
20-2-R01

Retargetable Compilation Technique for
Optimal Placement of Scaling Shifts in a Fixed-point

Processor

Sanghyun Park, Minwook Ahn, Doosan Cho, Jonghee Yoon, Yunheung Paek
Software Optimizations and Restructuring Group

School of Electrical Engineering and Computer Science
Seoul National University

(shpark; mwahn; dscho; jhyoon)@optimizer.snu.ac.kr ypaek@snu.ac.kr

Abstract

In the past decade, several tools have been developed to automate the floating-point to
fixed-point conversion for DSP systems. In the conversion process, they first determine the
integer/fractional word lengths for each fixed-point variable, and attempt to optimize the SQNR of
the fixed-point code while precluding overflows. In this attempt, a number of scaling shifts need to
be inserted into the code, and inevitably they alter the original code sequence. Recently, we have
observed that a compiler can often be adversely affected by this alteration of the source code, and
consequently fails to generate efficient machine code for its target processor. In this paper, we
discuss how we circumvent this problem with a simple peephole optimization technique that safely
migrates scaling shifts to other places within the code so that the compiler can have a higher
chance to produce better code. We consider our technique to be safe in that it does not introduce
new overflows, yet preserving (sometimes even improving) the original SQNR. We implemented
this technique on our retargetable compiler, Soargen. The experimental results on a commercial
fixed-point DSP processor exhibit that our technique is effective enough to achieve tangible
improvement on code size and speed for a set of benchmarks.

1. Introduction

Fixed-point processors are generally cheaper
than their floating-point counterparts. Thus,
most high-volume, low-end DSP systems use
fixed-point processors since the priority is low
energy and cost. However, dynamic range and

precision of a fixed-point processor are often
strictly limited [10]. As a result, programming
fixed-point processors is usually more painful
since programmers must spend much time to
maintain proper numeric accuracy and performance
with the limited dynamic range and precision.
So, the common practice is that programmers

2 프로그래밍언어논문지 제20권 제2호(2006.11)

first employ floating-point processors to verify
their designs and algorithms, and later implement
the verified algorithms on fixed-point processors
by converting floating-point data types into
equivalent fixed-point ones.

As a first step in this floating-point to fixed-
point conversion (FFC) process, they must
find the dynamic range and precision needs of
each variable in the code. Based on their
findings, they insert shift operations to scale
variables in the code. The integral part of this
conversion process is to decide adequate places
where to insert these scaling shifts because
this decision deeply affects the two key factors,
the signal-to-quantization noise ratio (SQNR)
and overflow, which determine the numeric accuracy
of the resulting fixed-point code. Therefore, in
the FFC process, programmers must perform
rigorous static analysis or simulation to
compute exact run-time value ranges of all the
variables, which will be used to obtain the
accurate dynamic ranges and precisions for the
variables.

As can be expected, processing the whole
conversion by hand would be quite a time-
consuming and error-prone task. According to
empirical studies [3], the manual process accounts
for roughly a third of the total implementation
time. To relieve programmers from this burdensome
task, many researchers have developed various
FFC tools such as Autoscaler and FRIDGE
[4][6][8] which automate the FFC process
efficiently. However, to the best of our knowledge,
all these tools do not fully consider detrimental
effects of newly added scaling shifts in the
fixed-point code on compiler code generation.
Our recent experience reveals that such lack

of consideration often result in substantial
degradation of the quality of the output
machine code.

2. Motivation

To illustrate the need of our technique,
consider the ordinary floating-point C code
segment in Figure 1(b) which implements a
popular DSP filter, called IIR, displayed in
Figure 1(a). We used the Autoscaler tool [4]
to convert this code into the fixed-point one
in Figure 1(c) where we see that many scaling
shifts have been inserted during the conversion.
Figure 1 (d) shows the assembly code for the
ZSP400 DSP processor [11] generated directly
from the code of Figure 1 (c). As can be
noticed from Figure 1 (a) and (b), the IIR
filter originally contains several nice operation
patterns which should be easily translated by
the compiler into some DSP-specific instructions
(e.g., multiply - accumulate and dot-product).
However, the compiled output in Figure 1 (d)
suggests that the compiler failed to utilize
those instructions when it compiled the code of
Figure 1 (c). Actually as demonstrated in Figure
1 (e), the compiler should be able to further reduce
the code size if it could exploit the ZSP mac/nmac
instructions. In this example, the main cause that
hinders the efficient code generation is the scaling
shifts inserted between the add and multiply
operations in Figure 1 (c).

To explain this more clearly, consider Figure 1
(f) where the code of Figure 1 (c) is represented in
a DAG, the common intermediate representation
(IR) form adopted by many compilers. The IR in
the figure has been automatically constructed from

Retargetable Compilation Technique for Optimal Placement of Scaling Shifts in a Fixed-point Processor 3

(a) IIR Biquad N Sections Filter

mul.a r4, r6
shra r0, 1;
sub r2, r0;

mul.a r5, r7;
shra r0,2;

sub r2, r0;
shla r2, 3;
mul.a r2,r8;
shra r0, 1;

mul.b r6, r9;
shra r2, 2;
add r0, r2;
shra r0, 1;

mac.a r7, r10;
shla r0, 1,

(d) Original code for ZSP400

shra r4, 1;
nmac.b r4, r6;

shrla r2, 2;
nmac.b r5, r7;

shrla r2, 1;
mul.a r2, r8;
shra r6, 1;

mac.a r6, r9;
shra r0, 2;

mac.a r7, r10;
shla r0, 1;

(e) Improved code for ZSP400

w(n) = x(n)-ai1*w(n-1) - ai2*w(n-2)
y(n) = bi0*w(n)+ bi1*w(n-1) + bi2*w(n-2)

(b) Floating-point code for IIR Filter

(f) Original IR

w(n)=(x(n)–multf (ai1 ,w(n-1))>>1–

multf(ai2,w(n-2))>>2)<<3
y(n)=(multf(bi0,w(n))>>1+multf(bi1,w(n-1))
>>2+ multf(bi2,w(n-2)))<<1

(c) Fixed-point code for IIR Filter
(g) Algerabraic Transformed IR

Figure 1

the fixed-point code by our compiler. From this IR,
the compiler may recognize a multiply operation in
node 5 immediately followed by an add operation
in node 14, so it can translate them together to a
mac in the assembly. To the contrary, in the case
of the multiply-add pair in nodes 10 and 13, it is
not straightforward for a compiler to generate a
mac because the shift operation in node 11intervenes
between the two operations. In consequence, a
compiler would translate the pair into two separate

multiply and add instructions along with a shift
instruction in-between. As seen from Figure 1 (b),
this shift operation was in fact not part of the
original IIR filter code, but later inserted for scaling
between the multiply and add operations during the
FFC process. From our recent experience with
several FFC techniques, we have learned that when
they insert a scaling shift between two fixed-point
operations, they normally ignore whether their
compilers can translate the two operations later as

4 프로그래밍언어논문지 제20권 제2호(2006.11)

part of a single efficient machine instruction. Such
ignorance often raises a critical performance issue
on fixed-point DSP processors because these
processors mostly aim to gain the performance via
DSP-specific CISC instructions, each of which is
typically a composite instruction that encodes
multiple operations in a single word [10].

In this paper, we discuss how we complement
existing FFC techniques through algebraic
transformations to facilitate better code generation.
And we present how the rules for algebraic
transformation are easily described in Architecture
Description Language (ADL), and how our
retargetable compiler use them to generate efficient
code. For this, we start our discussion with the
description of a typical FFC process in Section 3.
Then in Section 4, we describe our optimization
technique that transforms IR (intermediate representation)
using algebraic transformation. We introduce our
retargetable compiler, Soargen[14], and how the
rules for algebraic transformation are described in
SoadDL, which is our ADL, in Section 5. Section 6
shows the experimental results and we conclude the
paper in Section 7.

3. Floating-point to Fixed-point Conversion

Typically, a fixed-point data format D consists of
three fields of bits: a sign bit, integer bits and
fractional bits. The integer word length (IWL) and
fractional word length(FWL) represent the number
of integer bits and that of fractional bits,
respectively [1]. The word length (WL) of D can
be defined as 1+IWL+FWL. As an example
consider a variable x in Figure 2, which stores a
binary value 01010110 in an 8-bit data format with
IWL = 3 and FWL = 4. It represents a positive

binary number 101.011.So its value is interpreted as
5.375. Similarly, the value of y in the example is
interpreted as 1.5625.

Figure 2. an example for fixed point data format

FFC techniques are elaborated to maximize the
SQNR of the application while preventing new
overflows from being introduced through the
conversion process. The SQNR may be improved
by minimizing quantization error, which is the
numeric error occurred when a value requiring a
data format with longer word length is stored to a
shorter word. For a fixed-point format, the precision
of the format is identical to its WL since the
amount of quantization error is inversely
proportional to the WL [10]. In theory, the longer
WL the format has, the higher precision we have.
But in practice, the WL is limited by hardware
constraints. In fixed-point DSP processors, it is
typically 16 bits for float-type formats and 32 bits
for double-type ones. Thus, many FFC techniques
employ a simple heuristic that assigns 16-bit
integers for float-type variables and 32-bit integers
for double-type variables.

Once the WL of a fixed-point data format is
determined for each variable v, the IWL and FWL
in the format are to be carefully selected to prevent
overflows. This decision is contingent on the
maximum value |vmax| that v can have at run time.
Clearly, the IWL must be no less than ⌈log2
|vmax|⌉ to avoid overflows. To find |vmax|, the

Retargetable Compilation Technique for Optimal Placement of Scaling Shifts in a Fixed-point Processor 5

floating point
fixed-point

IWL
Ix>Iy, Iz Iy>Ix, Iz Iz>Ix,Iy

assign x = y x=y>>(Ix-Iy) x=y<<(Iy-Ix) No change in Ix

add/sub z = xy
z =
(x(y>>(Ix-Iy)))<<(Ix
-Iz)

z =
((x>>(Iy-Ix))y)<<(Iy
-Iz)

z =
(x>>(Iz-Ix))(y>>(Iz-I
y))

Iz = max
(Ix,Iy,Iz)

mult z = xy multf(x,y) Iz = Ix +Iy+1

Table 1. fixed point arithmetic rules.

run-time value ranges of all variables in the code
must be evaluated during the FFC process. For the
evaluation, there have been two approaches [2]. In
the first one, the value range of a variable is
estimated from its statistical parameters obtained
with a floating-point code simulation. One advantage
of this approach is that it can obtain an accurate
estimation of the range for specific signal input
patterns. Another advantage is that it ensures a low
probability of overflow for signal with the same
input patterns. However, for different input patterns,
the estimated results may be incorrect. The other
approach [6][7] uses interval analysis [5] to
estimate the value analytically. The estimated
results are conservative so they are always safe and
ensure no overflow. But for some cases, this
approach may take too conservative stands to have
the useful range information for effective FFC.

Using the value range of each variable v, we can
identify |vmax| from which we determine IWLv and
FWLv for v. For IWLv |vmax|, we can guarantee
no overflow of v. Notice that particularly when
IWLv = |vmax|, the precision of v is maximized.
However, if we choose a naïve policy that uniformly
assigns all variables their maximum values for their
IWLs, we would have many different variables

with many different IWLs. Previous studies indicate
that this policy generally results in many scaling
shifts inserted in the final code. Therefore, often in
practice, a heuristic is additionally applied to reduce
the number of scaling shifts by assigning the same
IWL to the two variables with different maximum
values, despite some precision loss.

Table 1 displays fixed-point arithmetic rules
which direct when and where to insert scaling shifts
inside the fixed-point code during the FFC process.
In the table, Iv denotes the IWL of a fixed-point
variable v. To briefly explain the rules, suppose
that we have Ix>Iy for two variables x and y.
According to the rules, for assignment x=y, we
should perform y>>(Ix-Iy) to align the radix point
of y to that of x before y is assigned to x.
Likewise, if Ix<Iy, we should perform y << (Ix-Iy)
before the assignment. In reality, floating-point
arithmetic operations are either additive or multiplicative.

We use the notation to denote the additive
operations and the notation the multiplicative operations.
As shown in Table 1, an additive floating-point
operation z=xy can be converted into either of three
fixed-point operation patterns containing scaling shifts.
Note hereby that two scaling shifts are always
added in any situation.

6 프로그래밍언어논문지 제20권 제2호(2006.11)

Fixed-point processors commonly provide dedicated
functions for fixed-point multiplication as well as
ordinary integer multiplication. This is because integer
multiplication stores the lower half of the product
while fixed-point multiplication needs to access the
upper half [1]. For instance, the ZSP fixed-point
processor supports two intrinsics: N_mul and
N_extract. The first one performs 16-bit fixed-point
multiplication and returns the result in 32 bits, and
the second returns the upper half of the 32-bit
result. In our work, we define a C function multf
(see Table 1) for fixed-point multiplication on our
target processor. The function can be implemented
on the ZSP fixed-point processor as follows.

inline long multf(int a, long b){
long z; // 32 bits
int x,y; // 16 bits
x = a;
N_extract(y,b);
N_mul(z,x,y);
return z;
}

Notice from Table 1 that the IWL for the
product of two variables is the sum of their IWLs
with an extra 1-bit extension. Using the rules in the
table, the code in Figure 1 (b) has been converted
to the one in Figure 1 (c). Based on the range
analysis, the IWLs for all variables in Figure 1 (b)
are estimated as below.

Iw(n) = 2; Ix(n) = 5; Iai1 = 1; Iai2 = 0;
Ibi0 = 0; Ibi1 = -1; Ibi2 = 1; Iy(n) = 3.

After substituting a multf for each floating-point
multiplication, we will have for the first line of
Figure 1 (b),

w(n)=x(n)-multf(ai1,w(n-1))-multf(ai2,w(n-2))

Accoring to the rules, the IWLs of the two
multfs would evaluate to 4 and 3, respectively.
Using these IWLs, we insert scaling shifts into the
code as guided by the fixed-point arithmetic rules,
and consequently produce the fixed-point code on
the first line of Figure 1 (c).

4. Algebraic Transformation

In this section we discuss how algebraic
transformations can be applied to a give DAG IR
so as to move the scaling shifts inserted as described
in Section 3.

4.1 Rewriting Rules for Transformations
Algebraic transformations have been used in

many domains such as compiler optimizations
[12] and high-level synthesis [13]. Given an
arbitrary DAG, finding its optimal transformation
subject to certain conditions is a well-known
intractable problem. So in practice, the problem
is approximated by a series of local pattern
matching problems where a predetermined set
of rewriting rules are applied subsequently to
varied subgraphs of the DAG in order to
gradually form an (near-)optimal structure. A
rewriting rule, pspt, consists of a pair of
patterns ps and pt, which we call the source
pattern and target pattern, respectively. When
ps matches a subgraph of the subject DAG, the
rule is applied by substituting pt for the subgraph
in the DAG. Figure 3 lists three rewriting
rules with the same source pattern p0 and its
three functionally-equivalent target patterns
(p1, p2, p3); that is, p0⟶p1, p0⟶p2 and p0⟶p3.

Retargetable Compilation Technique for Optimal Placement of Scaling Shifts in a Fixed-point Processor 7

Figure 3. Rule based algebraic transformation

example where the operands of scaling shifts
n1+ and n2+ are positive integers such that
without loss of generality, n2+ > n1+.

Although different rules bring the same effect
on code generation, they usually have different
effects on the SQNR (or precision) and
overflow within the output code. Therefore, when
we define new rules, we must predict their
exact effects and exclude any rules with bad
effects. For instance, all three rules in Figure 3
basically lead the original DAG to the forms
that a compiler finds an operation pattern for
the mac instruction from. However, notice that
unlike the other target patterns, the pattern p1
makes the code more vulnerable to fixed-point
overflows than the source pattern p0. Thus,
we will disregard the rule p0⟶p1 inour
transformations.

As for p0⟶p2, we find that the SQNR is
degraded if the rule is applied. To explain this,
consider Figure 4 where we multiply two 5-bit
integers A and B. The main difference between
p0 and p2 is whether the right shift by nx+
bits is applied before or after the multiplication.
According to Figure 4, when nx+ = 2, the

Figure 4 SQNR analysis

result of (A*B)>>nx+ would contain error
only at the least significant 2 bits. However,
in the case of A*(B>>nx+), the error would
contaminate the result up to the last 6 bits. As
a rule of thumb, if we lose 1-bit information
in a fixed-point format, the SQNR is degraded
by 6 dB. Therefore, in this case, the SQNR
will be degraded roughly by 36 dB. Unlike
overflow, the SQNR is not a critical factor
that determines whether a rule is included or
not. In our work, this rule still will be
considered for transformation unless the
deterioration of the SQNR by 36 dB is beyond
the allowable limits which have been
predetermined by the programmer.

In case of p0⟶p3, we see that the original
SQNR is improved since the product A*B is
used immediately (without right shifts
in-between) by the subsequent add operator,
thereby preserving the data at the least
significant n1+ bits. Also, there will be no
overflow even if the product is directly given
to the add operator without scaling down.
This is because it has two sign bits at the
most significant bits, as shown in Figure 4.

8 프로그래밍언어논문지 제20권 제2호(2006.11)

Figure 5. Rewriting Rules

Figure 5 shows all the rules defined for our
work, each of which contains scaling operations.
These rules were built according to the
arithmetic rules in Table 1. Given a subject
DAG, the complexity of algebraic transformations
grows rapidly as the number of rewriting rules
increases [12]. The number of rules is the
exponentially proportional to the size of patterns
in each rule. Therefore, as can be seen from
Figure 5, the pattern is restricted to encompass
the operators at the distance of at most two
from the scaling shift at the center. The
rationale for this is that composite instructions
are normally generated by the compiler from
at most three operations on neighboring nodes
in the IR.

As displayed in Figure 5, we divide the
arithmetic operators in a pattern into three
classes: additive , multiplicative and scaling
shift operators. In the figure, the symbol ⊙

denotes an arbitrary arithmetic operator including
and . We also divide the patterns in the figure
roughly into three cases, depending on the
relative positions of these operators. The first

case is when two scaling shifts are adjacent,
as shown in rule 1 of Figure 5 (1). Ordinary
shifts for other than scaling cannot always be
merged since they are usually used for masking
their operands. But, we find that any adjacent
scaling shifts can be safely merged without
detrimental effects on the SQNR and overflow.
So, in our transformations, an expression

B=(A<<nx)>>ny would be simplified to
B=A<<(nx-ny), according to the rule 1.

The second cases can be found from Figure
5 (2.1) to (2.4), where a scaling shift is
adjacent to an operator, intervening between
the operator and another one ⊙. If the processor
has a composite instruction consisting of ⊙

and , we may want to move this scaling shift
out of this place by the four rules2.1, 2.2, 2.3
and 2.4, thereby allowing the compiler to
generate the composite instruction. Note that
rules 2.1, 2.2 and 2.3 contain a right shift,
and rule 2.4 contains a left shift. We can see
that the two operators ⊙ and are neighboring

Retargetable Compilation Technique for Optimal Placement of Scaling Shifts in a Fixed-point Processor 9

in the target patterns, facilitating code generation
of a composite instruction [⊙,]. As an example,
the patterns C=A(B>>nx) and C=(AB)>>nx
are functionally equivalent. So the first pattern
can be transformed to the second one by rule
2.2, or inversely by rule 2.3. If B is ⊙, then
we will apply rule 2.2. If C is ⊙, we will
apply rule 2.3. As explained above with
Figure 4, rule 2.2 improves the SQNR while
rule 2.3 does the opposite. Lastly, the
remaining ten rules in Figure 5 correspond to
the third case where a scaling shift is adjacent
to an operator and intervenes between and ⊙.
We can easily prove by well-known algebraic
properties that all rules perform valid transformations
between functionally-equivalent expression DAGs.

4.2 Priority-based Rule Application
In this subsection, we discuss how we

apply the rules in Figure 5 to solve a local
pattern matching problem in our transformations.
We use a conventional DAG pattern matching
algorithm for our problem [12]. To reduce the
complexity of the pattern matching, we prioritize
all the rules in the following sequence.

The priority is given according to the two
metrics: precision and computation. The precision
is evaluated by the values of SQNR, and the
computation is by the number of nodes in the
pattern. When two rules are simultaneously
applicable, the one with the higher priority
will be used to transform the subject DAG.
For example, in Figure 6(a), nodes 1 and 3 can
be combined and translated to a mac instruction
if node 2 is removed from the two nodes via
both rules 2.3 and 3.8. However, in this case,
we prefer 3.8 since it has a higher priority two

(a) Original IR (b) Transformed IR
Figure 6. DAG IRs for IIR Filter Code

Priority Rules
Changes in precision and

computation
1 3.6 precision ↑, computation ↓
2 1 computation ↓
3 2.2, 3.7, 3.8 precision ↑
4 2.1, 3.2, 3.3 no change

5
2.3, 2.4, 3.1,

3.4, 3.5
precision ↓

Table 2. Priorities of Rules in Figure 5

nodes via both rules 2.3 and 3.8. However, in
this case, we prefer 3.8 since it has a higher
priority over 2.3 as shown in Table 2.

Our pattern matching is priority-based
peephole optimization. This means that a rule
is applied only when its target pattern is found
to be useful for the code generation on our
fixed-point processor. The usefulness is
determined by either machine-independent or
machine-independent properties. Each rule is
iteratively applied to the subject DAG until no
more rules are applicable.

5. ADL-based Compilation Framework

In this section, we first discuss the overall
structure of our retargetable compiler, and
then describe our ADL with examples to
demonstrate how a given ISA is described in
this language and the description is used to
target the compiler at the ISA. Finally, we

10 프로그래밍언어논문지 제20권 제2호(2006.11)

show that the rules for algebraic transformation
are easily described in our ADL so that our
compiler can recognize the rules and use it to
select and generate instructions.

5.1 Overview of the compiler
Figure 7 shows our compiler infrastructure

where retargetability can be achieved by
enabling the users to describe their target
architectures in our ADL. The ADL characterizes an
architecture by specifying its structural and
behavioral information. Although it is still being
extended at present, structural information in
the current implementation only describes register
and memory architecture. Behavioral information
contains a set of machine instructions and
addressing modes.

As can be seen in Figure 7, the compiler is
implemented with several C++ modules such as

Figure 7. Our ADL-based Compiler Infrastructure

Figure 8. ADL Translation Process for the Code Generation

MachineDescription (MD), IRGen, VirtualMachine
(VM), CodeGen, GlobalRegAllocator and Optimizer.
The MD module contains a collection of C++
routines that carry all the machine specific
information necessary for the compiler. As
shown in Figure 8, from the ADL description for
an architecture, an MD module is automatically
generated and given as input to the CodeGen
module which uses the module as a set of
machine instruction templates in the phases of
instruction selection, register allocation and
instruction scheduling.

The ISA model is a group of C++ data
structures all constituting an ISA template that
will be used to build MD routines. It consists of
two major components, resource and operation. The
resource component represents storage elements
such as registers and memory. The operation
component abstracts the ISA of the target
machine. Each address mode and instruction
description is converted into an instruction
template in operation of the ISA model. Among
the attribute of an instruction template, the
action template represents register transfer level
behavior directly. The action template is a list
of tree-shaped register transfers and the tree
shaped templates can be directly used in the
CodeGen module for instruction selection.

The MD generator builds a machine description
module from an ISA model. Because our
compiler needs various parameters for efficient
code generation, the MD generator analyzes the
ISA model and extracts necessary information
such as register classes or register transfer
graphs. The VM module provides a generic
interface between the C front-end and our
compiler. The virtual machine is an imaginary

Retargetable Compilation Technique for Optimal Placement of Scaling Shifts in a Fixed-point Processor 11

machine with virtual assembly as its ISA. The
virtual assembly is a simultaneous composition
of a list of register transfer expressions (RTEs),
each of which corresponds to a single instruction
of the form (set lvalue rvalue) where the rvalue
expression is evaluated and stored to the
lvalue location. Operators in the expression are
unary or binary depending on their types, and
operands can be either symbolic registers or
memory locations. The following shows an
example of virtual assembly code:

L8:
 (set (SI: r2) (SI: 12(fp)))
 (set (SI: r3) (SI: 0(r2)))
 (set (SI: r4) (SI: 4(fp)))
 (set (SI: r2) (SI: 0(r4)))
 (set (SI: r2) (mult:SI (SI: r3) (SI: r2)))
 (set (SI: r3) (SI: 16(fp)))
 (set (SI: r3) (ss_plus:SI (SI: r3) (SI: r2)))
 (set (SI: 16(fp)) (SI: r3))

The virtual assembly is very intuitive. For
instance, the first line means ‘load from
memory located at fp + 12 to register r2’. All
possible machine independent optimizations
are performed by the front-end on virtual
assembly. When the user compiles application
code, virtual assembly code is first produced, and
then converted to a graph-structural intermediate
representation (IR) through common sub-expression
elimination and control flow analysis. Our IR
has a hierarchical graph structure. Each basic
block node is a forest containing trees or DAGs,
each of which represents a set of interdependent
RTEs. Several basic block nodes in the same
function form a control flow graph (CFG) to
represent a function node. Finally, all function

Figure 9. Visualization of the IR for the Kernel Code of
convolution

nodes in a program forms a call graph representing
the whole program. To visualize the entire
hierarchical structure, we developed a visualization
tool, called GraphViz. As demonstrated in
Figure 9, this tool has been greatly helpful for us
to analyze source code and debug our compiler
modules when they are targeted to a new
processor. The IR glues all compiler modules
through a uniform interface. For instance, data
flow analysis techniques such as reaching definition
and live range analysis in the Optimizer
module are performed on the code in the IR.

A DAG containing RTEs at the lowest level
of the IR hierarchy is called an Expression
DAG (EDAG). The EDAG represents data
dependency between operators and values that
the operators produces and consumes. In this
sense, the nodes in an EDAG can be largely
classified into two types: operator and value
nodes. The value nodes are further broken
down into four - that is, symbolic variable,
memory location, effective address and constant.
When the application code is transformed to

12 프로그래밍언어논문지 제20권 제2호(2006.11)

an IR, the CodeGen and GlobalRegAllocator
modules sequentially take the IR and generate
the target code using the routines in the MD
module.

5.2 ADL for Machine Description
As stated earlier, the main purpose of an ADL

is to provide a formal method to describe a
target processor as is necessary to verify the
completeness and correctness of the ISA. To
attain this purpose, our ADL has been rigorously
built on the formal definition of ISADesc.

Definition 1. ISADesc=<IS,AM,ST,RIA,RAS>,
where
IS : a hierarchical structured set for the
instructions of target
architecture
AM : a set of addressing modes of target
architecture
ST : a set of the storages of target
architecture
RIA ⊆ IS X AMn, where n > 0
RAS ⊆ AM X STn, where n > 0.

The primitive section defines primitive operations
and types. Each primitive operation stands for
an atomic behavior of the target machine. For
instance, primitives ss_minus and div stand for
subtraction and division operations in hardware.
Type information is also represented in the
primitive section. For instance, the prefix ss_here
represents a signed single precision type. The
storage section gives abstract resource structure
of the target machine such as memory and
registers. Each storage element has two fields:
number and mode. Figure 10 shows an example of
primitive and storage descriptions.

Figure 10. Primitive Operations and Storage
declared in our ADL

The address mode and instruction sections
describe the machine instructions and addressing
modes in the target ISA. In ISADesc, both
instructions and addressing modes have three
fields: name, action and syntax. They describe
abstract behavioral level actions of the target
processor. They specify the instruction semantics
explicitly and hide the hardware details. As an
example, Figure 11 presents an add-shift-left
instruction described in our ADL.

To effectively support a top-down design
methodology, each description in these sections
are hierarchically defined; that is, each description
can include several lower level descriptions.
Its hierarchical property makes it easy to manage
the ISA, and allows us to independently
describe instructions, addressing modes and
storage, thereby maximizing reusability of the
architecture description. At the bottom of this
hierarchical structure lies primitives and storage
elements defined in the primitive and storage
sections. They play role of basic building
blocks for the action field in addressing mode
and instruction descriptions. This is an example
description of displacement addressing mode
defined by the register storage type and the
primitive ss_plus.

Retargetable Compilation Technique for Optimal Placement of Scaling Shifts in a Fixed-point Processor 13

action { efa = ss_plus(Rd, imm5); }

The address mode section defines how to access
hardware resource like memory or registers.
When we need a memory reference for a
load/store instruction, the address mode can be
used to represent the effective address for the access.
Instructions are described in a similar way. The
following shows a multiply and accumulate
instruction.

action { rd = mult(ss_plus(rs, rm)); }

When an instruction is described, its operands
are usually of the register or memory type
directly designated by the storage section. However,
the user defines more complex addressing
modes and uses them as the operands in an
instruction description. For instance, in Figure 11,
addressing mode dataAddrMode1 is defined in the
address mode section and used as an operand
in the description for instruction addsl1.

Figure 11. Our ADL Description of Two
add-shift Instructions

5.3 Specifying Rule in ADL
The rewriting rules described in Section 4.1

can be specified in our ADL, enabling our

compiler to perform the transformation before
selecting instructions. Thanks to its retargetability,
we can make rules for any target architecture.
In this section, we describe how we can describe
the rules in ADL, and how the compiler exploits
this information during instruction selection
phase. We retargeted our compiler to ZSP400
processor, and described one simple pattern
for MAC instruction in ADL. Figure 12 shows
the rewriting rule to utilizeMAC instruction.
And Figure 13 shows the instruction set
description of our ADL.

Figure 12. Rewriting Rule for MAC
Instruction in ZSP400

instruction move_shift_up
: find_MAC_with_moving_shift
{
 uinteger(4) n1;
 uinteger(4) n2;
 GPR A, B;
 r0 C;

 action {
 C = ss_plus(shift(\
 mult(A,B),n1, shift(C,n2));
 }

 syntax {
 "shla"::" "::C::","::\
 "("::n2::"-"::n1::")"
 "mac.a"::" "::A::","::B;
 "shla"::" "::C::","::n1;
 }
}

Figure 13. Example of ADL description
for the rewriting rules.

14 프로그래밍언어논문지 제20권 제2호(2006.11)

P e r c e n t a g e o f R e d u c e d C o d e S i z e

0

5

1 0

1 5

2 0

2 5

biq
uad_N _s ectio

n

biq
uad_one_s e

ctio
n

convo lu
tio

n

f ir
2d im

m
atr i

x1

m
atr i

x2

com
p lex_update

n_com
p lex_update

A vera
ge

R
ed

uc
ed

 C
od

e
Si

ze
 (%

)

Figure 14. Reduced Execution Time

P e r c e n t a g e o f R e d u c e d E x e c u t i o n T i m e

0

5

1 0

1 5

2 0

2 5

b iq
uad

_N _s e
ctio

n

b iq
uad

one
s e

cti
on

co
nvo lu

tio
n

f ir
2d im

m
atr i

x1

m
atr

ix
2

co
m

p lex
_update

n_co
m

p lex
_update

A vera
ge

R
ed

uc
ed

 T
im

e
(%

)

Figure 15. Reduced Code Size

6. Experimental Results

This section describes the results of a set of
experiments to illustrate the effectiveness of
the proposed technique, which is implemented
for Soargen compiler which is a retargetable
compiler being developing in our group. The
experimental input is a set of floating point
code from DSPstone. In order to isolate the
impacts on performance and code size purely
from our techniques, two sets of executables
for the ZSP400 processor are produced for the
benchmark codes; ORGIN: floating point to
fixed point conversion with original Autoscaler
and TRANS: floating point to fixed point
conversion with Autoscaler included the algebraic

transformation. With these two sets of executables,
we measured (1) cycle counts with simulator and
(2) code size with utility tool. The performance
improvements and code size reduction due to
proposed technique are measured in percentage,
using the formula:

((ORGIN-TRANS)/ORGIN)*100

Figure 14 reports the performance improvements,
which is based on the proposed technique.
The graph shows that there is up to 21.5%
and average 12.7% performance improvement
by using our technique.

Figure 15 demonstrates that we can reduce
the code size by helping the compiler to select

Retargetable Compilation Technique for Optimal Placement of Scaling Shifts in a Fixed-point Processor 15

DSP-specific instructions. The graph show that
there is up to 16.7% and average 10% code
size reduction. by using our technique.

7. Conclusion

For DSP systems, there have been many
techniques to convert the floating-point to
fixed-point. However, existing techniques do
not consider the side effect of scaling shifts
on code generation. Such ignorance often raises
a critical performance issue on fixed-point
DSP processors because these processors mostly
aim to gain the performance via DSP-specific
CISC instructions. In this paper, we propose
retargetable compilation framework for a
rule-based algebraic transformation to alleviate
the side effect of scaling shifts. As a special
case, we applied our transformation technique
for ZSP400 processor using our ADL and
compiler. We observed substantial improvement
on code size and execution time.

Acknowledgement

This work was partially funded by the MIC
(Ministry of Information and Communication),
Korea, under the ITRC(Information Technology
Research Center) support program supervised
by the IITA(Institute of Information Technology
Assessment) (IITA-2005-C1090-0502-0031), KRF
contract D00191, MIC under Grant A1100-
0501-0004 and IT R&D Project, the Korea
Ministry of Science and Technology(MoST)
under Grant M103BY010004-05B2501-00411,
Nano IP/SoC promotion group of Seoul
R&BD Program in 2006.

References

[1] Ki-Il Kum, Jiyang Kang, Wonyong Sung,
"autoscaler for C: An optimizing floating-
point to Integer C Program Converter For
fixed-Point Digital Signal Processors".
IEEE Transactions on Circuits & Systems
II -Analog and Digital Signal Processing,
47:840–848,September 2000

[2] Daniel Menard, Daniel Chillet, Francois
Charot, Olivier Sentieys, "Automatic Floating-
point to Fixed-point Conversion for DSP
Code Generation" CASES 2002.

[3] T. Gr¨otker, E. Multhaup, and O.Mauss.
Evaluation of HW/SW Tradeoffs Using
Behavioral Synthesis. In ICSPAT’96, Boston,
October 1996.

[4] S. Kim, K. Kum, and S. Wonyong.
Fixed-Point Optimization Utility for C and
C++ Based Digital Signal Processing Programs.
IEEE Transactions on Circuits and Systems
II, 45(11), November 1998.

[5] R. Kearfott. Interval Computations: Introduction,
Uses, and Resources. Euromath Bulletin 2,
2(1): 95-112, 1996.

[6] H. Keding, M. Willems, M. Coors, and H.
Meyr. FRIDGE: A Fixed-Point Design And
Simulation Environment. In Design, Automation
and Test in Europe, 1998.

[7] M. Willems, V. Bursgens, H. Keding, and
H. Meyr. System Level Fixed-Point Design
Based On An Interpolative Approach. In
Design Automation Conference, 1997.

[8] C. Shi and R. Brodersen, Automated
Fixed-point Data-type Optimization Tool
for Signal Processing and Communication
Systems. In Design Automation Conference,
2000.

[9] T. Parks and C. Burrus. Digital Filter
Design. Jhon Willey and Sons Inc, 1987.

16 프로그래밍언어논문지 제20권 제2호(2006.11)

[10] P. Lapsely, J. Bier, A. Shoham and E.
Lee, DSP Processor Fundamentals: Architectures
and Features, IEEE Press 1997.

[11] ZSP 400 Digital Signal Processor Technical
Manual, http://www.zsp.com.

[12] S. Muchinick, Advanced Compiler Design
& Implementation, Morgan Kaufmann,
1997.

[13] A. Chandrakasan, et. al, Optimizing
Power Using Transformations. IEEE
Transactions on CAD, Vol. 14, No. 1, 12–
31, 1995

[14] M. Ahn, J. Cho, and Y. Paek, Using a
H/W ADL-based Compiler for
Fixed-point Audio Codec Optimization
thru Application Specific Instructions. 정
보처리학회논문지 제 13-A권 제4호, 2006.

박 상 현
 2004년 서울대학교 전기공학부

(학사)
 2004년~현재 서울대학교

전기컴퓨터공학부 박사과정

관심분야 :임베디드 소프트웨어, 임베디드 시스템
개발도구, 컴파일러, 저전력 설계.

안 민 욱
 2003년 서울대학교 전기공학부

(학사)
 2003년～현재 서울대학교

전기컴퓨터공학부 박사과정

관심분야 :임베디드 소프트웨어, 임베디드 시스템
개발도구, 컴파일러, 컴퓨터 시스템 설계

조 두 산
 2001년 한국외국어대학교

전자정보공학부(학사)
 2003년 고려대학교 전기공학과

(석사)
 2003년~현재 서울대학교

전기컴퓨터공학부 박사과정

관심분야 :임베디드 소프트웨어, 임베디드 시스템
개발도구, 컴파일러, 컴퓨터 시스템 설계

윤 종 희
 2005년 KAIST

전기및전자공학과(학사)
 2005년~ 현재 서울대학교

전기컴퓨터공학부

석사과정

관심분야 :임베디드 소프트웨어, 임베디드 시스템
개발도구, 컴파일러, 재구성 가능 프로세서

백 윤 흥
 1988년 서울대학교

컴퓨터공학과(학사)
 1990년 서울대학교

컴퓨터공학과(석사)
 1997년 UIUC 전산과학(박사)
 1997년～1999년 NJIT 조교수

1999년～2003년 KAIST 전자전산학과 부교수
2003년～현재 서울대학교 전기컴퓨터공학부 부교수
관심분야 :임베디드 소프트웨어, 임베디드 시스템

개발도구, 컴파일러, MPSoC

