
Set-Based Access Con
icts Analysis of Structured Work
ow

De�nition Language

Minkyu Lee, Dongsoo Han and Jaeyong Shim

School of Engineering, Information and Communications University,

58-4 Hwaam, Yusong, Daejon, Korea

Abstract

An error-comprising work
ow de�nition might provoke serious problems to an enterprise especially

when it is involved with mission critical business processes. Concurrency of work
ow processes is known
as one of the major sources causing such an invalid work
ow process de�nition. So the con
icts caused
by concurrent work
ow processes should be considered deliberately when de�ning concurrent work
ow

processes. However it is very diÆcult to ascertain whether a work
ow process is free from con
icts or
not without any experimental executions at runtime. Which will be very tedious and time consuming
work to process designers. If we can analyze the con
icts immanent in concurrent work
ow de�nition

prior to runtime, it will be very helpful to business process designers and many other users of work
ow
management system. In this paper, we propose a set-based constraint system to analyze possible read-

write con
icts and write-write con
icts between activities which reads and writes to the shared variables

in a work
ow process de�nition. The system is composed of two phases. In the �rst phase, it generates
set constraints from a structured work
ow de�nition. In the second phase, it �nds the minimal solution
of the set constraints.

1 Introduction

A work
ow is a collection of cooperating, coordinated activities designed to carry out a well-de�ned complex
process, such as trip planning, insurance claiming, health care business processes[5]. An activity in work
ow
could be performed either by a human, a device, or a program. Work
ow management system (WFMS) is
a software system which provides tools to de�ne work
ow processes and enactment services to create and
manage the execution of work
ows.

Once a work
ow is invoked in WFMS, the activities are executed along the control paths and data 
ow
information in the process de�nition. Several activities can be in active state in a concurrent work
ow
process. We call them concurrent activities in this paper. Concurrent activities may access the shared data
in any order because their order of accessing is situation dependent. But the non-deterministic access of
concurrent activities to shared data may bring unexpected result from the work
ow execution. The following
race problems can be considered from the execution of concurrent activities :

1. read-write con
ict is a situation when an activity A tries to read data from a shared variable x and an
activity B tries to write data to the same shared variable x where A and B are concurrent activities
and vice versa.

2. write-write con
ict is a situation when an activity A tries to write data to a shared variable x and an
activity B also tries to write data to a shared variable x where A and B are concurrent activities.

Above race conditions are diÆcult to be detected when the work
ow process is in execution state and can
result in serious problems to business critical processes. Thus such access con
ict-comprising de�nitions
should be eliminated or cleared completely before the real execution of the processes. When designing
relatively small work
ow processes, such de�nitions might be avoided by careful designing of the processes.
However when the work
ow processes get complicated, it is not enough to leave all the responsibilities for



w ::= 0 (inert task)
j (w) (priority)
j task t(p1; :::; pn) (task execution)

j w0 ; w1 (sequential composition)
j w0 k w1 (concurrent composition)
j if-then w0 else w1 (branch)

j while-do w (loop)
p ::= in x (input parameter)

j out x (output parameter)

Figure 1: Abstract Syntax of SWDL

the access con
ict free de�nitions to only work
ow designers. More systematic ways to detect the con
icts
from the de�nitions and to notify them to the designers are required.

Many researches to analyze race conditions have been performed in programming language research
communities. War-lock[10] is a static race detection system for ANSI C programs and Eraser[11] is a tool for
detecting race conditions and deadlocks dynamically. Aiken and Gay[1] studied statc race detection in the
context of SPMD(Single Program Multiple Data) style programs, and Flanagan and Freund[3] presented a
static race detection analysis technique for multithreaded Java programs. In while these researches have been
done in the context of programming languages, our analysis has done in di�erent approach in the context
work
ow.

In this paper, we propose a set-based access con
ict analysis method to detect all the possible access
con
icts prior to the execution of work
ow process. We de�ne a small target work
ow de�nition language
for the description of the method focusing on the language. But the method can be easily extended to
the general work
ow de�nition languages like WPDL(Work
ow De�nition Language)[12]. The method is
composed of two phases. In the �rst phase, it generates set constraints from a structured work
ow de�nition.
In the second phase, it solves the set constraints obtained from the �rst phase.

This paper is organized as follows. In Section 2, we introduce a simple work
ow de�nition language that
is used as target language of the analysis. Section 3 presents details of the analysis method with illustrations.
Finally, in Section 4, we draw conclusion and future work.

2 Structured Work
ow De�nition Language

We de�ne a simple work
ow de�nition language, named SWDL(Structured Work
ow De�nition Language),
as target language for the succinct and clear description of our access con
icts analysis method. Figure 1
shows abstract syntax of SWDL. The SWDL only contains the features that are necessary to express control

ow and data 
ow of a work
ow process because they contain enough information to analyze the access
con
icts of a language. The semantics of each feature are described as follows:

� \0" : Inert work
ow process.

� \(w)" : This is used only to bundle up.

� \task t(p1; :::; pn)" : This means the execution of a task named t. The task may have zero or more
parameters. Each parameter is either input parameter, denoted by in, or output parameter, denoted by
out. The semantics of execution is that the task reads all the input parameters from shared database
by pass-by-value manner and evaluates the task with the parameters and then replaces the shared
data with the output parameters of the evaluated task. The pass-by-value parameter passing is more
reasonable than pass-by-reference in two reasons. The �rst reason is that recent work
ow management
systems are implemented in concerning with mobile environment. In mobile environment, each actor is
mobile so the actor may be disconnected to work
ow management system[4]. To perform the activity
in disconnected state, all the input values should be copied to the disconnected activity site before the
activity to be started. The second reason is that the activities may be distributed in di�erent locations.



and-split and-join

A

B(out x) C(in x)

D E(out x) F

G H

Figure 2: An example of work
ow de�nition

We cannot assume that each activity is always in connected state with other activities because network
bandwidth is amenable to change and the connections are not stable. Input parameters of an activity
may not delivered in time during the processing of the activity. Thus, the assumption that all the
input parameters are prepared by call-by-value mechanism before an activity starts its work is more
reasonable.

� \w0 ; w1" : Two work
ow processes w0 and w1 are executed sequentially. So w1 starts its execution
after the end of w0.

� \w0 k w1" : Two work
ow processes w0 and w1 are executed concurrently in interleaved manner. So
race conditions may occur between w0 and w1.

� \if-then w0 else w1" : This is the same control structure as if-then-else statement in programming
languages. One of the two work
ow processes w0 and w1 are selected and executed. Condition
expression to determine which one is selected is omitted in SWDL language because the selection is
not necessarily required in our analysis.

� \while-do w" : Work
ow process w is executed repetitively. Repetition condition is omitted because
of the same reason as the above item.

Note that data 
ow of work
ow process is not explicitly de�ned but implicitly included in SWDL. It is
obvious that the features of SWDL are not suÆcient but most features necessary to analyze access con
icts
between activities are included in the SWDL speci�cations.

The control structure of SWDL is similar to that of structured programming languages such as C and
Pascal. So it can de�ne structured control 
ow of a work
ow process. Structured work
ow process de�nition
has two advantages over WPDL[12]-standard work
ow speci�cation languages in which activities and control

ow among them are de�ned in separate manner.

1. Syntax-level prevention of invalid de�nition: Structured de�nition of work
ow process is very useful in
preventing various invalid work
ow de�nitions by syntax-level grammar checking. Isolated activities
and transitions from outer-loop into inner-loop are the examples of invalid de�nitions. Some of invalid
de�nitions can be forced not be de�ned in SWDL and some of them can be checked during the parsing
phase.

2. Readibility : De�ning activities and transitions among them in separate manner like WPDL makes it
very diÆcult for one to read the 
ow of process directly from the process de�nition. Since control
structure of SWDL-like the approach of [2] is similar to that of popular structured programming
languages such as C and Pascal, it is more friendly to users and users can grasp the control 
ow of the
process more easily.

Figure 2 shows a simple work
ow process de�nition. Activity name is written in upper case letters and
shared variable is written in lower case letters. After activity A is executed, (B;C) and (D;E;F ) are
executed concurrently and then G and H are executed sequentially. Activity B and activity E write to the
variable x and activity C reads the value of the variable x. This work
ow process is represented in SWDL
as follows:

A ; (B(out x) ; C(in x) k D ; E(out x) ; F ) ; G ; H



[Null] 0� � [Pri]
w � C

(w)� C

[Task]

task x(in i1; � � � ; in in;out o1; � � � ;out om)�

fX � taskR(x; i1); � � � ;X � taskR(x; in);
X � taskW (x; o1); � � � ;X � taskW (x; om)g

[Seq]
w0 � C0 w1 � C1

w0;w1 � fX � Xw0
;X � Xw1

g [ C0 [ C1

[Par]
w0 � C0 w1 � C1

w0kw1 � fX � Xw0
;X � Xw1

;X � par(Xw0
;Xw1

)g [ C0 [ C1

[While]
w � C

while-do w � fX � Xwg [ C

[If]
w0 � C0 w1 � C1

if-then w0 else w1 � fX � Xw0
;X � Xw1

g [ C0 [ C1

Figure 3: Constraint Generation Rules : �

3 Access Con
ict Analysis

In work
ow process de�nition presented in Figure 2, (B;C) and (D;E;F ) may be executed concurrently and
they may access the shared variable x. In this case, two access con
icts can be provoked. The �rst access
con
ict is write-write con
ict caused by B, E. The second access con
ict is read-write con
ict caused by C
and E.

To analyze all the possible con
icts, we adopt set constraint system that is used to analyze runtime
features of programming languages[8][9][6][7]. The method consists of two phases. In the �rst phase, it
generates set constraints from the source and in the second phase, it �nds the minimal solution from the
set constraints generated at the �rst phase. In our analysis, every work
ow expression w of input work
ow
process de�nition has set constraints Xw � se. The set variable X is used to collect(represent) w's possible
access con
icts. For example, suppose that (A k B ; C) is an input work
ow, every work
ow expression A,
B, C, B ; C, (A k B ; C) has its own set variables Xa, Xb, Xc, Xbc, Xabc respectively. Finally, Xabc will have
all the possible con
icts of the input work
ow. Each set constraint is in the form of X � se where se is a
set expression. The meaning of set constraint X � se is intuitive: that is, set X contains the set represented
by the set expression se.

In the next subsection, we present how to generate set constraints from an input work
ow de�nition and
then show how to solve the set constraints with an example.

3.1 Construction of Set Constraints

Figure 3 shows the rules to generate set constraints for every work
ow expression. The set variable X is
for the current work
ow expression to which the rule applies and the subscripted set variable Xw is for the
work
ow expression w. The relation \w � C" represents that \constraints C are generated from work
ow
expression w."

Every work
ow expression of work
ow de�nition presented in Figure 2 is underlined and labeled. Each
label will be used as subscript of its set variable.

A
a
; (B(out x)

b
; C(in x)

c
bc

k D
d
; E(out x)

e
; F

f
ef

df

)

bf

; G
g
; H

h
gh

bh
ah

Set constraints for this example generated by � is presented in Figure 4 and the expected result is the
minimal set which satis�es all the constraints.



Xah � Xa Xah � Xbh

Xbh � Xbf Xbh � Xgh

Xbf � Xbc Xbf � Xdf Xbf � par(Xbc;Xdf )

Xgh � Xg Xgh � Xh

Xbc � Xb Xbc � Xc

Xdf � Xd Xdf � Xef

Xef � Xe Xef � Xf

Xb � taskW (B;x) Xc � taskR(C;x) Xe � taskW (E;x)

Figure 4: Set Constraints Generated by �

3.2 Solving Set Constraints

In the previous subsection we showed how to generate set constraints. In this subsection we present how to
compute the solution from the set constraints. To solve the set constraints we introduce constraint solving
rules S, which is presented in Figure 5. Each rule in S is written in the following way:

C1 � � � Cn

C1 � � � Cm

Using this notation, one or more set constraints already contained are written above a bar and new set
constraints are written below the bar. The structure states that if set constraints are found in written above
a bar then add the new set constraints to the set of constraints.

The minimum solution is computed by iterative application of constraint solving rules S to set of con-
straints C and the iterative application is denoted by S

�(C). Although S
�(C) certainly denotes the solution,

we can have more concise solution by eliminating unnecessary and redundant constraints. Final result is in
the followings:

fX � conflictRW (s; t; x) j X � conflictRW (s; t; x) 2 S
�(C)g

[ fX � conflictWW (s; t; x) j X � conflictWW (s; t; x) 2 S
�(C)g

If C is same as Figure 4 then the �nal result becomes:

fXah � conflictRW (C;E; x);Xah � conflictWW (B;E; x)g

The time complexity of the algorithm to estimate access con
icts is O(n3) where n is the size of input
work
ow expression. The O(n3) bound is derived based on the following observations. First, the construction
of constraints is proportional to the n. So the time complexity becomes O(n). Second, at most n2 new con-
straints can be added by the constraints solving algorithm, and the cost of \adding" each new constraint(i.e.
determining what other new constraints need to be added, given this constraint is added) is bounded by
O(n). Thus, the sum of the �rst and the second phase becomes O(n) +O(n3) = O(n3).

4 Conclusion and Future Work

We presented a set-based method to detect all possible access con
ict situations in a work
ow process
de�nition before runtime. The method consists of two phases: set constraint generation phase and set
constraint solving phase. We also proposed a work
ow de�nition language, named SWDL, for the e�ective
description of the method. Although SWDL is lack of many features to become a general purpose work
ow
de�nition language, it has suÆcient features to analyze access con
icts in concurrent work
ow de�nition.
Thus we expect that the method developed in this paper can be applied to general purpose work
ow de�nition
languages fairly easily.

Our method is to predict the access con
icts among concurrent activities in a work
ow instance not
those of inter-work
ow instances. Actually in work
ow management system, the situation where multiple
instances of work
ow processes try to access shared data simultaneously can happen. So the access con
icts
happening between multiple instances also must be considered. It seems to be inherently the same problem



X � Y Y � taskR(t; x)

X � taskR(t; x)

X � Y Y � taskW (t; x)

X � taskW (t; x)

X � par(Y;Z) Y � par(V;W)

X � par(V;Z);X � par(W;Z)

X � par(Y;Z) Z � par(V;W)

X � par(Y;V);X � par(Y;W)

X � par(Y;Z) Y � taskR(s; x) Z � taskW (t; x)

X � conflictRW (s; t; x)

X � par(Y;Z) Y � taskW (s; x) Z � taskR(t; x)

X � conflictRW (s; t; x)

X � par(Y;Z) Y � taskW (s; x) Z � taskW (t; x)

X � conflictWW (s; t; x)

X � Y Y � conflictRW (s; t; x)

X � conflictRW (s; t; x)

X � Y Y � conflictWW (s; t; x)

X � conflictWW (s; t; x)

Figure 5: Constraint Solving Rules : S

as that we have dealt with in this paper. But more in-depth analysis is required to be convinced and to solve
such a problem.

The other direction of our research is to generate new con
ict free work
ow process de�nition automat-
ically using the obtained con
ict information from our analysis. One possible approach is simply to put
lock and unlock operation on shared variables in the front and rear of activities which may con
ict. Such
approach can free business process designers from the concerning of provoking access con
icts when de�ning
work
ow processes.

References

[1] A. Aiken and D. Gay, \Barrier inference," Proceeding of the 25th Symposium on Principles of Program-
ming Languages, pages 243-354, 1998.

[2] C. Dengi and S. Neftci, \D
ow Work
ow Management System," Proceedings of 8th International Work-
shop on Database and Expert Systems Applications, 1997.

[3] C. Flanagan and S. Freund, \Type-Based Race Detection for Java," Proceedings of ACM Conference
on Programming Language Design and Implementation, June, 2000.

[4] G. Alonso, R. Gunthor, M. Kamath, D. Agrawal, A. El Abbadi and C. Mohan, \Exotica/FMDC:
Handling Disconnected Clients in a Work
ow Management System," 3rd International Conference on
Cooperative Information Systems, Vienna, May 1995.

[5] H. Davulcu, M. Kifer, C.R. Ramakrishnan, and I.V.Ramakrishnan, \Logic based modeling and analysis
of work
ows," In ACM Symposium on Principles of Database Systems, June, 1998.

[6] K. Yi and B. Chang, \Exception Analysis for Java," ECOOP'99 Workshop on Formal Techniques for
Java Programs, June, 1999.

[7] K. Yi and S. Ryu, \A Cost-e�ective Estimation of Uncaught Exceptions in SML Programs," Theoretical
Computer Science, Vol. 273, No. 1, 2000.

[8] N. Heintze, \Set Based Program Analysis," Ph.D.thesis, School of Computer Science, Carnegie Mellon
University, October 1992.

[9] N. Heintze, \Set Based Analysis of ML Programs," Carnegie Mellon University Technical Report CMU-
CS-93-193, July 1993.



[10] N. Sterling, \A static data race analysis tool," In USENIX Winter Technical Conference, pages 97-106,
1993.

[11] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson, \Eraser: A dynamic data race
detector for multi-threaded programs," ACM Transactions no Computer Systems, 15(4):391-411, 1997.

[12] Work
ow Management Coalition, \Interface 1: Process De�nition Interchange Process Model," Docu-
ment Number WfMC TC-1016-P, October 29, 1999.


