
Abstract-Value Slicing
(Goal-Directed Weakening of Abstract

Interpretation Results)

Sunae Seo

2008. 1. 31

SIGPL winter school

Contents

 A quick lookup

 Problem and approach

 Outline using insertion sort example

 Abstract-value slicing : extractor domain & back-tracer

 Correctness argument

 A little bit deeper

 Abstract interpretation

 Abstract-value slicer

 Designing back-tracers

 Experiments

 Conclusion and discussion

Problem

 AI results are often unnecessarily informative

 AI computes program invariants as strong as possible.

 Verification of a program usually does not require the

whole AI results.

 Our experiments show that 63%-84% of the results

were not needed for the intended verification.

 Constructing a compact program proof is tackled by

those big AI results.

Simple Example:
Parity Analysis

Simple Example

Can program slicing, dependency analysis or any other

techniques find this?

No, only abstract-value slicing can do.

Solution

 We propose an algorithm called Abstract-value Slicing (in

short, AVS).

 AVS filters out unnecessary invariants from AI results.

 AVS works as a postprocessor to AI.

Example:
Insertion Sort with Zone Analysis

 Insertion sort

 Property to verify: safe array access

 Analysis technique: AI with zone domain

insertion_sort(n, A[1..n])

int i,j,pivot;

i:=2; j:=0;

while (i<=n) do

pivot:=A[i]; j:=i-1;

while (j>=1 and A[j]>pivot) do

A[j+1]:=A[j]; j:=j-1;

od;

A[j+1]:=pivot; i:=i+1;

od

true

(2)i (0 2)j i   

(2)i n  (0 2)j i   

(2) (0 1)i j n    

(2) (1) n j i    

n

(2) (1 1)i j n    

(2) (1) n j i    

n

(2) (0 1)i j n    

(2) (1) n j i    

n

Insertion sort programAI results

insertion_sort(n, A[1..n])

int i,j,pivot;

i:=2; j:=0;

while (i<=n) do

pivot:=A[i]; j:=i-1;

while (j>=1 and A[j]>pivot) do

A[j+1]:=A[j]; j:=j-1;

od;

A[j+1]:=pivot; i:=i+1;

od

true

(2)i (0 2)j i   

(2)i n  (0 2)j i   

(2) (0 1)i j n    

(2) (1) n j i    

n

(2) (1 1)i j n    

(2) (1) n j i    

n

(2) (0 1)i j n    

(2) (1) n j i    

n

insertion_sort(n, A[1..n])

int i,j,pivot;

i:=2; j:=0;

while (i<=n) do

pivot:=A[i]; j:=i-1;

while (j>=1 and A[j]>pivot) do

A[j+1]:=A[j]; j:=j-1;

od;

A[j+1]:=pivot; i:=i+1;

od

AI results Property to verify

insertion_sort(n, A[1..n])

int i,j,pivot;

i:=2; j:=0;

while (i<=n) do

pivot:=A[i]; j:=i-1;

while (j>=1 and A[j]>pivot) do

A[j+1]:=A[j]; j:=j-1;

od;

A[j+1]:=pivot; i:=i+1;

od

true

(2)i (0 2)j i   

(2)i n  (0 2)j i   

(2) (0 1)i j n    

(2) (1) n j i    

n

(2) (1 1)i j n    

(2) (1) n j i    

n

(2) (0 1)i j n    

(2) (1) n j i    

n

insertion_sort(n, A[1..n])

int i,j,pivot;

i:=2; j:=0;

while (i<=n) do

pivot:=A[i]; j:=i-1;

while (j>=1 and A[j]>pivot) do

A[j+1]:=A[j]; j:=j-1;

od;

A[j+1]:=pivot; i:=i+1;

od

true

(2)i

(2)i n 

(2) (0 1)i j n    

(2) (1 1)i j n    

(2) (0 1)i j n    

AI results Abstract-value slicing

Abstract-value Slicing (1/2)

 Abstract-value slicing

 AVS filters out unnecessary information from AI results

 Technically, AVS weakens AI result , such that

 sliced AI result f is a conservative solution of AI

 sliced AI result is still enough to prove the property to

verify 

Abstract-value Slicing (2/2)

 Two components of AVS

 Extractor domain with extractor application:

 is a working space of AVS indicating which

information in AI results is necessary

 Back-tracers for atomic terms

 specify how AVS treats atomic terms

Example: Evenness

 Before AVS

 AI results

 Verification goal (initial extractor annotation)

Example: Evenness

 Before AVS

 AI results

 Verification goal (initial extractor annotation)

 After AVS

 AVS results

 Sliced AI results

AVS: Extractor Domain

 An extractor domain is a finite lattice

 An extractor application is a function, such

that

 Top of extractor domain means that nothing is

necessary among the given AI result.

 Bottom of extractor domain means that all of AI result

is necessary.

Example: Evenness

 Before AVS

 AI results

 Verification goal (initial extractor annotation)

 After AVS

 AVS results

 Sliced AI results

AVS: Back-tracers

 An extractor transformer for atomic terms

 Given an atomic term and two abstract values

satisfying

 Back-tracer is a function satisfying

Example: Evenness

 Before AVS

 AI results

 Verification goal (initial extractor annotation)

Correctness

 Proposition

For all and all , the slicer

terminates, and it outputs such that

and



(1) is a correct AI solution;
(2) slices AI results; and
(3) proves the property of interest.

Contents

 A quick lookup

 Problem and approach

 Outline using insertion sort example

 Abstract-value slicing : extractor domain & back-tracer

 Correctness argument

 A little bit deeper

 Abstract interpretation

 Abstract-value slicer

 Designing back-tracers

 Experiments

 Conclusion and discussion

Abstract Interpretation:
Syntax

Abstract Interpretation:
Semantics

Example: Zone Analysis

Abstract-value Slicing

 AVS components

 Extractor domain with extractor application

 Back-tracers for atomic terms

 Abstract-value slicer

 Step function

 Abstract-value slicer

Example:
Extractor Domain for Zone Analysis

Example:
Back-tracers for Zone Analysis

Designing Good Back-tracers:
Best back-tracer construction

 Best back-tracer construction

 When the abstract transfer function is join-preserving,

the following is the best back-tracer

Designing Good Back-tracers :
Back-tracers for Zone Analysis

Designing Good Back-tracers :
Extension Method

 Dual atomic domain

 An element x in a lattice L is a dual atom iff

 L is dual atomic iff

 When the extractor domain is dual atomic, the following is

the back-tracer

Designing Good Back-tracers :
Extractor domain for Zone analysis

{}

{(0,0)} {(0,1)} {(1,0)} {(1,1)} {(N,N)}

{(0,0),(0,1)} {(1,0),(1,1)}

{(0,0),(0,1),...,(1,0),(1,1),...,(N,N)}

......

... ...

Designing Good Back-tracers :
Back-tracers for Zone Analysis

Experiments (1/3)

 We implement

 Abstract interpreter for zone analysis

 Abstract-value slicer for zone analysis

 Hoare proof construction algorithm

 We apply our algorithms to small array-accessing

programs

Experiments (2/3)

 Abstract interpretation results

programs

number of invariants in AI results removed

/total

slicing time

(sec)
total selected removed

Insertion sort 92 22 70 76% 0.07

Partition 120 46 74 62% 0.03

Bubble sort 217 42 175 81% 0.11

KMP 463 133 330 72% 0.28

Heap sort 817 181 636 78% 0.29

Experiments (3/3)

 Hoare proof size

before slicing after slicing

(1)-(2)

/(1)

reduction in

proof size

(1)FOL formula (2)FOL formula

Insertion sort 248 2530 166 1122 33% 53%

Partition 398 3866 201 1847 49% 52%

Bubble sort 894 12230 389 2677 56% 76%

KMP 1364 26898 653 7683 52% 70%

Heap sort 2542 52370 1028 7936 60% 84%

Conclusion

 Our contribution

 Abstract-value slicing

 AVS eliminates unnecessary invariants from AI

results;

 General framework for designing AVS is proposed;

and

 Constructing correct parameters for AVS and

designing AVS for various AI frameworks are

suggested.

 We show applicability of our works by experiments.

(All details can be found in our TOPLAS paper and related technical memo)

Discussion

 Points to consider

 Back-tracers are no need to be monotone.

 Under-approximation vs. over-approximation

 Forward vs. backward analysis

Thanks.

