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Abstract

In the past decade, several tools have been developed to automate the floating-point to 
fixed-point conversion for DSP systems. In the conversion process, they first determine the 
integer/fractional word lengths for each fixed-point variable, and attempt to optimize the SQNR of 
the fixed-point code while precluding overflows. In this attempt, a number of scaling shifts need to 
be inserted into the code, and inevitably they alter the original code sequence. Recently, we have 
observed that a compiler can often be adversely affected by this alteration of the source code, and 
consequently fails to generate efficient machine code for its target processor. In this paper, we 
discuss how we circumvent this problem with a simple peephole optimization technique that safely 
migrates scaling shifts to other places within the code so that the compiler can have a higher 
chance to produce better code. We consider our technique to be safe in that it does not introduce 
new overflows, yet preserving (sometimes even improving) the original SQNR. We implemented 
this technique on our retargetable compiler, Soargen. The experimental results on a commercial 
fixed-point DSP processor exhibit that our technique is effective enough to achieve tangible 
improvement on code size and speed for a set of benchmarks.

1. Introduction

Fixed-point processors are generally cheaper 
than their floating-point counterparts. Thus, 
most high-volume, low-end DSP systems use 
fixed-point processors since the priority is low 
energy and cost. However, dynamic range and 

precision of a fixed-point processor are often 
strictly limited [10]. As a result, programming 
fixed-point processors is usually more painful 
since programmers must spend much time to 
maintain proper numeric accuracy and performance 
with the limited dynamic range and precision. 
So, the common practice is that programmers 
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first employ floating-point processors to verify 
their designs and algorithms, and later implement 
the verified algorithms on fixed-point processors 
by converting floating-point data types into 
equivalent fixed-point ones.

As a first step in this floating-point to fixed- 
point conversion (FFC) process, they must 
find the dynamic range and precision needs of 
each variable in the code. Based on their 
findings, they insert shift operations to scale 
variables in the code. The integral part of this 
conversion process is to decide adequate places 
where to insert these scaling shifts because 
this decision deeply affects the two key factors, 
the signal-to-quantization noise ratio (SQNR) 
and overflow, which determine the numeric accuracy 
of the resulting fixed-point code. Therefore, in 
the FFC process, programmers must perform 
rigorous static analysis or simulation to 
compute exact run-time value ranges of all the 
variables, which will be used to obtain the 
accurate dynamic ranges and precisions for the 
variables.

As can be expected, processing the whole 
conversion by hand would be quite a time- 
consuming and error-prone task. According to 
empirical studies [3], the manual process accounts 
for roughly a third of the total implementation 
time. To relieve programmers from this burdensome 
task, many researchers have developed various 
FFC tools such as Autoscaler and FRIDGE 
[4][6][8] which automate the FFC process 
efficiently. However, to the best of our knowledge, 
all these tools do not fully consider detrimental 
effects of newly added scaling shifts in the 
fixed-point code on compiler code generation. 
Our recent experience reveals that such lack 

of consideration often result in substantial 
degradation of the quality of the output 
machine code.

2. Motivation

To illustrate the need of our technique, 
consider the ordinary floating-point C code 
segment in Figure 1(b) which implements a 
popular DSP filter, called IIR, displayed in 
Figure 1(a). We used the Autoscaler tool [4] 
to convert this code into the fixed-point one 
in Figure 1(c) where we see that many scaling 
shifts have been inserted during the conversion. 
Figure 1 (d) shows the assembly code for the 
ZSP400 DSP processor [11] generated directly 
from the code of Figure 1 (c). As can be 
noticed from Figure 1 (a) and (b), the IIR 
filter originally contains several nice operation 
patterns which should be easily translated by 
the compiler into some DSP-specific instructions 
(e.g., multiply - accumulate and dot-product). 
However, the compiled output in Figure 1 (d) 
suggests that the compiler failed to utilize 
those instructions when it compiled the code of 
Figure 1 (c). Actually as  demonstrated  in Figure 
1 (e), the compiler should be able to further reduce 
the code size if it could exploit the ZSP mac/nmac 
instructions. In this example, the main cause that 
hinders the efficient code generation is the scaling 
shifts inserted between the add and multiply 
operations in Figure 1 (c).

To explain this more clearly, consider Figure 1 
(f) where the code of Figure 1 (c) is represented in 
a DAG, the common intermediate representation 
(IR) form adopted by many compilers. The IR in 
the figure has been automatically constructed from 
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(a) IIR Biquad N Sections Filter

mul.a r4, r6
shra r0, 1;
sub r2, r0;

mul.a r5, r7;
shra r0,2;

sub r2, r0;
shla r2, 3;
mul.a r2,r8;
shra r0, 1;

mul.b r6, r9;
shra r2, 2;
add r0, r2;
shra r0, 1;

mac.a r7, r10;
shla r0, 1,

(d) Original code for ZSP400

shra r4, 1;
nmac.b r4, r6;

shrla r2, 2;
nmac.b r5, r7;

shrla r2, 1;
mul.a r2, r8;
shra r6, 1;

mac.a r6, r9;
shra r0, 2;

mac.a r7, r10;
shla r0, 1;

(e) Improved code for ZSP400

w(n) = x(n)-ai1*w(n-1) - ai2*w(n-2)
y(n) = bi0*w(n)+ bi1*w(n-1) + bi2*w(n-2)

(b) Floating-point code for IIR Filter

(f) Original IR

w(n)=(x(n)–multf (ai1 ,w(n-1))>>1– 

multf(ai2,w(n-2))>>2)<<3
y(n)=(multf(bi0,w(n))>>1+multf(bi1,w(n-1))
>>2+ multf(bi2,w(n-2)))<<1

(c) Fixed-point code for IIR Filter
(g) Algerabraic Transformed IR

Figure 1

the fixed-point code by our compiler. From this IR, 
the compiler may recognize a multiply operation in 
node 5 immediately followed by an add operation 
in node 14, so it can translate them together to a 
mac in the assembly. To the contrary, in the case 
of the multiply-add pair in nodes 10 and 13, it is 
not straightforward for a compiler to generate a 
mac because the shift operation in node 11intervenes 
between the two operations. In consequence, a 
compiler would translate the pair into two separate 

multiply and add instructions along with a shift 
instruction in-between. As seen from Figure 1 (b), 
this shift operation was in fact not part of the 
original IIR filter code, but later inserted for scaling 
between the multiply and add operations during the 
FFC process. From our recent experience with 
several FFC techniques, we have learned that when 
they insert a scaling shift between two fixed-point 
operations, they normally ignore whether their 
compilers can translate the two operations later as 
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part of a single efficient machine instruction. Such 
ignorance often raises a critical performance issue 
on fixed-point DSP processors because these 
processors mostly aim to gain the performance via 
DSP-specific CISC instructions, each of which is 
typically a composite instruction that encodes 
multiple operations in a single word [10].

In this paper, we discuss how we complement 
existing FFC techniques through algebraic 
transformations to facilitate better code generation. 
And we present how the rules for algebraic 
transformation are easily described in Architecture 
Description Language (ADL), and how our 
retargetable compiler use them to generate efficient 
code. For this, we start our discussion with the 
description of a typical FFC process in Section 3. 
Then in Section 4, we describe our optimization 
technique that transforms IR (intermediate representation) 
using algebraic transformation. We introduce our 
retargetable compiler, Soargen[14], and how the 
rules for algebraic transformation are described in 
SoadDL, which is our ADL, in Section 5. Section 6 
shows the experimental results and we conclude the 
paper in Section 7.

3. Floating-point to Fixed-point Conversion

Typically, a fixed-point data format D consists of 
three fields of bits: a sign bit, integer bits and 
fractional bits. The integer word length (IWL) and 
fractional word length(FWL) represent the number 
of integer bits and that of fractional bits, 
respectively [1]. The word length (WL) of D can 
be defined as 1+IWL+FWL. As an example 
consider a variable x in Figure 2, which stores a 
binary value 01010110 in an 8-bit data format with 
IWL = 3 and FWL = 4. It represents a positive 

binary number 101.011.So its value is interpreted as 
5.375. Similarly, the value of y in the example is 
interpreted as 1.5625.

Figure 2. an example for fixed point data format

FFC techniques are elaborated to maximize the 
SQNR of the application while preventing new 
overflows from being introduced through the 
conversion process. The SQNR may be improved 
by minimizing quantization error, which is the 
numeric error occurred when a value requiring a 
data format with longer word length is stored to a 
shorter word. For a fixed-point format, the precision 
of the format is identical to its WL since the 
amount of quantization error is inversely 
proportional to the WL [10]. In theory, the longer 
WL the format has, the higher precision we have. 
But in practice, the WL is limited by hardware 
constraints. In fixed-point DSP processors, it is 
typically 16 bits for float-type formats and 32 bits 
for double-type ones. Thus, many FFC techniques 
employ a simple heuristic that assigns 16-bit 
integers for float-type variables and 32-bit integers 
for double-type variables.

Once the WL of a fixed-point data format is 
determined for each variable v, the IWL and FWL 
in the format are to be carefully selected to prevent 
overflows. This decision is contingent on the 
maximum value |vmax| that v can have at run time. 
Clearly, the IWL must be no less than ⌈log2 
|vmax|⌉ to avoid overflows. To find |vmax|, the 
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floating point
fixed-point

IWL
Ix>Iy, Iz Iy>Ix, Iz Iz>Ix,Iy

assign x = y x=y>>(Ix-Iy) x=y<<(Iy-Ix) No change in Ix

add/sub z = xy
z =
(x(y>>(Ix-Iy)))<<(Ix
-Iz)

z = 
((x>>(Iy-Ix))y)<<(Iy
-Iz)

z =
(x>>(Iz-Ix))(y>>(Iz-I
y))

Iz = max
(Ix,Iy,Iz)

mult z = xy multf(x,y) Iz = Ix +Iy+1

Table 1. fixed point arithmetic rules.

run-time value ranges of all variables in the code 
must be evaluated during the FFC process. For the 
evaluation, there have been two approaches [2]. In 
the first one, the value range of a variable is 
estimated from its statistical parameters obtained 
with a floating-point code simulation. One advantage 
of this approach is that it can obtain an accurate 
estimation of the range for specific signal input 
patterns. Another advantage is that it ensures a low 
probability of overflow for signal with the same 
input patterns. However, for different input patterns, 
the estimated results may be incorrect. The other 
approach [6][7] uses interval analysis [5] to 
estimate the value analytically. The estimated 
results are conservative so they are always safe and 
ensure no overflow. But for some cases, this 
approach may take too conservative stands to have 
the useful range information for effective FFC.

Using the value range of each variable v, we can 
identify |vmax| from which we determine IWLv and 
FWLv for v. For IWLv |vmax|, we can guarantee 
no overflow of v. Notice that particularly when 
IWLv = |vmax|, the precision of v is maximized. 
However, if we choose a naïve policy that uniformly 
assigns all variables their maximum values for their
IWLs, we would have many different variables

with many different IWLs. Previous studies indicate 
that this policy generally results in many scaling 
shifts inserted in the final code. Therefore, often in 
practice, a heuristic is additionally applied to reduce 
the number of scaling shifts by assigning the same 
IWL to the two variables with different maximum 
values, despite some precision loss.

Table 1 displays fixed-point arithmetic rules 
which direct when and where to insert scaling shifts 
inside the fixed-point code during the FFC process. 
In the table, Iv denotes the IWL of a fixed-point 
variable v. To briefly explain the rules, suppose 
that we have Ix>Iy for two variables x and y. 
According to the rules, for assignment x=y, we 
should perform y>>(Ix-Iy) to align the radix point 
of y to that of x before y is assigned to x. 
Likewise, if Ix<Iy, we should perform y << (Ix-Iy) 
before the assignment. In reality, floating-point 
arithmetic operations are either additive or multiplicative. 

We use the notation to denote the additive 
operations and the notation the multiplicative operations. 
As shown in Table 1, an additive floating-point 
operation z=xy can be converted into either of three 
fixed-point operation patterns containing scaling shifts. 
Note hereby that two scaling shifts are always 
added in any situation.
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Fixed-point processors commonly provide dedicated 
functions for fixed-point multiplication as well as 
ordinary integer multiplication. This is because integer 
multiplication stores the lower half of the product 
while fixed-point multiplication needs to access the 
upper half [1]. For instance, the ZSP fixed-point 
processor supports two intrinsics: N_mul and 
N_extract. The first one performs 16-bit fixed-point 
multiplication and returns the result in 32 bits, and 
the second returns the upper half of the 32-bit 
result. In our work, we define a C function multf 
(see Table 1) for fixed-point multiplication on our 
target processor. The function can be implemented 
on the ZSP fixed-point processor as follows.

inline long multf(int a, long b){
long z;  // 32 bits
int x,y;  // 16 bits
x = a;
N_extract(y,b);
N_mul(z,x,y);
return z;
}

Notice from Table 1 that the IWL for the 
product of two variables is the sum of their IWLs 
with an extra 1-bit extension. Using the rules in the 
table, the code in Figure 1 (b) has been converted 
to the one in Figure 1 (c). Based on the range 
analysis, the IWLs for all variables in Figure 1 (b) 
are estimated as below.

Iw(n) = 2; Ix(n) = 5; Iai1 = 1; Iai2 = 0;
Ibi0 = 0; Ibi1 = -1; Ibi2 = 1; Iy(n) = 3.

After substituting a multf for each floating-point 
multiplication, we will have for the  first line of 
Figure 1 (b),

w(n)=x(n)-multf(ai1,w(n-1))-multf(ai2,w(n-2))

Accoring to the rules, the IWLs of the two 
multfs would evaluate to 4 and 3, respectively. 
Using these IWLs, we insert scaling shifts into the 
code as guided by the fixed-point arithmetic rules, 
and consequently produce the fixed-point code on 
the first line of Figure 1 (c).

4. Algebraic Transformation

In this section we discuss how algebraic 
transformations can be applied to a give DAG IR 
so as to move the scaling shifts inserted as described 
in Section 3.

4.1 Rewriting Rules for Transformations
Algebraic transformations have been used in 

many domains such as compiler optimizations 
[12] and high-level synthesis [13]. Given an 
arbitrary DAG, finding its optimal transformation 
subject to certain conditions is a well-known 
intractable problem. So in practice, the problem 
is approximated by a series of local pattern 
matching problems where a predetermined set 
of rewriting rules are applied subsequently to 
varied subgraphs of the DAG in order to 
gradually form an (near-)optimal structure. A 
rewriting rule, pspt, consists of a pair of 
patterns ps and pt, which we call the source 
pattern and target pattern, respectively. When 
ps matches a subgraph of the subject DAG, the 
rule is applied by substituting pt for the subgraph 
in the DAG. Figure 3 lists three rewriting 
rules with the same source pattern p0 and its 
three functionally-equivalent target patterns 
(p1, p2, p3); that is, p0⟶p1, p0⟶p2 and p0⟶p3. 
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Figure 3. Rule based algebraic transformation

example where the operands of scaling shifts 
n1+ and n2+ are positive integers such that 
without loss of generality, n2+ > n1+.

Although different rules bring the same effect 
on code generation, they usually have different 
effects on the SQNR (or precision) and 
overflow within the output code. Therefore, when 
we define new rules, we must predict their 
exact effects and exclude any rules with bad 
effects. For instance, all three rules in Figure 3 
basically lead the original DAG to the forms 
that a compiler finds an operation pattern for 
the mac instruction from. However, notice that 
unlike the other target patterns, the pattern p1 
makes the code more vulnerable to fixed-point 
overflows than the source pattern p0. Thus, 
we will disregard the rule p0⟶p1 inour 
transformations.

As for p0⟶p2, we find that the SQNR is 
degraded if the rule is applied. To explain this, 
consider Figure 4 where we multiply two 5-bit 
integers A and B. The main difference between 
p0 and p2 is whether the right shift by nx+ 
bits is applied before or after the multiplication. 
According to Figure 4, when nx+ = 2, the

Figure 4 SQNR analysis

result of (A*B)>>nx+ would contain error 
only at the least significant 2 bits. However, 
in the case of A*(B>>nx+), the error would 
contaminate the result up to the last 6 bits. As 
a rule of thumb, if we lose 1-bit information 
in a fixed-point format, the SQNR is degraded 
by 6 dB. Therefore, in this case, the SQNR 
will be degraded roughly by 36 dB. Unlike 
overflow, the SQNR is not a critical factor 
that determines whether a rule is included or 
not. In our work, this rule still will be 
considered for transformation unless the 
deterioration of the SQNR by 36 dB is beyond 
the allowable limits which have been 
predetermined by the programmer.

In case of p0⟶p3, we see that the original 
SQNR is improved since the product A*B is 
used immediately (without right shifts 
in-between) by the subsequent add operator, 
thereby preserving the data at the least 
significant n1+ bits. Also, there will be no 
overflow even if the product is directly given 
to the add operator without scaling down. 
This is because it has two sign bits at the 
most significant bits, as shown in Figure 4.
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Figure 5. Rewriting Rules

Figure 5 shows all the rules defined for our 
work, each of which contains scaling operations. 
These rules were built according to the 
arithmetic rules in Table 1. Given a subject 
DAG, the complexity of algebraic transformations 
grows rapidly as the number of rewriting rules 
increases [12]. The number of rules is the 
exponentially proportional to the size of patterns 
in each rule. Therefore, as can be seen from 
Figure 5, the pattern is restricted to encompass 
the operators at the distance of at most two 
from the scaling shift at the center. The 
rationale for this is that composite instructions 
are normally generated by the compiler from 
at most three operations on neighboring nodes 
in the IR.

As displayed in Figure 5, we divide the 
arithmetic operators in a pattern into three 
classes: additive , multiplicative  and scaling 
shift operators. In the figure, the symbol ⊙ 

denotes an arbitrary arithmetic operator including  
and . We also divide the patterns in the figure 
roughly into three cases, depending on the 
relative positions of these operators. The first

case is when two scaling shifts are adjacent, 
as shown in rule 1 of Figure 5 (1). Ordinary 
shifts for other than scaling cannot always be 
merged since they are usually used for masking 
their operands. But, we find that any adjacent 
scaling shifts can be safely merged without 
detrimental effects on the SQNR and overflow. 
So, in our transformations, an expression

B=(A<<nx)>>ny would be simplified to 
B=A<<(nx-ny), according to the rule 1.

The second cases can be found from Figure 
5 (2.1) to (2.4), where a scaling shift is 
adjacent to an  operator, intervening between 
the operator and another one ⊙. If the processor 
has a composite instruction consisting of ⊙ 

and , we may want to move this scaling shift 
out of this place by the four rules2.1, 2.2, 2.3 
and 2.4, thereby allowing the compiler to 
generate the composite instruction. Note that 
rules 2.1, 2.2 and 2.3 contain a right shift, 
and rule 2.4 contains a left shift. We can see 
that the two operators ⊙ and  are neighboring 
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in the target patterns, facilitating code generation 
of a composite instruction [⊙,]. As an example, 
the patterns C=A(B>>nx) and C=(AB)>>nx 
are functionally equivalent. So the first pattern 
can be transformed to the second one by rule 
2.2, or inversely by rule 2.3. If B is ⊙, then 
we will apply rule 2.2. If C is ⊙, we will 
apply rule 2.3. As explained above with 
Figure 4, rule 2.2 improves the SQNR while 
rule 2.3 does the opposite. Lastly, the 
remaining ten rules in Figure 5 correspond to 
the third case where a scaling shift is adjacent 
to an  operator and intervenes between and ⊙. 
We can easily prove by well-known algebraic 
properties that all rules perform valid transformations 
between functionally-equivalent expression DAGs.

4.2 Priority-based Rule Application
In this subsection, we discuss how we 

apply the rules in Figure 5 to solve a local 
pattern matching problem in our transformations. 
We use a conventional DAG pattern matching 
algorithm for our problem [12]. To reduce the 
complexity of the pattern matching, we prioritize 
all the rules in the following sequence.

The priority is given according to the two 
metrics: precision and computation. The precision 
is evaluated by the values of SQNR, and the 
computation is by the number of nodes in the 
pattern. When two rules are simultaneously 
applicable, the one with the higher priority 
will be used to transform the subject DAG. 
For example, in Figure 6(a), nodes 1 and 3 can 
be combined and translated to a mac instruction 
if node 2 is removed from the two nodes via 
both rules 2.3 and 3.8. However, in this case, 
we prefer 3.8 since it has a higher priority two

(a) Original IR            (b) Transformed IR
Figure 6. DAG IRs for IIR Filter Code

Priority Rules
Changes in precision and 

computation
1 3.6 precision ↑, computation ↓
2 1 computation ↓
3 2.2, 3.7, 3.8 precision ↑
4 2.1, 3.2, 3.3 no change

5
2.3, 2.4, 3.1, 

3.4, 3.5
precision ↓

Table 2. Priorities of Rules in Figure 5

nodes via both rules 2.3 and 3.8. However, in 
this case, we prefer 3.8 since it has a higher 
priority over 2.3 as shown in Table 2.

Our pattern matching is priority-based 
peephole optimization. This means that a rule 
is applied only when its target pattern is found 
to be useful for the code generation on our 
fixed-point processor. The usefulness is 
determined by either machine-independent or 
machine-independent properties. Each rule is 
iteratively applied to the subject DAG until no 
more rules are applicable.

5. ADL-based Compilation Framework

In this section, we first discuss the overall 
structure of our retargetable compiler, and 
then describe our ADL with examples to 
demonstrate how a given ISA is described in 
this language and the description is used to 
target the compiler at the ISA. Finally, we 
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show that the rules for algebraic transformation 
are easily described in our ADL so that our 
compiler can recognize the rules and use it to 
select and generate instructions.

5.1 Overview of the compiler
Figure 7 shows our compiler infrastructure 

where retargetability can be achieved by 
enabling the users to describe their target 
architectures in our ADL. The ADL characterizes an 
architecture by specifying its structural and 
behavioral information. Although it is still being 
extended at present, structural information in 
the current implementation only describes register 
and memory architecture. Behavioral information 
contains a set of machine instructions and 
addressing modes.

As can be seen in Figure 7, the compiler is 
implemented with several C++ modules such as

Figure 7. Our ADL-based Compiler Infrastructure

Figure 8. ADL Translation Process for the Code Generation

MachineDescription (MD), IRGen, VirtualMachine 
(VM), CodeGen, GlobalRegAllocator and Optimizer. 
The MD module contains a collection of C++ 
routines that carry all the machine specific 
information necessary for the compiler. As 
shown in Figure 8, from the ADL description for 
an architecture, an MD module is automatically 
generated and given as input to the CodeGen 
module which uses the module as a set of 
machine instruction templates in the phases of 
instruction selection, register allocation and 
instruction scheduling.

The ISA model is a group of C++ data 
structures all constituting an ISA template that 
will be used to build MD routines. It consists of 
two major components, resource and operation. The 
resource component represents storage elements 
such as registers and memory. The operation 
component abstracts the ISA of the target 
machine. Each address mode and instruction 
description is converted into an instruction 
template in operation of the ISA model. Among 
the attribute of an instruction template, the 
action template represents register transfer level 
behavior directly. The action template is a list 
of tree-shaped register transfers and the tree 
shaped templates can be directly used in the 
CodeGen module for instruction selection.

The MD generator builds a machine description 
module from an ISA model. Because our 
compiler needs various parameters for efficient 
code generation, the MD generator analyzes the 
ISA model and extracts necessary information 
such as register classes or register transfer 
graphs. The VM module provides a generic 
interface between the C front-end and our 
compiler. The virtual machine is an imaginary 
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machine with virtual assembly as its ISA. The 
virtual assembly is a simultaneous composition 
of a list of register transfer expressions (RTEs), 
each of which corresponds to a single instruction 
of the form (set lvalue rvalue) where the rvalue 
expression is evaluated and stored to the 
lvalue location. Operators in the expression are 
unary or binary depending on their types, and 
operands can be either symbolic registers or 
memory locations. The following shows an 
example of virtual assembly code:

L8:
 (set (SI: r2) (SI: 12(fp)))
 (set (SI: r3) (SI: 0(r2)))
 (set (SI: r4) (SI: 4(fp)))
 (set (SI: r2) (SI: 0(r4)))
 (set (SI: r2) (mult:SI (SI: r3) (SI: r2)))
 (set (SI: r3) (SI: 16(fp)))
 (set (SI: r3) (ss_plus:SI (SI: r3) (SI: r2)))
 (set (SI: 16(fp)) (SI: r3))

The virtual assembly is very intuitive. For 
instance, the first line means ‘load from 
memory located at fp + 12 to register r2’. All 
possible machine independent optimizations 
are performed by the front-end on virtual 
assembly. When the user compiles application 
code, virtual assembly code is first produced, and 
then converted to a graph-structural intermediate 
representation (IR) through common sub-expression 
elimination and control flow analysis. Our IR 
has a hierarchical graph structure. Each basic 
block node is a forest containing trees or DAGs, 
each of which represents a set of interdependent 
RTEs. Several basic block nodes in the same 
function form a control flow graph (CFG) to 
represent a function node. Finally, all function 

Figure 9. Visualization of the IR for the Kernel Code of 
convolution

nodes in a program forms a call graph representing 
the whole program. To visualize the entire 
hierarchical structure, we developed a visualization 
tool, called GraphViz. As demonstrated in 
Figure 9, this tool has been greatly helpful for us 
to analyze source code and debug our compiler 
modules when they are targeted to a new 
processor. The IR glues all compiler modules 
through a uniform interface. For instance, data 
flow analysis techniques such as reaching definition 
and live range analysis in the Optimizer 
module are performed on the code in the IR.

A DAG containing RTEs at the lowest level 
of the IR hierarchy is called an Expression 
DAG (EDAG). The EDAG represents data 
dependency between operators and values that 
the operators produces and consumes. In this 
sense, the nodes in an EDAG can be largely 
classified into two types: operator and value 
nodes. The value nodes are further broken 
down into four - that is, symbolic variable, 
memory location, effective address and constant. 
When the application code is transformed to 
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an IR, the CodeGen and GlobalRegAllocator 
modules sequentially take the IR and generate 
the target code using the routines in the MD 
module.

5.2 ADL for Machine Description
As stated earlier, the main purpose of an ADL 

is to provide a formal method to describe a 
target processor as is necessary to verify the 
completeness and correctness of the ISA. To 
attain this purpose, our ADL has been rigorously 
built on the formal definition of ISADesc. 

Definition 1. ISADesc=<IS,AM,ST,RIA,RAS>, 
where
IS : a hierarchical structured set for the 
instructions of target
architecture
AM : a set of addressing modes of target 
architecture
ST : a set of the storages of target 
architecture
RIA ⊆ IS X AMn, where n >  0
RAS ⊆ AM X STn, where n > 0.

The primitive section defines primitive operations 
and types. Each primitive operation stands for 
an atomic behavior of the target machine. For 
instance, primitives ss_minus and div stand for 
subtraction and division operations in hardware. 
Type information is also represented in the 
primitive section. For instance, the prefix ss_here 
represents a signed single precision type. The 
storage section gives abstract resource structure 
of the target machine such as memory and 
registers. Each storage element has two fields: 
number and mode. Figure 10 shows an example of 
primitive and storage descriptions.

Figure 10. Primitive Operations and Storage 
declared in our ADL

The address mode and instruction sections 
describe the machine instructions and addressing 
modes in the target ISA. In ISADesc, both 
instructions and addressing modes have three 
fields: name, action and syntax. They describe 
abstract behavioral level actions of the target 
processor. They specify the instruction semantics 
explicitly and hide the hardware details. As an 
example, Figure 11 presents an add-shift-left 
instruction described in our ADL.

To effectively support a top-down design 
methodology, each description in these sections 
are hierarchically defined; that is, each description 
can include several lower level descriptions. 
Its hierarchical property makes it easy to manage 
the ISA, and allows us to independently 
describe instructions, addressing modes and 
storage, thereby maximizing reusability of the 
architecture description. At the bottom of this 
hierarchical structure lies primitives and storage 
elements defined in the primitive and storage 
sections. They play role of basic building 
blocks for the action field in addressing mode 
and instruction descriptions. This is an example 
description of displacement addressing mode 
defined by the register storage type and the 
primitive ss_plus.
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action { efa = ss_plus(Rd, imm5); }

The address mode section defines how to access 
hardware resource like memory or registers. 
When we need a memory reference for a 
load/store instruction, the address mode can be 
used to represent the effective address for the access. 
Instructions are described in a similar way. The 
following shows a multiply and accumulate 
instruction.

action { rd =  mult(ss_plus(rs, rm)); }

When an instruction is described, its operands 
are usually of the register or memory type 
directly designated by the storage section. However, 
the user defines more complex addressing 
modes and uses them as the operands in an 
instruction description. For instance, in Figure 11, 
addressing mode dataAddrMode1 is defined in the 
address mode section and used as an operand 
in the description for instruction addsl1.

Figure 11. Our ADL Description of Two 
add-shift Instructions

5.3 Specifying Rule in ADL
The rewriting rules described in Section 4.1 

can be specified in our ADL, enabling our 

compiler to perform the transformation before 
selecting instructions. Thanks to its retargetability, 
we can make rules for any target architecture. 
In this section, we describe how we can describe 
the rules in ADL, and how the compiler exploits 
this information during instruction selection 
phase. We retargeted our compiler to ZSP400 
processor, and described one simple pattern 
for MAC instruction in ADL. Figure 12 shows 
the rewriting rule to utilizeMAC instruction. 
And Figure 13 shows the instruction set 
description of our ADL.

Figure 12. Rewriting Rule for MAC    
Instruction in ZSP400

instruction move_shift_up
: find_MAC_with_moving_shift
{
  uinteger(4) n1;
  uinteger(4) n2;
  GPR A, B;
  r0 C;

  action {
    C = ss_plus(shift(\
           mult(A,B),n1, shift(C,n2));
  }

  syntax {
    "shla"::" "::C::","::\
              "("::n2::"-"::n1::")"
    "mac.a"::" "::A::","::B;
    "shla"::" "::C::","::n1;
  }
}

Figure 13. Example of ADL description     
for the rewriting rules.
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Figure 14. Reduced Execution Time
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Figure 15. Reduced Code Size

6. Experimental Results

This section describes the results of a set of 
experiments to illustrate the effectiveness of 
the proposed technique, which is implemented 
for Soargen compiler which is a retargetable 
compiler being developing in our group. The 
experimental input is a set of floating point 
code from DSPstone. In order to isolate the 
impacts on performance and code size purely 
from our techniques, two sets of executables 
for the ZSP400 processor are produced for the 
benchmark codes; ORGIN: floating point to 
fixed point conversion with original Autoscaler 
and TRANS: floating point to fixed point 
conversion with Autoscaler included the algebraic

transformation. With these two sets of executables, 
we measured (1) cycle counts with simulator and 
(2) code size with utility tool. The performance 
improvements and code size reduction due to 
proposed technique are measured in percentage, 
using the formula:

((ORGIN-TRANS)/ORGIN)*100

Figure 14 reports the performance improvements, 
which is based on the proposed technique. 
The graph shows that there is up to 21.5% 
and average 12.7% performance improvement 
by using our technique.

Figure 15 demonstrates that we can reduce 
the code size by helping the compiler to select
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DSP-specific instructions. The graph show that 
there is up to 16.7% and average 10% code 
size reduction. by using our technique.

7. Conclusion

For DSP systems, there have been many 
techniques to convert the floating-point to 
fixed-point. However, existing techniques do 
not consider the side effect of scaling shifts 
on code generation. Such ignorance often raises 
a critical performance issue on fixed-point 
DSP processors because these processors mostly 
aim to gain the performance via DSP-specific 
CISC instructions. In this paper, we propose 
retargetable compilation framework for a 
rule-based algebraic transformation to alleviate 
the side effect of scaling shifts. As a special 
case, we applied our transformation technique 
for ZSP400 processor using our ADL and 
compiler. We observed substantial improvement 
on code size and execution time.
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