
Typeful Staged Computations

Ik-Soon Kim

LiComR Winter School 2004

Feb 12, 2004

Staged Computations

Explicit division of a computation into stages.

A common technique in algorithm design.

It is concerned with how a value is computed

Explicit division of a computation into stages.

A common technique in algorithm design.

It is concerned with how a value is computed

substr = 

StrFind(regExp, str) 

fsm = 

makeFSM(regExp)

substr = 

StrFind(fsm, str)

One stage

Two stages



Staged Computation Examples

Partial Evaluation:

Specialization of a program based on partial input data

Run-Time Code Generation:

Dynamic generation of code during the evaluation of a 
program

Gains high efficiency

Difficult to locate bugs since code is changeable

Macro systems

Translates input source language into another one

Provides a convenient and efficient way to write programs

Language Constructs for Staged Computations

Explicit annotation of codes

Run-time composition of codes

let c = code (fun x -> x + 1)

in  code (fun x -> comp(c) (x) + 2)        

=> code (fun x -> (fun x -> x + 1)(x) + 2)

let c = code (fun x -> x + 1)

in  code (fun x -> comp(c) (x) + 2)        

=> code (fun x -> (fun x -> x + 1)(x) + 2)

fun x -> x + 1 <=>        code( fun x -> x + 1 )fun x -> x + 1 <=>        code( fun x -> x + 1 )

Run-time evaluation of codes

let inc = eval( code(fun x -> x + 1) )

in  inc (y)

let inc = eval( code(fun x -> x + 1) )

in  inc (y)



Programming Languages for Staged 
Computations

Lisp

code        `(lambda (x) (+ x 1))            

compose  `(lambda (x) (+ (,y x) 1))

eval          (eval `(lambda x -> x + 1))

code        `(lambda (x) (+ x 1))            

compose  `(lambda (x) (+ (,y x) 1))

eval          (eval `(lambda x -> x + 1))

`C:  an extension of ANSI C

code        void  cspec hello= `{printf(“Hello”);}

compose  void cspec greet = `{@hello;}

eval          compile(greet, void)

code        void  cspec hello= `{printf(“Hello”);}

compose  void cspec greet = `{@hello;}

eval          compile(greet, void)

Programming Languages for Staged 
Computations

MetaOCAML

code        <fun x -> x + 1>

compose  <fun x -> (~y)(x) + 1>

eval          run (<fun x -> x + 1>)

code        <fun x -> x + 1>

compose  <fun x -> (~y)(x) + 1>

eval          run (<fun x -> x + 1>)



Types in Staged Computations

In staged computations, programs are no more static ones

Since programs are changeable, it is more difficult to write 
safe programs

Type system is crucial for safe staged computation 
programs.

Type systems for previous languages are not satisfactory

‘C is not type safe like C language

lisp is a dynamic type language

MetaOCAML may raise exceptions during run-time code 
generation

Modal Types

Proposed by Davies and Pfenning

Allows only closed terms as codes

λ
=

1 2

1 2

Syntax   ::

                 | .

                 |

                 |

                 |box 

                 |let box u =  in 

e x

xe

ee

u

e

e e



Modal Types

code box    where  is a closed term

                 

e e

compose

eval

lift v

let box u = box (fun x -> x + 1)

in  box (fun x ->  + 1)

             

u

    

let box u = box (fun x -> x + 1)

in  u

                 

=lift   => box(10000) if 10000                 x x

Modal Type Example

evalPoly( [1, 2, 3], x) 

=> 1 + (x * (2 + x * (3 + x * 0)))

evalPoly( [1, 2, 3], x) 

=> 1 + (x * (2 + x * (3 + x * 0)))

fun evalPoly (nil, x) = 0

|   evalPoly (a::p, x) = a + (x * evalPoly(x,p))

fun evalPoly (nil, x) = 0

|   evalPoly (a::p, x) = a + (x * evalPoly(x,p))

evaluate a polynomial for a coefficient list and some value x



Modal Type Example

specPoly( [1, 2, 3] ) =>

box(fun x => 1+ x * (f2 x))

f2 = box(fun x => 2 + x * (f3 x))

f3 = box(fun x => 3 + x * (f4 x))

f4 = box(fun x => 0)

specPoly( [1, 2, 3] ) =>

box(fun x => 1+ x * (f2 x))

f2 = box(fun x => 2 + x * (f3 x))

f3 = box(fun x => 3 + x * (f4 x))

f4 = box(fun x => 0)

fun specPoly (nil) = box (fun x => 0)
|  specPoly (a::p) =

let box f = specPoly p
box v = lift a

in  box (fun x => v + (x * f x))

fun specPoly (nil) = box (fun x => 0)
|  specPoly (a::p) =

let box f = specPoly p
box v = lift a

in  box (fun x => v + (x * f x))

Specialize a polynomial function:

Modal Types

= → �
Γ ∆ Γ ∆

Types           , :: |

Contexts       , ::=  , : | , :

AB A B A

x A u A

The type of code of type A

Related with modal logic S4

A is necessarily true in all accessible worlds 

in all accessible stages

�A

�A

… type environment for code variables

… type environment for value variablesΓ
∆



Modal Types

Γ =
∆ Γ

( )

; :

x A

x A

∆ =
∆ Γ

( )

; :

x A

x A

∆ Γ → ∆ Γ
∆ Γ

1 2

1 2

; : ; :

; :

e A B e A

ee Bλ
∆ Γ

∆ Γ →
; , : :

; . :

x A e B

xe A B

∆ •
∆ Γ �

; :

; box :

e A

e A

∆ Γ � ∆ Γ
∆ Γ

1 2

1 2

; : , : ; :

; let box u=  in :

e A u A e B

e e B

�
�

Support multi-staged computations:

If : ,  is necessarily  in all accessible stages

       let box  = e   (*  *)

       in  box( ...    ....box(  ...  ... u ) ... )u

e A e A

u A

Modal Type Examples

λ λ
� → →� →�  )

=

 ∗

. .  

let box  in

let box  =  in 

    box 

(* ( )

( )

x y

u

A B A B

x

v y

uv

λ
  ∗�

=

→ )(*

.let box  in

e

 

 val: 

x u x

A A

u

λ
  ∗)� → �

=

�

.let box  

     i

(* q

n  b

uote: 

ox (box )

x u x

A

u

A



Modal Types

It is a severe restriction to allow only closed terms as codes 

specPoly( [1, 2, 3] ) =>

box(fun x => 1+ x * (2 + x * (3 + x * 0)))

specPoly( [1, 2, 3] ) =>

box(fun x => 1+ x * (2 + x * (3 + x * 0)))

specPoly( [1, 2, 3] ) =>
box(fun x => 1+ x * (f2 x))
f2 = box(fun x => 2 + x * (f3 x))
f3 = box(fun x => 3 + x * (f4 x))
f4 = box(fun x => 0)

specPoly( [1, 2, 3] ) =>
box(fun x => 1+ x * (f2 x))
f2 = box(fun x => 2 + x * (f3 x))
f3 = box(fun x => 3 + x * (f4 x))
f4 = box(fun x => 0)

For improved staged computations, open terms should be 
allowed as codes

Temporal Types

Proposed by Davies

Allow restricted open terms in code constructs

λ

=

1 2

Syntax   ::

                |

                 | .

                 |

                 |next 

                 |prev  

e c

x

xe

ee

e

e

= →

Γ • Γ

Γ

Γ

Types      , :: |

Contexts  ::= | , :

:       has type  

                at time (stage) 

                in context 

n

n

AB A B A

x A

e A e A

n



Semantics

→        evaulates to at time (stage) ne v e v n

λ λ→0
. .xe xe λ→ → →

→

0 0 0

1 1 2 2 2 1 3

0

1 2 3

. ' [ / ] 'e xe e v v x e v

ee v

λ λ

+

+

→
→

1

1
. .

n

n

e v

xe xv

+→ 1nx x
+ +

+

→ →
→

1 1

1 1 2 2

1

1 2 1 2

n n

n

e v e v

ee vv

+

+

→
→

2

1
next next 

n

n

e v

e v

→
→

0

1

next 

prev 

e v

e v

+

+

→
→

1

2prev prev 

n

n

e v

e v

Temporal Types

Γ =
Γ
( )

:

n

n

x A

x A

Γ → Γ
Γ

1 2

1 2

: :

:

n n

n

e A B e A

ee Bλ
Γ

Γ →
, : :

. :

n n

n

x A e B

xe A B

+Γ
Γ

1 :

next :

n

n

e A

e A +

Γ
Γ 1

:

p rev :

n

n

e A

e A

→prev (next )e e →next (prev )e e



Temporal Type Examples

→

→

fun pow n prev(

(fun m 

          if m=0 

          then

el

= next(fun 

       

 next(1)

           nse (prev(pow (m-1ext(x  *  ) )

      

)

)

) )

 n)

x

→ →
→→

→ →

pow 0

pow 1

pow 2

 next(fun 1)

next(fun *1)

next(fun *( *1))

x

x x

x x x

→

→

fun pow' n = 

   if n = 0

   then box(fun x 1)

  else let box u = pow (n-1) in

             box(fun x *( ))x ux

→ →
→
→

→
→

pow'0

pow'1

pow'

= 0

2

rbox(fun 1)            

box(fun *(r0 )) = r1

box(fun *(r1 ))

x

x x x

x x x

Temporal Types 

Time (or stage) n is some value in linear order

+Γ
Γ

1 :

next :

n

n

e A

e A +

Γ
Γ 1

:

prev :

n

n

e A

e A

next time of n is only one stage n+1

prev time of n+1 is only one n

Code sharing is very restricted between n time and n+1 time

Until one closed code is obtained, another closed code can 
not be written

eval construct is missing



Environment Classifiers

Proposed by (explicit) Taha and (implicit) Calcagno

Expandsion of temporal types

Linear time is expanded into some name sequence like

next (e) => <e>          prev(e) => ~e

run construct is newly appended for eval

α α

Σ

Σ

Γ
Γ 〈 〉,

:

next :

e A

e A

α αΣ

Σ

Γ 〈 〉
Γ

, :

prev :

e A

e A

α α

Σ

Σ

Γ
Γ 〈 〉 〈 〉,

:

:

e A

e A

α αΣ

Σ

Γ 〈 〉
Γ

, :

~ :

e A

e A

→

→

α α α α= Σ
1 2
, ,..., ,  instead of 1,2,...,n

n n

Environment Classifiers

Σ

Σ

Γ =
Γ
( )

:

x A

x A

Σ Σ

Σ

Γ → Γ
Γ

1 2

12

: :

:

e A B e A

ee Bλ

Σ Σ

Σ

Γ
Γ →

, : :

. :

x A e B

xe A B

α α

Σ

Σ

Γ
Γ 〈 〉,

:

next :

e A

e A

α αΣ

Σ

Γ 〈 〉
Γ

,
:

p rev :

e A

e A

α αΣ

Σ

Γ 〈 〉 ∉ Γ Σ
Γ
: FV( , )

run :

e A

e A



Environment Classifiers

Can express a rather restricted open terms as codes

In explicit environment classifiers

Stage names should be explicitly provided by programmer

Support polymorphic type system

Principal type inference algorithm does not exist

In implicit environment classifiers

Support polymorphic type system

Type inference algorithm

Stage names are automatically inference by type inference 
algorithm

α α α1 2( )     or ( )(...( ) ...)e e

→<fun x  ~x+1> (good)       <x+1> (wrong)         

Temporal Types and Environment Classifiers

Type systems do not support imperative features

→
val a = ref <1>

val b = <fun x  ~(a:=<x>;<2>);

val c=!a

     c is <x>, and type  it i erros a r !!



Conclusions

Staged computation is a common and necessary technique

Type system is crucial for safe staged computations

For more convenient and efficient manipulation of codes, 
general open terms are required in staged computations

Type system is require to

Express general open terms

Support polymorphic types

Support imperative features

Support the type inference algorithm


