
Program Analyses for Program Analyses for 
MemoryMemory

Oukseh Lee
Seoul National University
oukseh@ropas.snu.ac.kr

February 13, 2004
LiComR Winter School 2004

My Current StateMy Current State

Developed an algorithm to replace allocations 
by memory reuse into ML-like programs.

Space and “runtime” improvement are satisfactory.
Not suitable for imperative languages.
Our improvement in ML is not expected in Java.

Interested in automatic loop invariant 
inference for the separation logic.

Precise heap analyzer is necessary even with 
destructive update.
Shape analysis [SaReWi96,97,99,02] is precise but weak 
for finding alias relation and expensive.



Program Analyses for MemoryProgram Analyses for Memory

May-alias analysis & points-to analysis.
Shape analysis.
Liveness analysis & escape analysis.

Linear type system for heap values.
Region-based type system.
Alias type system.

GoalsGoals

Program correctness such as
no null/dangling-pointer access, and
resource invariant preservation.

Performance improvement by
early deallocation and lazy allocation,
less allocation, and
locality improvement.

Help to other program analyses.



Why Difficult?Why Difficult?

The number of heap cells is possibly 
infinite.
The length of recursive data structure is 
possibly infinite.
Data structures can be shared irregularly.
Destructive update usually requires high 
precision of analyses.
Pointer arithmetic induces unexpected 
behaviors.

ContentsContents

Semantics-based program analyses for 
memory

Store-based model
shape analysis. 

Storeless model
alias analysis, sharing analysis, escape analysis.



StoreStore--Based ModelBased Model

The standard semantics for heap relies 
on environments, memory locations, and 
stores.

10

20

x

y

l1 l2

l3

x a l1
y a l3

l1 a l2, l3
l2 a 10
l3 a 20

env

store

SemanticsSemantics



Abstract SemanticsAbstract Semantics

Collecting semantics:

Component-wise abstraction [Deu90]:

How to abstract location?

Abstraction of LocationAbstraction of Location

Location = State in its allocation [Deu90]

For instance,
allocation site [JoMu82,RuMu88,Mo87,ChWeZa90]

context-sensitive analysis: additional 
continuation (or call sequence) in the state 
[Deu90]



Abstraction by Allocation SiteAbstraction by Allocation Site

fun gen n = 
if n=0 then [] 
else n::gen(n-1)

val x = gen 5
val y = gen 6

L

x a {L}
y a {L} L a {L}

x↑# y↑ ?
x↑ acyclic? NO

Abstraction by Allocation Site and Abstraction by Allocation Site and 
kk--Length Call StringLength Call String

fun gen n = 
if n=0 then [] 
else n::gen(n-1)

val x = gen 5
val y = gen 6

L
M

N

O

x a {NL}
y a {OL}

NL a {NML}
NML a {MML}
MML a {MML}
OL a {OML}
OML a {MML}

length 2; recent call-sites

x↑# y↑ ?
x↑ acyclic? NO



Abstraction by Allocation Site and Abstraction by Allocation Site and 
kk--Length Call StringLength Call String

fun gen n = 
if n=0 then [] 
else n::gen(n-1)

val x = gen 5
val y = gen 6

L
M

N

O

x a {NL}
y a {OL}

NL a {NL}
OL a {OL}

length 1, first call-site

x↑# y↑ ?
x↑ acyclic?

YES
NO

Another AbstractionAnother Abstraction

Interesting properties of heap cells are 
not always related to their locations 
(=allocation context).

pointed-to-by(x).
reached-from(x).
unique(): one or zero in-edge from the heap.

Abstraction on (a set of) environment 
and store pairs:

graph-based or property-based abstraction.



Shape AnalysisShape Analysis

Abstracts a set of locations by their 
(spatial) properties, instead of allocation 
context [SaReWi96,97,99,02].

x

y

reach(x)
unique()

reach(x)
reach(y)
¬unique()

reach(y)
unique()

Shape Analysis Shape Analysis [SaReWi96,97][SaReWi96,97]

Group heap cells by a set of variables 
that points to themselves & uniqueness.

10

20

x

y

l1 l2

l3

α
{x} ∅

{y}



Focus (Materialization)Focus (Materialization)

Concretize shape-graph when necessary.

Uniqueness information contributes on 
better materialization.

{x} unique {x} non-
unique

t := x.next;

{x} {t} {x} {t}

Strong Update (Nullification)Strong Update (Nullification)

x
l1 l2 l3

y

x l1 l2 l3

y

α
∅

{x,y} ∅

α

{y}{x}

�

{x,y} ∅

{y}{x}

if (L) { y:=x; } else { y:=x.next; }

y.next:=nil;



Example: Shape AnalysisExample: Shape Analysis

fun gen n = 
let t = ref [] in
for i=1 to n do

t:=i::!t
end;
!t 

end
val x = gen 5
val y = gen 6

x↑# y↑ ?
x↑ acyclic?

{x}

{y}

Yes
Yes

Summary: StoreSummary: Store--Based ModelBased Model

A standard model to intuitively reason about 
the heap.
Location-based abstraction:

it can judge that two heap cells are separated.
allocation site and call string do not seem to be 
sufficient.

Graph-based abstraction:
good to judge the shape of the heap.
precise for destructive update.
not scalable.



Alias AnalysesAlias Analyses

Problem: *x and *y have the same 
location?

It is not necessary to know what locations x 
and y may have.
It is not necessary to know how the heap is 
structured.

How about semantics to directly expose 
the alias relation?

Access path
a sequence of variable names, record field 
selectors, and so on.

Alias relations
a set of pairs of aliased access paths.

StorelessStoreless Model Model [Jo81,De92,94][Jo81,De92,94]

(x.2, y)

x.1 a 10
x.2 a 20
y a 20
x a Ω

10

20

x

y
tree

aliases



SemanticsSemantics

Abstract SemanticsAbstract Semantics

Collecting semantics:

Instances:
may-alias analyses: k-limited approach.

Deutsch’s may-alias analyses [92,94]: 



Example: MayExample: May--Alias AnalysisAlias Analysis

fun gen n = 
if n=0 then [] 
else n::gen(n-1)

val x = gen 5
val y = gen 6

x↑# y↑ ?
x↑ acyclic? YES

∅

Destructive UpdateDestructive Update

{(x,y), (x.1,z), (y.1,z)}
x
y
z

x.1:=nil

x
y
z

{(x,y)}

x
y
z

{(x.1,y.1), (x.1,z), (y.1,z)}

x
y
z

x.1:=nil

{(y.1,z)}



Instance: Escape AnalysisInstance: Escape Analysis

Compute the alias relation between (free) 
variables and the result value.

let x = (1, 2, (4, 5)) in
let y = (7, x) in
y.2.3

(y.2, x)
(y.2.3, ι)
(x.3, ι)

x a {3}
y a {2.3}

BlanchetBlanchet’’ss Escape AnalysisEscape Analysis

More abstraction on access paths by 
using type information.

Experiments
analysis time: 5~37% of compile time.
heap size decrease: 0~99%
runtime: -9%~23%

let x = (1, 2, (4, 5)) in
let y = (7, x) in
y.2.3

x a 1
y a 2



Summary: Summary: StorelessStoreless ModelModel

An alternative to reason about the heap.
A model to directly expose the alias 
relation.

Precise may-alias analysis.
Cost-effective Blanchet’s escape analysis.

Compositional.

Difficult to precisely handle destructive 
update.

Summary & DiscussionSummary & Discussion

Two semantics for memory.
Store-based (graph-based) model

good for the heap shape.
possible to precisely handle destructive update.
shape analysis.

Storeless model
good for precise alias relation.
difficult to precisely handle destructive update.
may-alias analysis, escape analysis.



References (1/2)References (1/2)

Alain Deutsch
On determining lifetime and aliasing of dynamically 
allocated data in higher-order functional 
specification, POPL 1990
A storeless model of aliasing and its abstractions 
using finite representation of right-regular 
equivalence relations, IEEE ICCL 1992
Interprocedural may-alias analysis for pointer: 
beyond k-limiting, PLDI 1994
Semantic models and abstract interpretation 
techniques for inductive data structures and 
pointers, PEPM 1995

References (2/2)References (2/2)

Mooly Sagiv, Thomas Reps, Reinhard Wilhelm
Parametric shape analysis via 3-valued logic, POPL 
1999, TOPLAS 2002
Solving shape-analysis problems in languages with 
destructive updating, POPL 1996, TOPLAS 1997

Bruno Blanchet
Escape analysis for Java(TM): theory and practice. 
TOPLAS 2003.
Escape analysis for object oriented languages: 
application to Java(TM), OOPSLA 1999
Escape analysis: correctness proof, implementation 
and experimental results, POPL 1998


