) (1) n j i

n

(2) (1 1)i j n

(2) (1) n j i

n

(2) (0 1)i j n

(2) (1) n j i

n

Insertion sort programAI results

insertion_sort(n, A[1..n])

int i,j,pivot;

i:=2; j:=0;

while (i<=n) do

pivot:=A[i]; j:=i-1;

while (j>=1 and A[j]>pivot) do

A[j+1]:=A[j]; j:=j-1;

od;

A[j+1]:=pivot; i:=i+1;

od

true

(2)i (0 2)j i

(2)i n (0 2)j i

(2) (0 1)i j n

(2) (1) n j i

n

(2) (1 1)i j n

(2) (1) n j i

n

(2) (0 1)i j n

(2) (1) n j i

n

insertion_sort(n, A[1..n])

int i,j,pivot;

i:=2; j:=0;

while (i<=n) do

pivot:=A[i]; j:=i-1;

while (j>=1 and A[j]>pivot) do

A[j+1]:=A[j]; j:=j-1;

od;

A[j+1]:=pivot; i:=i+1;

od

AI results Property to verify

insertion_sort(n, A[1..n])

int i,j,pivot;

i:=2; j:=0;

while (i<=n) do

pivot:=A[i]; j:=i-1;

while (j>=1 and A[j]>pivot) do

A[j+1]:=A[j]; j:=j-1;

od;

A[j+1]:=pivot; i:=i+1;

od

true

(2)i (0 2)j i

(2)i n (0 2)j i

(2) (0 1)i j n

(2) (1) n j i

n

(2) (1 1)i j n

(2) (1) n j i

n

(2) (0 1)i j n

(2) (1) n j i

n

insertion_sort(n, A[1..n])

int i,j,pivot;

i:=2; j:=0;

while (i<=n) do

pivot:=A[i]; j:=i-1;

while (j>=1 and A[j]>pivot) do

A[j+1]:=A[j]; j:=j-1;

od;

A[j+1]:=pivot; i:=i+1;

od

true

(2)i

(2)i n

(2) (0 1)i j n

(2) (1 1)i j n

(2) (0 1)i j n

AI results Abstract-value slicing

Abstract-value Slicing (1/2)

 Abstract-value slicing

 AVS filters out unnecessary information from AI results

 Technically, AVS weakens AI result , such that

 sliced AI result f is a conservative solution of AI

 sliced AI result is still enough to prove the property to

verify

Abstract-value Slicing (2/2)

 Two components of AVS

 Extractor domain with extractor application:

 is a working space of AVS indicating which

information in AI results is necessary

 Back-tracers for atomic terms

 specify how AVS treats atomic terms

Example: Evenness

 Before AVS

 AI results

 Verification goal (initial extractor annotation)

Example: Evenness

 Before AVS

 AI results

 Verification goal (initial extractor annotation)

 After AVS

 AVS results

 Sliced AI results

AVS: Extractor Domain

 An extractor domain is a finite lattice

 An extractor application is a function, such

that

 Top of extractor domain means that nothing is

necessary among the given AI result.

 Bottom of extractor domain means that all of AI result

is necessary.

Example: Evenness

 Before AVS

 AI results

 Verification goal (initial extractor annotation)

 After AVS

 AVS results

 Sliced AI results

AVS: Back-tracers

 An extractor transformer for atomic terms

 Given an atomic term and two abstract values

satisfying

 Back-tracer is a function satisfying

Example: Evenness

 Before AVS

 AI results

 Verification goal (initial extractor annotation)

Correctness

 Proposition

For all and all , the slicer

terminates, and it outputs such that

and

(1) is a correct AI solution;
(2) slices AI results; and
(3) proves the property of interest.

Contents

 A quick lookup

 Problem and approach

 Outline using insertion sort example

 Abstract-value slicing : extractor domain & back-tracer

 Correctness argument

 A little bit deeper

 Abstract interpretation

 Abstract-value slicer

 Designing back-tracers

 Experiments

 Conclusion and discussion

Abstract Interpretation:
Syntax

Abstract Interpretation:
Semantics

Example: Zone Analysis

Abstract-value Slicing

 AVS components

 Extractor domain with extractor application

 Back-tracers for atomic terms

 Abstract-value slicer

 Step function

 Abstract-value slicer

Example:
Extractor Domain for Zone Analysis

Example:
Back-tracers for Zone Analysis

Designing Good Back-tracers:
Best back-tracer construction

 Best back-tracer construction

 When the abstract transfer function is join-preserving,

the following is the best back-tracer

Designing Good Back-tracers :
Back-tracers for Zone Analysis

Designing Good Back-tracers :
Extension Method

 Dual atomic domain

 An element x in a lattice L is a dual atom iff

 L is dual atomic iff

 When the extractor domain is dual atomic, the following is

the back-tracer

Designing Good Back-tracers :
Extractor domain for Zone analysis

{}

{(0,0)} {(0,1)} {(1,0)} {(1,1)} {(N,N)}

{(0,0),(0,1)} {(1,0),(1,1)}

{(0,0),(0,1),...,(1,0),(1,1),...,(N,N)}

......

... ...

Designing Good Back-tracers :
Back-tracers for Zone Analysis

Experiments (1/3)

 We implement

 Abstract interpreter for zone analysis

 Abstract-value slicer for zone analysis

 Hoare proof construction algorithm

 We apply our algorithms to small array-accessing

programs

Experiments (2/3)

 Abstract interpretation results

programs

number of invariants in AI results removed

/total

slicing time

(sec)
total selected removed

Insertion sort 92 22 70 76% 0.07

Partition 120 46 74 62% 0.03

Bubble sort 217 42 175 81% 0.11

KMP 463 133 330 72% 0.28

Heap sort 817 181 636 78% 0.29

Experiments (3/3)

 Hoare proof size

before slicing after slicing

(1)-(2)

/(1)

reduction in

proof size

(1)FOL formula (2)FOL formula

Insertion sort 248 2530 166 1122 33% 53%

Partition 398 3866 201 1847 49% 52%

Bubble sort 894 12230 389 2677 56% 76%

KMP 1364 26898 653 7683 52% 70%

Heap sort 2542 52370 1028 7936 60% 84%

Conclusion

 Our contribution

 Abstract-value slicing

 AVS eliminates unnecessary invariants from AI

results;

 General framework for designing AVS is proposed;

and

 Constructing correct parameters for AVS and

designing AVS for various AI frameworks are

suggested.

 We show applicability of our works by experiments.

(All details can be found in our TOPLAS paper and related technical memo)

Discussion

 Points to consider

 Back-tracers are no need to be monotone.

 Under-approximation vs. over-approximation

 Forward vs. backward analysis

Thanks.

