Typeful Staged Computations

Ik-Soon Kim

LiComR Winter School 2004

Feb 12, 2004

Staged Computations

- Explicit division of a computation into stages.
- ✤ A common technique in algorithm design.
- It is concerned with how a value is computed

Staged Computation Examples

- Partial Evaluation:
 - Specialization of a program based on partial input data
- Run-Time Code Generation:
 - Dynamic generation of code during the evaluation of a program
 - Gains high efficiency
 - Difficult to locate bugs since code is changeable
- Macro systems
 - Translates input source language into another one
 - Provides a convenient and efficient way to write programs

Language Constructs for Staged Computations

Explicit annotation of codes

fun x
$$\rightarrow$$
 x + 1 <=> code(fun x \rightarrow x + 1)

Run-time composition of codes

let $c = code (fun \times -> \times + 1)$

in code (fun x \rightarrow comp(c) (x) + 2)

$$=$$
 code (fun x $-$ (fun x $-$ x + 1)(x) + 2)

Programming Languages for Staged Computations

Lisp

code	`(lambda (x) (+ x 1))	
compose	`(lambda (x) (+ (,y x) 1))	
eval	(eval`(lambda x -> x + 1))	

☆ `C: an extension of ANSI C

code void cspec hello= `{printf("Hello");} compose void cspec greet = `{@hello;} eval compile(greet, void)

Programming Languages for Staged Computations

MetaOCAML

code	<fun -="" x=""> x + 1></fun>
compose	<fun -="" x=""> (~y)(x) + 1></fun>
eval	run (<fun -="" x=""> x + 1>)</fun>

Types in Staged Computations

- In staged computations, programs are no more static ones
- Since programs are changeable, it is more difficult to write safe programs
- Type system is crucial for safe staged computation programs.
- Type systems for previous languages are not satisfactory
 - 'C is not type safe like C language
 - □ lisp is a dynamic type language
 - MetaOCAML may raise exceptions during run-time code generation

Modal Types

- Proposed by Davies and Pfenning
- Allows only closed terms as codes

Syntax e := x $\lambda x.e$ $|e_1e_2|$ 11 box e | let box u = e_1 in e_2

Modal Types

Modal Type Example

evaluate a polynomial for a coefficient list and some value x

fun evalPoly (nil, x) = 0 | evalPoly (a::p, x) = a + (x * evalPoly(x,p))

evalPoly([1, 2, 3], x) => 1 + (x * (2 + x * (3 + x * 0)))

Modal Type Example

Specialize a polynomial function:

specPoly([1, 2, 3]) =>
box(fun x => 1+ x * (f2 x))
f2 = box(fun x => 2 + x * (f3 x))
f3 = box(fun x => 3 + x * (f4 x))
f4 = box(fun x => 0)

Modal Types

Types	$A,B \mathrel{::=} A \to B \mid \Box A$
Contexts	$\Gamma, \Delta ::= \Gamma, x : \mathcal{A} \mid \Delta, u : \mathcal{A}$

- ◆ □A
 - The type of code of type A
 - Related with modal logic S4
 - A is necessarily true in all accessible worlds
 - \square $\square A$ in all accessible stages
- \diamond Δ ... type environment for code variables
- \bullet Γ ... type environment for value variables

Modal Types

$\frac{\Gamma(x) = A}{\Delta; \Gamma \vdash x : A}$	$\frac{\Delta(x) = \mathcal{A}}{\Delta; \Gamma \vdash x : \mathcal{A}}$	
$\frac{\Delta; \Gamma, x : A \vdash e : B}{\Delta; \Gamma \vdash \lambda x. e : A \to B}$	$\frac{\Delta; \Gamma \vdash e_1 : \mathcal{A} \to \mathcal{B} \Delta; \Gamma \vdash e_2 : \mathcal{A}}{\Delta; \Gamma \vdash e_1 e_2 : \mathcal{B}}$	
<u>Δ;∙⊢<i>e</i>∶A</u> <u>Δ;</u> Γ⊢box <i>e</i> :⊒A	$\frac{\Delta; \Gamma \vdash e_1 :\Box A \Delta, u : A; \Gamma \vdash e_2 : B}{\Delta; \Gamma \vdash \text{let box u} = e_1 \text{ in } e_2 : B}$	
Support multi-staged computations:		

If e := A, e is necessarily A in all accessible stages let box u = e (* = A *) in box(... ubox(... u ...)...)

Modal Type Examples

$(* \Box (A \rightarrow B) \rightarrow \Box A \rightarrow \Box B *)$ $\lambda x.\lambda y.$ let box $u = x$ in let box $v = y$ in box $(u v)$	(* quote: $A \rightarrow A *$) λx . let box $u = x$ in box (box u)
(* eval: $\Box A \rightarrow A$ *) λx . let box $u = x$ in u	

Modal Types

It is a severe restriction to allow only closed terms as codes

specPoly([1, 2, 3]) =>
box(fun x => 1+ x * (f2 x))
f2 = box(fun x => 2 + x * (f3 x))
f3 = box(fun x => 3 + x * (f4 x))
f4 = box(fun x => 0)

 For improved staged computations, open terms should be allowed as codes

specPoly([1, 2, 3]) => box(fun x => 1 + x * (2 + x * (3 + x * 0)))

Temporal Types

- Proposed by Davies
- Allow restricted open terms in code constructs

Semantics

$$e \rightarrow^{n} v$$
 e evaluates to v at time (stage) r_{i}

$$\lambda x.e \rightarrow^{0} \lambda x.e \qquad \frac{e_{1} \rightarrow^{0} \lambda x.e_{1}' e_{2} \rightarrow^{0} v_{2} [v_{2}/x]e_{1}' \rightarrow^{0} v_{3}}{e_{1}e_{2} \rightarrow^{0} v_{3}}$$

$$x \rightarrow^{n+1} x \qquad \frac{e \rightarrow^{n+1} v}{\lambda x.e \rightarrow^{n+1} \lambda x.v} \qquad \frac{e_{1} \rightarrow^{n+1} v_{1} e_{2} \rightarrow^{n+1} v_{2}}{e_{1}e_{2} \rightarrow^{n+1} v_{1}v_{2}}$$

$$\frac{e \rightarrow^{n+2} v}{e_{1}e_{2} \rightarrow^{n+1} e_{2} \cdots e_{2} \rightarrow^{n+2} e_{1}e_{2} \rightarrow^$$

Temporal Types

prev (next e) $\rightarrow e$

next (prev e) $\rightarrow e$

Temporal Type Examples

fun pow n = next(fun $\underline{x} \rightarrow$ prev(fun pow' n =
(fun m \rightarrow	if n = 0
if m=0	then box(fun x \rightarrow 1)
then next(1)	else let box u = pow (n−1) in
else next(<u>x</u> * (prev (pow (m-1))))	box(fun x $\rightarrow x * (u x)$)
n))	

```
pow 2 \rightarrow next(fun x \rightarrow x * (x * 1))
```

pow 0 \rightarrow next(fun $x \rightarrow 1$)pow'0 \rightarrow box(fun $x \rightarrow 1$)= r0pow 1 \rightarrow next(fun $x \rightarrow x * 1$)pow'1 \rightarrow box(fun $x \rightarrow x * (r0x)$) = r1 $pow' 0 \rightarrow box(fun x \rightarrow 1) = r0$ pow'2 \rightarrow box(fun $x \rightarrow x * (r1x)$)

Temporal Types

- next time of n is only one stage n+1
- prev time of n+1 is only one n
- Code sharing is very restricted between n time and n+1 time
- Until one closed code is obtained, another closed code can not be written
- eval construct is missing

Environment Classifiers

- Proposed by (explicit) Taha and (implicit) Calcagno
- Expandsion of temporal types
- ★ Linear time is expanded into some name sequence like $\alpha_1, \alpha_2, ..., \alpha_n = \Sigma, \alpha_n$ instead of 1,2,...,n
- ✤ next (e) => <e> prev(e) => ~e
- run construct is newly appended for eval

Environment Classifiers

Environment Classifiers

Can express a rather restricted open terms as codes

<fun x \rightarrow \sim x+1> (good) <x+1> (wrong)

- In explicit environment classifiers
 - Stage names should be explicitly provided by programmer $(\alpha)e$ or $(\alpha_1)(\dots(\alpha_2)e\dots)$
 - Support polymorphic type system
 - Principal type inference algorithm does not exist
- In implicit environment classifiers
 - Support polymorphic type system
 - Type inference algorithm
 - Stage names are automatically inference by type inference algorithm

Temporal Types and Environment Classifiers

Type systems do not support imperative features

Conclusions

- Staged computation is a common and necessary technique
- Type system is crucial for safe staged computations
- For more convenient and efficient manipulation of codes, general open terms are required in staged computations
- ✤ Type system is require to
 - Express general open terms
 - Support polymorphic types
 - Support imperative features
 - Support the type inference algorithm