
Martin-Löf’s Type Theory
Bengt Nordström

bengt@cs.chalmers.se

ChungAng University, Seoul, Korea

on leave from Chalmers University, Göteborg, Sweden

Martin-Löf’s Type Theory – p.1/28

The world

Martin-Löf’s Type Theory – p.2/28

Sweden

Martin-Löf’s Type Theory – p.3/28

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Martin-Löf’s Type Theory – p.4/28

Background

Martin-Löf developed his type theory during 1970 – 1980 as
a foundational language for mathematics. It is based on
Constructive Mathematics and a proposition is the set of all
its proofs. The following identificatons can be made:

a ∈ A

a is a proof of the proposition A

a is an object in the type A

a is a program with specification A

a is a solution to the problem A

Martin-Löf’s Type Theory – p.5/28

Proofs as Programs

A direct consists of: As a type:
proof of:

A∨B a proof of A or data Or A B = Ori1 A |
a proof of B Ori2 B;

A & B a proof of A and data And A B = Andi A B;
a proof of B

A ⊃ B a method taking
a proof of A data Implies A B = Impi A -> B;
to a proof of B

Falsity data Falsity = ;

Martin-Löf’s Type Theory – p.6/28

Constructors are introduction rules

Ori1 ∈ A → A∨B
A

A∨B

Ori2 ∈ B → A∨B
B

A∨B

Andi ∈ A → B → A & B
A B

A & B

Impli ∈ (A → B) → A ⊃ B

[A]

B

A ⊃ B

Martin-Löf’s Type Theory – p.7/28

Elimination rules can be defined

orel ∈ A∨B → (A → C) → (B → C) → C

orel (Ori1 a) f g = f a
A∨B

[A]

C

[B]

C

C

orel (Ori2 b) f g = g b

Martin-Löf’s Type Theory – p.8/28

Elimination rules can be defined

orel ∈ A∨B → (A → C) → (B → C) → C

orel (Ori1 a) f g = f a
A∨B

[A]

C

[B]

C

C

orel (Ori2 b) f g = g b

andel ∈ A & B → (A → B → C) → C
A & B

[A,B]

C

C

andel (Andi a b) f = f a b

Martin-Löf’s Type Theory – p.9/28

Elimination rules can be defined

orel ∈ A∨B → (A → C) → (B → C) → C

orel (Ori1 a) f g = f a
A∨B

[A]

C

[B]

C

C

orel (Ori2 b) f g = g b

andel ∈ A & B → (A → B → C) → C
A & B

[A,B]

C

C

andel (Andi a b) f = f a b

implel ∈ A ⊃ B → A → B
A ⊃ B A

B

implel (Impli f) a = f a

Martin-Löf’s Type Theory – p.10/28

Proof checking = Type checking

In this way we can prove propositional formulas in a typed
functional programming language. The problem of proving
for instance

(A & B) ⊃ (B & A)

is then the problem of finding a program in this type. The
type checker will check if the proof is correct.
In this case, we can use the following program:

Impli (λx.Andi (andel x λy.λz.z)

(andel x λy.λz.y))

Martin-Löf’s Type Theory – p.11/28

Two questions:

Is is possible to extend this to more powerful logics, like
predicate logic?

We have that a proof of P is an object in the type P .
But is it possible to identify the process of proving P with
the process of building an object in the type P?

The answer to these two questions is yes.

Martin-Löf’s Type Theory – p.12/28

Overview of type theory

Type theory is a small typed functional language with one
basic type and two type forming operation.
It is a framework for defining logics.
A new logic is introduced by definitions.

Martin-Löf’s Type Theory – p.13/28

What types are there?

Set is a type

If A ∈ Set then El(A) is a type

If A is a type and B a family of types for x ∈ A then
(x∈A)B is a type.

Martin-Löf’s Type Theory – p.14/28

What programs are there?

Programs are formed from variables and constants using
abstraction and application:

Application
c ∈ (x∈A)B a ∈ A

c a ∈ B[x := a]

Abstraction
b ∈ B [x ∈ A]

[x]b ∈ (x∈A)B

constants are either primitive or defined

Martin-Löf’s Type Theory – p.15/28

Constants

There are two kinds of constants:

primitive: (not defined) have a type but no definiens (RHS):

identifier ∈ Type

defined: have a type and a definiens:

identifier = expr ∈ Type

There are two kinds of defined constants:
explicitly defined
implicitly defined

Martin-Löf’s Type Theory – p.16/28

Primitive constants

computes to themselves (i.e. are values).

constructors in functional languages.

introduction rules and formation rules in logic

postulates

Examples:
N ∈ Set

0 ∈ N

s ∈ (N)N

& ∈ (Set, Set)Set

&I ∈ (A∈Set, B ∈Set, A, B)A & B

Π ∈ (A∈Set, (A)Set) Set

λ ∈ (A∈Set, B ∈ (A)Set, (x∈A)B(x))

Π(A, B)

Martin-Löf’s Type Theory – p.17/28

Explicitly defined constants

have a type and a definiens (RHS).

the definiens is a welltyped expression

abbreviation

derived rule in logic.

names for proofs and theorems in math.

Examples:

2 ≡ succ(succ(0)) ∈ N

∀ ≡ Π ∈ (A∈Set, (A)Set) Set

+ ≡ [x, y]natrec([x]N, x, y, [u, v]succ(v)) ∈ (N, N)N

→ ≡ [A,B]Π(A, [x]B)) ∈ (A,B∈Set)Set

Martin-Löf’s Type Theory – p.18/28

Implicitly defined constants

The definiens (RHS) may contain pattern matching and
may contain occurrences of the constant itself. The
correctness of the definition must in general be decided
outside the system

Recursively defined programs

Elimination rules (the step from the definiendum to the
definiens is the contraction rule).

Examples:

&E ∈ (A∈Set, B∈Set, C∈(A, B)Set,

(x∈A, y∈B)C(&I(x, y)), (z∈A & B))C(z)

&E(A, B, C, f, &I(a, b)) ≡ f(a, b)

Martin-Löf’s Type Theory – p.19/28

The editing process

The idea is to build expressions from incomplete
expressions with holes (placeholders). Each editing step
replaces a place holder with another incomplete expression

Martin-Löf’s Type Theory – p.20/28

The editing process

The idea is to build expressions from incomplete
expressions with holes (placeholders). Each editing step
replaces a place holder with another incomplete expression
(pruning a tree goes in the other direction).

Martin-Löf’s Type Theory – p.20/28

Place holders

We use the notation
�1, . . .�n

for place holders (holes).
Each place holder has an expected type and a local con-
text (variables which may be used to fill in the hole).

Martin-Löf’s Type Theory – p.21/28

To prove is to build

To apply a rule c is to construct an application of the
constant c.

To assume A is to construct an abstraction of a variable
of type A.

To refer to an assumption of A is to use a variable of type
A.

Martin-Löf’s Type Theory – p.22/28

To construct an object

We start to give the name of the object to define, and the
computer responds with

c ∈ �1

c = �2

We must first give the type of c by refining �1.
We can either enter text from the keyboard, or do it
stepwise, replace it by

(x ∈ �3)�4 — a function type, or

Set, or

C(�3, . . .�n)

Martin-Löf’s Type Theory – p.23/28

Refinement of an object

When we have constructed the type of the constant c, we
can start to define it:

c ∈ C

c = �0

Here, the expected type of �0 is C .
In general, we are in a situation like

c = . . .�1 . . .�2 . . .

where we know the expected type of the place holders.

Martin-Löf’s Type Theory – p.24/28

Refinement of an object: application

To refine a place holder

�0 ∈ A

with a constant c (or a variable) is to replace it by

c �1 . . . �n ∈ A

where �1 ∈ B1, . . . ,�n ∈ Bn. The system computes n and
the expected types of the new place holders as well as
some constraints from the condition that the type of
c �1 . . . �n must be equal to A.

Martin-Löf’s Type Theory – p.25/28

Refinement of an object: application

To refine a place holder

�0 ∈ A

with a constant c (or a variable) is to replace it by

c �1 . . . �n ∈ A

where �1 ∈ B1, . . . ,�n ∈ Bn. The system computes n and
the expected types of the new place holders as well as
some constraints from the condition that the type of
c �1 . . . �n must be equal to A.

We have reduced the problem A to the
subproblems B1, . . . Bn using the rule c.

Martin-Löf’s Type Theory – p.25/28

Refinement of an object: abstraction

To refine a place holder

�0 ∈ A

with an abstraction is to replace it by

[x]�1 ∈ A

The system checks that A is a functional type (x∈B)C and
the expected type of �1 is C and the local context for it will
contain the assumption x ∈ B.

Martin-Löf’s Type Theory – p.26/28

Refinement of an object: abstraction

To refine a place holder

�0 ∈ A

with an abstraction is to replace it by

[x]�1 ∈ A

The system checks that A is a functional type (x∈B)C and
the expected type of �1 is C and the local context for it will
contain the assumption x ∈ B.

We have reduced the problem (x ∈ B)C
to the problem C by using the assumption
x ∈ B.

Martin-Löf’s Type Theory – p.26/28

Summary

proof = program (proposition = type): examples in
Haskell

Can this be extended to Predicate Logic?

Process of proving = process of building a program?

Martin-Löf’s Type Theory – p.27/28

Summary

proof = program (proposition = type): examples in
Haskell

Introduction rules are constructors
Elimination rules can be defined
Proof checking = Type checking

Can this be extended to Predicate Logic?

Process of proving = process of building a program?

Martin-Löf’s Type Theory – p.27/28

Summary

proof = program (proposition = type): examples in
Haskell

Introduction rules are constructors
Elimination rules can be defined
Proof checking = Type checking

Can this be extended to Predicate Logic?
Yes, by having types depending on objects.

Process of proving = process of building a program?

Martin-Löf’s Type Theory – p.27/28

Summary

proof = program (proposition = type): examples in
Haskell

Introduction rules are constructors
Elimination rules can be defined
Proof checking = Type checking

Can this be extended to Predicate Logic?
Yes, by having types depending on objects.

Process of proving = process of building a program?
To apply a rule c is to construct an application of the
constant c.
To assume A is to construct an abstraction of a
variable of type A.
To refer to an assumption of A is to use a variable of
type A. Martin-Löf’s Type Theory – p.27/28

Type Theory

Types:

Programs:

Constants:

Martin-Löf’s Type Theory – p.28/28

Type Theory

Types:

T ::= Set | El(e) | (x∈T)T ′

Programs:

Constants:

Martin-Löf’s Type Theory – p.28/28

Type Theory

Types:

T ::= Set | El(e) | (x∈T)T ′

Programs:

e ::= e e′ | [x]e | x | c

Constants:

Martin-Löf’s Type Theory – p.28/28

Type Theory

Types:

T ::= Set | El(e) | (x∈T)T ′

Programs:

e ::= e e′ | [x]e | x | c

Constants:

Primitive (without a defi nition):

c ∈ T

Explicitly defi ned:

c = e ∈ T

Implicitly defi ned:

c p1 . . . pn = e

...

c p′
1 . . . p′

n = e′

Martin-Löf’s Type Theory – p.28/28

