L= o

[16_3_2

Bi-directional Demand-Driven Set-Based Analysis

Woongsik Choi and Kwangkeun Yi

Korea Advanced Institute of Science and Technology

Division of Computer Science

{wschoi, kwang}@ropas.kaist.ac.kr

Abstract

In this paper, we present a bi-directional demand-driven set-based analysis which solves only those

constraints affecting program points one wants to analyze. To achieve this goal, we incorporate the

notion of demands on set constraints and analyze programs in two directions: forward to know which

values flow into a given point, and backward to know which program points that a given value flows

into. We prove that for interested program points, our analysis gives exactly the same results as

whole-program set-based analysis. As an experiment of our approach, we analyzed each program point

separately using our demand-driven formulation. We report the efficiency of our analysis as percentage

of constraints solved for each program point compared with the whole-program analysis.

1. Introduction

When analyzing programs, there are often
situations that analysis of whole program is

not needed. For example, one may need

analysis results for only a subset of all

functions in the program. For array bound

check, only values for array index are needed.

Another situation might be the semantic
exhaustiveness check of pattern matchings in
ML-like programs, where one may need only
those values

With

flowing into pattern matchings.

these motivations, = we propose

demand-driven formulation of set-based

analysis. Set-based analysis [5,4,3] is a static
analysis technique that estimates sets of values
Such

by regular tree grammars [4]. regular

13 ool = A A167 A|3E (2002, 10)

tree grammar's production rules are derived in
a form of set-constraints. In set-based analysis,
there's no solving order defined and due to
higher order functions in functional languages,
analysis results for a program point can't be
determined until analysis for whole-program is
finished. To overcome this aspect and make it
demand-driven, we incorporate notion of
demands to set-based analysis. Starting from
initial demands of interested program points,
we add new demands for related program
points and solve a constraint only if we have
demand for it. One can view demands as
specifying solving order to set-based analysis.

To achieve demand-driven formulation in the
presence of higher-order functions, we solve
constraints in two directions. For a given
program point, the result of set-based analysis
is approximation of all values computed for
the point. To acquire all such "forward"
information of computation in demand-driven
way, we sometimes need opposite "backward"
information of all program points on which a
given function can be called. Let's consider

following higher-order program fragment.

let fun f x = case x of ...

fungh e ...

in ... f g ... gf ... end
For the (forward) demand of argument x, we
have to collect function f's actual arguments,

¢, and es by identifying all call sites of f.

e, might be easily identified syntactically, but

as functions in higher-order programs are

first-class objects, ¢, can't be identified

without analyzing all call sites the function f
flows into. So, we add backward demand for f
and solve this demand in backward direction

identifying that f flows into the call site h

€.

1.1. Other Approaches for Demand
Driven Analyses

Biswas formulated a demand-driven set-based
dead

elimination [2]. However, in his formulation,

analysis for the purpose of code
initial demand is restricted only to top-level
expression and constraints for arbitrary program
points can't be analyzed separately. He adds
demand constraints to usual value constraints.
His approach solves both value constraints and
demand constraints simultaneously. Demand
constraints are solved in such a way that if a
program point is included in the demand, then
it is not dead code. In this way, he solves
constraints for only non-dead codes, and when
solving is done, program points not in the

demand set are identified as dead codes.
Contrary to this use of demands to indicate
non-dead codes, demands in our demand-driven
formulation can be any program points of
interest.

demand-driven

In Heintze and Tardieu's

formulation of pointer analysis for C-like

Bi-directional Demand-Driven Set-Based Analysis, 324 .0]3 19

,Tn) = €2,y = €3)

variable

data construction
function abstraction
function application
pattern matching

Figure 1. Syntax

Var z,y variables
Con ¢ data constructors
Expr
e = z
| cler, .. en)
| Azxee
| €1 €2
| case(er,c(x1,...
languages[6], similar concept of separating

forward flows and backward flows is used. In
like C,

answering the query "what may a program

a language pointer analysis is

variable p point to?". To solve indirect
assignment in fully demand-driven way, they
solve the backward query "what variables may
Our

strategies for

point to p?". work can be seen as
applying

formulation to

their demand-driven
set-based

higher-order languages.

1.2. Paper Organization

The rest of this paper is organized as
follows. In Section 2, we define a core ML
language we will use to represent our work.

-~

In Section 3, we briefly summarize set-based
analysis for the language. In Section 4, we
modify the set-based analysis and formulate a
demand-driven set-based analysis. In Section 5,
we prove that our demand-driven formulation
gives the same results for demanded program
points. In Section 6, we report the
experimental results for solving each program
points separately and discuss about the results.

In Section 7, we conclude the paper.

analysis of

2. The Language

In this section, we introduce a simple

language that we will describe our work with.
It is an ML with data

untyped core

constructors and simplified pattern matching
constructs.
Syntax of the language is shown in Figure 1.

Here, Var is a finite set of program variables

and Con is a finite set of date constructors

with predefined arities. x, Ar.e, e, e, are

components of core ML. A ey, e,
produces structured values with data
constructor ¢ of fixed arity 7.

case(ey, (xy, ", x,) = €3,y = e3)

represents simplified pattern matching.

Recursive functions are omitted for

presentational simplicity because they are not
affected by our demand-driven formulation.

We show dynamic semantics of the language
in natural semantics form in Figure 2. The
establish the relation

natural semantics

FE e — v saying that in environment F,

expression ¢ evaluates to value o Here,

environment £ is a finite mapping from

20 Zaagdelel=iA A6 A3E (2002, 10)

Env E € Var M) Val

environment

Val v == e¢(v1,...,vy) constructed value
| (E,Az.e) function closure
Etrxz— E(x)
Etre —wv;, 1<i<n
Etrcler,...,en) > c(viy... ,vn)

EF Az.e = (E,z.€)

Et ey — (E' Az.€)

Eles =

E'lz—d]kFe—>w

Eleies—w

EtFer —c(vl,...,vn)

Elz1 — v1,...

N L)

E + case(e1, c(z1,...

EtFe =

Ely—v]kFes —w

,Tn) = €2, Y= €3) >V

E & case(e1, c(x1,... ,xn) = €2, y=e€3) 2 v

v #£e(...)

Figure 2. Dynamic semantics

program variables to wvalues. The notation

Elx — v] denotes the environment which

has the same mappings as FE except for x,

which maps to . We have two kinds of

values, data constructed values and function
closures. To enforce static scoping, we keep
track of the environment in which a function

is generated as a function closure.

3. Set-Based Analysis [5]

Set-based analysis is a static analysis method,
which approximates sets of values for each
programs points by regular tree grammars [4],
whose production rules are derived in a form
of set constraints. By collapsing all
environments appearing during evaluation into
a single set environment, dependencies between

different environments are ignored and runtime

values of the program are approximated in
finite time.

The method is separated into two phases. In
first phase, initial set constraints are generated
from the source program. This generation
transforms the meaning of the program into set
containment relationships with set expressions
modeling approximation semantics. Also, every
program point is named with set variables. So,
after generation, the source program is not
needed anymore. In second phase, we solve
the generated constraints by adding simpler
constraints explicitly representing flows of
values. Analysis is done when there are no
more constraints to add. The analysis result is

explicit set containments for every set variable.

3.1. Set Constraints

Bi-directional Demand-Driven Set-Based Analysis, #-&4].0]3 2]

SetVar W, X,y set variables

SetExp set expression
ser=W | X |Y variable
| Az.e function value
o X, ..,) constructed value

application

|
| apply(X:, X2)
| pattern matching

case(Y1,c(Wi,... ,Wy) = Yo, W = Vs)

Atomic set expression
ae = Ax.e

| C(X1, e

Special set variables
- dom(Az.e): formal argument (z)
, Xn) - ran{Az.e): body expression (e)

Meaning of set expressions

Val v u=c(v,...,v,) constructed value
| Az.e function value
T € SetVar — 2V interpretation
Extension of 7
- I(Az.e) = {Az.e}
- I{e(X1, ..., X)) = {e(vr, ...

,on) | v €Z(X;), 1 <i<n}
- L{apply(X1, X2)) = {v | Az.e € Z(X1), v € ran{Az.e
provided Az.e € Z(X1) implies Z(X2) C Z(dom(Az.€))
- Z(case(V1, c Wi, .. Wy) = Vo, W= Y3)) =
{v|veI(Y),I € Z(W) st. v =c(...)} U
{v|veZ(s), W €T(Q) st. v £el...)}
provided:
1.if c(v1,... ,v) € Z(Y1) then v; € ZW;), 1 <i<n
2.ffveZ(Oh) and v #£ ¢(...) then v € Z(W)

Figure 3. Set expressions

We define set expressions and their meanings

in Figure 3. We have three kinds of set
expressions. First, variable set expressions
denote program points. Two special set

variables are used to handle flows generated
by function applications. dom(Ax.e) denotes
actual arguments flowing into Ax.ée's formal

argument. 7@n(Ax.e) denotes result values of
function application. Second, abstractions and
constructed value expressions denote set of
values, which we call atomic set expressions.

appiy and case expression denote

semantics of the

Lastly,
language. Meaning of set

expression is given by extending interpretation

Z, which is a mapping from set variables to

sets of wvalues. Note that we don't have
environments as function closure because single
predefined set environment is used. Restrictions
in the extension guarantees that 7 is sound
approximation of the program.

Set constraints are of the form X = se
meaning that program point X contains the
values denoted by se.

Set constraints are generated from the source
program by the rules in Figure 4. Environment
&£ maps program variables to corresponding set
The Er-el> (x,0

says that in environment F, constraints C are

variables. relation

22 Zaagdelel=iA A6 A3E (2002, 10)

generated with new set variable X denoting

program point eé.

3.2. Set Constraint Solving

We present set constraint solving rules, E, in

closure is the set of initial constraints C and
all added constraints by repeatedly applying E.
The

showed that we get explicit representation of

main result of set-based analysis[3]

safe approximation of the program by

collecting all constraints of the form X = aqe

Figure 5. E simulates the data flows in in E* (C).
programs by propagating set constraints. For
example, for a function call site, rule E1 links 4, Bi-directional Demand-Driven
the result of the site with body of functions Set-Based Analysis
Ebzv(E(x), {})
g I e1 b (Xl, Cl) g [eo D> (Xz, Cz)
E1 X D apply(X1,X2) X1 D Az.e
X D ran(Ax.e)
E2 X D apply(X1,A2) X1 D Aze
dom(Az.e) D X,
B3 X Dcase(Yr,e(...) = Ve, W=Y3) 1 Dc(...)
X2V
E4 cha.se(yl,c(...,Wi,...):>y2,W:>y3) y126(...,2¢,.)
Wi D Z;
Es X Dcase(Vi,c(...) = Yo, W=Vs) 1 D(..) c#c
X 2Vs
E6 X Decase(Vi,c(-..) = Ve, W=V3) i Dc(...) c#c
wod(..)
XDX' X' Dae
E7 X Dae

Figure 5. Exhaustive solving (E)

flowing into the site and rule E2 links formal
argument of those functions to actual argument
of the site. Further simplifications are initiated
by flowing values through links established.
We define analysis as the reflexive transitive
closure E* (C) of E (C), a single step of
adding constraints by applying E to C. The

In this section, we develop a demand-driven

set-based analysis by modifying Heintze's
exhaustive set-based analysis presented in
Section 3. Our demand-driven set-based

analysis solves from arbitrary initial demands

of interested program points, only those

constraints affecting them and gives the same

Bi-directional Demand-Driven Set-Based Analysis, 324 .0]3 23

results as exhaustive set-based analysis for

them.

4.1. Making it Demand-Driven
Let's consider the rule E1 of exhaustive
solving E in Figure 3.

X D apply(Xy, Xz) Xy D Axee
X D ran(Az.e)

Here, we add the constraint that X contains
ran(Ax.e). We need this constraint if we
want to know what values program point X
evaluates to, i.e., if we have demand for X.
So, we need the following demand-driven rule
with the notation /XX) meaning that we
have demand for .
D(X) X 2D apply(Xi,Xz) X1 D Azee
X D ran(\z.e)

Next step is adding new demands to ensure
that we solve all necessary constraints. Let's
continue considering the case E1. We have to
ensure that all premises in the original rule E1
demand-driven

appiy(-++) are
generated from the source program. So, the

are added in solving. All

constraints with directly

premise, X’ = appiy(X1,X») is guaranteed to
be in demand-driven solving. However, the
other premise, A1 = Ax.e, can be added
during solving process. We can guarantee that
this premise is added in demand-driven solving
with IX&1), ie, we need to know what
values A evaluates to. So, we can write the

following demand-add rule.

D(X) X D apply(th, A)
D(X)
Note that from IXA1), we can identify

X 2 appiv(Xx, ,X») right away because it is
a generated constraint.

Demand-add rules specify solving sequence.
For example, the rule we have just defined
specifies solving sequence as follows: To solve
X which

is a call site of

find all

constraints for

X Z appiv(xy , X)), we first
functions X4 evaluates to.

Using similar approach, we can make all
demand-driven associated

rules and get

demand-add rules except for the case E2

dom(Ax.e), which we will discuss next.

4.2. Demand for Formal Argument

Let's consider the rule E2.

X D apply(X1, Xs) A1 D Awee
dom(Az.e) D Xs

We can make the rule itself demand driven
as follows:

D(dom(Az.e)) X D apply(X1,Xs) X1 D Ax.e
dom(Az.e) D Xa

However, we associated

demand-add

can't get the

rule as other cases. From

D dom(x.e)), we have only the clue that
Ax.e flows into some Al

from Ax.e

Finding out all

such A} is not trivial because

X1 = Ax.e might be a newly added constraint
during solving.

Naive approach of following demand-add rule

24 Zaagdelel=iA A6 A3E (2002, 10)

works, but it is not fully demand-driven in the
sense that we solve all call sites regardless of
initial demands:
D(dom(Az.e)) X D apply(Ar, Xs)
D(X1)

In order to avoid this too loose demand-add

rule, we need to consider solving constraints

in the opposite direction. The information
needed here is all call sites that Ax.e flows
into. So, we make it fully demand-driven by
solving Ax.e in the opposite backward

direction. We specify solving directions with
the notations FIXX) for ordinary forward
solving of X and BIXse) for the opposite
se. With

solvings, demand-add rule for forward formal

backward solving of these two
argument is stated as follows:
FD{dom(\x.e))
BD()\z.e)
That is, we need to know where Ax.e flows
into (backward needness) if we need to know
into formal

what values flow argument x

(forward needness).

43.

Solving

Bi-directional Demand-Driven

Our demand-driven solving rules consist of
forward rules and backward rules interleaved.
We solve some constraints in forward direction

and some in backward direction. For the

presentational simplicity, we include forward

demand FIXX) and backward demand

BIXae) or BIXX) as special kinds of set
constraints.

Forward demand-driven solving, F, finds all
constraints of the form X = se if we have

FIDXx). The solving

rules and demand-add rules of forward solving

the forward demand,

are shown in Figure 6. Two rules are indexed
with the same number for solving rule and
corresponding demand-add rule.

Backward demand-driven solving, B, finds all

constraints of the form X = se if we have

the backward demand, BIXse). We present
solving rules and demand-add rules in Figure
7. We formulated these rules similar to the
way we did for the forward solving. For

example, B2 is derived from E2 by adding the

premise BIXX>) to ensure that we add
dom(Ax.e) = X, only if we have the
backward needness for X» as follows:
BD(X>) X Dapply(Xi,Xs) X1 2 Azee
dom(Az.e) D Ao
To guarantee that non-trivial premise
X1 2 Ax.e is included in the backward

solving, we devise following demand-add rule
B2P:
BD(X2) X 2 apply(Xy, A>)
FD(Xy)

This rule specifies that to consider all program
points that an actual argument of a call site
flows into, we have to first find out all
functions flowing into the call site. Other rules
are derived according to similar ideas.

Demand-driven set-based analysis repeatedly

Bi-directional Demand-Driven Set-Based Analysis, -2 4].0]3 25

FD(X) X Dapply(Xi,X2) X1 D Az.e

Fl X D ran(Az.e)
F2 FD(dom(Ax.e)) X D apply(Xi,X2) X1 D Ax.e
dom(Az.e) 2 x>
F3 FD(X) X Dcase(Vi,c(...) =P, W=Y3) V1 Dcl...)
X2V
Fa FD(WZ) XQcase(yl,c(...,Wi,...):>y2,W:>y3) ylgc(...,zi,...)
Wi D Z;
Fs FD(X) X Dcase(Mr1,c(...)=>Ye,W=Ys5) W1 2(..) c#c
X2 Vs
Fe FDOW) X Dcase(V,e(...) =V, W=V3) 1 D(..) c#<c
W2d(..)
o FD(X) X2X' X'Dae
X Dae
PP FD(X) X D apply(X1,Xs)
FD(X1)
FD(dom(Az.e))
D kit
F2 BD(\z.e)
F3.50 FD(X) X Dcase(Qh,c(...) = Yo, W= Vs)
’ FD(n)
FaP FD(W;) X Dcase(Vi,e(... Wi,...) = Y2, W=)s)
FD(Q1
F6P FDW) X Dcase(V1,c(...) = Vo, W = V3)
FD()h)
FDX) x2&'
D =
7 FD(X")

Figure 6. Forward demand-driven solving (F)
applies rules F and B. Let C’ be the union
of the generated constraints and initial forward
demands. We define FB (C’) to be newly 5. Equivalence

added constraints by applying F and B to C’
. . In this section, we prove that for the
once. Then, solving process is represented by

. . X program points we want analyze, our
the reflexive transitive closure, FB* (C").

demand-driven set-based analysis gives the

X and constraint

B1 BD(ran(Az.e)) X D apply(X1,Xz) A1 D Az.e
X D ran(Azx.e)
B2 BD(X) X Dapply(Xy, X2) A1 D Aze
dom(Azx.e) D Xs
B3 BD(Y2) X Dcase(Dr,c(-..) =V, W=Y3) V1 Dc(...)
X2V
B4 BD(Z;) X Dcase(Vi,c(.. Wi,...)= W=V3) i 2Dcl..., 2. ..
W: 2 Z;
B5 BD(Y3) X Dcase(Vi,c(...)= e, W=Vs) V1 2(...)
X 2Vs
B6 BD(d(...)) X Dcase(Y1,c(...) =P, W=V3) 1 D(...)
Wod(...)
B7 BD(ae) XD X' X' Dae
X Dae
B1P BD(ran(Az.e))
BD(Az.e)
BaP BD(X:) X 2 apply(Xi1, As)
FD(Xy)
B3P BD():) X Dcase(Vi,e(...) = Yo, W= Vs)
FD(n)
BD(Z;
B4P (2:)
BD(e(... ,2Zi,...))
B5D BD(Ys) X Dcase(Vr,c(...) = Vo, W= Ds)
FD(h)
B7D BD(ae) X/’ Dae
BD(X')
Figure 7. Backward demand-driven solving (B)
same results as the original exhaustive in case of constructed
analysis. We prove the equivalence by using have forward demand for

similar strategy and notations Heintze used to
prove equivalence of his demand-driven pointer
analysis [6].

Equivalence guaranteed by our demand-driven

formulation is restricted to top-level structure

X = (Xx1) is in the solution. In this case,
values for A7 are not guaranteed to be in the
solution. This is not surprising since we only
constraints of the form

guarantees that all

X = se are in the solution and we don't have

Bi-directional Demand-Driven Set-Based Analysis, -2 4] .0]3 27

constructed value set expression of the form
(ae). Solution of set-based analysis is a
regular tree grammar specifying how to build
values in the solution [4].

This is not severe restriction. First, one may

actually need to know only top-level structure

of wvalues. In those situations, our method is
more efficient than finding values for all
components together. Second, if wvalues for

components are needed, those values can be

solved by invoking the analysis again with
demands for needed components. In
reinvocations, constraints solved in previous

invocations are saved and need not be solved
again. So there's not much performance loss
by solving constraints through successive steps
for components.

Now, we prove the equivalence. Let's first
define following assertions to represent result

constraints of demand driven solving. Let C

be generated constraints and € be the union

of generated constraints and initial forward
demands.
— XFp X Dse
this assertion states if FIXX) in FB*
(C) then X = s¢ € FB* (C).
— sekp X D se
this assertion states if FIXX) in FB*

(C’) then X = se € FB* (C).

Lemma 1 (Soundness). [f X = se¢ =

FB* (C) then X = se € E* (Q).

Proof: This is ftrivial since demand only

restricts solving process. We start

demand-driven solving with the same value
constraints, and all solving rules in F and B
are restricted version of the same rules in E
each with an additional premise for demand. O
Lemma 2 (Completeness). J[f X = se

E* (C) then X Fr & 2 se and setbp & 2 se
Proof: We prove by induction on the proof
tree of derivations of ¥ = se € E* (Q).

— Base cases

Base cases of X = se € E* (C) are
generated constraints . All these constraints

are included in forward (backward)

since C° = C

solving

X D apply(X1,Xp) A1 D Aze
a dom(Az.e) D X

X D apply(X1, As) € FB*(C') (base case)

i) dom(Az.e) Fr dom(Az.e) D Ay
We assume F D(dom(A\z.€)) € FB*((').
X D apply(X1, Az) € FB*(()

(base case)
BD(X\z.e) € FB*((')

(by F2P)
X1 D Az.e € FB*((')

(by LH. Ax.e bp X D Ax.e)
dom(Ax.e) D X € FB*(C")

(by F2 applied to above results)

28 ZR ool =i A6 #35 (2002. 10)

ii) X2 Fp dom(Az.e) D Xy
We assume BD(X2) € FB*(C').
X 2 apply(X1, Xz) € FB*(C')
(base case)
FD(X,) € FB*(C")
(by B2P)
X1 2 Az.e € FB*((C")
(by 1L.H. Xl '_F Xl 2)\:L"e)
dom(Az.e) D X2 € FB*(C")
(by B2 applied to above results)

XDX' X' Dae
A Dae

i) X Fp X Dae
We assume FD(X) € FB*(C').
X DX € FB*(C')
(by LH. X Fr X D X")
FD(X') € FB*(C")
(by F7° applied to above results)
&' D ae € FB*((C)
(by LH. X' bp X' D ae)
A D ae € FB*(()
(by F7 applied to above results)

ii) aebp X D ae
We assume BD(ae) € FB*(C').
X' D ae € FB*((')
(by LH. ae kg X' D ae)
BD(X') € FB*(C')
(by B7P applied to above results)
X DX e FB*(C')
(by LH. X' Fp X D X')
X Dae €e FB*(()
(by BT applied to above results)

— Other cases are proved similarly. O

Theorem 1 (Equivalence). For all FIXX)<,
C, ¥x=see E*(C) iff ¥= se € FB*
).

Proof: It follows immediately from Lemma 1

and Lemma 2

6. Experimental Results and
Discussion
We have implemented prototypes of both

exhaustive analysis and demand-driven analysis
over nML programming language system [7] to
measure the performance of demand-driven
analysis. We analyzed source code after pattern
matching compilation based on decision tree
model [1],

pattern matching to the restricted form of the

which transforms ML's complex
core language. For other parts of full ML not
represented in core language, we extended the
core analysis with similar ideas in [5] except
that we didn't analyze arithmetics.

We have

program point

experimented by solving each

separately. For each program
point, we start from

analysis generated

constraints from source program and with

single forward demand for the point. As
mentioned in Section 5, for the initial program
point of interest, we solved for full structure
of values by reinvocating the analysis for the
components of structured values. We included
significant libraries such as list libraries in the
source program and analyzed them together.

Summary of experimental results are shown
in Figure 8. First four programs are widely
used benchmarks for ML. dsba is our analyzer
itself. patcomp is a pattern match compiler for
nML. evalcps is an interpreter and
continuation passing style (cps) converter of
simple functional language. Initial constraints

are generated constraints from the program

roughly indicating program size. We show

maximum and average percentages of

Bi-directional Demand-Driven Set-Based Analysis,

Program Initial® Ex’ [DD solving(%) °
(lines) constraints|solving|Max. ¥ Avg. °

£t (238) 1348| 1982| 44.0 5.2
nucleic (3398) 15770 18574| 36.9 0.8
kb (500) 3826|140518| 83.9 33.7
lexgen (1282) 9035 50285 72.3 23.1
dsba (3162) 13740(115087| 77.9] 314
patcomp (1406) 6609|350493| 84.0 39.5
evalcps (604) 2987| 21136| 85.8 21.2

@ Initial generated constraints from source program
b Constraints added during exhaustive solving
¢ Demand-driven solving of each program points separately

¢ Maximum percentage of constraints added compared to exhaustive solving
¢ Average percentage of constraints added compared to exhaustive solving

Figure 8. Experimental results (summary)

fft | nucleic| kb | lexgen| dsba| patcomp| evalcps
0-5 “ |[|86.3°7 94.21 56.0 64.3| 56.5 50.5 67.3
5-10 0.2 1.8 0 0 0 0 1.9
10-15 1,9 1.8 0 0 0 0 0
15-20 0.1 2.1 0 0 0 0 0
20-25 0 0 0 0 0 0 0
25-30 0 0 0 0 0 0 0
30-35 39| <0.1° 0 0 0 0 4.3
35-40 0 0.1 0 0 0 0 0.1
40-45 7.3 0 0 0 0 0 1.8
45-50 0 0 0 0 0 0 2.8
50-55 0 0 0 0 0 0 3.4
55-60 0 0 0 0 0 0 0.1
60-65 0 0 0 12.6 0 0 0
65-70 0 0 0 23.0(20.6 0 0
70-75 0 0 0 0.1 3.6 9.1 0
75-80 0 0]40.4 0| 19.4 0 0
80-85 0 0| 3.6 0 0 40.4 17.6
85-90 0 0 0 0 0 0 0.6
90-95 0 0 0 0 0 0 0
95-100 0 0 0 0 0 0 0

E=

o §
- Rl e

29

* Range of percentage of constraints added compared to exhaustive solving
b Percentage of program points belonging to the range

¢ Less than 0.1%

Figure 9. Experimental results (details)

constraints added for demand-driven solving of

a program point compared to exhaustive

solving. Maximum percentage indicates the
program point solving the largest number of
constraints. We show average of all program
points though it may not be much meaningful

because of high variance.

More detailed results are shown in Figure 9.
For each program, we give percentages of
program points solving 0-5%, ---, 95-100% of
constraints compared to exhaustive solving. We
could see some interesting points with the
results.

— Many program points solve 0-5%. This

30 Ze ool == A16¥ 35 (2002. 10)

behavior is quite natural since many program
points do simple computation. For example, in
extreme, program points for constants solve
0\%.

— Many program points solve near maximum
percentages. In mono-variant analysis, all
function calls are merged. So, if the result of
a function call is needed, we have to analyze
all other call sites of the function, which can
be the cause of this behaviour. Also, we can
think that mono-variance is causing clustering
of program points with many 0's in Figure 9.
— 44%, 36.9% maximum percentages for fft

and nucleic. What we observed from this

behaviour is that demand-driven formulation
reflects crude approximation done in base
analysis and doesn't solve unnecessary

constraints due to those approximation. fft
intensive numerical

didn't

and nucleic are

applications. However, we analyzed

arithmetics. Analysis result for ¢, +e5 is T,
meaning all values are possible. So, values for
¢, and &, are not needed to get this T

value. When we modified demand-driven

formulation to enforce demand for e; and e,

we got 61.4% maximum percentage for fft
and 89.8% for nucleic. Also, £ft uses arrays
intensively. We analyzed arrays by collapsing
all cells of an array into a single reference
Heintze did in [5]. this

approximation discards any need for array

cell as Again,

indexes other than needs for themselves. When

we also enforced demands for array indexes in

addition to arithmetic arguments, we got 80%

maximum percentage.

7. Conclusion

We have developed a demand-driven approach
for set-based analysis. By incorporating
demands to the analysis, only those constraints
related to interested program points are solved.
To get fully demand-driven formulation, we
in forward direction
We have

equivalent to

solved some constraints
and some in backward direction.

proved that our approach is
original exhaustive approach in the sense that
for the

exactly the same results. We have implemented

initial demands, our approach gives
prototypes of our analysis and experimental

results show interesting aspects of

demand-driven analysis.

References

[1] Marianne Baudinet and David MacQueen,

"Tree matching for ML",
unpublished paper, 1985.
[2] Sandip K. Biswas, "A demand-driven

set-based analysis", Proceedings of ACM

pattern

Symposium on Principles of Programming
Languages, pages 372-385, 1997.

[3] Nevin Heintze, "Set-Based Program
Analysis", PhD thesis, Carnegie Mellon
University, October 1992.

[4] Nevin Heintze, "Set constraints in program
analysis, Proceedings of International
Symposium on Logic Programming, 1993.

[5] Nevin Heintze, "Set-based analysis of ML
programs, Proceedings of the ACM

Bi-directional Demand-Driven Set-Based Analysis, 384 .o]#2

Conference on Lisp and Functional
Programming, pages 306-317, 1994,
[6] Nevin Heintze and Olivier Tardieu,
"Demand driven pointer analysis",
Proceedings of ACM Conference on
Programming Language Design and
Implementation, pages 24-34, 2001.
[7] nML programming language system,
version 0.92a, Research On Program
Analysis System, KAIST, March 2002,
http://ropas.Kaist. ac.Kr/n.

Woongsik Choi
it %0 4 2002, M.S. Computer
= Science, KAIST
-

2000, B.S. Computer
Science, KAIST

Kwangkeun Yi
1995 - now Associate
Professor, KAIST
1993 - 1995 Member of
Technical Staff,
Software Principles
Research Dept., Bell Labs., Murray Hill
1993, Ph.D. Computer Science, Univ. of
Illinois at Urbana-Champaign

1990, ML.S. Computer Science, Univ. of
Illinois at Urbana-Champaign

1987, B.S. Computer Science & Statistics,
Seoul National University

31

32 Zaaodddel=EA All6d A3 (2002. 10)

