Abstract-Value Slicing (Goal-Directed Weakening of Abstract Interpretation Results)	
Sunae Seo	
2008. 1. 31 SIGPL winter school	

Contents

• A quick lookup

- Problem and approach
- Outline using insertion sort example
- Abstract-value slicing : extractor domain & back-tracer
- Correctness argument
- A little bit deeper
 - Abstract interpretation
 - Abstract-value slicer
 - Designing back-tracers
- Experiments
- Conclusion and discussion

Problem

- Al results are often unnecessarily informative
 - Al computes program invariants as strong as possible.
 - Verification of a program usually does not require the whole AI results.
 - Our experiments show that 63%-84% of the results were not needed for the intended verification.
 - Constructing a compact program proof is tackled by those big AI results.

Simple Example: Parity Analysis

- code: x:=1; y:=2x
- AI results:

$$x \rightarrow \top, \ y \rightarrow \top \quad \texttt{x:=1;} \quad x \rightarrow \mathsf{odd}, \ y \rightarrow \top \quad \texttt{y:=2x} \quad x \rightarrow \mathsf{odd}, \ y \rightarrow \mathsf{even}$$

- Verification goal: y is even at the end
- Proof goal: $\overline{\{true\}x:=1; y:=2x\{\exists n. y = 2n\}}$
- Proof candidates:

$$\frac{\overline{\nabla_{1}}}{\{true\}\mathbf{x}:=\mathbf{1}\{\exists m.x=2m+1\}} \quad \frac{\overline{\nabla_{2}}}{\{\exists m.x=2m+1\}\mathbf{y}:=\mathbf{2x}\{\exists n.y=2n\}}}{\{true\}\mathbf{x}:=\mathbf{1}\{true\}} \quad \frac{\overline{\nabla_{3}}}{\{true\}\mathbf{y}:=\mathbf{2x}\{\exists n.y=2n\}}}{\{true\}\mathbf{x}:=\mathbf{1}; \ \mathbf{y}:=\mathbf{2x}\{\exists n.y=2n\}}$$
larger proof
$$\frac{\overline{\nabla_{3}}}{\{true\}\mathbf{x}:=\mathbf{1}; \ \mathbf{y}:=\mathbf{2x}\{\exists n.y=2n\}}}{\operatorname{smaller proof}}$$

• Sufficient AI results:

Simple Example

Can program slicing, dependency analysis or any other techniques find this?

No, only abstract-value slicing can do.

Solution

- We propose an algorithm called Abstract-value Slicing (in short, AVS).
 - AVS filters out unnecessary invariants from AI results.
 - AVS works as a postprocessor to AI.

Example: Insertion Sort with Zone Analysis

- Insertion sort
- Property to verify: safe array access
- Analysis technique: AI with zone domain

AI results

insertion_sort(n, A[1..n])
int i,j,pivot;

true

i:=2; j:=0; $(2 \le i) \land (0 \le j \le i - 2)$

while (i<=n) do

 $(2 \le i \le n) \land (0 \le j \le i - 2)$ pivot:=A[i]; j:=i-1; $(2 \le i \le n) \land (0 \le j \le n-1)$ $\wedge (2 \leq n) \wedge (j \leq i-1)$ while (j>=1 and A[j]>pivot) do $(2 \le i \le n) \land (1 \le j \le n-1)$ $\wedge (2 \leq n) \wedge (j \leq i-1)$ A[j+1]:=A[j]; i:=i-1; od; $(2 \le i \le n) \land (0 \le j \le n-1)$ $\wedge (2 \leq n) \wedge (j \leq i-1)$ A[j+1]:=pivot; i:=i+1; od

AI results

insertion_sort(n, A[1..n])
int i,j,pivot;

true

i:=2; j:=0; $(2 \le i) \land (0 \le j \le i - 2)$

while (i<=n) do

 $(2 \le i \le n) \land (0 \le j \le i - 2)$ pivot:=A[i]; j:=i-1; $(2 \le i \le n) \land (0 \le j \le n-1)$ $\wedge (2 \leq n) \wedge (j \leq i-1)$ while (j>=1 and A[j]>pivot) do $(2 \le i \le n) \land (1 \le j \le n-1)$ $\wedge (2 \leq n) \wedge (j \leq i-1)$ A[i+1]:=A[i]; i:=i-1; od; $(2 \le i \le n) \land (0 \le j \le n-1)$ $\wedge (2 \leq n) \wedge (j \leq i-1)$ A[j+1]:=pivot; i:=i+1;

Property to verify

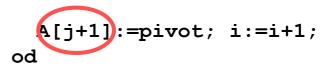
insertion_sort(n, A[1..n])
int i,j,pivot;

i:=2; j:=0;

while (i<=n) do

pivot:=A[i];





AI results

insertion_sort(n, A[1..n])
int i,j,pivot;

true

i:=2; j:=0; $(2 \le i) \land (0 \le j \le i + 2)$

while (i<=n) do

 $(2 \le i \le n) \land (0 \le j \le i - 2)$ pivot:=A[i]; j:=i-1; $(2 \le i \le n) \land (0 \le j \le n-1)$ $\wedge (2 \leq n) \wedge (j \leq i-1)$ while (j>=1 and A[j]>pivot) do $(2 \le i \le n) \land (1 \le j \le n-1)$ $\wedge (2 \leq n) \wedge (j \leq i-1)$ A[i+1]:=A[i]; i:=i-1; od; $(2 \le i \le n) \land (0 \le j \le n-1)$ $\wedge (2 \leq n) \wedge (j \leq i-1)$ A[j+1]:=pivot; i:=i+1; od

Abstract-value slicing

insertion_sort(n, A[1..n])
int i,j,pivot;

true

i:=2; j:=0; $(2 \le i)$

while (i<=n) do

 $(2 \le i \le n)$ pivot:=A[i]; j:=i-1; $(2 \le i) \land (0 \le j \le n-1)$

while (j>=1 and A[j]>pivot) do $(2 \le i) \land (1 \le j \le n-1)$

$$A[j+1] := A[j]; j := j-1;$$

od;
$$(2 \le i) \land (0 \le j \le n-1)$$

A[j+1]:=pivot; i:=i+1;
od

Abstract-value Slicing (1/2)

- Abstract-value slicing
 - AVS filters out unnecessary information from AI results
 - Technically, AVS weakens AI result fixF, such that
 - sliced AI result f is a conservative solution of AI

 $fixF \sqsubseteq f$

- sliced AI result is still enough to prove the property to verify ϕ

$$f\sqsubseteq \phi$$

Abstract-value Slicing (2/2)

- Two components of AVS
 - Extractor domain with extractor application:
 - is a working space of AVS indicating which information in AI results is necessary
 - Back-tracers for atomic terms
 - specify how AVS treats atomic terms

Example: Evenness

- Before AVS
 - Al results

• Verification goal (initial extractor annotation)

$$\begin{array}{c} \begin{array}{c} \\ \end{array} \\ y := 2y; \end{array} \begin{array}{c} \\ \end{array} \\ x := 2y; \end{array} \begin{array}{c} \\ \end{array} \\ y := x \end{array} \begin{array}{c} \\ \\ \end{array} \\ y \end{array}$$

Example: Evenness

- Before AVS
 - Al results

 $\boxed{x \to \top_{e}, y \to \top_{e}} \text{ y:=2y; } \boxed{x \to \top_{e}, y \to \text{even}} \text{ x:=2y; } \boxed{x \to \text{even}, y \to \text{even}} \text{ y:=x } \boxed{x \to \text{even}, y \to \text{even}} \x \to \text{even}} \overrightarrow{x \to \text{even}} \x \to \text{even}} \overrightarrow{x \to \text{even}} \x \to \text{even}} \overrightarrow{x \to \text{even}} \overrightarrow{x \to \text{even}} \x \to \text{even}} \overrightarrow{x \to \text{even}}$

• Verification goal (initial extractor annotation)

$$\begin{array}{c} \begin{array}{c} \\ \end{array} y := 2y; \end{array} \begin{array}{c} \\ \end{array} y := 2y; \end{array} \begin{array}{c} \\ \end{array} y := x \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} y := x \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array}$$

- After AVS
 - AVS results

$$\{\} y:=2y; \{\} x:=2y; \{x\} y:=x \{y\}$$

• Sliced AI results

$$\boxed{x \to \top_{e}, y \to \top_{e}} \text{ y:=2y; } \boxed{x \to \top_{e}, y \to \top_{e}} \text{ x:=2y; } \boxed{x \to \text{even}, y \to \top_{e}} \text{ y:=x } \boxed{x \to \top_{e}, y \to \text{even}}$$

AVS: Extractor Domain \mathcal{E}

- An extractor domain \mathcal{E} is a finite lattice
- An extractor application $\mathsf{ex}: \mathcal{E} \to \mathcal{A} \to \mathcal{A}$ is a function, such that

$$\forall e \in \mathcal{E}. \ a \sqsubseteq \mathsf{ex}(e)(a)$$

- Top of extractor domain means that nothing is necessary among the given AI result.
- Bottom of extractor domain means that all of AI result is necessary.

Example: Evenness

• Before AVS

Al results

 $x \to \top_{e}, y \to \top_{e} \quad y := 2y; \quad x \to \top_{e}, y \to \text{even} \quad x := 2y; \quad x \to \text{even}, \quad y \to \text{even} \quad y := x \quad x \to \text{even}, \quad y \to \text{even}$

 $\mathcal{E} \stackrel{\text{\tiny def}}{=} \wp(\mathsf{Vars}) \qquad \mathsf{ex}(e)(a) \stackrel{\text{\tiny def}}{=} \lambda x. \, \mathbf{if} \, x \in e \, \mathbf{then} \, a(x) \, \mathbf{else} \, \top_e$

- After AVS
 - AVS results

$$\{\} y:=2y; \{\} x:=2y; \{x\} y:=x \{y\}$$

• Sliced AI results

$$\boxed{x \to \top_{e}, y \to \top_{e}} \text{ y:=2y; } \boxed{x \to \top_{e}, y \to \top_{e}} \text{ x:=2y; } \boxed{x \to \text{even}, y \to \top_{e}} \text{ y:=x } \boxed{x \to \top_{e}, y \to \text{even}}$$

AVS: Back-tracers $(t)_{ab}$

- An extractor transformer for atomic terms
 - Given an atomic term t and two abstract values $a,b \in \mathcal{A}$ satisfying

$$\llbracket t \rrbracket a \sqsubseteq b,$$

• Back-tracer $(t)_{ab}$ is a function satisfying

$$\begin{aligned} & \|t\|_{ab} : \mathcal{E} \to \mathcal{E} \\ & \forall e \in \mathcal{E}. \ [t] \Big(\exp((t)_{ab}(e))(a) \Big) \sqsubseteq \exp(e)(b) \end{aligned}$$

Example: Evenness

• Before AVS

 $\begin{aligned} & \langle y := x \rangle_{ab}(e) & \stackrel{\text{\tiny def}}{=} & \text{if } y \in e \text{ then } (e - \{y\}) \cup \{x\} \text{ else } e \\ & \langle x := 2E \rangle_{ab}(e) & \stackrel{\text{\tiny def}}{=} & e - \{x\} \end{aligned}$

Correctness

• Proposition

For all $f \in \text{postfix}(F)$ and all $\epsilon \in \prod_{n \in V} \mathcal{E}$ the slicer SL (f, ϵ) terminates, and it $o\epsilon'$:puts such that $\epsilon' \sqsubseteq \epsilon \qquad \checkmark F\left(\text{exall}(\epsilon')(f)\right) \sqsubseteq \text{exall}(\epsilon')(f).$ $\checkmark f \sqsubseteq \text{exall}(\epsilon')(f) \sqsubseteq \text{exall}(\epsilon)(f)$

exall(\(\epsilon'\)) (1) is a correct AI solution;
(2) slices AI results; and
(3) proves the property of interest.

Contents

- Problem and approach
- Outline using insertion sort example
- Abstract-value slicing : extractor domain & back-tracer
- Correctness argument
- A little bit deeper
 - Abstract interpretation
 - Abstract-value slicer
 - Designing back-tracers
- Experiments
- Conclusion and discussion

Abstract Interpretation: Syntax

Control-flow graph of a program, (V, E, n_i, n_f, L) :

- V: a node represents a program point.
- E: an edge represents a flow of control.
- n_i, n_f : an initial and a final node.
- L of type $E \rightarrow \text{ATerm}$: a labeling function.

Atomic terms ATerm are either assignments, boolean tests or skip.

Abstract Interpretation: Semantics

AI components:

- Abstract domain, $\mathcal{A} = (A, \sqsubseteq, \bot, \sqcup)$.
- Abstract transfer function for ATerm, $\llbracket \rrbracket$: ATerm $\rightarrow (\mathcal{A} \rightarrow_m \mathcal{A})$.
- A strategy for fixpoint computation.

Abstract interpretation

• Step function ${\cal F}$

$$F : \prod_{n \in V} \mathcal{A} \to m \prod_{n \in V} \mathcal{A}$$

$$F(f)(n) \stackrel{\text{def}}{=} \begin{cases} a_0 & \text{if } n = n_i \\ \bigsqcup \{ \llbracket L(mn) \rrbracket (f(m)) \mid mn \in E \} & \text{otherwise} \end{cases}$$

• AI solution fixF: $F(fixF) \sqsubseteq fixF$

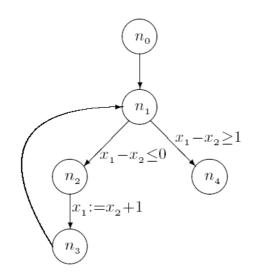
Example: Zone Analysis

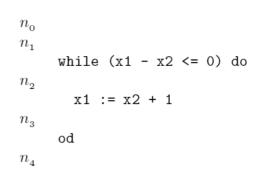
Abstract domain $\mathcal{M} = (M, \sqsubseteq, \bot, \sqcup)$

$$M \stackrel{\text{def}}{=} \{a \mid a \text{ is a DBM}\} \quad a \sqsubseteq a' \stackrel{\text{def}}{\Leftrightarrow} \forall ij. a_{ij} \le a'_{ij} \\ \perp_{ij} \stackrel{\text{def}}{=} -\infty \qquad [a \sqcup a']_{ij} \stackrel{\text{def}}{=} \max(a_{ij}, a'_{ij}) \\ \text{States} \stackrel{\text{def}}{=} [\{x_1, \dots, x_N\} \to \text{Ints}] \\ \gamma(a) \stackrel{\text{def}}{=} \{\sigma \in \text{States} \mid \forall ij. \sigma[x_0 \to 0](x_j) - \sigma[x_0 \to 0](x_i) \le a_{ij}\}$$

Abstract semantics of atomic terms

$$\begin{split} & \llbracket x_i \leq c \rrbracket a & \stackrel{\text{def}}{=} a[0i \rightarrow \min(a_{0i}, c)] \\ & \llbracket x_i \geq c \rrbracket a & \stackrel{\text{def}}{=} a[i0 \rightarrow \min(a_{i0}, -c)] \\ & \llbracket x_i - x_j \leq c \rrbracket a & \stackrel{\text{def}}{=} a[ji \rightarrow \min(a_{ji}, c)] \\ & \llbracket E \leq E' \rrbracket a & \stackrel{\text{def}}{=} a & (\text{for all other inequalities}) \\ & \llbracket x_i := x_i + c \rrbracket a & \stackrel{\text{def}}{=} a[ki \rightarrow (a_{ki} + c), ik \rightarrow (a_{ik} + (-c))]_{0 \leq k(\neq i) \leq N} \\ & \llbracket x_i := x_j + c \rrbracket a & \stackrel{\text{def}}{=} a^* ([ki \rightarrow \infty, ik \rightarrow \infty]_{0 \leq k(\neq i) \leq N})[ji \rightarrow c, ij \rightarrow (-c)] \\ & \llbracket x_i := c \rrbracket a & \stackrel{\text{def}}{=} a^* ([ki \rightarrow \infty, ik \rightarrow \infty]_{0 \leq k(\neq i) \leq N})[0i \rightarrow c, i0 \rightarrow (-c)] \\ & \llbracket x_i := E \rrbracket a & \stackrel{\text{def}}{=} a^* ([ki \rightarrow \infty, ik \rightarrow \infty]_{0 \leq k(\neq i) \leq N}) & (\text{for all other assignments}) \\ & \llbracket \text{skip} \rrbracket a & \stackrel{\text{def}}{=} a \end{split}$$





(a) Program

$$n_0 = n_i, \; n_4 = n_f, \; a_0 = \begin{bmatrix} x_0 & x_1 & x_2 \\ \hline x_0 & \infty & 4 & 3 \\ x_1 & -1 & \infty & \infty \\ x_2 & -1 & 0 & \infty \end{bmatrix}$$

(b) Entry, Exit Node and Initial Abstract State

	n_0	n_1	n_2	n_3	n_4
Analysis result as DBMs	$\begin{array}{c c} & x_0 \ x_1 \ x_2 \\ \hline x_0 \ \infty \ 4 \ 3 \\ x_1 \ -1 \ \infty \ \infty \\ x_2 \ -1 \ 0 \ \infty \end{array}$	$\begin{array}{c c} & x_0 \ x_1 \ x_2 \\ \hline x_0 \ \infty \ \infty \ 3 \\ x_1 \ \infty \ \infty \ \infty \\ x_2 \ -1 \ 1 \ \infty \end{array}$	$\begin{array}{c c} & x_0 \ x_1 \ x_2 \\ \hline x_0 \ \infty \ \infty \ 3 \\ x_1 \ \infty \ \infty \ \infty \\ x_2 \ -1 \ 0 \ \infty \end{array}$	$\begin{array}{c c} & x_0 \ x_1 \ x_2 \\ \hline x_0 \ \infty \ \infty \ 3 \\ x_1 \ \infty \ \infty \ -1 \\ x_2 \ -1 \ 1 \ \infty \end{array}$	$\begin{array}{c c} & x_0 \; x_1 \; x_2 \\ \hline x_0 \; \infty \; \infty \; 3 \\ x_1 \; \infty \; \infty \; -1 \\ x_2 \; -1 \; 1 \; \infty \end{array}$
Analysis result as constraints	$\begin{array}{c} 1 \leq \!\!\!\! \leq \!\!\! x_1 \leq \!\!\! 4 \\ \wedge 1 \leq \!\!\!\! x_2 \leq \!\!\! 3 \\ \wedge x_1 \leq \!\!\!\! x_2 \end{array}$	$\begin{array}{c} 1 \leq \! x_2 \leq \! 3 \\ \wedge x_1 \leq \! x_2 \! + \! 1 \end{array}$	$\begin{array}{c} 1 {\leq} x_2 {\leq} 3 \\ \wedge x_1 {\leq} x_2 \end{array}$	$\begin{array}{c} 1 \leq \! x_2 \leq \! 3 \\ \wedge x_1 = \! x_2 \! + \! 1 \end{array}$	$\substack{1\leq x_2\leq 3\\ \wedge x_1=x_2+1}$

Abstract-value Slicing

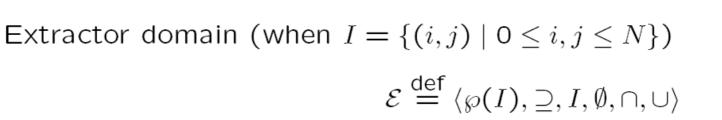
- AVS components
 - Extractor domain with extractor application
 - Back-tracers for atomic terms
- Abstract-value slicer
 - Step function $(P)_{fg} : (\prod \mathcal{E}) \to (\prod \mathcal{E})$

$$(P)_{fg} : \left(\prod_{n \in V} \mathcal{E}\right) \to \left(\prod_{n \in V} \mathcal{E}\right)$$
$$|P|_{fg}(\epsilon)(n) \stackrel{\text{def}}{=} \prod \left\{ (|L(nm)|_{f(n)g(m)}(\epsilon(m)) \mid nm \in E \right\},$$

Abstract-value slicer

$$\begin{split} \mathsf{SL} \ : \ & \left(\mathsf{postfix}(F) \times \prod_{n \in V} \mathcal{E} \right) \to \left(\prod_{n \in V} \mathcal{E} \right) \\ \mathsf{SL}(f, \epsilon) \ &\stackrel{\text{def}}{=} \ \mathbf{let} \ B_f = \lambda \epsilon'. (\epsilon' \sqcap (\!\! |P|\!\!)_{ff} \epsilon') \ \mathbf{and} \\ & k \ &= \min \big\{ n \mid n \geq 0 \ \land \ B_f^n(\epsilon) = B_f^{n+1}(\epsilon) \big\} \\ & \mathbf{in} \ B_f^k(\epsilon). \end{split}$$

Example: Extractor Domain for Zone Analysis



Extractor application

$$ig(\mathsf{ex}_{_a}(e) ig)_{_{ij}} \stackrel{\mathsf{def}}{=} \left\{ egin{array}{cc} a_{_{ij}} & \mathsf{if} \ ij \in e \ \infty & \mathsf{otherwise}. \end{array}
ight.$$

Example: Back-tracers for Zone Analysis

 $\left(\!\!\left\{x_i \leq c\right\}_{ab}(e) \quad \stackrel{\text{def}}{=} \text{ if } (b_{0i} \geq c) \text{ then } (e - \left\{kl \mid b_{kl} = \infty\right\} - \{0i\})$ else $(e - \{kl \mid b_{kl} = \infty\})$ $(x_i \ge c)_{ab}(e) \qquad \stackrel{\mathrm{def}}{=} \ \mathbf{if} \ (b_{i0} \ge -c) \ \mathbf{then} \ (e - \{kl \mid b_{kl} = \infty\} - \{i0\})$ else $(e - \{kl \mid b_{kl} = \infty\})$ $(x_i - x_j \le c)_{ab}(e) \stackrel{\text{def}}{=} \mathbf{if} (b_{ji} \ge c) \mathbf{then} (e - \{kl \mid b_{kl} = \infty\} - \{ji\})$ else $(e - \{kl \mid b_{kl} = \infty\})$ $(E \leq E')_{ab}(e) \qquad \stackrel{\text{def}}{=} e - \{kl \mid b_{kl} = \infty\}$ $(\!\! x_i := x_i + c \!\!)_{ab}(e) \stackrel{\mathrm{def}}{=} e - \{ kl \mid b_{kl} = \infty \}$ $(\!(x_i := E)\!)_{ab}(e) \qquad \stackrel{\mathrm{def}}{=} \mathbf{if} \ (\mathsf{hasNegCycle}(a) = true)$ **then** edges(pickNegCycle(a)) else let $e' = (e - \{kl \mid b_{kl} = \infty\} - \{ik, ki \mid 0 \le k \le N\})$ in $\bigcup_{kl \in e'} ($ if $a_{kl} \leq b_{kl}$ then $\{kl\}$ else edges(mPath(a, k, l)))(where E is either $x_j + c$, c, or a general expression E, and $edges(k_0, k_1, \dots, k_n) = \{k_0, k_1, k_1, k_2, \dots, k_{n-1}, k_n\}.$ $\stackrel{\text{def}}{=} e - \{kl \mid b_{kl} = \infty\}$ $(skip)_{ab}(e)$

	n_0 n_1		n_2	n_3	n_4	
Initial extractor annotation	{}	{}	{}	{}	$\{(1,2),(2,1)\}$	
Abstract interpretation result	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} & x_0 \ x_1 \ x_2 \\ \hline x_0 \ \infty \ \infty \ 3 \\ x_1 \ \infty \ \infty \ \infty \\ x_2 \ -1 \ 1 \ \infty \end{array}$	$x_1 \propto \infty \infty$	$x_1 \propto \infty -1$	$\begin{array}{c c} & x_0 \ x_1 \ x_2 \\ \hline x_0 \ \infty \ \infty \ 3 \\ x_1 \ \infty \ \infty \ -1 \\ x_2 \ -1 \ 1 \ \infty \end{array}$	

(b) Input arguments for abstract-value slicer

	n_0	n_1	n_2	n_3	n_4
Result extractors from abstract-value slicer	$\{(2,1)\}$	$\{(2,1)\}$	{}	$\{(2,1)\}$	$\{(1,2),(2,1)\}$
Sliced abstract interpretation result	$\begin{array}{c c} & x_0 x_1 x_2 \\ \hline x_0 & \infty \infty \infty \\ x_1 & \infty \infty \infty \\ x_2 & \infty 0 \infty \end{array}$	$\begin{array}{c c} & x_0 x_1 x_2 \\ \hline x_0 & \infty \infty \infty \\ x_1 & \infty \infty \infty \\ x_2 & \infty 1 \infty \end{array}$	$\begin{array}{c c} & x_0 x_1 x_2 \\ \hline x_0 & \infty \infty \infty \\ x_1 & \infty \infty \infty \\ x_2 & \infty \infty \infty \end{array}$	$\begin{array}{c c} & x_0 x_1 x_2 \\ \hline x_0 & \infty \infty \infty \\ x_1 & \infty \infty \infty \\ x_2 & \infty 1 \infty \end{array}$	

(c) Results from abstract-value slicer

	n_0	n_1	n_2	n_3	n_4
Before slicing	$\begin{array}{c} 1{\leq}x_1{\leq}4\\ \wedge\ 1{\leq}x_2{\leq}3\\ \wedge\ x_1{\leq}x_2\end{array}$	$\substack{1\leq x_2\leq 3\\ \wedge \ x_1\leq x_2+1}$	$\substack{1 \leq x_2 \leq 3 \\ \land x_1 \leq x_2}$	$\substack{1\leq x_2\leq 3\\ \wedge x_1=x_2+1}$	$\substack{1\leq x_2\leq 3\\ \wedge x_1=x_2+1}$
After slicing	$x_1 {\leq} x_2$	$x_1\!\leq\!\!x_2\!+\!1$		$x_1 {\leq} x_2 {+} 1$	$x_1 \!=\! x_2 \!+\! 1$

(d) Results as constraints

Designing *Good* **Back-tracers:** Best back-tracer construction

- Best back-tracer construction
 - When the abstract transfer function is join-preserving, the following is the best back-tracer

 $(|t|)_{ab}(e) \stackrel{\text{\tiny def}}{=} \bigsqcup \{e_0 \in \mathcal{E} \mid \llbracket t \rrbracket (\exp(e_0)(a)) \sqsubseteq \exp(e)(b)\}.$

Designing *Good* **Back-tracers** : Back-tracers for Zone Analysis

$(\!\!\! \{x_i \leq c \!\!\!\!\}_{ab}(e)$	$\stackrel{\text{def}}{=}$	if $(b_{0i} \ge c)$ then $(e - \{kl \mid b_{kl} = \infty\} - \{0i\})$ else $(e - \{kl \mid b_{kl} = \infty\})$
$(\!$	$\stackrel{\text{def}}{=}$	$ \mathbf{if} \ (b_{i0} \ge -c) \ \mathbf{then} \ (e - \{kl \mid b_{kl} = \infty\}) \\ \mathbf{else} \ (e - \{kl \mid b_{kl} = \infty\} - \{i0\}) \\ \mathbf{else} \ (e - \{kl \mid b_{kl} = \infty\}) $
$(\!\! \{x_i - x_j \leq c \!\!\}_{ab}(e)$	₫	if $(b_{ji} \ge c)$ then $(e - \{kl \mid b_{kl} = \infty\} - \{ji\})$ else $(e - \{kl \mid b_{kl} = \infty\})$
$(\!\!\! E \leq E')\!\!\! _{ab}(e)$	$\stackrel{\text{def}}{=}$	
$(\!(x_i:=x_i+c)\!)_{ab}(e)$	$\stackrel{\text{def}}{=}$	$e-\{kl\mid b_{kl}=\infty\}$
$(x_i := E)_{ab}(e)$	der	if $(hasNegCycle(a) = true)$
ab		then $edges(pickNegCycle(a))$
		$\textbf{else let } e' = \left(e - \{kl \mid b_{kl} = \infty\} - \{ik, ki \mid 0 \le k \le N\}\right)$
		in $\bigcup_{kl \in e'} \left(\text{if } a_{kl} \leq b_{kl} \text{ then } \{kl\} \text{ else } \text{edges}(mPath(a,k,l)) \right)$
		(where \tilde{E} is either $x_j + c$, c , or a general expression E , and
		$edges(k_0, k_1, \dots, k_m) = \{k_0, k_1, k_1, k_2, \dots, k_m, k_m\}.$
$(\!(\texttt{skip})_{ab}(e)$	$\stackrel{\text{def}}{=}$	$e-\{kl\mid b_{kl}=\infty\}$

Designing *Good* **Back-tracers :** Extension Method

- Dual atomic domain
 - An element x in a lattice L is a dual atom iff

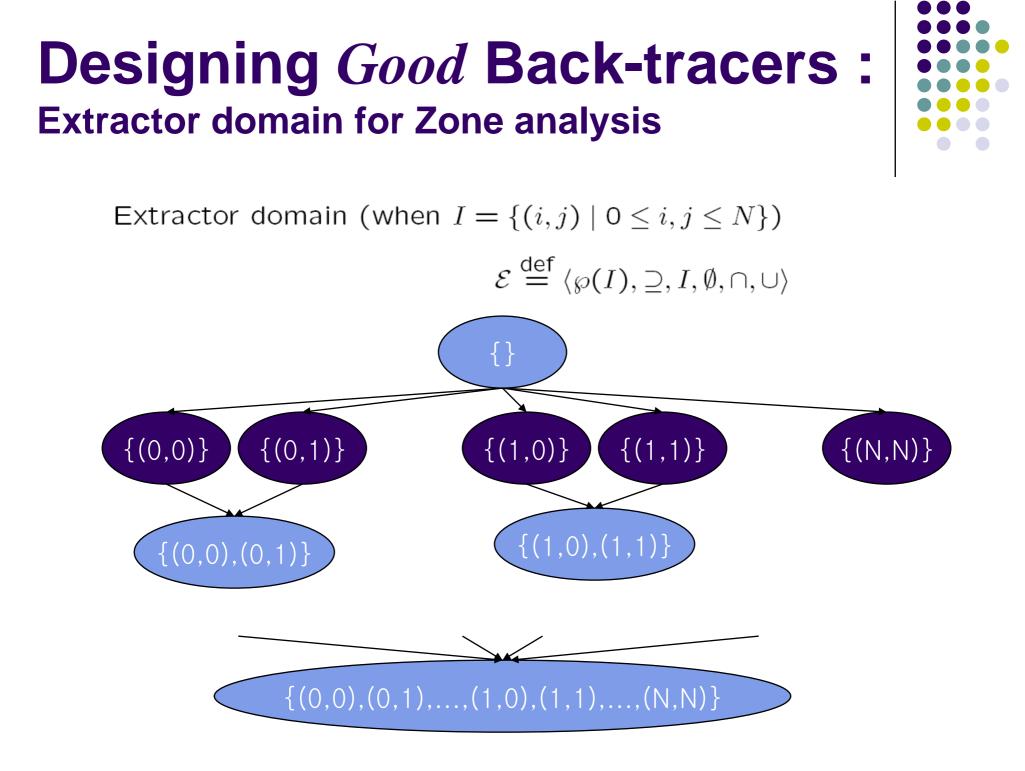
$$x \neq \top \land (\forall x' \in L \, (x \sqsubseteq x' \land x' \neq x) \Rightarrow x' = \top)),$$

• L is dual atomic iff

 $\forall x \in L. \ x = \bigcap \{x' \mid x \sqsubseteq x' \text{ and } x' \text{ is a dual atom} \}.$

 When the extractor domain is dual atomic, the following is the back-tracer

$$(|t|)_{ab}(e) \stackrel{\text{def}}{=} \bigcap \{g(e_1) \mid e \sqsubseteq e_1 \text{ and } e_1 \text{ is a dual atom} \}.$$



Designing *Good* **Back-tracers :** Back-tracers for Zone Analysis

$(\!\! x_i \leq c)\!\! _{ab}(e)$	$\stackrel{\text{def}}{=}$	if $(b_{0i} \ge c)$ then $(e - \{kl \mid b_{kl} = \infty\} - \{0i\})$ else $(e - \{kl \mid b_{kl} = \infty\})$
$(\!\! x_i \ge c \!\! _{ab}(e)$	$\stackrel{\text{def}}{=}$	$ \mathbf{if} \ (b_{i0} \ge -c) \ \mathbf{then} \ (e - \{kl \mid b_{kl} = \infty\}) \\ \mathbf{else} \ (e - \{kl \mid b_{kl} = \infty\} - \{i0\}) \\ \mathbf{else} \ (e - \{kl \mid b_{kl} = \infty\}) $
$(\!\! \{x_i-x_j \leq c \!\!\}_{ab}(e)$	$\stackrel{\text{def}}{=}$	$\mathbf{if} \ (b_{ji} \ge c) \ \mathbf{then} \ (e - \{kl \mid b_{kl} = \infty\})$ $\mathbf{else} \ (e - \{kl \mid b_{kl} = \infty\} - \{ji\})$ $\mathbf{else} \ (e - \{kl \mid b_{kl} = \infty\})$
$(\!\! E \leq E' \!\! _{ab}(e)$	$\stackrel{\text{def}}{=}$	$e - \{kl \mid b_{kl} = \infty\}$
$(\!$	$\stackrel{\text{def}}{=}$	$e - \{kl \mid b_{kl} = \infty\}$
$(x_i := E)_{ab}(e)$		if $(hasNegCycle(a) = true)$
ab i i		then $edges(pickNegCycle(a))$
		$\textbf{else let } e' = \left(e - \{kl \mid b_{kl} = \infty\} - \{ik, ki \mid 0 \le k \le N\}\right)$
		in $\bigcup_{kl \in e'} \left(\text{if } a_{kl} \leq b_{kl} \text{ then } \{kl\} \text{ else } \text{edges}(mPath(a,k,l)) \right)$
		(where \tilde{E} is either $x_j + c$, c , or a general expression E , and
		$edges(k_0, k_1, \dots, k_m) = \{k_0, k_1, k_1, k_2, \dots, k_m, k_m\}.$
$(\!(\texttt{skip})_{ab}(e)$	$\stackrel{\text{def}}{=}$	$e - \{kl \mid b_{kl} = \infty\}$

Experiments (1/3)

- We implement
 - Abstract interpreter for zone analysis
 - Abstract-value slicer for zone analysis
 - Hoare proof construction algorithm
- We apply our algorithms to small array-accessing programs

Experiments (2/3)

• Abstract interpretation results

programa	number of invariants in AI results				removed /total		slicing time (sec)
programs	total	selected remove			/101/01		(SEC)
Insertion sort	92	22	70		76%		0.07
Partition	120	46	74		62%		0.03
Bubble sort	217	42	175		81%		0.11
КМР	463	133	330		72%		0.28
Heap sort	817	181	636		78%		0.29

Experiments (3/3)

• Hoare proof size

before slicing		afters	slicing	(1)-(2)	reduction in proof size
(1)FOL	formula	(2)FOL	formula	/(1)	
248	2530	166	1122	33%	53%
398	3866	201	1847	49%	52%
894	12230	389	2677	56%	76%
1364	26898	653	7683	52%	70%
2542	52370	1028	7936	60%	84%
-	(1)FOL 248 398 894 1364	(1)FOL formula 248 2530 398 3866 894 12230 1364 26898	(1)FOL formula (2)FOL 248 2530 166 398 3866 201 894 12230 389 1364 26898 653	(1)FOL formula (2)FOL formula 248 2530 166 1122 398 3866 201 1847 894 12230 389 2677 1364 26898 653 7683	(1)FOL formula (2)FOL formula (1)-(2) /(1) 248 2530 166 1122 33% 398 3866 201 1847 49% 894 12230 389 2677 56% 1364 26898 653 7683 52%

Conclusion

- Our contribution
 - Abstract-value slicing
 - AVS eliminates unnecessary invariants from AI results;
 - General framework for designing AVS is proposed; and
 - Constructing correct parameters for AVS and designing AVS for various AI frameworks are suggested.
 - We show applicability of our works by experiments.

(All details can be found in our TOPLAS paper and related technical memo)

Discussion

- Points to consider
 - Back-tracers are no need to be monotone.
 - Under-approximation vs. over-approximation
 - Forward vs. backward analysis

Thanks.