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Background

Martin-L6f developed his type theory during 1970 — 1980 a
a foundational language for mathematics. It is based on
Constructive Mathematics and a proposition is the set of all
its proofs. The following identificatons can be made:

a Is a proof of the proposition A

a IS an object in the type A

a IS a program with specification A
a IS a solution to the problem A

-

S

|
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—

Proofs as Programs

=

L

A direct | consists of: As a type:
proof of:
AV B |aproofof Aor |dataOrAB=0rilA|
a proof of B Ori2 B;
A& B |aproof of Aand|data And AB = Andi A B;
a proof of B
A D B | amethod taking
a proof of A data Implies A B = Impi A -> B;
to a proof of B
Falsity data Falsity =;

|
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Constructors are introduction rules

- B

. A
Ori2 € B AV B B
—
" AV B
Andi € A— B — A& B ﬁ&—g
[A]
li A B ADB B
Impli € (A—B)— AD 155

Elimination rules can be defined

- B

orelc AVB— (A—-C)— (B—C)—=C

Al [B]
_ AvB (C C
orel (Orila) fg=fa o

orel (Ori2b) fg=gb




Elimination rules can be defined

—

orelec AVB— (A—-C)— (B—C)—C

Al (B
_ AvB C C
orel (Orila) fg=fa c
orel (Ori2b) fg=gb
|4, B
A& B C
andel € A& B— (A—-B—-(C)—C c

andel (Andiab) f=fabd

Elimination rules can be defined

—

orelc AVB— (A—-C)— (B—C)—=C

Al [B]
_ AvB C C
orel (Orila) fg=fa c
orel (Ori2b) fg=gb
|4, B
A& B C
andel € A&k B— (A—-B—-(C)—C c
andel (Andiab) f=fabd
implele ADB—A— B ADg A

L implel (Impli f) a=fa
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Proof checking = Type checking
a B

In this way we can prove propositional formulas in a typed
functional programming language. The problem of proving
for instance

(A& B) D (B& A)

IS then the problem of finding a program in this type. The
type checker will check if the proof is correct.
In this case, we can use the following program:

Impli (Az.Andi (andel  \y.\z.2)
(andel = Ay.\z.y))

L ]
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Two questions:

- B

# Is is possible to extend this to more powerful logics, like
predicate logic?

# We have that a proof of P is an object in the type P.
But is it possible to identify the process of proving P with
the process of building an object in the type P?

The answer to these two questions is yes.

L ]
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Overview of type theory

—

Type theory is a small typed functional language with one
basic type and two type forming operation.

It is a framework for defining logics.

A new logic is introduced by definitions.

=

L ]
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What types are there?
—

® Setis atype

=

® If A € setthenEI(A) is atype

# If Ais atype and B a family of types for x € A then
(re A)B is a type.

L ]
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What programs are there?

- B

Programs are formed from variables and constants using
abstraction and application:

o Application
ce(xeA)B a€ A
ca € Blr = al

® Abstraction
be B [re A

[z]b € (xr€ A)B
# constants are either primitive or defined

L ]
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Constants
-

There are two kinds of constants:

=

primitive: (not defined) have a type but no definiens (RHS):
identifier € Type
defined: have a type and a definiens:
identifier = expr € Type

There are two kinds of defined constants:
# explicitly defined
o implicitly defined

L ]
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Primitive constants

computes to themselves (i.e. are values).
constructors in functional languages.
introduction rules and formation rules in logic
postulates

Examples:

Set

N

(N)N

(set, Set)Set

(A€set, Beset, A, B)YA& B
(A € set, (A)set) Set

&
M M M mMmmm

(A €set, BE(A)set, (x € A)B(x))
II(A, B)

|
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Explicitly defined constants

have a type and a definiens (RHS).

the definiens is a welltyped expression
abbreviation

derived rule in logic.

names for proofs and theorems in math.

Examples:

L

2 = succ(succ(0)) €N
[T € (AesSet, (A)Set) Set

v
_|_
— = |[A, BJII(A, [x]B)) € (A, B € Set)Set

=

[z, y]natrec([x|N, x, y, [u, v]succ(v)) € (N,N)N

|
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Implicitly defined constants

- B

The definiens (RHS) may contain pattern matching and
may contain occurrences of the constant itself. The
correctness of the definition must in general be decided
outside the system

# Recursively defined programs

# Elimination rules (the step from the definiendum to the
definiens is the contraction rule).

Examples:

&E € (Acset, Beset, Ce(A, B)Set,
(zeA, ye B)C(&I(z,y)), (2€ A& B))C(z2)
&E(A: Ba C: f7 &|(CL, b)) = f(a7b)

L ]
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The editing process
| N

The idea is to build expressions from incomplete
expressions with holes (placeholders). Each editing step
replaces a place holder with another incomplete expression

L ]
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The editing process
| N

The idea is to build expressions from incomplete
expressions with holes (placeholders). Each editing step
replaces a place holder with another incomplete expression
(pruning a tree goes in the other direction).

Before After First After Second
Pruning Years Pruning Years Pruning

|
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Place holders
o N

We use the notation
Oy,...0,

for place holders (holes).
Each place holder has an expected type and a local con-
text (variables which may be used to fill in the hole).

L ]
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To prove Is to build
—

# To apply a rule c is to construct an application of the
constant c.

=

® To assume A is to construct an abstraction of a variable
of type A.

# To refer to an assumption of A is to use a variable of type
A.

L ]
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To construct an object

—

We start to give the name of the object to define, and the
computer responds with

=

ce
C:DQ

We must first give the type of ¢ by refining ;.
We can either enter text from the keyboard, or do it
stepwise, replace it by

® (r € O3)04 — a function type, or
® Set, Or
X C(Dg, . ..Dn)

L ]
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Refinement of an object

—

When we have constructed the type of the constant ¢, we
can start to define it:

=

ceC
C:DO

Here, the expected type of [y is C'.
In general, we are in a situation like

C:...Dl...DQ...

where we know the expected type of the place holders.

L ]
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Refinement of an object: application

—

To refine a place holder j
[y e A
with a constant ¢ (or a variable) is to replace it by
cll ... 0, A

where [, € By,...,0, € B,,. The system computes »n and
the expected types of the new place holders as well as
some constraints from the condition that the type of

c [y ... O, must be equal to A.

L ]
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Refinement of an object: application

—

To refine a place holder

[y e A
with a constant ¢ (or a variable) is to replace it by

clly ... 0, A

where 00, € By,...,0, € B,,. The system computes n and
the expected types of the new place holders as well as
some constraints from the condition that the type of

c [y ... O, must be equal to A.

We have reduced the problem A to the
subproblems By, ... B, using the rule c.

L ]
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Refinement of an object: abstraction

—

To refine a place holder j
[y e A

with an abstraction is to replace it by

[z]0; € A

The system checks that A is a functional type (x€ B)C and
the expected type of [J; is C and the local context for it will
contain the assumption z € B.

L ]
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Refinement of an object: abstraction

—

To refine a place holder

[y e A
with an abstraction is to replace it by
[z]0; € A

The system checks that A is a functional type (x € B)C and
the expected type of [J; is C and the local context for it will
contain the assumption z € B.

We have reduced the problem (z € B)C
to the problem C' by using the assumption
x € B.

L

=

|
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Summary

—

# proof = program (proposition = type): examples in
Haskell

# Can this be extended to Predicate Logic?

# Process of proving = process of building a program?

L

=

|

Martin-L6f's Type Theory — p.27/28




Summary

- B

# proof = program (proposition = type): examples in
Haskell

» Introduction rules are constructors
» Elimination rules can be defined
» Proof checking = Type checking

# Can this be extended to Predicate Logic?

# Process of proving = process of building a program?

L ]
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Summary

- B

# proof = program (proposition = type): examples in
Haskell

» Introduction rules are constructors
» Elimination rules can be defined
» Proof checking = Type checking

# Can this be extended to Predicate Logic?
» Yes, by having types depending on objects.

# Process of proving = process of building a program?

L ]
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Summary

- B

# proof = program (proposition = type): examples in
Haskell
» Introduction rules are constructors
» Elimination rules can be defined

» Proof checking = Type checking

# Can this be extended to Predicate Logic?
» Yes, by having types depending on objects.

# Process of proving = process of building a program?

» To apply a rule c is to construct an application of the
constant c.

# To assume A is to construct an abstraction of a
variable of type A.

L » To refer to an assumption of A is to use a variable of J
type A.
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Type Theory
| N

» Types:
® Programs:

® Constants:

L ]
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® Types:

® Programs:

® Constants:

Type Theory

T ::= set | Elle) | (zeT)T’
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—

® Types:

® Programs:

® Constants:

Type Theory

T ::= set | Elle) | (zeT)T'

e n=ce | [zle | x| c
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Type Theory
-, N

Types:
T ::= set | Elle) | (zeT)T’

® Programs:

e n=ce | [zle | x| c

® Constants:
#® Primitive (without a defi nition):

ceT
» Explicitly defi ned:
c=eeT
# Implicitly defi ned:
Cp1 ... Dn = e

/ / /
cp1 .- P, = €
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