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Problem

 AI results are often unnecessarily informative

 AI computes program invariants as strong as possible.

 Verification of a program usually does not require the 

whole AI results.

 Our experiments show that 63%-84% of the results 

were not needed for the intended verification.

 Constructing a compact program proof is tackled by 

those big AI results.



Simple Example: 
Parity Analysis



Simple Example

Can program slicing, dependency analysis or any other 

techniques find this?

No, only abstract-value slicing can do.



Solution

 We propose an algorithm called Abstract-value Slicing (in 

short, AVS).

 AVS filters out unnecessary invariants from AI results.

 AVS works as a postprocessor to AI.



Example:
Insertion Sort with Zone Analysis

 Insertion sort

 Property to verify: safe array access

 Analysis technique: AI with zone domain



insertion_sort(n, A[1..n])

int i,j,pivot;

i:=2; j:=0;

while (i<=n) do

pivot:=A[i]; j:=i-1;

while (j>=1 and A[j]>pivot) do

A[j+1]:=A[j]; j:=j-1;

od;

A[j+1]:=pivot; i:=i+1;

od

true

(2 )i (0 2)j i   

(2 )i n  (0 2)j i   

(2        ) (0 1)i j n    

(2 ) ( 1)          n j i    

n

(2        ) (1 1)i j n    

(2 ) ( 1)          n j i    

n

(2        ) (0 1)i j n    

(2 ) ( 1)          n j i    

n

Insertion sort programAI results
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Abstract-value Slicing (1/2)

 Abstract-value slicing

 AVS filters out unnecessary information from AI results

 Technically, AVS weakens AI result        ,  such that 

 sliced AI result f is a conservative solution of AI

 sliced AI result is still enough to prove the property to 

verify 



Abstract-value Slicing (2/2)

 Two components of AVS

 Extractor domain with extractor application:

 is a working space of AVS indicating which 

information in AI results is necessary

 Back-tracers for atomic terms

 specify how AVS treats atomic terms



Example: Evenness

 Before AVS

 AI results

 Verification goal (initial extractor annotation)
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AVS: Extractor Domain

 An extractor domain    is a finite lattice

 An extractor application                         is a function, such 

that

 Top of extractor domain means that nothing is 

necessary among the given AI result.

 Bottom of extractor domain means that all of AI result 

is necessary.



Example: Evenness
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AVS: Back-tracers

 An extractor transformer for atomic terms

 Given an atomic term    and two abstract values 

satisfying

 Back-tracer        is a function satisfying



Example: Evenness

 Before AVS

 AI results

 Verification goal (initial extractor annotation)



Correctness

 Proposition

For all                      and all             ,   the slicer          

terminates, and it outputs      such that         

and



(1) is a correct AI solution;
(2) slices AI results; and
(3) proves the property of interest.
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Abstract Interpretation: 
Syntax



Abstract Interpretation: 
Semantics



Example: Zone Analysis





Abstract-value Slicing

 AVS components

 Extractor domain with extractor application 

 Back-tracers for atomic terms

 Abstract-value slicer

 Step function

 Abstract-value slicer



Example:
Extractor Domain for Zone Analysis



Example:
Back-tracers for Zone Analysis





Designing Good Back-tracers:
Best back-tracer construction

 Best back-tracer construction

 When the abstract transfer function is join-preserving, 

the following is the best back-tracer



Designing Good Back-tracers :
Back-tracers for Zone Analysis



Designing Good Back-tracers :
Extension Method

 Dual atomic domain

 An element x in a lattice L is a dual atom iff

 L is dual atomic iff 

 When the extractor domain is dual atomic, the following is 

the back-tracer



Designing Good Back-tracers :
Extractor domain for Zone analysis

{}

{(0,0)} {(0,1)} {(1,0)} {(1,1)} {(N,N)}

{(0,0),(0,1)} {(1,0),(1,1)}

{(0,0),(0,1),...,(1,0),(1,1),...,(N,N)}

......

... ...



Designing Good Back-tracers :
Back-tracers for Zone Analysis



Experiments (1/3)

 We implement

 Abstract interpreter for zone analysis

 Abstract-value slicer for zone analysis

 Hoare proof construction algorithm

 We apply our algorithms to small array-accessing 

programs



Experiments (2/3)

 Abstract interpretation results

programs

number of invariants in AI results removed

/total

slicing time

(sec)
total selected removed

Insertion sort 92 22 70 76% 0.07

Partition 120 46 74 62% 0.03

Bubble sort 217 42 175 81% 0.11

KMP 463 133 330 72% 0.28

Heap sort 817 181 636 78% 0.29



Experiments (3/3)

 Hoare proof size

before slicing after slicing

(1)-(2)

/(1)

reduction in 

proof size

(1)FOL formula (2)FOL formula

Insertion sort 248 2530 166 1122 33% 53%

Partition 398 3866 201 1847 49% 52%

Bubble sort 894 12230 389 2677 56% 76%

KMP 1364 26898 653 7683 52% 70%

Heap sort 2542 52370 1028 7936 60% 84%



Conclusion

 Our contribution

 Abstract-value slicing

 AVS eliminates unnecessary invariants from AI 

results;

 General framework for designing AVS is proposed; 

and

 Constructing correct parameters for AVS and 

designing AVS for various AI frameworks are 

suggested.

 We show applicability of our works by experiments.

(All details can be found in our TOPLAS paper and related technical memo)



Discussion

 Points to consider

 Back-tracers are no need to be monotone.

 Under-approximation vs. over-approximation 

 Forward vs. backward analysis



Thanks.


