Exception Propagation Analysis for Java

Jang-Wu Jo'" and Byeong—-Mo Chang?

"Division of Computer Engineering, Pusan Univ. of Foreign Studies, jjw@pufs.ac.kr

aDept. of Computer Science, Sookmyung Women's Univ. chang@sookmyung.ac.kr

Abstract

Exception analyses so far cannot provide information on the propagation of thrown exceptions,
which is necessary to construct interprocedural control flow graph, visualize exception
propagation, and slice exception-related parts of programs. In this paper, we propose a
set-based analysis, which can estimate exception propagation paths of Java programs finitely.
Our analysis is unique to the other exception analyses, in that it can show exception

propagation paths. We show the soundness of the analysis and also provide some applications.

conditions are brought to the attention of
Introduction another expression where the thrown
exceptions may be handled. Because

Exception facilities in Java allow the unhandled exceptions will abort the

programmer to define, throw and catch program’s execution, it is important to

exceptional conditions. Exceptional make sure at compile-time that the input

program will have no uncaught exceptions

This work was supported by grant No.

(RO1-2002-000-00363-0) from the Basic at run-time.
Research Program of the Korea Science & There have been several uncaught
Engineering Foundation.

60 Zragddel=gEA A7 A& (2003, 3)

exception analyses, that estimate uncaught
[1,9,1520]. The current JDK
Java compiler also provides a type-based
which

specification for checking

exceptions

exception analysis relies on

programmer’s

against uncaught exceptions[9]. Several

interprocedural exception analyses were

proposed for Java in [1,15,20] that estimate
uncaught exceptions independently of the
programmer’'s specifications.

they uncaught

However, estimate

exceptions only by their names, so that

they cannot provide information on

propagation paths of thrown exceptions,
construct
[17],

visualize exception propagation, and slice

which is necessary to

interprocedural control flow graph
exception-related parts of programs.
In this static

analysis based on set-based framework,

paper, we propose a

which estimates exception propagation
paths of Java programs. Our analysis is
other exception

unique among the

analyses, in that it can show exception
propagation paths.

Based on the operational semantics of
Java with exception propagation taken into
design

consideration [7], we first

set-constraint construction rules to
estimate exception propagation paths. We
then design naive constraint solving rules
S. We can compute the possibly infinite
solution Ims(C) of the constraints C by

applying the naive solving rules S. This

solution can be infinite due to recursive
calls in the input program. So, we design
the new solving rules S’ by slightly

modifying the naive rules for finite
solution. The main idea is to represent an
exception propagation path with the edges
constituting the path and the unique
identifier of the thrown exception. We can
compute the finite solution Ims(C) of the
constraints C by applying the new solving
rules S
We

solution with

sketch the soundness of the naive
respect to the collecting
semantics which can be defined by lifting
the standard semantics so as to consider
sets of concrete traces. We then show the
soundness of the new finite solution with
respect to the possibly infinite solution by
induction on the length of traces.

We also show how analysis information
constructing

can be applied to

interprocedural control flow graph,

visualizing exception propagation, and

slicing exception-related parts of
programs.

The next section describes the core of
Java, on which our presentation is based.
Section 3 describes a static analysis to
estimate exception propagation paths.
Section 4 describes constraint solving and
its correctness. Section 5 presents some
applications of this analysis. Section 6
discusses related works and Section 7

concludes this paper.

Exception Propagation Analysis for Java, Jang-Wu Jo-Byeong-Mo Chang 61

2. Source Language

For presentation brevity we consider an
imaginary core of Java with its exception

constructs [20]. Its abstract syntax is in

Figure 1.
P = C" program
C = class ¢ ext ¢ {var x” M"} class definition
M := m(x)[throws c¢"]= e method definition
e =id variable
id = e assignment
new c new object
this self object
e;e sequence
if e then e else e branch

throw e exception raise

try e catch (cxe) exception handle

e.m(e) method call
id :=x method parameter
| idx field variable
c class name
m method name
X variable name

Figure 1 Abstract Syntax of a Core of Java

A program is a sequence of class
definitions. Class bodies consist of field
variable declarations and method

definitions. A method definition consists of
the method name, its parameter, and its
body expression. Every expression’s result
1s an object. Assignment expression
returns the object of its righthand side
expression. Sequence expression returns
the object of the last expression in the
sequence. A method call returns the object

from the method body. The try expression

try ey catch (c x e;) evaluates ep first. If
the expression returns a normal object
then this object is the result of the try
expression. If an exception is thrown from
ep and its class is covered by c then the
handler expression e; is evaluated with the
exception object bound to x. If the thrown
exception is not covered by class ¢ then
the thrown exception continues to
propagate back along the evaluation chain
until it meets another handler. Note that a
nested try expression can express multiple
handlers for a single expression ep : try
(try eop catch (¢; x; er)) catch (c2 xo eo).

The exception object ey is thrown by

throw ep The programmers have to
declare in a method definition any
exception class whose exceptions may

escape from its body.

Note that exceptions are first-class
objects in Java. Like normal objects, they
can be defined by classes, instantiated,

assigned to variables, passed as
parameters, etc. Exception facilities in Java
allow the programmer to define, throw and
catch exceptional conditions.

The semantics of Java was proposed in
[7]1 with exception throwing, propagation
and handling taken into consideration.

Let's consider a simple example in
which

propagation. The thrown exception E1 from

Figure 2 shows exception
the method m2 is propagated through m2

and ml, and caught by the try-catch in

62 Zragddel=gEA A7 A& (2003, 3)

the main method. The exception EZ2 may

class Demo {
public static void main({
try {
ml();
} catch (Exception x) {;}

ma3();

}

void m1() {
m2();

}

void m2() {
throw new EI;

}

void m3() {
if(...) throw new EZ;
if(...) m30);

Fig. 2. An Example Program for Exception

Propagation
be thrown from the method m3. If it is

thrown, then it is propagated until the
main method and not caught. The method
m3 also has a recursive call to itself, so
that the EZ2 may

thrown exception

propagated back through the recursive

calls.

3. Set—constraint construction

Our analysis 1s designed based on the
set-constraint framework [11]. We assume
class information classfe) is already available

for every expression e in the analysis,

which can be obtained by type inference
[6,713], or class analysis [5]. Note that
exception classes are normal classes in
Java.

Each set constraint is of the form X =2
se where X is a set variable and se is a
set expression. The meaning of a set
set X

constraint X =2 se is intuitive:

contains the set represented by set
Multiple constraints are
We C for

conjunctive set of constraints.

expression se.

conjunctions. write such

In case of our analysis, the set

expression is of this form:

se — <c, I> thrown exception from /

| X set varaible

| se U se union

| se — {c:, ..., ¢y} catching exceptions
|

exception propagation

The thrown exception from a throw

expression labelled with [is represented

by <c“, I> where ¢ is the name or class of the

exception and / is the location or label of the

throw expression. We will take ¢! as the unique
identifier of the thrown exception in this paper.
The set expression se - {c1, ..., ¢} is for catching
exceptions. The set expression se «/ records
exception propagation paths by appending a label
[to se.

Semantics of set expressions naturally
follows from their corresponding language
constructs. The formal semantics of set

expressions is defined by an interpretation

Exception Propagation Analysis for Java, Jang-Wu Jo-Byeong-Mo Chang 63

I that maps from set expressions to sets solution (model) because every operator is
in V

where FException

of wvalues monotonic (in terms of set-inclusion) and

Exception < Trace,
ExnName X Label,

where FExnName is the set of exception

each constraint’s left-hand-side is a single
variable [11]. We write Im(C) for the least

names, and Trace = Label. A trace 7 & model of a collection C of constraints.

Trace is a sequence of labels in Label, Set-based analysis consists of two
[New] new c> ¢
[FieldAss] : e > C,
id .x:=e >{xy, U0 x Y C,
[ParamAss] e > C,
x = e > {xy,. 0 x.,}YC,
[Seq] e, > C, e,>C,
eléez>{XpDXp,YXel}YC1Y C,
[Cond] i e, > C e, >C, e,>C,
if ¢, then e else e,>{xy 0 x,Yx.,Yx.,}Yc,yc,yc,
[FieldVar] _d >Cy
id .x > C ,
[Throw] e > C, n ¢ = class (e,)
A : throw e,>{x,0 <c* ", A>Y x,}VY C,
[Try] e, > C, e, > C
At:try e, catch (cvxie)>{x.0Wx., —te}DHY x,)DOAy
Y Cc,Y C,
[MethCall] e, > C, e, > C,
ep.m(ey,)> {x, 0 Y., lclClas (e), m(x)=e,Oc}
Yi{x. O x,Yx.,rYc, yc,
[MethDef] e, > C m O ¢
AMim(x)=e, >{x,., 0 x, OAN}YC
[ClassDef] m,>C, i=1K ,n
class ¢c ={var x,,K ,x,,m,,K ,m_ }>C, YN Y C,
[Program] c,> €, i=1K ,n
c,.,K ,e,>C, YN Y C,

Fig. 3. Set-constraints construction rules

which is an exception propagation path.

For example, Ise - [) = I(se) - I" where
Itse) - 1" = {<c b ...

€ I(se)}). We call an interpretation [a

LI>1< . 1>

model (a solution) of a conjunction C of
-

constraints if, for each constraint X se

in C, I(X) 2 I(se).

Collected constraints for a

of

program

guarantee the existence its least

phases [11]: collecting set constraints and
solving them. The first phase constructs
set—constraints by the construction rules,
that describe the data flows between the
expressions of the analyzed program. The
second phase finds the sets of values that
satisfy the constraints. A solution is a
table or mapping from set variables in the

constraints to the finite descriptions of

64 Zragddel=gEA A7 A& (2003, 3)

such sets of values.

We first present a constraint system
that estimates traces of thrown exceptions
expression of the input

from every

program. For simple presentation, our

analysis traces exception propagation paths
by recording the labels of just
exception-related constructs such as throw,
We

assume this kind of expressions e has a

try-catch, and method declarations.
label {, which is denoted by [© e. If more
detailed trace information is necessary, it
is possible to record other expressions
such as method call and try-block.

Figure 3 has the rules to generate
set-constraints for every expression. For
our analysis, every expression e of the
program has a constraint: X. 2 se. The X.
is a set-variable for collecting the
propagation paths of the thrown exceptions

inside e. The subscript e of X. denotes the

current expression to which the rule
applies. The relation ‘e [€ is read
"constraints C are generated from

expression e”.
Consider the rule for throw expression
with a label [:

e >C,

[Throw])
A:throwe > {y,0<cA>Y x, ¥ C

c =class(e))

It throws an exception e;, which is

represented as <c’, 7> where ¢ = class(e;)
is the name or class of the exception and

! is the label of the throw statement,

which is an origin of the exception. In the

following, ¢ is used as the unique
identifier of the thrown exception. Prior to
the throwing, it can have uncaught
exceptions from inside e; too.

Consider the rule for try expression

with a label [’ :

¢, > C, e, >C,
[Try] - 5 ;
N:trye,catch(c, x, ¢)> {x. O((x, —{e}) Y X,)}
YG,YC,
Thrown exceptions from ep can be

caught by x; only when their classes are
After this

exceptions can also be thrown during the

covered by c. catching,

handling inside e; Uncaught exceptions
from this expression are followed by the
label /" to record the exception propagation
(Xeo = fert®)UXe) -

N, where {c}" represents all the descendant

path. Hence, X. =

classes of a class c including itself.

Consider the rule for method call:

[MethCall] 4>G >G
eme)>{x, 0x.,,|cOClasgg),mx)=e, Oc}
Yix, D)(e, YX%}YC{ YG
Uncaught exceptions from the call

expression first include those from the
subexpressions e; and e : Xe 2 Xeo U Xe.
The method mx) = e» is the one defined
inside the classes ¢ € classle:) of ei's

objects. Hence, X. 2 X.» for uncaught

exceptions. (The subscript em indicates
the index for the method m of the class

c.)

Exception Propagation Analvsis for Java, Jang-Wu Jo-Byeong-Mo Chang 65

Consider the rule for method definition

with a label [:

[MethDef] &>C mOe
X:mx)=e,>{x,, D x, B}YC
Uncaught exceptions from the this

method m include those from the method
body e., which are followed by the label /"
to record exception propagation paths.

We

set—-constraints by

can construct the following
applying the
construction rules to the example program
in Figure 2. When we write down the

set—constraints, we use the statements

with some simplification instead of labels
for better understanding.

Kmain = Xiy-carcr = main

Nowin 2 Xoa - main

Xiv-caren =2 (Xom — {Exception)=) + try—-catch

X 2 X -ml

Xz 2 Xiwowrr - m2

Xirwowrn = <El throwE1>

Xm?» = X{hrurf‘h‘l -m3
X{hrrm‘}-.‘_’ =2 <JE‘:2, fhf'()w.|E2>
Xm?» = XmH -m3

4. Solving the set—constraints

We first design naive constraint solving
rules S. We can compute the possibly
infinite solution Ims(C) of the constraints
C by applying the naive solving rules S.
This

recursive calls in the input program.

solution can be infinite due to

XO0Xx,0Xx, X0Xx,0X, XOv vO<c 1>
X 0O0Xx, xXoOx, X0O<ce, 7>
XOX, N X, O<ce)7>
XO<e',TAA'>
XO0X,~{c.c,} X, O<c*T>
X O<er,T>

cO{c,y.., c\ }

Fig. 4. Rules S for solving set constraints

The naive solving phase closes the
initial constraint set C under the rules S
in Figure 4. Intuitively, the rules propagate
values along all the possible data flow
paths in the program. Each propagation
rule decomposes compound set constraints
into smaller ones, which approximates the
steps of the wvalue flows between
expressions.

Consider the rule for tracing exception
propagation path :

XOX I X, O<erTr>

XO<er,TIA>

This rule simulates the propagation path
of thrown exceptions by appending a label
7 in Xj. Other

rules are similarly straightforward from

[” to the exception trace
the semantics of corresponding set
expressions.

We can computes the solution Ims(C) of
set-constraints C by applying the rules S
in Figure 3. We can sketch the soundness

of the solution as follows:

[Theorem 1] Let P be a program and C
be the set-constraints constructed by the

rules in Figure 3. Every exception trace of

66 rZaagdddoeli=a] A17H A& (2003, 3)

P is included in the solution /ms(C).

Proof sketch.

We first have to lift the standard
semantics to a collecting semantics called
set-based approximation so as to collect
sets of concrete traces, because a static
program point can be associated with a
set of traces. Correctness proofs can be
done with this

respect to collecting

semantics by the fixpoint induction over
the continuous functions that are derived

from our constraint system as in [4]. [J

We can compute the infinite solution for
the set-constraints C in Figure 3 by
applying the rule S. Some of the solution

are as follows:

Ims(O (X)) 2 { <ElthrowEl -m2 - ml>)

Ims(O/(X)) 2 { <ElthrowEl - m2>}

Ims(C)(Xpg) 2 { <E2throwE2 - m3>,
<E2throwE2 * m3 - m3>,

<E2throwE2 + m3 - m3 - m3>,
)
Ims(ONXmain) 2 { <E2throwE2 - m3 - main>,
<E2throwE2 - m3 - m3 - main>,
<E2,throwE2 + m3 - m3 - m3 - main>,
)
in case

The solution can be infinite

there are recursive methods, which contain
uncaught exception(s). We need to find a
finite representation for the possibly
infinite solution.

So, we design the new solving rules S’

for finite solution by modifying the
exception propagation rule in S. The main
idea is to represent an exception
propagation path, that is a trace, with the
edges consisting the path and the unique
identifer of the thrown exception. They
are finite because the number of exception
names and labels is finite.

To do this, at every step of exception
propagation, we record the last two
labels(that is an edge) together with the
unique identifer of the thrown exception.
We modify the rule for tracing exception

propagation as follows :

XOX, N X, 0<c,r>
X0O<e,| TN, >
where |\ A, [,=A,_A, when

n=2

This rule simulates the propagation of
thrown exceptions, by recording the last
labels

. . - . o !
exception’s unique identifier ¢. Because

two together with the thrown

this i1s done at every step of exception
propagation, the dropped information has
included

together with the unique identifier c.

also been into the solution

In the following, S’ denotes the solving
rules S with the propagation rule being
one. Our analysis

Ims(C) of
set—constraints C by applyving the new

replaced by the new

computes the least model

solving rules S”. We can compute the

Exception Propagation Analvsis for Java, Jang-Wu Jo-Byeong-Mo Chang 67

solution for the set-constraints C in

Figure 3 by applying the new rule S

Some of the solution are as follows:

Ims{O)(Xm) 2 { <ElthrowEl - m2 - ml>)
Ims(O)(Xe) 2 { <ElthrowEl - m2>}
Ims{O(Xm3) 2 { <E2throwE2 * m3>,

<E2m3 - m3>}
:'m:;'(C)(Xmm) = { <E'2.m3 'ma£n>}

We can see exception propagation paths
bv defining the exception propagation

graph of the solution Ims(C).

Let C be the

set—constraints constructed for a program

[Definition 1]

P. Exception propagation graph of the
solution Ims{C) is defined to be a graph
<V,E> where V is the set of labels in P
and E = (M
Ims(C)(X) for a set variable X in C }

)\-_2|‘<C)\,7\1)\-_3> =

—)C)\
where A1 —c* Ay denotes an edge from

A to A labelled with ¢,

We
propagation graph for the finite solution
for the

can easily draw the exception

example program by making

following labelled edges :

throwE1— "' m2

"' ml

m2—"
throwE2—" m3
m3—" main

m3—" m3

We can show the soundness of the

finite solution by finding a path in the

exception propagation graph for every

trace in the possibly infinite solution.

[Theorem 2] Let Ims(C) and Ims(C) be
C by
S and S’

respectively. For every exception trace <

the solutions of set-constraints

applying the solving rules
&, >, in Ims(C), there is a path for ¢
labelled ¢ in
exception propagation graph of Ims(C).
Proaof.
We will prove this theorem by tracing

with every edge the

the computation process for the solution
Ims{(C). Let T= A A, A, The proof is by
induction on i

When i = 2,

trivially included in the solution, so there

Base: <A MA> s
is a path for AA; labelled with ¢* in the
graph.

Hvpothesis: Assume that there is a path
for A..A; labelled with ¢", which means
that the solution by applying the new
rules S’ has already collected <c* AjA
0> <M N A,

Step: We consider AjA;.;. There are two
cases for this. If <c*,AA;1> has not
included in the solution vet, then it will be
included into the solution in the following

reasons:

(1) the solution /ms(C) includes <c* Aj..

63 Zragddel=gEA A7 A& (2003, 3)

Ai..A,> where A; is appended to A.A;
by the propagation rule in S

(2) there is a corresponding propagation
rule in S” and

(3) by induction hypothesis, <c*,A;jA;>

1s already included in the solution by
applying S”.

We can now find a path for An.Ai A
by traversing the existing path and the
new edge AMNAqnp. If <c* AA.1> has already
been included in the solution by applying
the new rules S’, then we can find a path
for M. A Ay by traversing the existing
path for A..A; and the existing edge A.A

i+1. [

Implementation can compute the solution
by the

method because the

conventional iterative fixpoint

solution space is
finite: exception classes, pairs of labels in

the program.

5. Applications

To show the usefulness of the exception
trace, we provide three applications of our
is to construct

analysis. The first one

interprocedural control-flow grapht (ICFG)

which incorporates exception-induced
control flow, and the second one is
program slicing that accounts for

exceptions constructs, and the third one is

to visualize exception control flows.

5.1 ICFG

(CFG) is a

representation of control flow relation that

The control-flow graph

exists in a program, in which nodes

represent statements and edges represent
the flow of control between statements.
Many program-analysis techniques, such

as dataflow, control-dependence and

exception analysis, and program slicing

depend on control-flow information. For
these analyses to be safe and useful, the
should

incorporate the exception-induced control

control-flow representation
flow.

Recently, several researchers have

considered the effects of exception-induced

control flow on wvarious tyvpes of analyses.

Failure to account for the effects of
exception in performing analyses can
result In incorrect analysis information.

They construct control-flow representation
for exception-related constructs [3, 17].
Given an interprocedural control-flow
graph with normal control flow, we can
easily merge exception propagation graph
onto it so as to

(ouranalysis result)

construct interprocedural control-flow

graph with exceptional control flow.

5.2 Program Slicing

A program slice of a program P, with

Exception Propagation Analvsis for Java, Jang-Wu Jo-Byeong-Mo Chang 69

V>'

where s is a program point and V is a set

respect to a slicing criterion <s,

of program variables, includes statements
in P that to be

influenced by, the values of the variables

may influence, or
in V at s [12]. There are two alternative
approaches to computing slices, that either
propagate solutions of data-flow equations
using a control-flow representation [10,
19], or
system dependence graphs [12, 18].

perform graph reachability on

Using our interprocedural control-flow
representation, the slicing technique in [10]
can be extended to take into consideration
the effects of exception-handling
constructs.

QOur trace information can also be used
to create system dependence graph that
incorporates control and data dependence

induced by exception constructs.

5.3 Visualizing Exception Flows

The exception trace information can be
used to visualize exception propagation.
This can include the origin of exceptions,
handler of exceptions, and propagation
path of exceptions. This information can

guide programmers to detect uncaught

exceptions, handle exceptions more
specifically and declare more exactly.
Moreover, this information can guide

programmers to put exception handlers at

appropriate places by tracing exception

propagation.
We

visualization system which highlights or

are planning to develop a

slices only the source codes in the
propagation trace of a thrown exception, if

programmers select a throw statement.

6. Related works

Ryder and colleagues [16] and Sinha and
Harrold [17] conducted a study of the
usage patterns of exception-handling
constructs in Java programs. Their study
offers an evidence to support our belief
that

exception-handling constructs are

used frequently in Java programs and
more accurate exception flow information
1S necessary.

There are several research directions for
The first one is
which

includes constructing CFG with normal

exception constructs.

modeling program execution,
and exceptional control flows, and using
the representation to perform various types
of analysis. The second one is enabling a
developer to make better use of exception
mechanism, which includes analysis of
uncaught exceptions, analysis of exception
flow to facilitate understanding of the
exception behavior.

Choi
intraprocedural control-flow representation

called the

and colleagues [3] construct

factored control-flow graph

(FCFG) for exception—handling constructs,

70 Zragddel=gEA A7 A& (2003, 3)

and use the representation to perform
data-flow analyses. Sinha and Harold [17]
discusses the effects of excpetion-handling
constructs on several analyses such as
and control
They

techniques to construct representations for

control-flow, data-flow,

dependence analysis. present

programs with checked exception and

exception-handling constructs. Chatterjee
and Ryder [2] describe an approach to
performing points—to analysis that
incorporates exceptional control flow. They
also provide an algorithm for computing
definition-use pairs that arise because of
exception variables, and along exceptional
control-flow paths.

In Java [9], the JDK compiler ensures,
by an intraprocedural analysis, that clients

of a method either handle the exceptions

declared by that method, or explicitly
redeclare them.

Robillard and Murphy [15] have
developed Jex: a tool for analyzing
uncaught exceptions in Java. They

describe a tool that extracts the uncaught

exceptions In a Java program, and
generates views of the exception structure.
201, we
proposed interprocedural exception analysis

that

In our previous work [1,

estimates uncaught exceptions
independently of programmers’s specified
We

with JDK-style analysis by experiments

exceptions. compared our analysis

on large realistic Java programs, and have

shown that our analysis is able to detect
uncaught exceptions, unnecessary catch

and throws clauses effectively.

exception analyses have been
ML based
interpretation and set-constraint framework
[21]. Fahndrich and Aiken [8] have applied
their BANE toolkit to the analysis of

uncaught exceptions in SML. Their system

Several

introduced for on abstract

1s based on equality constraints to keep

track of exception values. Fessaux and
Leroy desiged an exception analysis for
OCaml based on type and effect systems,
and provides good performance for real
OCaml programs [14].

Our approach is unique to the other
exception analyses, in that it can show the

exception propagation paths.

7. Conclusions

In this paper, we have proposed a
set-based analysis, which estimates
exception propagation path of Java
programs. For more detailed tracing, our
analysis can be simply extended to
incorporate labels of other expressions
such as method «calls and try-block.

Moreover, we can also check caught
exceptions by making another set variable
Y for every try ey catchlc x e;) expression
and setting a set-constraint like ¥ 2 XeoN

fet

Exception Propagation Analyvsis for Java, Jang-Wu Jo-Byeong-Mo Chang 71

Our analysis provides information on the
which
can guide programmers to detect uncaught

handle
and declare more

this

propagation of thrown exceptions,

exceptions, exceptions more

specifically exactly.

Moreover, information can guide
programmers to put exception handlers at
appropriate places by tracing exception
propagation path.

The analysis information can also be
applied to construct interprocedural control
(171},

and

flow graph visualize exception

propagation, slice exception-related
parts of programs. In particular, we are
planning to develop a visualization system
which highlights or slices only the source
codes 1n the propagation trace of a thrown
exception, if programmers select a throw

statement.

References

[1] B.-M. chang, J. Jo. K. Yi, and K.
Choe,
Analysis for Java”,
ACM Symposium on Applied
Computing, pp 620-625, Mar. 2001.

[2] R. K. Chatterjee, B. G. Ryder, and W.
A. Landi,
tvpe-inference in

"Interprocedural Exception

Proceedings of

"Complexity of concrete
the presence of
notes in
1381, pp.

exceptions”, Lecture
Computer Science, vol.
57-74, Apr. 1998.

[3] J.-D. Choi, D. Grove, M. Hind, and V.

Sarkar, "Efficient and precise modeling

of exceptions for analysis of Java
programs”, Proceedings of 99 ACM
SIGPLAN-SIGSOFT Workshop on
PASTE, September 1999, pp. 21-31.

[4] Patrick Cousot and Radhia Cousot.
"Compositional and inductive semantic

equational,

definitions in fixpoint,

constraint, closure—condition,

rule-based and game theoretic form”,

Proceedings of the 7th international

conference on computer—aided
verification edition, 1995.

61 G and C.
Chambers, "Fast interprocedural class
analysis”, Proceedings of 25th ACM
POPL pp 222-236, January 1998.

[6] S. Drossopoulou, and S. Eisenbach,
"Java is type safe-probably”,
Proceedings of 97 ECOOP, 1997.

[7]1 S. Drossopoulou, and T. Valkevych,
"Java type
Techical Report,
November 1999.

[8] M. Fahndrich, J.S. Foster, A. Aiken,

and J. Cu, "Tracking down exceptions

DeFouw, D. Grove,

soundness revisited”,

Imperial College,

in Standard ML programs”, Technical
report, UC Berkeley, Computer Science
Division, 1998.

[9]]J. Gosling, B. Joy, and G. Steele, The
Java Programming Language
Specification, Addison-Wesley, 1996.

[10] M. Harrold and N. Ci, "Reuse Driven

Interprocedural Slicing”, Proceedings
of ICSE, April 1998.
[11] N. Heintze, Set-based program

72 Zragddel=gEA A7 A& (2003, 3)

analysis. Ph.D thesis, Carnegie Mellon
University, October 1992.

[12] S. Horwitz, T. Reps, and D. Binkley,
"Interprocedural slicing using
dependence graphs”, ACM TOPLAS,
11(3), pp 345-387, July 1989.

[13] T. Nipkow and D. V. Oheimb, "Java
is type safe-definitely”, Proceedings of
25th ACM POPL, January 1998.

[14] F. and X.
"Type-based analysis of uncaught
exceptions”, Proceedings of 26th ACM
POPL, January 1999.

[15] M. P. Robillard and G. C. Murphy,

"Analyzing exception flow

Pessaux Leroy,

in Java
programs”, in Proc. of 99 European
Software Engineering Conference and
ACM SIGSOFT Symposium on
Foundations of software FEngineering,
pp. 322-337, Springer—Verlag.

[16] B. G. Ryder, D. Smith, U. Kremer, M.
Gordon, and N. Shah, "A static study
of Java exceptions using JESP,” Tech.
Rep. DCS-TR-403, Rutgers University,
Nov. 1999.

[17] S. Sinha and M. Harrold,
and

"Analysis
with
IEEE
Transactions on Software Engineering
26(9) (2000).

[18] S. Sinha, M. Harrold, and G.
Rothermel, "System dependence graph
based with
arbitrary interprocedural control flow”,
Proceedings of ICSE, pp. 432-441.

[191 M. Weiser, "Program Slicing”, IEEE

testing of programs

exception-handling constructs”,

slicing of programs

Transactions on Software Engineering,
10(4), pp 352-357, July 1984.

[20] K. Yi and B.-M. Chang "Exception
analysis for Java”, ECOOP Workshop
on Formal Techniques for Java
Programs, June 1999, Lisbon, Portugal.

[21] K. Yi and S. Ryu.
cost-effective estimation of uncaught

SML programs”,

Proceedings of the 4th Static Analysis

Svmposium, September 1997.

"Towards a

exceptions in

Jang-Wu Jo

1997 -

Professor,

now Associate
Pusan University

of Foreign Studies

2003, Ph.D. Computer
Science, KAIST
1994, MLS. Computer

Science, Seoul National University
1992, B.S. Computer Science & Statistics,

Seoul National University

Byeong—-Mo Chang

1995 - now Associate
Professor, Sookmyung

A Womens’s Univ.
, 199 - 19%5 Postdoctoral
e/ Fellow, ETRI 1994, Ph.D.

L l '/ £ Computer Science, KAIST
1990, M.S. Computer Science, KAIST
1988, B.S.

National University

Computer Engineering, Seoul

