
Parallel evaluation of
logic programs

Intelligent Backtracking in AND/OR
process model

KAIST, 전산학과

최광무

2004. 2. 12.

2004/2/12 KAIST 전산학과최광무 2

Parallel Evaluation of Logic Programs

• Logic program

• AND/OR proof tree

• AND/OR process model

• OR parallelism and AND parallelism

• Intelligent backtracking(AND parallelism)

• Implementation

• Research Topics

2004/2/12 KAIST 전산학과최광무 3

Logic Programs

• Logic programs(Horn clauses)

Disjunction(OR) of predicates(literals)

with at most one un-negated literal

• ¬p1 ∨ … ∨ ¬pn ∨ p

≡ ¬(p1 ∧ … ∧ pn) ∨ p

≡ (p1 ∧ … ∧ pn) ⇒ p implication

• p is true, if p1 and p2 and … and pn are true,

p is either true or false, otherwise.

• Logic says nothing when hypothesis is false.

2004/2/12 KAIST 전산학과최광무 4

Logic program(Prolog)

• h ⇐ b1 ∧ … ∧ bn .
h: head literal
b1, … , bn: body literals

• Four cases (clause)
1. ⇐ b1 ∧ … ∧ bn ? query clause
2. h ⇐ b1 ∧ … ∧ bn . rule clause
3. h . fact clause
4. . tautology(X)

Logic program
A query and a set of rules and facts
Relational database

2004/2/12 KAIST 전산학과최광무 5

Syntax of Logic program(Prolog)

• Clause

query clause ⇐ body literals ?

rule clause head literal ⇐ body literals .

fact clause head literal .

• Literal predicate (terms)

• Term

constant

variable

literal

2004/2/12 KAIST 전산학과최광무 6

A E
D
C
B

Example(map coloring problem)

E
D
CA
B

⇐ color(A, B, C, D, E) ?

color(A, B, C, D, E) ⇐ diff(A, B),

diff(B, E),

diff(B, C),diff(A, D),diff(A, C),

diff(C, E),diff(C, D), diff(D, E)

diff(X, Y) ⇐diff1(X, Y) | diff1(Y, X)

diff1(red, blue).

diff1(blue, green).

diff1(red, yellow) .

diff1(green, yellow) .

diff1(red, green) .

diff1(blue, yellow) .

2004/2/12 KAIST 전산학과최광무 7

Top down evaluation of logic programs

• query clause(AND)

body literals(OR)

rule clauses(AND)

body literals(OR) recursion

rule clauses(AND) recursion

…

fact clauses(AND) basis

Q – L – R – L – …– R – L – F.

Q – L – (R – L)* – F.

2004/2/12 KAIST 전산학과최광무 8

AND/OR proof tree

• AND/OR proof tree
clause and literals
interlaced graph

• Clause(AND)
AND logic among children body literals, if any

Literal(OR)
OR logic among children clauses with same head

• AND node Clause(query, rule, fact)
OR node Literal

• Q – L – (R – L)* – F.
A – O – (A – O)* – A.

2004/2/12 KAIST 전산학과최광무 9

AND/OR proof tree(2)

⇐ A1 ∧ … ∧ An

Ai ⇐ B1 ∧ … ∧ Bk Ai

A1
Ai An…

……

…

…

……

AND(query)

OR(literal) OR(literal)OR(literal)

AND(rule)

AND(fact)

AND(fact)

2004/2/12 KAIST 전산학과최광무 10

Example(AND/OR proof tree)

⇐ diff(A,B) … diff(D,E)

diff(A,B) diff(B,C) diff(D,E)

diff(X,Y) ⇐ diff1(X,Y) diff(X,Y) ⇐ diff1(Y,X)

diff1(X,Y) diff1(Y,X)

diff1(red,blue) diff1(red,green)

… …

…

2004/2/12 KAIST 전산학과최광무 11

Parallel evaluation of programs

• Parallelizing compiler
Find the parallelism in the programs
Difficult, parallelisms may be lost!
Array index(integer linear programming)

• Writing parallel programs
concurrent, parallel algorithm
mathematically well defined problems

Fourier transformation
• Inherited parallelism

Logic(natural parallelism)

2004/2/12 KAIST 전산학과최광무 12

Parallel evaluation of logic programs

• J. C. Conery, 1981 U. C. Irvine

AND/OR proof tree AND/OR process tree

AND node(clause) AND process

OR node(literal) OR process

• AND process(clause)

parallel AND among children OR processes

• OR process(literal)

parallel OR among children AND processes

2004/2/12 KAIST 전산학과최광무 13

Messages between AND/OR processes

1. create parent process → child process
• Start evaluation and give me a solution.

2. success θ child process → parent process
• Yes, θ is the solution.

3. fail child process → parent process
• No, I do not have solution any more.

4. cancel parent process → child process
• Stop evaluation.

5. redo parent process → child process
• Give me the next solution.

6. reset parent AND proc. → child OR proc.
• Give me the first solution. (???)

2004/2/12 KAIST 전산학과최광무 14

OR parallelism(1)

1. create message from parent AND process

• Create all of its children AND processes.

• Stay in wait mode.

2. success θ message from child AND process

• Store θ in the solution list.

• Send redo to the child AND process.

• If in wait mode, send success θ to the parent,

mark the first solution as θ, and

change to gathering mode.

2004/2/12 KAIST 전산학과최광무 15

OR parallelism(2)

3. fail message from child AND process

• Cancel the child AND process.

• If no more children AND processes,

empty solution list, and in wait mode,

report fail to its parent AND process.

4. cancel message from parent AND process

• Cancel all of its children AND processes.

2004/2/12 KAIST 전산학과최광무 16

OR parallelism(3)

5. redo message from parent AND process
(in gathering mode only)

• If there is a next solution θ in the solution list,

send success θ to the parent.

• Else change to wait mode, and

if no more children, report fail to parent.

6. reset message from parent AND process

• Restore solution list.

• If the first solution is θ,

send success θ to the parent.

2004/2/12 KAIST 전산학과최광무 17

AND parallelism

• Shared variables among body literals

– Variable binding

• Join scheme

– Generate all of the tuples, and check binding

– Fully parallel but inefficient

• Forward scheme

– One literal generates(binds) a constant

the other literals consumes the constant

– Generator and consumers model

– Parallel in sequence but efficient

2004/2/12 KAIST 전산학과최광무 18

Data dependency graph

• Selection of the among shared literals

nondeterministic

parallel

• Data dependency graph

generator and consumers relationships

for each shared variable

single generator and multiple consumers

the graph may be dynamic

2004/2/12 KAIST 전산학과최광무 19

Data dependency graph(example)

A E
D
C
B

diff(A,B)

d i f f (a ,D) d i f f (b ,E)

d i f f (d , e)d i f f (c , e)d i f f (c , d)d i f f (b , c)

d i f f (a ,C)

A

EDC

B

aa b

c
b d cc

e e
d

2004/2/12 KAIST 전산학과최광무 20

Forward and backward execution

• Forward execution
create OR processes parallel in sequence

diff(A, B) – (diff(a, C), diff(a, D), diff(b, E)) – ???

All of the children OR processes success,
report success, to its parent OR process

• Backward execution
a child OR process report fail
next binding should be generated

systematically(generator)
exhaustive and intelligent

2004/2/12 KAIST 전산학과최광무 21

Data dependency graph(forward execution)

diff(A,B)

d i f f (a ,D) d i f f (b ,E)

d i f f (d , e)d i f f (c , e)d i f f (c , d)d i f f (b , c)

d i f f (a ,C)

A EC
B

D

B

b

b

C

c cc

D

d d

a

A

a

A EC
B

D
A EC

B

D

E

e e

E

e e

E

e e

Fail!

2004/2/12 KAIST 전산학과최광무 22

Nested loop model

• for A in colors for (A, ... ,E) in colors5

for B in colors
…

for E in colors
if diff(A, B) and … and diff(D, E) then …

• for (A, B) in colors2 where diff(A, B)
for C in colors where diff(a, C)

for D in colors where diff(a, D)
for E in colors where diff(b, E)

if diff(b,c) diff(c,d), diff(c,e) diff(d,e) then …

2004/2/12 KAIST 전산학과최광무 23

Intelligent backtracking

For (A, B) in color2 where diff(A, B) do
for C in color where diff(a, C) do
for D in color where diff(a, D) do
for E in color where diff(b, E) do

if diff(b, c) and … and diff(d, e) then …
When diff(b, c) fails

naive backtracking(in nested loop model)
diff(b, E) → diff(a, D) → diff(a, C) → diff(A, B)

intelligent backtracking
diff(a, C) → diff(A, B)

2004/2/12 KAIST 전산학과최광무 24

Backward execution

• Nested loop model
outer loop variable with next constant(redo)
variables inner loop with the first value(reset)

• Intelligent backtracking
a child OR process report fail
the OR process can not find any solutions

with the binding(given by generator)
generator should give new binding(redo)
generators in inner loop

restart with the first binding(reset)

2004/2/12 KAIST 전산학과최광무 25

Lineally ordered literal list(LOLL)

• Linear(total) order among generator literals(variables)
next(A, B) → next(a, C) → next(a, D) → next(b,E)

(A, B) → C → D → E
• No dependency relation among C, D, and E.

But there must be an artificial linear order for
systematic backtracking(reset, the first solution)

• When next(a, C) is redone
next(b, c), next(c, d), next(c, e) cancelled(consumer)

next(a, D), next(b, E) reset(inner loop)
next(d, e) cancelled(cons)

2004/2/12 KAIST 전산학과최광무 26

Intelligent backtracking

1. Failure is reported by a literal Lf.

2. Find a proper literal Lb to be redone.

3. Reset all of the generator literals

whose order is later than Lb in LOLL.

4. Cancel messages to all of the consumer literals

of redone, reset, and canceled literals

• Tuple generation model vs nested loop model

2004/2/12 KAIST 전산학과최광무 27

Cause of consecutive failures

• If failed literal consumes more than one variable,

the last generator in LOLL is redone

• If the last generator fails again

the remaining generators of failed literals

should be redone again.

• The remaining generators should be stored

to consider the other failures.

multiple failure

…

2004/2/12 KAIST 전산학과최광무 28

Conery’s model

• Consecutive failure

redo list for each literal(static)

• A sequence of the last generators of the literal

diff(A,B)

d i f f (a ,D) d i f f (b ,E)

d i f f (d , e)d i f f (c , e)d i f f (c , d)d i f f (b , c)

d i f f (a ,C)

A

EDC

B

aa b

c
b d cc

e e
d

(A, B) ← D ← E(A, B) ← C ← E(A, B) ← C (A, B) ← C ← D

(A, B)(A, B)(A, B)

∅

2004/2/12 KAIST 전산학과최광무 29

Improper redo – multiple failures

diff(A,B)

d i f f (a ,D) d i f f (b ,E)

d i f f (d , e)d i f f (c , e)d i f f (c , d)d i f f (b , c)

d i f f (a ,C)

A

EDC

B

aa b

c
b d cc

e e
d

(A, B) ← D ← E(A, B) ← C ← E(A, B) ← C (A, B) ← C ← D

1.fail4.fail

2.redo 3.success
5.redo

6.fail

7.redo 7’.redo

2004/2/12 KAIST 전산학과최광무 30

Redo Cause Set(RCS)

• Remaining generators for each generator
they must be redone if this generator fails again
type 2 backtracking in Conery

• Multiple failure
• remaining generators are added to

RCS of the redone generator
When the failed literal report success

RCS of the redone generator is updated
• Lin, Kumar, and Lung in U. Texas

B-list

2004/2/12 KAIST 전산학과최광무 31

Implementation

• Prolog parallel evaluator

• Front end

prolog program → internal representation(AST)

• Back end

AST → creation of AND/OR processes

written in concurrent C

• process management

AND process

OR process

2004/2/12 KAIST 전산학과최광무 32

Load Balancing

• Dynamically glowing tree

static processor configuration

• number of processes >> number of processors

• load balancing vs hop count

local optimization

hop count = 1

• mesh or cube

recursively circulant graph

performance analysis

2004/2/12 KAIST 전산학과최광무 33

Research topics

• Forest model(이명준)

affection relation

multiple resetting

parallel backtracking

• Unified model(김도형)

Full solution level selective resetting

• Algebraic model(이수현)

Calculus of Communicating System(CCS)

Parallel model

2004/2/12 KAIST 전산학과최광무 34

Conclusion

• Parallel evaluation of logic programs

• Intelligent backtracking

2004/2/12 KAIST 전산학과최광무 35

學而之銘名 名可名, 非常名

끊임없는 노력 한 순간에 오는 깨달음

자연과학, 공학 인문, 사회과학

서양 동양

Evolution Revolution

敎 禪

그리고,

